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VORWORT

Die vorliegende Dissertation befal3t sich mit Untersuchungen zur Nitrifikation in Biofilmen

sowie zur Denitrifikation in Belebtschlammflocken. Beide Systeme werden hliufig in der

Abwasserreinigung eingesetzt. Neue Einblicke in ihre Strukturen und Funktionen - so das Ziel dieser

mehr auf Grundlagenforschung ausgerichteten Arbeit - soil ten zu einem besseren Verstlindnis der an

der Stickstoffentfernung beteiligten Prozesse beitragen, was langfristig auch zu einer stabileren und

effizienteren Abwasserreinigung fUhren konnte.

Die Ergebnisse des experimentellen Teiles wurden in sechs englischsprachigen Manuskripten

zusammengefal3t (Chapter 2-7). Die ersten drei sind bereits in einer intemationalen Fachzeitschrift

veroffentlicht, ein weiteres ist eingereicht, und die beiden letzten werden zur Publikation vorbereitet.

Der Zusammenhang der Einzelteile und ihr Bezug zum Hauptthema wird in der Einleitung (Chapter I)
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der einzelnen Artikel.

Ganz herzlich mochte ich mich bei Rudi Amann bedanken, der diese Arbeit ermoglichte und

betreute, mir aile Freiheiten liel3 und stets fUr anregende Diskussionen zur Verfugung stand. Bo

Barker J¢rgensen danke ich fur die Ubernahme des Erstgutachtens und fur aile Unterstiitzung am MPI

Bremen. Karl-Heinz Schleifer und Niels Peter Revsbech brachten mich - noch zu Zeiten der

Diplomarbeit - auf den wissenschaftlichen Weg, und Michi Wagner bzw. Lars Hauer Larsen, Niels B.

Ramsing und Lars B.Pedersen zeigten mir erste methodische Schritte und weckten die Begeisterung

fUr Mikroben und Mikrosensoren. Ihnen allen herzlichen Dank! Einen besonderen Anteil an dieser

Arbeit hatte Dirk de Beer mit seinem Know-how uber Biofilme und LIX-Elektroden (die mir so

manche schlaflose Nacht brachten und teilweise den letzten Nerv raubten: "Tu NIX mit LIX!"). Er

war immer wieder mit neuen Ideen, Anregungen und tatkrliftiger Unterstiitzung an den

verschiedensten Projekten beteiligt.

Fur angenehme und ertragreiche Aufenthalte an der Universitlit Aarhus (Dept. of Microbial Ecology),

der Universitlit Amsterdam (Dept. of Chemical Engineering) und am Prague Institute of Chemical

Technology (Dept. of Water Technology and Environmental Engineering) danke ich ganz herzlich

Niels Peter Revsbech, Simon Ottengraf und Jiri Wanner, sowie allen Mitarbeitem an den dortigen

Instituten. Aul3erdem mochte ich mich bei all meinen Co-Autoren fUr die hervorragende

Zusammenarbeit bedanken.



Gaby Eickert, Anja Eggers und Vera Hubner danke ich fUr die vielen Mikrasensoren und aile sonstige

Unterstiitzung. Meinen Burokollegen, Herm Schachtaffen Gerhard Holst und Herrn Fischkopf Oliver

Kohls ein herzliches Dankschon und Vergeltsgott (aber das versteht ihr wohl wieder nicht) fUr gute

Diskussionen, die Hilfsbereitschaft und die Musik. Bei Frank-Oliver Glockner und Willi Schonhuber

mochte ich mich ganz besonders bedanken fUr EinfUhrung und Hilfe am ARB und die Geduld mit mir,

wenn's wieder mal Probleme gab. Bernd Stickfort danke fUr seine Express-Literaturdienste; es war

immer wieder erstaunlich, wie schnell er die exotischsten Zeitschriften auftreiben konnte. Allen

Kolleginnen und Kollegen am MPI Bremen, besonders in den Gruppen Mikrosensoren und

Molekulare Okologie, vielen Dank fUr das gute Arbeitsklima und die vie len kleinen und graBen

Anregungen, Tips und Tricks.

Die Ubersetzungen des Summary besorgten Olivier Pringault, Ramon Rosse1l6-Mora, Lev Neretine,

Dirk de Beer, Ole Larsen und Hans R¢y - herzlichen Dank. Ein besonderes Dankeschon gilt Christine

Beardsley und Heide Schulz fUrs Korrekturlesen in letzter Minute, sowie vor allem Bernhard Fuchs,

Armin Gieseke und Sjila Santegoeds, ohne deren Einsatz die Arbeit wohl nicht mehr in dieser Form

fertig geworden ware.

