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Abstract

In this paper, balancing based model order reduction (MOR) for large-scale linear discrete-time time-invariant
systems in prescribed finite time intervals is studied. The first main topic is the development of error bounds
regarding the approximated output vector within the time limits. The influence of different components in the
established bounds will be highlighted. After that, the second part of the article proposes strategies that enable an
efficient numerical execution of time-limited balanced truncation for large-scale systems. Numerical experiments
illustrate the performance of the proposed techniques.
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1. Introduction

In this paper, we consider multi-input multi-output (MIMO) linear time-invariant (LTI) discrete-time dynami-
cal systems. These systems are governed by a set of difference equations of the form

S :
{

x(k + 1) = Ax(k) + Bu(k), for k ∈ N = {0, 1, 2, . . . }
y(k) = Cx(k), x(0) = x0,

(1)

where x(k) ∈ Rn is the state-variable, u(k) ∈ Rm is the input, y(k) ∈ Rp is the output for every discrete-time
k ∈ N. Here A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and the leading dimension n is the order of the system. We denote
S = (A, B,C) for the given realization (1). Additionally, we use N∗ to denote the set of positive integers, i.e.,
{1, 2, 3, . . . }. We assume that x0 = 0 and the reader is referred to [1, 2, 3, 4] which treat the case of nonzero initial
condition for continuous-time systems. Some results of those papers can be extended to discrete-time systems.

In this case, we can represent the output as

y(k) =

k∑
j=0

h(k − j)u( j) = (h ∗ u)(k), (2)

where h is the impulse response of the system, given by

h(0) = 0, h(k) = CAk−1B, for k = 1, 2, . . . . (3)

We say that S is (asymptotically) stable if and only if A has its eigenvalues inside the unitary disc, in which case
we call the matrix A stable. Otherwise, we say that A is unstable. For stable systems, the infinite reachability and
observability Gramians P∞ and Q∞ are defined as

P∞ =

∞∑
k=1

Ak−1B
(
Ak−1B

)T
, (4a)

Q∞ =

∞∑
k=1

(
CAk−1

)T
CAk−1, (4b)

and they are the unique solutions of the following Stein equations (discrete-time Lyapunov equations)

AP∞AT − P∞ + BBT = 0, (5a)

AT Q∞A − Q∞ + CT C = 0. (5b)
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A LTI discrete-time system (1) is said to be minimal in infinite horizon if P∞Q∞ is nonsingular.
Mathematical models of systems (1) are considered to be large-scale, whenever its order is very large, perhaps

n > 105 or more. This leads to difficulties for tasks involving simulation, optimization, or control of this system,
motivating the use of a reduced order model (ROM) of the form

Ŝ :
{

x̂(k + 1) = Âx̂(k) + B̂u(k), for k ∈ N
ŷ(k) = Ĉ x̂(k),

(6)

where x̂(k) ∈ Rr, for k ∈ N, Â ∈ Rr×r, B̂ ∈ Rr×m and Ĉ ∈ Rp×r. The goal is to construct a ROM Ŝ such that r � n
and still ŷ ≈ y, i.e., ‖ŷ− y‖ should be small for some prescribed norm for a large class of inputs u. Projection based
model reduction consists in constructing matrices W,V ∈ Rn×r with WT V = Ir, such that

Â = WT AV, B̂ = WT B and Ĉ = CV. (7)

In order to measure the quality of reduced order models, system norms are defined. Given a stable system S
as in (1) whose impulse response h is given by (3), its h∞ and h2 norms are defined as

‖S‖h∞ = sup
w∈[0,2π]

‖C(eiωI − A)−1B‖2, and

‖S‖h2 =

 ∞∑
j=0

‖h( j)‖2F
1/2

= tr
(
CP∞CT )

)1/2
= tr

(
BT Q∞B)

)1/2
.

(8)

Balanced truncation (BT) is a model order reduction technique introduced in [5], allowing to construct such a
reduced order model Ŝ by projection. It relies on the concept of simultaneous diagonalization of the reachability
and observability Gramians. In other words, the goal is to find a state-space transformation T ∈ Rn×n nonsingular,
such that

T P∞T T = T−T Q∞T−1 = Σ∞ =

[
Σ1,∞ 0

0 Σ2,∞

]
,

where Σ1,∞ = diag
(
σ1,∞, . . . , σr,∞

)
, Σ2,∞ = diag

(
σr+1,∞, . . . , σn,∞

)
, and σ1,∞ ≥ · · · ≥ σn,∞ ≥ 0 are the so-called

Hankel singular values. Let

T AT−1 := AB =

[
A11 A12
A21 A22

]
, T B := BB =

[
B1
B2

]
, CT−1 := CB =

[
C1 C2

]
.

The equivalent realization (AB, BB,CB) is referred to as a balanced realization. Then, the projection matrices V
and W are taken as the first r columns of T and T−T , respectively, and the reduced order model is given by (7).

The reduced order model Ŝ obtained by balancing satisfies an a priori error bound in the h∞ norm which is
given by (cf. [6, Theorem 7.10])

‖S − Ŝ‖h∞ ≤ 2

 n∑
k=r+1

σk

 = 2 tr
(
Σ2,∞

)
, (9)

i.e., the h∞ norm of the error system is bounded by twice the sum of the neglected Hankel singular values. From
now on, we use the following notation σr := 2 tr

(
Σ2,∞

)
for the sum of the neglected Hankel singular values. This

error bound is also valid in the continuous-time context due to [7, 8].
An error bound a posteriori with respect to the h2 norm is also available in [9]. It is expressed by

‖S − Ŝ‖h2 = tr
(
C2Σ2,∞CT

2 + 2A12Σ2,∞AT
:2Z∞

)
+ tr

(
C1(P̂∞ − Σ1,∞)CT

1

)
(10a)

= tr
(
BT

2 Σ2,∞B2 + 2AT
21Σ2,∞A2:Y

)
+ tr

(
BT

1 (Q̂∞ − Σ1,∞)B1

)
(10b)

where P̂∞ and Q̂∞ are, respectively, the reachability and observability Gramians of the ROM, which satisfy

A11P̂∞AT
11 − P̂∞ + B1BT

1 = 0,

AT
11Q̂∞A11 − Q̂∞ + CT

1 C1 = 0,

the matrices Y∞,Z∞ ∈ Rn×r are the solutions of the Sylvester equations

AY∞AT
11 − Y∞ + BBT

1 = 0, (11a)

AT Z∞A11 − Z∞ + CT C1 = 0, (11b)
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and AT
:2 =

[
AT

12 AT
22

]
. It is worth noticing that an H2 error bound for continuous-time systems is also available in

[6, Lemma 7.13]. Similar research for stochastic systems can be found in, e.g., [10, 11, 12].
Balanced truncation for continuous- and discrete-time LTI systems was extended by the restriction to given

time intervals in [13]. In this context, one aims at a ROM that is an accurate approximation until a finite time
horizon τ > 0, but allows the ROM to be inaccurate outside of this time interval. The time-limited (TL) Gramians
are defined as

Pτ =

τ∑
k=1

Ak−1B
(
Ak−1B

)T
, (12a)

Qτ =

τ∑
k=1

(
CAk−1

)T
CAk−1, (12b)

and satisfy the following Stein equations

APτAT − Pτ + BBT = FFT , (13a)

AT QτAT − Qτ + CT C = GT G, (13b)

where F := AτB and G := CAτ. Even if the pairs (A, B) and (AT ,CT ) are reachable, the TL Gramians (12) might
be only positive semidefinite. This might happen whenever τ < n/m or τ < n/p. In this case, one can remove
the states that are unreachable and unobservable for the the given time interval, which are given by the kernels
of Pτ and Qτ. As a consequence, the resulting system is reachable and observable for the given time interval and
the Gramians in (12) are positive definite matrices. Henceforth, we will assume that the TL Gramians in (12) are
positive definite matrices.

The time-limited balanced truncation (TLBT) is performed by balancing Pτ and Qτ, i.e., finding the state
transformation T such that T PτT T = T−T QτT−1 = diag(σ1, . . . , σr) and neglecting the states associated to small
time-limited Hankel singular values. The reader should notice that the Gramians Pτ and Qτ also exist when the
matrix A is unstable because the equations (13a) and (13b) have a unique solution provided ∀λ ∈ Λ(A)\{0} it
holds 1/λ < Λ(A). As a consequence, TLBT is also applicable to unstable systems. On the other hand, for
stable systems, TLBT is not guaranteed to preserve stability. Still, experimental evidence [14, 15] indicates that
this does not deteriorate the approximation quality inside the targeted time interval which will be also confirmed
by the experiments in this paper. Moreover, the upcoming error bounds will, to some extent, indicate that the
occasionally generated unstable reduced order models still provide accurate output approximations. Some stability
preserving variants of time-/ and frequency-limited BT have been proposed in, e.g., [16, 17, 15, 19] leading to so-
called modified BT variants. However, enforcing stability via such modified TLBT variants appears to deteriorate
the good approximation quality of TLBT within the time interval and, at the same time, is computational more
expensive [20, 21, 14] for large-scale systems. Hence, in the study at hand, we will not consider such stability
preserving variants. Additionally, readers are referred to [22, 23, 24, 25] for H2 time-/ and frequency-limited
model reduction of continuous-time systems.