Zuletzt mochte ich mich herzlichst bei meinen Eltern fUr die langjahrige Unterstlitzung bedanken, bei

unserer Hausgemeinschaft (Bernhard und Rita: Danke fUr Euer Verstandnis und die Unterstiitzung

gerade am Ende der Arbeit'), und natiirlich bei meiner Familie: Doris und Anne, ihr wart und seid mir

wichtigste Hilfe und Motivation.

Lilienthal, November 1998

Andreas Schramm J: /
~



CONTENTS

Chapter 1 General Introduction

In Situ Structure and Function Analysis of Biofilms 3

Outline of the Experimental Work 13

Chapter 2 Structure and Function of a Nitrifying Biofilm as Determined by In Situ

Hybridization and the Use of Microelectrodes 15

Chapter 3 A Nitrite Microsensor for Profiling Environmental Biofilms 25

Chapter 4 Identification and Activity In Situ of Nitrosospira and Nitrospira spp.

as Dominant Populations in a Nitrifying Fluidized Bed Reactor 33

Chapter 5 Microscale Distribution of Populations and Activities of Nitrosospira

and Nitrospira spp. along a Macroscale Gradient in a Nitrifying Bioreactor:

Quantification by In Situ Hybridization and the Use of Microsensors 41

Chapter 6 Microenvironments and Distribution of Nitrifying Bacteria

in a Membrane-Bound Biofilm 57

Chapter 7 An Interdisciplinary Approach to the Occurrence of Anoxic Microniches,

Denitrification, and Sulfate Reduction in Aerated Activated Sludge 71

Summary

Appendix

Zusammenfassung

Resume

Resumen

F£3IO'\1E

Samenvatting

Sammenfatning

Zammagfasst

List of Publications

Lebenslauf

91

93





Chapter 1

GENERAL INTRODUCTION

In Situ Structure and Function Analysis of Biofilms

+
~
+-- -- -

This chapter has been published in Technik anaerober Prozesse, (Eds.) H. Markl, R. Stegmann,
DECHEMA-Fachgesprache Umweltschutz, DECHEMA e.V., Frankfurt am Main, Germany, p. 45-54
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Flow chart of "In situ structure and function analysis of biofilms". Individual steps are: microsensor

measurements, cryosectioning of the fixed, embedded biofilm, fluorescence in situ hybridization

(FISH) with oligonucleotide probes, and microscopic detection of the respective microorganisms.

Figure by Niels B. Ramsing and A. Schramm
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Chapter I

In Situ Structure and Function Analysis of Biofilms

Dipl.-Biol. Andreas Schramm, Priv.-Doz. Dr. Rudolf Amann

Nachwuchsgruppe Molekulare Okologie
Max-Planck-Institutfur Marine Mikrobiologie
Celsiusstrasse I
28359 Bremen

Abstract

In situ structure and function analyses are prerequisites for both understanding the complex
network of microbial populations and processes inside biofilms, and manipulating the
structure and function of biofilm reactors. Modem microbial ecology can provide the tools for
such investigations: Microsensors are minimally invasive instruments to measure gradients of
many important metabolites and parameters with high spatial resolution. The gradients can
also be used to evaluate the zonation and rates of the measured processes. Fluorescence in situ
hybridization with rRNA-targeted oligonucleotide probes allows the identification,
localization, and quantification of microorganisms directly in the biofilm. Furthermore, the
application of the rRNA approach can circumvent the bias inherent in cultivation dependent
studies, and therefore lead to a more realistic picture of the composition of a microbial
community. The combined application of these two in situ techniques bears great potential for
new and exciting insights into the structure and function of biofilms.

1 Introduction

What can microbial ecology offer to the study of biotechnological processes such as biological
wastewater treatment? The function of a wastewater treatment plant is determined by the
activities and interactions of its microbial community. Thus, as engineers try to adjust process
parameters in order to optimize a plant, microbial ecologists may assist in providing
information on the identity of microorganisms responsible for specific activities, on
interactions between cells of the same or different populations, and in analyzing the influence
of changing environmental conditions. In the long run, reactors could by this interdisciplinary
approach be designed specifically to meet the requirements of the targeted microbial
community.
However, the ecological investigation of those complex ecosystems such as activated sludge
or biofilms is still in its infancy. Classical approaches, e.g., the isolation of microorganisms or
physico-chemical bulk measurements usually do not lead to a comprehensive picture of the
microbial community nor can they resolve coupled processes in flocs, aggregates, or biofilms.
These habitats are highly stratified systems with steep physico-chemical gradients and
organisms adapted to sequential transformations along those gradients. Therefore,
sophisticated in situ techniques are necessary to identify microorganisms and measure
activities at the place of their occurrence or, in other words, to analyze structure and function
of biofilms on a microscale.
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In situ structure and function analysis of biofilms

2 Biofilms

Biofilms are defined as surface attached accumulations of microbial cells encased in
extracellular polymeric substances (EPS) [5]. In nature, they can be found at almost any
surface exposed to water, ranging in thickness between a few cell layers to a few centimeters.
In many aquatic systems the majority of microbial conversions takes place in biofilms
covering sediments, rocks, or plants [13]. In biotechnology, biofilm reactors are increasingly
used for wastewater treatment and bioremediation processes, or by the pharmaceutical and
fermentation industry. Biofilm reactors are advantageous for some processes because the
biomass is immobilized and thus retained in the reactor. Thereby, relatively high
concentrations of biomass can be achieved even of microorganisms with low specific growth
rates, like methanogens or nitrifiers.

2.1 Biofilm structure
The compartments of biofilm systems are the biofilm that colonizes a surface (the
substratum), the diffusion boundary layer, and the bulk liquid. The bottom part of the biofilm
is usually an uniform, dense base film, which is firmly adhered to the substratum by EPS; it is
often covered with a more heterogeneous, fluffy surface film, consisting of cell clusters, EPS,
and interstitial voids in contact with the bulk liquid [18], [42], [64]. Occasionally, streamers
protrude into the bulk liquid and move in the flow. Whether the biofilm structure is dominated
by the homogeneous base film (Fig. IA), cell clusters and voids (Fig. 18), or streamers, may
be determined by factors like growth rate [68], substrate concentration [72], shear stress [69],
grazing, and cell surface properties [13].

bulk liquid

5ubf>tratum

cell clUf>ter

B

Fig.l. Physical structure (A) of a compact nitrifying biofilm and (B) of an aerobic,
heterotrophic biofilm. Note the voids between the cell clusters.

In addition to its physical structure, the community structure of biofilms is of special interest.
This encompasses the composition of the microbial community and its spatial arrangements,
which both determine cell to cell interactions that might largely modulate the physiological
properties of a biofilm.

2.2 Biofilm function
The physical structure of a biofilm directly determines its transport mechanisms. Most
biofilms are characterized by mass transfer resistance: a diffusive boundary layer (DBL) is
created by viscous forces around the biofilm surface and separates the biofilm matrix from the
turbulent bulk liquid. Solutes are only transported by molecular diffusion in the DBL and in
the biofilm matrix, and therefore steep gradients occur [29]. The chemical conditions inside a
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Chapter I

biofilm are thus very different from the bulk water conditions, often leading to substrate
limitations. On the other hand, processes such as denitrification, sulfate reduction, or
methanogenesis can be found in the deeper, anaerobic zones of the biofilm, or in anaerobic
micro-niches. Sequential conversions such as coupled nitrification - denitrification [63] or
sulfate reduction - sulfide oxidation [34] often take place on a micrometer scale at oxic-anoxic
interfaces. In general, microorganisms and processes are extremely compressed in biofilms.
Measurements of the chemical gradients are needed to characterize the microenvironments, to
understand the internal conversions, and to relate them to the microorganisms inhabiting
certain zones in a biofilm.
It should be kept in mind, however, that liquid flow in voids will play an important role for
mass transfer in biofilms with a more open structure and at higher flow velocity. Advective
transport of solutes is much more efficient than diffusion and can considerably increase fluxes
[17].
As much as the structure of the microbial community is determined by environmental
conditions prevailing inside the biofilm, microorganisms by their activities create their own
microenvironments. The results are highly stratified communities, where microbiologically
mediated elemental cycles (e.g. N- or S-cycie) occur on a submillimeter scale. Nitrogen
transformations, for example, can be initiated by aerobic mineralization of organic matter and
the consequent release of ammonium. Ammonium can be either assimilated or sequentially
oxidized via nitrite to nitrate, which again can be reduced in the anaerobic part of the biofilm
to dinitrogen gas or ammonium. In such a biofilrn, aerobic heterotrophs, ammonia- and nitrite­
oxidizers, and nitrate-reducing bacteria would coexist in a competitive, syntrophyical, or
commensal way. Detailed investigation of such interactions is the key for the understanding
and manipulation of biofilm function.
A further important property of biofilms is the protection of microorganisms against
hazardous influences. The immobilization of cells, and the production of EPS not only
alleviates common environmental shocks (e.g. sudden pH or substrate changes) but also
provides resistance against some inhibitory substances (e.g. antibiotics or xenobiotics) [7].