In this paper, time-limited balanced truncation for large-scale linear discrete-time time-invariant systems is
studied. The main contribution is twofold. In the first part, we develop error bounds regarding the approximated
output vector within the time limits. Those error bounds are an extension of those given in [9] to the time-limited
case. However, they also hold in the case the original system or the reduced order model are unstable. Additionally,
their asymptotic behavior with respect to the time limits is analyzed and some sufficient conditions to preserve
stability are provided. The second part of the article proposes computational strategies that enable an efficient
numerical execution of time-limited balanced truncation for large-scale systems, a topic which has so far not been
considered in the literature. These strategies rely on solvers for the time-limited Stein equations using low-rank
factors. Different solvers are proposed, and their performances are compared.

It is worth noticing that BT and TLBT can still be applied to the original system, even if the Gramians are
not of full rank. Indeed, let the Gramians be given as factorizations Pτ = S T S and Qτ = RT R, with S and R full
column rank matrices. Now assume the following partitioned SVD of S RT as

S RT =
[
U1 U2

] [Σ1
Σ2

] [
VT

1 VT
2

]
.

Then, we obtain the reduced order model by (time-limited) balancing using Petrov-Galerkin projections as in (7)
with V = S T U1Σ

−1/2
1 and W = RT V1Σ

−1/2
1 . This approach is known as square root balancing. It has the advantage

of avoiding the computation of the balancing transformation T , which can be an expensive and ill-conditioned
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problem (see [6]). In Sections 4 and 5, the above procedure, combined with the Stein equations solutions’ low-
rank factors, is used to compute reduced order models.

The rest of the paper is organized as follows. In Section 2, the time-limited h2 inner product and norm
are defined and characterized using Gramians. Also, a first error bound is provided based on the discrete-time
convolution expression. In Section 3, a specially tailored error bound for time-limited balanced truncation is
developed. Additionally, a sufficient condition for stability preservation is provided, and the asymptotic behavior
of the error bound is studied. In Section 4, different solvers based on low-rank factors are proposed to compute the
TL Gramians approximately. Finally, Section 5 carries out some numerical experiments for large-scale systems
and Section 6 concludes the paper.

2. Preliminary results

2.1. TL h2 inner product and norm

From now on, we consider the finite horizon τ to be fixed and given. In what follows, we recall the definition
of the TL h2 norm and inner-product.

Definition 2.1. (time-limited h2 norm and inner-product) Let S = (A, B,C) and Ŝ = (Â, B̂, Ĉ) be two LTI
discrete-time dynamical systems as in (1). Then, the h2 TL inner-product between S and Ŝ is given by

〈S, Ŝ〉h2,τ =

τ∑
j=0

tr
(
h( j)ĥ( j)T

)
, (14)

where h(0) = 0, h(k) = CAk−1B and ĥ(0) = 0, ĥ(k) = ĈÂk−1B̂ for k ∈ N∗ are the impulse response of S and Ŝ
respectively. Moreover, the h2 TL norm of S is given by1

‖S‖h2,τ =

 τ∑
j=0

tr
(
h( j)h( j)T

)1/2

=

 τ∑
j=0

‖h( j)‖2F
1/2

= 〈S,S〉
1
2
h2,τ
. (15)

The reader should notice that if τ goes to infinite, equations (14) and (15) become the classical definition of the
inner-product and norm for an infinite time horizon for stable systems. However, the TL norm and inner-product
are also well defined for unstable systems. Additionally, they can be characterized by matrix equations, as it
follows.

Proposition 2.1. (TL inner-product and norm characterization) Let S = (A, B,C) and Ŝ = (Â, B̂, Ĉ) be two
discrete-time LTI systems as in (1). Then the h2 TL inner-product can be computed as

〈S, Ŝ〉h2,τ = tr
(
CYĈT

)
= tr

(
BT ZB̂

)
, (16)

where

Y =

τ∑
j=1

A j−1BB̂T (ÂT ) j−1 and Z =

τ∑
j=1

(AT ) j−1CT ĈÂ j−1.

Additionally, if αβ , 1, for all α ∈ Λ(A) and β ∈ Λ(Â), the matrices Y and Z are the unique solution of the
following Stein-like matrix equations

AYÂT − Y + BB̂T − FF̂T = 0, (17a)

AT ZÂ − Z + CT Ĉ −GT Ĝ = 0, (17b)

where F = AτB, F̂ = ÂτB̂, G = CAτ and Ĝ = ĈÂτ.

Proof. Notice 〈S, Ŝ〉h2,τ = tr
(
C

(∑τ
j=1 A j−1BB̂T (ÂT ) j−1

)
ĈT

)
= tr

(
CYCT

)
. Then, as an application of the telescopic

sum on AYÂT − Y , one obtains that Y satisfies equation (17a). Moreover, equation (17a) has a unique solution if
and only if αβ , 1, for all α ∈ Λ(A) and β ∈ Λ(Â) (see [26, Theorem 18.2]). The equivalent result for the matrix
Z follows similarly.

1Given a matrix H ∈ Rp×m, its Frobenius norm is defined as ‖H‖2F = tr
(
HHT

)
.
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Proposition 2.1 states that, if the equations (17) have unique solutions, then the solutions can be used to
compute the TL inner-product via formula (16). As a consequence, the TL h2 norm of a system can be computed
via

‖S‖2h2,τ
= tr

(
CPτCT

)
= tr

(
BT QτB

)
, (18)

where Pτ and Qτ are the solutions of (13a) and (13b).

Assumption 2.1. From now on, we assume that αβ , 1, for all α ∈ Λ(A) and β ∈ Λ(Â), so that the equations (17)
always have unique solutions.

2.2. First characterization of error bound

Let us assume the discrete-time system S = (A, B,C) is the full order model and Ŝ = (Â, B̂, Ĉ) is the reduced
order model. The output of the original system S and the reduced system Ŝ can be expressed as

y(k) =

k∑
j=0

h(k − j)u( j), and ŷ(k) =

k∑
j=0

ĥ(k − j)u( j),

where h(0) = 0, h(k) = CAk−1B, for k ∈ N∗, is the impulse response of S, and ĥ(0) = 0, ĥ(k) = ĈÂk−1B̂, for k ∈ N∗,
is the impulse response of Ŝ. Hence, the error between y and ŷ can be bounded as

‖y(k) − ŷ(k)‖2 =

∥∥∥∥∥∥∥∥
k∑

j=0

h(k − j)u( j) −
k∑

j=0

ĥ(k − j)u( j)

∥∥∥∥∥∥∥∥
2

≤
k∑

j=0

∥∥∥∥(h(k − j) − ĥ(k − j)
)

u( j)
∥∥∥∥

2

≤
k∑

j=0

∥∥∥h(k − j) − ĥ(k − j)
∥∥∥

2 ‖u( j)‖2

≤
k∑

j=0

∥∥∥h(k − j) − ĥ(k − j)
∥∥∥

F ‖u( j)‖2,

≤
 k∑

j=0

‖h(k) − ĥ(k)‖2F


1
2
 k∑

j=0

‖u( j)‖22


1
2

,

where we have applied the Cauchy-Schwarz inequality in the last step. By recalling that

‖S‖h2,τ =

 τ∑
j=0

‖h( j)‖2F
1/2

, and 〈S, Ŝ〉h2,τ =

τ∑
j=0

tr
(
h( j)ĥ( j)T

)
,

one can easily see that

max
j=0,1,...,τ

‖y( j) − ŷ( j)‖2 ≤
∥∥∥S − Ŝ∥∥∥h2,τ

 τ∑
j=0

‖u( j)‖22


1
2

.

Now, let us first use the inner-product expression. Hence,∥∥∥S − Ŝ∥∥∥2

h2,τ
= ‖S‖2h2,τ

+
∥∥∥Ŝ∥∥∥2

h2,τ
− 2〈S, Ŝ〉h2,τ.

Now, we recall that

‖S‖2h2,τ
= tr

(
CPτCT

)
= tr

(
BT QτB

)
,∥∥∥Ŝ∥∥∥2

h2,τ
= tr

(
C1P̂τCT

1

)
= tr

(
BT

1 Q̂τB1

)
, and

〈S, Ŝ〉h2,τ = tr
(
CYCT

1

)
= tr

(
BT ZB1

)
.

As a consequence, the following error bound holds.
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Proposition 2.2. The following error bound holds for time-limited balanced truncation of discrete-time systems

max
j=0,1,...,τ

‖y( j) − ŷ( j)‖2 ≤ I
 τ∑

j=0

‖u( j)‖22


1
2

,

where

I2 = tr
(
CPτCT + C1P̂τCT

1 − 2CYCT
1

)
= tr

(
BT QτB + BT

1 Q̂τB1 − 2BT ZB1

)
where Pτ and Qτ are the TL Gramians of the full order system S, P̂τ and Q̂τ are the TL Gramians of the reduced
order system Ŝ, and Y,Z are the solutions of the matrix equations (17a) and (17b).