2.3 Aggregates and floes
In an extended definition, bacterial aggregates or flocs, both commonly used for
biotechnological processes, can be seen as kind of "mobilized" biofilms. Although not
attached to a substratum, they share most other characteristics with typical biofilms: they
consist of clusters of cells embedded in EPS, sometimes including voids and a very irregular
surface (e.g. activated sludge flocs), they usually are surrounded by a DBL that allows only
diffusional transport of solutes, and they often develop steep chemical gradients and spatially
distinct microenvironments [15], [21], [38], [39], [50]. Therefore, the same high resolution in
situ techniques are needed for the structure and function analysis of aggregates or flocs as are
needed for biofilm investigations.

3 Mierosensors

The determination of microenvironments and in situ activities inside biofilms requires tools
with high spatial and temporal resolution and minimum disturbance of the sample, i.e.
negligible change of its physical structure and negligible consumption of the analyte.
Microsensors with tip diameters of 1 - 30 /lm have thus been developed and applied in
microbial mats and biofilms to measure Oz (Fig. 2), pH, COz, H2, HzS, SZ-, NH/, NOz-, N03-,

NzO, CH4, HCIO, Caz
+, glucose, photosynthesis, light, temperature, and diffusivity or flow

(reviewed in [36], [56]). From these measurements microenvironments can be defined and the
zonation and rates of processes can be estimated.
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3.1 Measuring principles
Microsensors rely on either electrochemical or optical principles [36]. The electrochemical
sensors can be divided in three groups: amperometric, potentiometric, and biosensors.

6ilver ~uard

,. cathode ~1. silicone

membran~._~.

measuring ca~hode

(~old-plat.ed platinum)

Fig. 2.
Amperometric oxygen
microsensor with a tip
diameter of 5 fJm

Amperometric sensors detect the current caused by electrochemical reactions of the analyte at
the sensor tip. A potential difference between the sensing electrode and the reference drives
the reaction, and the current, measured by a sensitive picoamperemeter, is proportional to the
analyte concentration [58]. Examples of this principle are the Clark-type O2 microsensor [53],
the combined 021N20 microsensor [54], and sensors for HCIO [16], H2 [24], and H2S [28].
Potentiometric sensors detect an electrical potential difference generated by a charge
separation of ions across a membrane. This ion-selective membrane can be either special glass
as for the pH electrode (a miniaturized commercial pH electrode [67]), or a liquid ion
exchanger (LIX) as for LIX microsensors. LIX microsensors can be made very small (1 fJm),
but often suffer from a short lifetime and a low selectivity of the membrane [58]. Examples
are LIX sensors for NH/ [20], N03' [19], [27], and N02' [14]. A CO2 microsensor can be
constructed with an internal LIX pH-sensor [12]
Microbiosensors combine biological catalysts (i.e. enzymes or whole cells) with
electrochemical sensors. The first example was a glucose microsensor based on immobilized
glucose oxidase [8]. Recently, CH4 and N03' biosensors were described, both consisting of
bacteria (methanotrophs or denitrifiers) immobilized in front of a conventional amperometric
microsensor for O2 or N20, respectively [11, 37].
Fiber-optical microsensors (micro-optodes) are either used to directly measure light
distribution in a sample [35], or contain an indicator chemistry at the fiber tip, that changes its
luminescence or absorption in response to an analyte. O2 [32], pH [33], and temperature [31]
optodes have been developed based on that principle.

3.2 Application to biofilms
Microsensor studies in biofilms have addressed respiration, photosynthesis, and oxygen
transfer [6], [18], [25], [26], nitrification and denitrification [9], [10], [21], [47], [55], sulfate
reduction and sulfide oxidation [34], and methanogenesis [38]. It is beyond the scope of this
article to summarize the results of more than ten years of microsensor research. However,
there is a common trend that should be emphasized: most of the measured processes occur in
narrow zones of 50 - 300 fJm, often in close coupling to each other.