Proposition 2.2 provides an error bound for the time-limited h2 norm of the error system S − Ŝ. It can be
computed in practice by solving two TL Stein equations (as in (13)) for the model S and the model Ŝ , and
one Stein-like equation (as in (17)). It is worth noting that this bound is valid for every reduced order model
Ŝ . Moreover, it holds even in the case the original model or the reduced order model are unstable. In the next
section, we develop an expression of this error bound tailored to a reduced order model arising from TL balanced
truncation.

3. Output error bound to time-limited balanced truncation

3.1. Error bound to TL balanced truncation

Let suppose that S = (A, B,C) is an n-th order balanced systems associated with the time-limited Gramians
Pτ = Qτ = Σ = diag(σ1, . . . , σn). Let’s consider the following partition

A =

[
A11 A12
A21 A22

]
, B =

[
B1
B2

]
C =

[
C1 C2

]
and Σ =

[
Σ1

Σ2

]
. (19)

As a consequence, we must have

AΣAT − Σ + BBT − FτFT
τ = 0, (20a)

AT ΣA − Σ + CT C −GT
τGτ = 0, (20b)

where Fτ = AτB =

[
F1
F2

]
, and Gτ = CAτ =

[
G1 G2

]
. The reduced order model obtained by time-limited

balanced truncation is Ŝ = (Â, B̂, Ĉ), where Â = A11 ∈ Rr×r, B̂ = B1 ∈ Rr×m and Ĉ = C1 ∈ Rp×r.
Hence, the time-limited h2 norm of the error system is

‖Se‖2h2,τ
= tr

(
BT ΣB − 2BT ZB1 + B1Q̂τB1

)
= tr

(
BT ΣB − 2BT

1 Z1B1 − 2BT
2 Z2B1 + B1Q̂τB1

)
. (21)

By developing the (2,1) term of (20a), we obtain

A11Σ1AT
21 + A12Σ2AT

22 + B1BT
2 − F1FT

2 = 0,

and consequently

tr
(
−2BT

2 Z2B1

)
= tr

(
−2B1BT

2 Z2

)
= tr

(
2A11Σ1AT

21Z2 + 2A12Σ2AT
22Z2 − 2F1FT

2 Z2

)
.

Substituting this into (21) yields

‖Se‖2h2,τ
= tr

(
BT ΣB − 2BT

1 Z1B1 + 2A11Σ1AT
21Z2 + 2A12Σ2AT

22Z2 − 2F1FT
2 Z2 + BT

1 Q̂B1

)
.

For developing the term tr
(
2A11Σ1AT

21Z2

)
, consider the (1, 1) entry of (17b):

AT
11Z1A11 + AT

21Z2A11 − Z1 + CT
1 C1 −GT

1 Ĝ = 0
6



leading to

tr
(
2A11Σ1AT

21Z2

)
= tr

(
2Σ1AT

21Z2A11

)
= tr

(
2Σ1Z1 − 2Σ1AT

11Z1A11 − 2Σ1CT
1 C1 + 2Σ1GT

1 Ĝ
)
.

Hence,

‖Se‖2h2,τ
= tr

(
BT ΣB − 2BT

1 Z1B1 + 2Σ1Z1 + 2Σ1GT
1 Ĝ − 2Σ1AT

11Z1A11

)
+ tr

(
−2Σ1CT

1 C1 + 2A12Σ2AT
22Z2 − 2F1FT

2 Z2 + BT
1 Q̂τB1

)
.

From now on, the steps get particularly different from derivations for TLBT for continuous-time systems, because,
for discrete-time systems, the reduced order model is not balanced. Recalling that

tr
(
BT ΣB

)
= tr

(
CΣCT

)
, and tr

(
BT

1 Q̂τB1

)
= tr

(
C1P̂τCT

1

)
,

gives

‖Se‖2h2,τ
= tr

(
2A12Σ2AT

22Z2 + C2Σ2CT
2 −C1Σ1CT

1 + C1P̂τCT
1

)
+ tr

(
−2BT

1 Z1B1 − 2A11Σ1AT
11Z1 + 2Σ1Z1

)
+ tr

(
2Σ1GT

1 Ĝ − 2F1FT
2 Z2

)
.

Since
A11Σ1AT

11 + A12Σ2AT
12 − Σ1B1BT

1 − F1FT
1 = 0

it holds
tr
(
−2BT

1 Z1B1 − 2A11Σ1AT
11Z1 + 2Σ1Z1

)
= tr

(
2A12Σ2AT

12Z1 − 2F1FT
1 Z1

)
.

Summarizing all of these steps together, we have the following theorem.

Theorem 3.1. Let S =

([
A11 A12
A21 A22

]
,

[
B1
B2

]
,
[
C1 C2

])
be a balanced system and Ŝ = (A11, B1,C1) be the r-th

order reduced model obtained by time-limited balanced truncation. The time-limited h2 norm of the error system
is given by

‖Se‖2h2,τ
= tr

(
C2Σ2CT

2 + 2A12Σ2AT
:2Z

)
+ tr

(
C1(P̂τ − Σ1)CT

1

)
+2 tr

(
Σ1GT

1 Ĝ − F1FT Z
)
,

= tr
(
BT

2 Σ2B2 + 2AT
21Σ2A2:Y

)
+ tr

(
BT

1 (Q̂τ − Σ1)B1

)
+2 tr

(
Σ1FT

1 F̂ −G1GT Y
)
,

(22)

where A:2 =

[
A12
A22

]
, A2: =

[
A21 A22

]
, F = AτB =

[
F1
F2

]
, G = CAτ =

[
G1 G2

]
, Ĝ = CAτ

11, and Z and Y are the

solutions of (17b) and, respectively, (17a) with Â = A11.

Theorem 3.1 gives an analytic expression for the error bound provided in Proposition 2.2 in the case the
reduced order model is obtained by TLBT. This characterization highlights how the error bound depends on the
singular values Σ and the time-limited terms G, Ĝ, F, F̂. It should be emphasized that it holds even if the original
and reduced order models are unstable, provided the solvability conditions for the involved matrix equations hold.
This expression depends on the partitioned matrix of the balanced full order model, the partitioning of the time-
limited Hankel singular value matrices, and the matrices Y and Z appearing in Proposition 2.1 for the computation
of the inner product. Readers should notice that the TL error bound differs for the infinite horizon error bound
in (10) by the residual time-limited term

Rτ := 2 tr
(
Σ1GT

1 Ĝ − F1FT Z
)
. (23)

As one would expect, we will see that if τ → ∞ yields Rτ → 0, and the expression given in (22) will tend to the
error bound expression for the infinite time horizon. In what follows, we will study the impact of the TL terms
G, F, Ĝ, and F̂ in the error bound.
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3.2. Time-limited residue impact in error bound
3.2.1. Stability preservation

For the infinite time horizon case, balanced truncation for discrete-time systems always produces a stable
reduced order model which is not automatically the case for the time-limited variant. In what follows, we provide
a sufficient condition for the reduced order model obtained by TLBT to be stable. We keep the notation used in
the last section.

Proposition 3.1. (Stability preservation) Suppose that

Q = A12Σ2AT
12 + B1BT

1 − F1FT
1 ≥ 0,

and the pair (A11,Q) is reachable. Then the reduced order model is stable.

Proof. From the Stein equation (20a) it follows

A11Σ1AT
11 + A12Σ2AT

12 − Σ1 + B1BT
1 − F1FT

1 = 0. (24)

Let v ∈ Cr and µ ∈ C be an eigenpair of AT
11, i.e., AT

11v = µv. Then we multiply (24) by v∗ (on the left), and v (on
the right) to obtain

(1 − |µ|2)v∗Σ1v = v∗
(
A12Σ2AT

12 + B1BT
1 − F1FT

1

)︸                              ︷︷                              ︸
=Q

v ≥ 0.

Since Σ1 > 0 this immediately implies |µ| ≤ 1.
Now let us assume, by contradiction, that |µ| = 1. In this case, we have v∗Q = 0. Moreover, if we multiply

(24) by A11 (on the left) and AT
11 (on the right), we obtain

A2
11Σ1(AT

11)2 − A11Σ1AT
11 + A11QAT

11 = 0.

Hence, if we multiply the later equation by v∗ and v, we obtain

0 = (|µ|2 − |µ|4)v∗Σ1v = v∗A11QAT
11v.

As a consequence, we have v∗A11Q = 0. By induction, we conclude that v∗Ak−1
11 Q = 0 for k > 0, which implies

that the pair (A,Q) is not reachable which contradicts the reachability hypothesis. Then, we must have |µ| < 1 and,
hence, that the matrix A11 is stable.

Proposition 3.1 gives a sufficient condition for the ROM produced by TLBT to be stable. It is worth mentioning
that this condition relies on the matrices (19) of the balanced realization.

3.2.2. Asymptotic behavior of Ap

Given matrices A and A11, there exist constants c, ĉ, λ, λ̂ > 0, such that

‖Ap‖2 ≤ c · λp and ‖Ap
11‖2 ≤ ĉ · λ̂p (25)

for all p ∈ N and for any matrix norm ‖ · ‖. Moreover, if Λ(A) and Λ(A11) lies inside the open unit disc, i.e., A and
A11 are stable matrices, then λ and λ̂ can be chosen such that λ < 1 and λ̂ < 1. If A, A11 are assumed to be stable
matrices, we know that Ak → 0 and Ak

11 → 0 whenever k → ∞. Equation (25) describes the asymptotic behavior
of the norm ‖ · ‖ of those matrix powers, i.e., how fast those sequences of matrices go to zero.

There are different ways to compute c, ĉ, λ̂ and λ. For example, in the case where ‖ · ‖ is the p induced norm
and A is diagonalizable, i.e., A = XDX−1 with X nonsingular and D diagonal, we can choose λ = ρ(A) to be the
spectral radius of A, and c = κ(X) = ‖X‖p‖X−1‖p is the condition number of X in the norm ‖ · ‖p. We refer to [27]
for other asymptotic bounds of the form (25). Additionally, the recent paper [28] provides a new improvement on
the bounds of matrix functions, which includes matrix powers. The main result of [28] states that

‖ f (A)‖2 ≤ (1 +
√

2) sup
z∈Ω
| f (z)|,

where Ω = {z ∈ C, z = vH Av, for all v ∈ Cn, ‖v‖ = 1} is the numerical range of the matrix A ∈ Cn×n (also called
field of values). Hence, for f (z) = zτ, the numerical radius λ = r(A) := maxz∈Ω |z|, and c = 1 +

√
2, we can use the

bound
‖Aτ‖ ≤ (1 +

√
2) · λτ (26)

because r(Aτ) ≤ r(A)τ. Since in our case, τ < ∞, the above bounds will always be finite even if spectrum or
numerical range do not lie inside the unit disc.

From now one, we assume that such c, ĉ, λ̂, and λ as in (25) are available.
8



3.2.3. Asymptotic impact of TL residue
Let us now discuss the impact of Rτ from equation (23) in the error bound of Theorem 3.1. The terms of Rτ

can be bounded as

2 tr
(
Σ1GT

1 Ĝ
)
≤ ‖Σ1‖F‖G1‖F‖Ĝ‖F ,

2 tr
(
F1FT Z

)
≤ ‖Z‖F‖F1‖F‖F‖F .

We recall that, if VT =
[
Ir 0r×(n−r)

]
, then F = AτB, F1 = VT AτB, G1 = CAτV and Ĝ = C1Aτ

11. Additionally , the
norms of ‖F1‖F , ‖F‖F are bounded by cλτ‖B‖F , ‖G1‖F is bounded by cλτ‖C‖F , and ‖Ĝ‖F is bound by ĉλ̂τ‖C1‖F ,
where and λ, λ̂, c, ĉ > 0 are suitable constants. Moreover, if we assume that Λ(A) and Λ(A11) lie inside the open
unit disc, the norms decay fast whenever the value of τ increases and the term Rτ → 0 if τ goes to infinity. As a
consequence, the error bound formulas provided in Theorem 3.1 coincides with those for the infinite time horizon
(see equation (10)) in the limit τ→ ∞.

Remark 3.1. For the infinite time horizon case, if the original and the reduced order model are stable, the error
bound in (10) can be bounded by

‖S − Ŝ‖h2 ≤ tr
(
C2Σ2,∞CT

2 + 2A12Σ2,∞AT
:2Z∞

)
, (27)

because the term tr
(
C1(P̂∞ − Σ1,∞)CT

1

)
≤ 0. Indeed, the matrix E∞ = P∞ − Σ1,∞ is negative definite, since it

satisfies the following Stein equation

A11E∞AT
11 − E∞ − A12Σ2,∞AT

12 = 0,

and −A12Σ2,∞AT
12 is a negative semi-definite matrix. As a consequence, we directly observe in equation (27) that

the decay of the singular values will lead to a decay in the error for the infinite time horizon case. We believe that
this expression is new and that it was not presented in [9].

3.2.4. Error bound depending on Σ2 and asymptotic parameters
Now we wish to explicitly describe the dependency of the expression (22) on the neglected singular values Σ2

and on the time-limited terms F, F̂, G, and Ĝ. From now on, we will assume that A and A11 are stable, i.e., that
their eigenvalues lie inside the open unit disc. Additionally, we assume that |λ| < 1 and λ̂ < 1. We will discuss the
case where A or A11 are unstable in Remark 3.2.

Let us first write E = P̂τ − Σ1. As a consequence, E satisfies the following Stein equation

A11EAT
11 − E − A12Σ2AT

12 + F1FT
1 − F̂F̂T = 0.

Consider the composition E = EΣ2 + ET L, where

A11EΣ2 AT
11 − EΣ2 − A12Σ2AT

12 = 0,

A11ET LAT
11 − ET L + F1FT

1 − F̂F̂T = 0.

Since A11 is stable and −A12Σ2AT
12 is a symmetric negative semi-definite matrix, EΣ2 is also symmetric negative

semi-definite. As a consequence, we can rewrite the term tr
(
C1(P̂τ − Σ1)CT

1

)
as

tr
(
C1(P̂τ − Σ1)CT

1

)
= tr

(
C1(EΣ2 + ET L)CT

1

)
≤ tr

(
C1(ET L)CT

1

)
. (28)

Since A11ET LAT
11 + F1FT

1 − F̂F̂T = ET L and A11 is stable, ET L can be written as the following infinite series

ET L =

∞∑
j=1

A j−1
11 FT L(AT

11) j−1, with FT L = F1FT
1 − F̂F̂T . (29)

Consequently,

‖ET L‖2 ≤
∞∑
j=1

‖A j−1
11 ‖2‖FT L‖2‖(AT

11) j−1‖2

≤ ‖FT L‖2
∞∑
j=1

ĉ2 · (λ̂ j−1)2 = ‖FT L‖2 ĉ2

1 − λ̂2
.
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Using similar steps one can show that

‖Z‖2 ≤ c · ĉ
1 − λλ̂ ‖M‖2, with M = CT C1 −GT Ĝ. (30)

Finally, we can bound ∣∣∣∣tr(C1(P̂τ − Σ1)CT
1

)∣∣∣∣ ≤ p‖C1‖22‖ET L‖2 ≤ p · ĉ2

1 − λ̂2
‖C1‖22‖FT L‖2,∣∣∣∣tr(2A12Σ2AT

:2Z
)∣∣∣∣ ≤ 2r‖A12‖2‖Σ2‖2‖A:2‖2‖Z‖2

≤ σr+1
2r · c · ĉ
1 − λλ̂ ‖A12‖2‖A:2‖2‖M‖2

| tr
(
C2Σ2CT

2

)
| ≤ p‖C2‖22‖Σ2‖2 = p‖C2‖22σr+1,

|2 tr
(
Σ1GT

1 Ĝ
)
| ≤ 2p · σ1‖G1‖2‖Ĝ‖2,

|2 tr
(
F1FT Z

)
| ≤ 2m · c · ĉ

1 − λλ̂ ‖F1‖2‖F‖‖M‖2,

Additionally, using (25), we have

‖FT L‖2 ≤ ‖F1‖22 + ‖F̂‖22 ≤ c2λ2τ‖B‖2 + ĉ2λ̂2τ‖B1‖2,
‖M‖2 ≤ ‖C‖2‖C1‖2 + ‖G‖2‖Ĝ‖2 ≤ ‖C‖2‖C1‖2(1 + cĉλτλ̂τ).

The following theorem assembles all these results.

Theorem 3.2. Let S =

([
A11 A12
A21 A22

]
,

[
B1
B2

]
,
[
C1 C2

])
be a balanced system and Ŝ = (A11, B1,C1) be the order-r

reduced model obtained by TLBT, B1 ∈ Rr×m, and C1 ∈ Rp×r. Let c, ĉ, λ, λ̂ > 0 be constants such that (25) holds.
Then the following bound holds.

‖S e‖2h2,τ
≤ J(τ) · σr+1 + JT L(τ), (31)

where

J(τ) = p‖C2‖22 +
2rcĉ(1 + cĉλτλ̂τ)

1 − λλ̂ ‖A12‖2‖A:2‖2‖C‖2‖C1‖2,

JT L(τ) =
p · ĉ2

1 − λ̂2
‖C1‖22(c2λ2τ‖B‖2 + ĉ2λ̂2τ‖B1‖2) + 2p · σ1cĉλτλ̂τ‖C‖2‖C1‖2

+
2m · c · ĉ
1 − λλ̂ c2λ2τ‖B‖22‖C‖2‖C1‖2(1 + cĉλτλ̂τ).