4 Molecular Techniques
Methods to analyze the populations relevant in biofilms must meet at least two requirements:
firstly to reveal a comprehensive picture of the community structure, i.e. of the identity and
abundance of its members, and secondly to detect their spatial arrangements inside the
biofilm. Both criteria are not fully addressed by cultivation-based classical microbiology.
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Therefore, during the past decade techniques were adapted from molecular biology for the
cultivation-independent, phylogenetic identification and in situ detection of individual
microbial cells (reviewed in [1], [3], [60]).

4.1 Phylogeny and its impact on microbial ecology
The starting point for this development was the revolutionary change in bacterial systematics
during the 1980s. By comparative 16S rRNA sequence analysis, Carl Woese and coworkers
established for the first time a framework for the identification of bacteria based not on their
morphology and on physiological tests but on their evolutionary history (phylogeny) [73].
rRNA molecules (5S, 16S, and 23S rRNA) are polynucleotides (- 120, 1500, and 3000 bases
long, respectively), that are integral constituents of the ribosome. Because of their functional
constancy, their universal distribution, and because they possess regions of different degrees
of conservation, rRNAs are excellent molecules for discerning evolutionary relationships
among organisms. Databases have been initiated for rRNA sequences [22], [40], [65], now
encompassing over 10,000 16S rRNA sequences for comparison. Diagnostic sequence regions
can be found specific for different taxonomic units ranging from the domain to the species
level. Besides the reliable identification of isolated microorganisms or extracted rRNA (see
below), two further characteristics of rRNAs offer even more possibilities for microbial
ecology. (i) rRNAs are naturally amplified in living cells (1,000 - 10,000 copies). This makes
them easy and sensitive to assay, and gives the opportunity to identify single bacteria by
fluorescent oligonucleotide hybridization (Fig. 3). (ii) The amount of rRNA in individual cells
is proportional to their general metabolic activity [59]. In principle, it is thus possible to
estimate the activity of single cells after fluorescent oligonucleotide hybridization [23].

4.2 The rRNA approach
Population analysis based on 16S rRNA omitting cultivation was applied to natural microbial
communities, and now is referred to as the rRNA approach [48], [49]. Total DNA is extracted
from an environmental sample, followed by the PCR-amplification of the almost full length
l6S rDNA, and a clone library of these rDNA fragments is constructed. The 16S rRNA genes
out of the clones are sequenced and compared with databases to yield information about the
identity or relatedness of new sequences. Oligonucleotide probes (i.e. short pieces of DNA,
labeled with a radiotracer or a fluorescent dye) can be
designed to specifically target the retrieved sequences.
Finally, the populations behind this sequences are detected
by oligonucleotide probing of intact fixed cells, most
commonly by fluorescence in situ hybridization (FISH),
where the fluorescent label of the probes is visualized by
epifluorescence microscopy [3]. Due to the single-cell
resolution of this method, quantification as well as the
analysis of the spatial distribution of populations is possible.

Fig. 3. Confocal microscopic image of FISH targeting
Nitrosospira sp. in a nitrifying biofilm

By application of probes with different specificity, labeled with three different fluorescent
dyes, the simultaneous detection of up to seven distinct populations was shown [2]. For more
detailed insights, 3D-analysis using confocal laser scanning microscopy and image analysis
can be performed [70].
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4.3 Application to biofilms
In biofilms, various studies involving FISH have been undertaken. They encompass
investigations of laboratory model systems (e.g. [66]) as well as of rather complex "natural"
biofilms (e.g. [71]). A population analysis on the subclass level was performed in drinking
water biofilms [30], [41] and in a membrane-bound biofilm [57]. Populations of sulfate­
reducing bacteria [4] and nitrifying bacteria [43] could be visualized in laboratory and
bioreactor films. A set of probes was used to identify Paracoccus sp. in biofilms of a
denitrifying sand filter [46]. For assaying metabolic activity and 3D-distribution of individual
cells in biofilms, intense use was made of confocal laser scanning microscopy and image
analysis [44], [45], [51]. For application of FISH to activated sludge floes and aggregates
("mobilized biofilms", section 2.3), see [3], [60], and references therein.