Theorem 3.2 splits the bounds from (22) into J(τ)σr+1 and JT L(τ). The term J(τ)σr+1 depends linearly on
σr+1, i.e., the largest neglected Hankel singular value. The term JT L(τ) represents the time-limited terms. If τ goes
to infinite we have

JT L(τ)→ 0 and J(τ)→ J∞ = p‖C2‖22 +
2rcĉ

1 − λλ̂ ‖A12‖2‖A:2‖2‖C‖2‖C1‖2.

Remark 3.2. In the case λ ≥ 1, or λ̂ ≥ 1 , the equations (28), (29) and (30) do not hold anymore and, consequently,
Theorem3.2 is not valid in this form. However, we can still bound the terms∣∣∣∣tr(C1(P̂τ − Σ1)CT

1

)∣∣∣∣ ≤ p‖C1‖22‖P̂τ − Σ1‖2,∣∣∣∣tr(2A12Σ2AT
:2Z

)∣∣∣∣ ≤ 2rσr+1‖A12‖2‖A:2‖2‖Z‖2,
|2 tr

(
F1FT Z

)
| ≤ 2m‖Z‖2‖F1‖2‖F‖2.

Hence, the equivalent to Theorem 3.2 has explicit dependencies on Z, P̂τ and Σ1.
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Table 1: Summary of the error bounds for small-scale example
Eq. (10) for BT Prop. 2.2 for BT Prop. 2.2 for TLBT σr TLBT σr BT
9.18e-04 4.37e-04 1.92e-07 7.04e-07 3.1e-03

Table 2: Constants for asymptotic behavior
c λ ĉ λ̂ Thm 3.2 bound

Eig. Value Decomp. 12.26 0.97 2.95 0.97 276.91
Field of values 2.41 1.06 2.41 0.99 9.93

Remark 3.3. For generalized state-space systems

Mx(k + 1) = Ax(k) + Bu(k), for k ∈ N = {0, 1, 2, . . . }
y(k) = Cx(k), x(0) = x0,

(32)

with a nonsingular matrix M ∈ Rn×n, the results established so far hold as well with minor modifications that we
give next without derivations as those follow the same reasoning as in the continuous-time situation [14, 15]. In
particular, the time-limited Gramians are Pτ, MT QτM and are now obtained from the solutions of the generalized
Stein equations

APτAT − MPτMT + BBT = FMFT
M , FM := M(AM−1)τB (33a)

AT QτAT − MT QτM + CT C = GT
MGM , GM := C(M−1A)τ (33b)

Obviously, the infinite Gramians of (32) are given by omitting the terms FM , GM in (33). Since in balanced
coordinates M is transformed to the identity and M11 = Ir, the matrix equations for Gramians P̂τ and Q̂τ of the
reduced system remain unchanged. The Sylvester equations (17) transform to

AYÂT − MY + BB̂T − FM F̂T = 0, (34a)

AT ZÂ − MT Z + CT Ĉ −GT
MĜ = 0, . (34b)

Consequently, by using the adapted Gramians and matrix equations, the error bounds still hold.

3.3. Small-scale example

We illustrate the obtained results by applying BT and TLBT to a small-scale system and compute the infinite
time horizon (equation (10)) and time-limited bounds (Proposition 2.2 or Theorem 3.1). For this, we consider a
random stable single-input single-output (SISO) system of order n = 10, generated by the Matlab command rss
and convert it to a discrete-time system using a zero-order hold procedure (command c2d) with discretization step
dt = 1sec. We considered a time horizon of τ = 20. Then the infinite horizon and time-limited Gramians and
error bounds are computed using the Matlab direct solver (command dlyap). Finally, two reduced models of order
r = 6 are computed using BT and TLBT, and, in this case, the two models are stable.

We compare the time-domain response of the corresponding two reduced models. For this, we use u(1) =

1, u(k) = 0, for k > 1 as the control input. The results of the absolute errors are depicted in Figure 1, including
the bounds from Equation (10) and Proposition 2.2 for BT and TLBT, and twice the sum of the neglected (time-
limited) Hankel singular values σr for (TL)BT. By inspecting the time-domain error between the original response
and the two reduced order models, we observe that the TLBT generally produces better results compared to BT in
the given time-limited interval. Additionally, the errors satisfy the bounds from Equation (10) and Proposition 2.2
(see Table 1 for the numerical values).

Now, we compute also the bounds from Theorem 3.2 for TLBT. For this goal, we first need an estimation of
the constants c, ĉ, λ, λ̂. We considered two sets of constants, one obtained using the eigenvalue decomposition and
the other one using the field of values and the inequality (26). Those values and the error bounds are displayed in
the Table 2. Notice that for the values related to the eigenvalue decomposition, we have that λ < 1 and λ̂ < 1. As
a consequence, Theorem 3.2 holds, and we use it to compute the displayed error bounds. However, for the field of
values, we have that λ > 1, and so Theorem 3.2 does not hold anymore. To circumvent the issue, we use the ideas
in Remark 3.2 to compute the bound. By inspecting Tables 1 and 2, we conclude that the bounds depending on
the asymptotic parameters are less sharp. Indeed, they were developed in order to study the asymptotic behavior
of the error with respect to τ, and their value is rather theoretical than practical nature.
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Figure 1: Output errors |y(k)− ŷ(k)|, error bounds, and sum of neglected HSVs σr for (TL)BT reduction of small-scale example to order n = 10,
reduced order r = 6 with time limit τ = 20.

Algorithm 1: Smith-Arnoldi method for Stein equations
Input : A, B as in (4), tolerances 0 < ε � 1.
Output: QkQT

k ≈ P∞ with Qk ∈ Rn×`, Yk ∈ R`×`, ` ≤ mk � n.
1 B = q1β s.t. qT

1 q1 = Im, Q1 = q1, r1:m,1:m = βE1
2 for k = 1, 2, . . . do
3 g = Aqk, hk+1,1:k = QT

k g, g+ = g − Qkhk+1,1:k.
4 qk+1 = g+hk+1,k s.t. qT

k+1qk+1 = Im.
5 Qk+1 = [Qk, qk+1].
6 r1:k+1,1:k+1 = H1:k+1,1:kr1:k+1,1:k (next block column of Rk)

7 Qk = QkRk.

4. Computational Aspects

4.1. Numerical Computation of the Gramians

As for BT for continuous-time systems, the solution of the large-scale discrete-time Lyapunov equations (5),
(13) is the computationally most demanding step. We will restrict the following discussion to the reachability
Gramians, since from there, the results for the observability are easily given by replacing A, B by AT , CT . Espe-
cially in the large-scale situation, directly computing and storing the Gramians is infeasible because, in general,
they are large, dense matrices. The common practice when m, p � n is to compute approximations of low-rank,
e.g. P∞ ≈ QYQT with Q ∈ Rn×k, Y = YT ∈ Rk×k, k � n which is motivated by the typically rapid singular value
decay of the Gramians, see e.g., [29, 30, 31]. BT is then carried out with the low-rank solution factors of the
(infinite or time-limited) Gramians instead of exact Cholesky factors.

There exist different algorithms for computing the low-rank solution factors Q, Y by using techniques from
large-scale, numerical linear algebra. For the Stein equations, the expressions (4) directly motivate the Smith
method [32, 33] for computing low-rank factors:

Pk = APk−1AT + BBT , k ≥ 1, X0 = 0

=

k−1∑
j=0

A jBBT (AT ) j = Zk−2ZT
k−2 + Ak−1BBT (AT )k−1 = ZkZT

k ≈ P∞,

Zk := [B, AB, . . . , Ak−1B].

(35)

Underlying the Smith iteration (35) is the (block) Krylov subspace of order k:

range (Zk) = Kk(A, B) = range ([B, AB, . . . , AτB]) .

Hence, we can also find approximate solutions of (4) via a block Arnoldi process [34, 35]. Let Qk = [q1, . . . , qk] ∈
Rn×km, qi ∈ Rn×m span a orthonormal basis of Kk(A, B) with B = q1β, β ∈ Rm×m. Suppose the Arnoldi relation
AQk = QkHk + qk+1hk+1,kET

k holds, where Hk = QT
k AQk = [hi j] is block upper Hessenberg, and Ek = ek ⊗ Im. Then

we have Zk = QkRk for a block upper triangular matrix Rk = [r1, . . . , rk] ∈ Rmk×mk and ri = Hk(ri−1), 2 ≤ i ≤ k,
r1 = E1β. Algorithm 1 illustrates this procedure. Alternatively, we can impose a Galerkin orthogonality condition
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on the Lyapunov residual associated to a low-rank approximation of the form QkYkQT
k . This enforces that Yk has

to be the solution of a projected version of (4), i.e.,

HkYkHT
k − Yk + (QT

k B)(BT Qk) = 0, Hk := QT
k AQk, (36)

which can be solved by standard dense methods. If the quality of the approximation QkYkQT
k is not sufficient, Qk

is orthogonally expanded by continuing the Arnoldi process. The convergence rate of the Smith iteration depends
on the spectral radius of A and can be very slow if ρ(A) ≈ 1. To overcome this issues, so called squared Smith
methods were discussed in [33, 29, 36] with limited success.

The occurrence of the matrix functions in time- and frequency-limited BT, or more precisely the action of
f (A) to B, adds an additional computational difficulty. At a first glance, the required monomials f (z) = zτ in time-
limited discrete-time BT appear to be a comparatively simple situation, especially if τ is very small relatively to n
and the required τ matrix vector products with A are affordable. In that case we can directly use the iteration (35)
or Algorithm 1 for the time-limited Gramians (12). Running (1) for an additional step allows to read off F from
the last block column of Qk. Alternatively, we can use the Galerkin projection framework mentioned above, i.e.,
we build Galerkin approximations F ≈ Hτ

k (QT
k B) and Pτ ≈ QkYkQT

k , where Yk solves

HkYkHT
k − Yk + (QT

k B)(BT Qk) − Hτ
k (QT

k B)(BT Qk)(Hτ
k )T = 0. (37)

These approximations are exact if range (Qk) = Kτ+1(A, B) because then range (AτB) ∈ range (Qk) and range (Zτ+1) ∈
range (Qk) with Zτ+1 from (35).

Unfortunately, for large values τ ≈ n and if ρ(A) ≈ 1, this basic Galerkin approach or Algorithm 1 become
impractical as they would both require prohibitively large subspace dimensions. Note that getting the powers of A
via approaches like binary powering [37, Chapter 4.1] are not feasibly for large A, since successively squaring A
would destroy its sparsity and, hence, the required matrix-matrix multiplications would become too costly.

For achieving accurate low-rank approximations for the Gramians with smaller subspace dimensions, rational
Krylov subspaces

range (Qk) = RKk(A, B, ξ) = range

[B, (A + ξ2I)−1B, . . . ,
k∏

j=2

(A + ξ jI)−1B]

 (38)

have been proven to be a viable choice [38, 39, 40], provided adequate shift parameters ξi ∈ C are available. The
majority of literature regarding rational Krylov subspace methods for solving large matrix equations is focused on
the continuous-time case. Although the discrete-time case can be dealt with similarly, to the authors knowledge
not much is known about the shift parameter selection in this case.

A low-rank ADI iteration for Stein equations (4) was proposed in [41, 21]. Note that the low-rank ADI iteration
is related to both the Smith method as well as to rational Krylov subspace methods. Rational Krylov subspace as
well as ADI methods for (4) can be used directly to the time-limited equations (13) if F and G or approximations
thereof are given which, however, is a crucial point because they have to be computed first.

In the present work, we follow an approach similar to the one proposed in [20, 21, 14] for the continuous-time
setting. We employ the rational Krylov subspace method illustrated in 2 that iteratively computes approximations
of both F = AτB and Pτ.

We shall next describe some important aspects this method. Obviously, by omitting all parts related to F =

AτB, Algorithm 2 is applicable to the infinite Gramians (4) as well.

Solution of the projected problems. Two approaches for dealing with (37) in line 5 are discussed. Following the
algorithmic strategy proposed in [20, 21, 14], at first an approximation of F = AτB is computed by a projection
principle: F ≈ Fk := QkF̂k, F̂k := Hτ

k (QT
k B). Since Hk is of size mk � n, the powers of Hk can be efficiently

computed by binary powering which requires blog2 τc matrix-matrix multiplications. This can be less costly
compared to the computation of the more complicated matrix functions (matrix exponentials and logarithms) that
occur in other time- or frequency-limited BT methods. Since the goal is to approximate the associated term of
the inhomogeneity of (12), we use a relative norm wise change F := ‖F̂kF̂T

k − F̂k−1F̂T
k−1‖/‖F̂k−1‖2 to assess the

accuracy of the current approximation Fk. Once F ≤ ε f ≤ ε � 1, where ε is a given threshold, the computed
approximation is accepted and we start solving the Galerkin system (37) for Yk. This can be done by, e.g., direct
(Bartels-Stewart type) methods [42] or the Smith iteration 35. The rational Krylov method is continued until the
scaled residual norm R with respect to the low-rank solution QkYkQT

k falls below ε. During these steps, the quality
of the approximation Fk of F can be further refined by computing a new F̂k before solving the compressed Stein
equation (37).
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Algorithm 2: Rational Krylov subspace method for time-limited DALEs (13)
Input : A, B, τ as in (13), tolerances 0 < ε � 1.
Output: QkYkQT

k ≈ Pτ with Qk ∈ Rn×`, Yk ∈ R`×`, ` ≤ mk � n.
1 B = q1β s.t. qT

1 q1 = Im, Q1 = q1.
2 for k = 1, 2, . . . do
3 Hk = QT

k AQk, Bk = QT
k B.

4 F̂k = Hτ
k Bk, Fk = QkF̂k.

5 Compute Gramian defined by Hk, Bk, F̂k (e.g., solve (37)).
6 Set Rk := ‖A(QkYkQT

k )AT − (QkYkQT
k ) + BBT − FkFT

k ‖ with Fk ≈ AτB.
7 if Rk < ε‖BBT − FkFT

k ‖ then
8 Return Pτ,k = QkYkQT

k (truncate if necessary).

9 Select next shift sk+1.
10 Solve (A − sk+1I)g = qk for g.
11 g+ = g − Qk(QT

k g), qk+1 = g+βk s.t. qT
k+1qk+1 = Im.

12 Qk+1 = [Qk, qk+1].

Alternatively, the separate computation of F̂k can be avoided since (37) can be entirely dealt with by τ steps of
the Smith iteration 35. Depending on the sizes of τ and Hk, this can be less costly compared to the first approach,
where (37) is solved by a direct method. As mentioned earlier, F̂k = Hτ

k Bk can still be obtained as by-product of
the Smith iteration. Note that for the infinite situation τ = ∞, using the Smith iteration for (36) requires that the
restriction Hk is stable, which is theoretically ensured if the numerical range of A lies in the unit disc.

The computational effort of both of these two strategies can be further reduced by solving the projected matrix
equation (37) only in each µth iteration step (e.g., µ = 5) of Algorithm 2.

Computing the residual of the Stein equations. We wish to assess the accuracy of the low-rank approximation
QkYkQT

k by means of the norm R of the Lyapunov residual matrix. However, directly computing the residual norm
R is impractical since the Lyapunov residual matrix is a large, dense matrix. The following Lemma reveals an
efficient way to compute the residual norm.

Lemma 4.1. The residual matrix at step k of Algorithm 2 is given by

Rk := A(QkYkQT
k ) − QkYkQT

k + BBT − QkF̂kF̂kQ̂T
k

= [gk,wk]
[
ψT

k Ykψk Im

Im 0m

]
[gk,wk]T , gk := sk+1qk+1 − (I − QkQT

k )Avk+1,

wk := QkHkYkψk, ψk = Ψ−T
k Ekψk+1,k,

where Ψk = [ψi j] ∈ Rkm×km is the matrix of orthonormalization coefficients ψi j ∈ Rm×m accumulated from line 11.
Hence, ‖Rk‖ = ‖S k

[
ψT

k Ykψk Im

Im 0m

]
S T

k ‖ and S k ∈ R2m×2m is the triangular factor of a thin QR-factorization of [gk,wk].
The result is also valid for the infinite Gramians by omitting the term QkF̂kF̂kQ̂T

k .

Proof. The result can be easily established by combining the corresponding results for rational Arnoldi methods
for continuous-time equations [38] with those related to standard Arnoldi methods for discrete-time equations [35,
43].

Shift parameter selection. Having suitable shift parameters ξ2, . . . , ξk available is crucial for a rapid convergence
of the rational Arnoldi method. Two selection strategies are employed here. At first, alternating shifts ξ j = (−1) j,
2 ≤ j ≤ k are used as in [44, Section 3.3] which formally corresponds to the extended Krylov subspace setting
(ξ2 j−1 = ∞, ξ2 j = 0) from [45], and applying a Cayley transformation to map C− into the closed unit disc.
Because only two different coefficient matrices A ± I occur with this choice in the linear systems in line 10,
precomputing and reusing sparse LU-factorizations L±U± = A± I in each step afterwards can substantially reduce
the computation times for solving the linear systems.

The second shift selection approach is more general and modifies the strategy proposed in [38] by selecting
shifts adaptively from the boundary of the unit disc. Suppose the unit circle is discretized into hs ∈ N points,
Ξ := {exp 2Πi

hs
, 1 ≤ i ≤ hs}, set m = 1 for simplicity, and let θi ∈ Λ(Hk). The next shift sk+1 is then obtained by
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maximizing the rational function associated to the current space RKk, i.e.,

sk+1 = argmax
ξ∈Ξ

|rk(ξ)|, rk(ξ) =

k∏
j=1

ξ−θ j

ξ−ξ j
, (39)

For m > 1, there are mk Ritz values θi and each previous shift s j is taken m times in the denominator of rk in (39)
as in [38]. Note that the returned shifts are complex numbers. By requiring that each complex shift is followed by
its complex conjugate, the amount of complex arithmetic operations can be reduced following the machinery in,
e.g., [46], which will ensure the construction of real, low-rank solution factors Qk, Yk.

Generalized systems. Generalized Stein equations (33) corresponding to generalized state-space systems (32) are
handled as in the continuous-time setting by implicitly using the algorithms on an equivalent standard state-space
system defined by, e.g., AM := L−1

M AU−1
M , BM := L−1

M B, C := CU−1
M with a precomputed sparse factorization

M = LMUM . Afterwards, the obtained low-rank solution factors Z have to be transformed back via U−1
M Qk.

4.2. Computing the error bounds

We will briefly discuss the practical usage of the proposed error bounds. For computing the error bounds
in (10) and Proposition 2.2 after a reduction of large-scale systems, the low-rank Gramian approximation are
used in the associated places, e.g., in tr

(
BT QτB

)
≈ tr

(
BT ZQτ

ZT
Qτ

B
)
. The computation of the terms involving the

Gramians of the reduced order model requires solving Stein equations of dimension r which can be done direct,
dense methods. The terms involving the mixed Gramians require solving Sylvester equations (11), (17), where one
of the coefficient is large and sparse but the other one is small and dense. For this particular situation, specialized
solvers are available in, e.g. [47], that require r sparse linear systems to be solved. We emphasize that, since only
approximate Gramians are used, the expression involving the reachability Gramians might not be identical to the
expression with the observability Gramians. For the error bound in Proposition 2.2 for TLBT, this effect might
be more pronounced because only approximations of F,G are available in practice which enter (17). Therefore,
we use the average of both expressions in the following. Another frequent observation is that the traces with
positive and negative signs are very close to each other, e.g., tr

(
CPτCT + C1P̂τCT

1

)
≈ tr

(
2CYCT

1

)
, which can lead

to numerical cancellation or even negative values for the complete trace. This seems to be especially an issue if the
reduced order model is already very accurate. Hence, we take absolute values | tr

(
CPτCT + C1P̂τCT

1 − 2CYCT
1

)
|

to circumvent these effects.
It is clear that the bound in Theorem 3.1 is not accessible for large-scale systems because the neglected quan-

tities such as B2, A12, C2 are not available in a practical implementation of TLBT.
Some of these unknown quantities are also present in the bound in Theorem 3.2. Additionally, the constants

c, ĉ, λ, λ̂ are required. Here, the approach used for bounding the powers of A, A11 matters. When λ, λ̂ represent
the largest magnitude eigenvalues they can be easily computed for A11 and estimated for A by, e.g., an Arnoldi
process. The constants c, ĉ are then the condition numbers of the eigenvector matrices, which is a difficult to get
quantity for large matrices unless the matrices are normal, i.e. c = 1. Applying the Crouzeix-Palencia result [28],
however, simply uses c = ĉ = 1+

√
2 and the largest value of zτ on the numerical range of A. It holds sup |zτ| ≤ ατ,

where α := sup |z| is the numerical radius of A which can also be efficiently estimated by approaches utilizing an
Arnoldi process see, e.g., [48].

5. Numerical Experiments

In this section, we test the model order reduction methods and the algorithms for computing low-rank factors of
the Gramians. All experiments are carried out with implementations in MATLAB R© 2016a on a Intel R©CoreTM2 i7-
7500U CPU @ 2.7GHz with 16 GB RAM.

5.1. Used test cases

As test cases we use some discrete-time systems from [49] as well as artificially generated and freely scalable
test systems, summarized in Table 3 which also gives additional information such as the spectral radius ρ =

max
z∈Λ(A,M)

|z|. Consider a positive definite, diagonally dominant matrix S = L + U + D, where L,U and D are its

strictly upper, lower, and, respectively, diagonal part. Here, S is the matrix associated to a centered finite difference
discretization of the Laplace operator on the unit disc. The Jacobi (Jac) iteration vk+1 = D−1(L + U)vk + D−1b
for the linear system S v = b represents a basic generalized discrete-time system with coefficients A = L + U and
M = D satisfying Λ(D−1(L + U)) = Λ(L + U,D) ⊂ D, see, e.g. [50, Chapter 11.2]. Likewise, the Gauss-Seidel

15



Table 3: Overview of examples
Example n m, p details ρ

skl 24389 4, 6 discrete-time system ”sparse-skewlap3d-mod-1” from [49]2 0.91372
Jac 31064 5, 5 Jacobi iteration for S :=delsq(numgrid(’D’,200)) 0.99985
GS 31064 5, 5 Gauss-Seidel iteration for S 0.9997

(GS) iteration is given by A = L, M = U + D with Λ(L,U + D) ⊂ D but does not require diagonal dominance of
S . The input and output maps B, C for the Jac, GS examples are chosen randomly from a uniform distribution on
[0, 1].

5.2. Approximation of Gramians and matrix powers
We start testing the approximation of the infinite and time-limited Gramians as well as F = AτB by the

methods described in Section 4: the Smith method from Algorithm 1 and the rational Krylov subspace method
(Algorithm 2) using two types of shifts: ξ j = (−1) j (RKSM(±1)) and the adaptive selection on the unit circle
(RKSM(D)). We also compare with the LR-ADI iteration for discrete-time Lyapunov equations [41, 21]. For
the time-limited equations (12) this is done via a hybrid approach, where the approximation F obtained from
RKSM(±1) is used to set up the inhomogeneity. The time-limited Gramians are considered with two different
time limits to gain insight on how τ influences the computations. The desired accuracy for all cases is

R := ‖APkAT − Pk + BBT − FkFT
k ‖/‖BBT − FkFT

k ‖ ≤ τP := 10−8

and ‖BBT − FkFT
k ‖/‖FkFT

k ‖ ≤ τ f = 10−8 is used for the approximation of F computed in Algorithm 2. The
exception is the Smith method for the time-limited Gramians, which is carried out for exactly τ steps, hence
providing exact results (up to round-off). After termination, the computed Gramian approximations are truncated
by means of an eigenvalue decomposition and keeping only those eigenpairs with

∑
(λi(P)) > 10−12λmax(P). The

results are summarized in Table 4, where the approximation of F obtained by the Smith method is used for the final
residual norms R regarding the time-limited Gramians. Apparently, for small final times τ the Smith method can
be competitive in terms of the computation time especially for the skl and jac examples. It requires, e.g., the least
amount of time for τ = 50 and the skl example among all tested methods. Due to the comparatively small spectral
radius of A in the skl example, the Smith method also delivers competitive times for the infinite Gramians, but fails
to deliver the required accuracy for the other two test systems. For all examples, the LR-ADI iteration appears
to require the smallest computation times for the infinite Gramians. Considering the dimensions of the built up
subspaces, however, indicates that the Smith method generates substantially larger spaces compared to the other
approaches. Also, the obtained ranks after truncation seem to be somewhat higher than for the other methods.
For approximating the time-limited Gramians, the RKSM approaches seem to be a viable choice with respect
to both computational time and the subspace sizes, especially for larger values of τ. The used shift generation
strategy has a noticeable influence: while for the skl example using the shifts ±1 leads to less consumed time
than the shifts from the unit circle (D), it is the other way around for the jac example, and for the GS example
both shift approaches lead to similar results. The obtained subspace dimensions generated with RKSM(D) are in
almost all cases smaller compared to RKSM(±1). The smaller computation times of RKSM(±1) for the skl and
GS examples are a result of the reuse of LU-factorizations of A±M for the linear systems as explained before. For
the jac example, these savings in solving the linear systems were nullified by the substantially higher subspace
dimensions which resulted in much higher times for solving the projected problems.

However, for most examples the substantial discrepancy between subspace dimension and rank after truncation
indicates that further enhancements by selecting better shifts are possible. We plan to pursue this topic in future
research. For the time-limited Gramians, the hybrid approach of RKSM and LR-ADI appears to yield similar
results than the pure RKSM approach.

To conclude this first experimental phase, for small final times τ (and/or a small spectral radius of A), the Smith
method can be a viable choice for generating the low-rank factors of the (time-limited) Gramians. For larger τ
(and/or spectral radii close to one), the rational Krylov approach appears to be superior, even with the basic shift
selection strategies employed here. If τ = ∞, the LR-ADI iteration is often the fastest method.

5.3. Model reduction results and error bounds
Now we carry out infinite and time-limited balanced truncation employing low-rank Gramian approximations

generated from the experiments before. It is noteworthy that, apart from different computations times, the obtained

5Available at Mert Gürbüzbalaban’s webpage http://mert-g.org/software/
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Table 4: Column dimension d of built up low-rank factors before truncation, rank rk after truncation, final residual norm R, and computation
time tc (in seconds) of the approximation of P, Pτ by different methods.

P∞ Pτ=50 Pτ=150
Ex. method d rk R tc d rk R tc d rk R tc

skl

Smith 680 149 9.4e-09 27.4 200 105 1.5e-15 1.7 600 145 1.4e-15 15.0
RKSM(±1) 140 91 2.1e-10 21.4 240 64 7.3e-13 9.5 240 85 4.9e-13 9.5
RKSM(D) 128 91 3.0e-10 42.3 168 64 7.3e-13 41.4 184 85 4.9e-13 45.6
ADI 64 64 5.9e-09 15.5 176 69 3.1e-09 36.6 152 75 4.3e-09 32.6

P∞ Pτ=100 Pτ=200

Jac

Smith 1500 246 7.0e-01 347.3 500 201 3.2e-13 53.2 1000 230 7.4e-13 173.4
RKSM(±1) 700 156 1.9e-09 381.7 700 111 1.0e-10 172.5 700 121 2.3e-10 179.0
RKSM(D) 630 156 2.1e-09 342.8 360 111 1.8e-10 52.6 380 121 2.3e-10 69.6
ADI 230 218 8.9e-09 13.0 570 117 5.5e-09 92.9 540 127 7.0e-09 79.5

P∞ Pτ=150 Pτ=250

GS

Smith 1500 209 6.0e-01 291.4 750 191 3.9e-13 60.6 1250 206 5.7e-13 166.4
RKSM(±1) 325 105 4.3e-09 188.4 375 92 8.6e-10 24.2 325 97 8.6e-10 18.5
RKSM(D) 410 105 4.3e-09 59.8 280 92 8.6e-10 20.4 280 97 1.1e-09 20.6
ADI 135 135 3.8e-09 5.0 310 86 9.9e-09 25.1 290 97 3.0e-09 20.6

Table 5: Results and error bounds for BT and TLBT model reduction to fixed orders r.
BT TLBT

Ex. r Emax bound σr ρ Emax bound σr ρ

skl, τ = 50
20 3.5e-01 9.3e-01 1.1e+01 0.9728 2.2e-01 6.9e-01 6.5e+00 0.9584
40 1.0e-02 3.3e-02 2.4e-01 0.9717 1.3e-03 3.6e-03 2.2e-02 0.9852
60 6.2e-05 1.8e-02 2.7e-03 0.9650 4.6e-07 6.9e-04 1.1e-05 1.0008

jac, τ = 200
40 8.1e-01 2.7e+00 5.9e+01 0.99985 1.8e-01 6.5e-01 6.8e+00 1.00019
60 1.9e-01 1.7e+00 6.7e+00 0.99986 8.9e-03 6.1e-01 1.9e-01 1.00030
80 2.1e-02 2.0e+00 6.8e-01 0.99985 1.5e-04 6.6e-01 6.0e-03 1.00000

GS, τ = 150
40 1.3e-01 2.2e+00 2.7e+00 0.99971 1.4e-02 3.6e-01 3.2e-01 0.99964
60 5.5e-03 2.3e+00 1.0e-01 0.99971 2.2e-04 5.0e-01 4.6e-03 0.99988
80 1.3e-04 1.5e+00 3.8e-03 0.99971 3.9e-06 7.2e-01 5.4e-05 1.00592

reduction results were largely unaffected by the employed method for generating the low-rank factors, provided
the accuracy threshold was achieved. Table 5 lists the results obtained by reducing the systems to different order
r: the largest output error in the considered time interval Emax := max

0≤k≤τ
‖y(k) − ŷ(k)‖2, the error bounds (10)

and Proposition 2.2 for BT and, respectively, TLBT, twice the sum of the neglected (time-limited) Hankel singular
values, 2

∑
i≥r+1

σi, and the spectral radius of Ar to access stability. For selected reduced orders, Figures 2–4 illustrate

the output errors ‖y(k)− ŷ(k)‖2 against time k as well as the error bounds and HSV sums. From the gathered data, it
is apparent that TLBT achieves always smaller reduction errors in the targeted time interval [0, τ] and, moreover,
also the error bound from Proposition 2.2 takes smaller values than the counterpart (10) for unrestricted BT.
The doubled sum of neglected HSVs is smaller for TLBT. All this is visually visible in Figures 2–4. As it is
expected, after passing the time limit τ, the accuracy of the TLBT models worsens to a point k̃ ≥ τ where BT is
more accurate. We also observe from Table 5 that approximately half of the reduced order models generated by
TLBT are unstable. We see this, e.g., in Figures 3–4, where the output error drastically increases after passing
the time limit τ. Comparing the largest output errors Emax and the sums of neglected HSVs for TLBT in Table 5
suggests that, although a bound of the form (9) is not given for TLBT, the HSV sum could be used for adaptively
determining a suitable reduced order r, exactly as it is often done in unlimited BT. To underline this point, we
repeat the model reduction experiment but let (TL)BT determine to reduced orders r adaptively such that

2
∑

k=r+1

σk ≤ εhsv, (40)

for different given reduction tolerances 0 < εhsv < 1. The results are summarized in Table 6 and indicate that
this adaptive determination of the reduced order works for TLBT as fine as for unlimited BT. Moreover, TLBT
appears to yield smaller reduced order models of similar accuracy compared to BT. This is a similar observation
as for continuous-time TLBT [15].

6. Conclusion

In this paper, we studied time-limited balanced truncation for discrete-time systems. The contributions of this
work were divided into two parts. The first part was dedicated to developing output bounds for TLBT. To this aim,
we defined the TL h2 norm and its characterization using matrix equations. By means of this norm, we were able
to establish an error bound for the output. Afterwards, we have analyzed the asymptotic behavior of these error
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Figure 2: Output errors ‖y(k) − ŷ(k)‖2, error bounds, and sum of neglected HSVs σr for (TL)BT reduction of skl example to order r = 40 with
time limit τ = 50.
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Figure 3: Output errors ‖y(k)− ŷ(k)‖2, error bounds, and sum of neglected HSVs σr for (TL)BT reduction of jac example to order r = 60 with
time limit τ = 200.

bounds regarding the time-horizon, highlighting differences to the infinite time horizon as well as the continuous-
time situation. The obtained bounds furthermore indicated that the neglected Hankel singular values can be used
for an automatic reduced order determination.

The second part of this work was dedicated to computational aspects in large-scale settings. Therein, ap-
proximate solutions of the TL Stein equations were obtained by using low-rank factorizations. Rational Krylov
subspace methods were proposed for computing the low-rank solution factors. Furthermore, we discussed the
residual and error bound computations as well as the selection of shift parameters for the rational Krylov sub-
space methods. Finally, the algorithms were tested on large-scale examples, and the results were compared with
other methods. The time-limited BT approach typically led to more accurate ROMs in the restricted time interval
of interest compared to infinite BT, which was also revealed by the smaller values of the corresponding output
error bounds. As in the continuous-time case, TLBT occasionally returned unstable ROMS, which might be cir-
cumvented in investigations along the lines of, e.g., [16]. The proposed low-rank methods for the arising Stein
equations returned satisfactory results for the application in the MOR context with respect to both computing
time and accuracy. However, further research is required to bring them to the same level of efficiency as their
continuous-time counterparts [38, 21]. Especially the shift parameter selection for discrete-time problems should
be improved in future research endeavors.
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Figure 4: Output errors ‖y(k)− ŷ(k)‖2, error bounds, and sum of neglected HSVs σr for (TL)BT reduction of GS example to order r = 80 with
time limit τ = 150.

Table 6: Results and error bounds for BT and TLBT model reduction, where the reduced orders are adaptively determined via (40) for different
εhsv.

BT TLBT
Ex. εhsv r Emax bound σr ρ r Emax bound σr ρ

skl, τ = 50
1.0e-01 45 3.0e-03 2.0e-02 7.9e-02 0.96659 36 5.0e-03 8.8e-03 8.0e-02 0.96958
1.0e-02 55 3.3e-04 1.8e-02 8.8e-03 0.96885 43 3.4e-04 3.6e-03 7.5e-03 0.97627
1.0e-03 65 4.9e-05 1.8e-02 8.3e-04 0.96501 49 5.7e-05 1.8e-03 9.0e-04 0.97347

jac, τ = 150
1.0e-01 97 2.2e-03 1.8e+00 9.5e-02 0.99985 64 2.1e-03 2.8e-01 9.2e-02 1.00513
1.0e-02 115 1.6e-04 1.7e+00 9.3e-03 0.99985 78 2.2e-04 5.9e-01 8.9e-03 1.00049
1.0e-03 133 2.7e-05 1.9e+00 9.4e-04 0.99985 90 2.6e-05 3.1e-01 9.4e-04 1.00059

GS, τ = 150
1.0e-01 61 5.5e-03 2.6e+00 9.9e-02 0.99971 46 7.1e-03 6.3e-01 9.8e-02 1.00073
1.0e-02 75 2.1e-04 2.0e+00 9.3e-03 0.99971 58 3.3e-04 7.0e-01 8.4e-03 0.99987
1.0e-03 88 2.5e-05 1.1e+00 9.7e-04 0.99971 69 2.4e-05 6.8e-01 8.1e-04 0.99981
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