5 Combined Approaches
Microsensor measurements and molecular techniques on their own were shown to yield
valuable and exciting information. Their combination for in situ studies in biofilms,
aggregates, or floes is the logical consequence of the advantages and limitations of the two
methods and offers great potential for the most detailed insights into function and structure of
these systems. In the first combined investigation, studying a photosynthetically active
trickling filter biofilm, Niels Ramsing and coworkers could relate microprofiles of oxygen and
sulfide to the occurrence of sulfate reducing bacteria (SRB) as detected by FISH [52].
Distribution and activity of SRB were regulated by the photosynthetically controlled oxygen
penetration depth.
FISH focusing on nitrifying biofilms showed that ammonia­
and nitrite-oxidizing bacteria formed dense clusters in close
vicinity to each other. Their nitrifying activity was
confirmed by microsensor measurements, which revealed
high activities in narrow zones of ca. 100 11m, correlating to
the maximum abundance of nitrifiers. Different nitrifying
communities were observed, most likely dependent on the
trophic conditions of the biofilm system. They
encompassed a Nitrosomonas-Nitrobacter association in an
ammonia- and nitrite-rich environment [63], a
Nitrosospira-Nitrospira association in an autotrophic,
nitrogen-poor system [61], [62], and a complex community
of various species of ammonia- and nitrite-oxidizers during
the succession of a membrane-bound nitrifying/denitrifying
biofilm (this thesis, Chapter 6).

Fig. 4. Detection of Nitrobacter sp. by FISH (red cluster)
correlated to oxygen and nitrate profiles measured with
microsensors (adapted from [63])

6ub6tratum

In conclusion, unlike ten years ago, the tools for extended in situ investigations are available.
What matters now is to apply them in a clever way to increase our basic understanding of
community structures and activities of biofilms, and of the factors controlling them.
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Chapter 1

Outline of the Experimental Work

A combined approach of microsensor analysis and molecular techniques as described

in Chapter 1 was used for the experiments to obtain a better understanding of nitrification and

nitrifying bacteria in biofilms. This combination of methods had been initiated by Ramsing

and coworkers to study a sulfate reducing biofilm [1]. Ion-selective microsensors for

ammonium and nitrate had been developed and applied to nitrifying aggregates [2] but failed

in the analysis of biofilms. Oligonucleotide probes specific for nitrifying bacteria of the genus

Nitrosomonas [3] and Nitrobacter [4] were available at the Technical University of Munich,

and a biosensor for nitrate/nitrite was under construction at the University of Aarhus.

In Chapter 2 of this dissertation, the first application of the biosensor in combination

with fluorescence in situ hybridization (FISH) using the nitrifier probes is described. A

nitrifying biofilm from a trickling filter was investigated, in which a narrow nitrification zone

could be correlated with the maximum abundance of Nitrosomonas sp. and Nitrobacter sp..

Furthermore, these ammonia- and nitrite-oxidizing bacteria were shown to form dense clusters

in close vicinity to each other.

The obvious next step was to develop an ion-selective microsensor for nitrite and to

improve the microsensors available for ammonium and nitrate thus facilitating their

application in biofilms. This was a prerequisite to investigate in detail substrates and products

of ammonia- and nitrite-oxidizing bacteria in biofilms, and is described in Chapter 3.

Chapter 4 demonstrates the value of combining two in situ techniques. Hitherto uncultured

relatives of the nitrite-oxidizer Nitrospira moscoviensis were identified in nitrifying

aggregates applying the full cycle rRNA approach [5]. DNA was recovered from the sample. a

16S rDNA clone library constructed, and selected clones were sequenced. The comparison

with an rRNA data base revealed their phylogenetic affiliation with Nitrospira.

Oligonucleotide probes were designed for the in situ detection of the respective organisms.

The ability of these uncultured bacteria to oxidize nitrite, which had been derived from their

phylogenetic position, could be proven by use of the new nitrite microsensor. The arnrnonia­

oxidizers in the aggregates, identified as Nitrosospira sp. by FISH, again occurred in dense

clusters and close to the nitrite-oxidizers.

This investigation was extended to the in situ analysis of the whole reactor, of which

the nitrifying aggregates originated (Chapter 5). Nitrification rates were determined by

microsensor measurements in aggregates from three sampling sites in the reactor, and the

respective ammonia- and nitrite-oxidizing populations were quantified using FISH in

combination with confocal laser scanning microscopy (CLSM) and image analysis. From

these data, the specific ammonium- and nitrite-oxidation rates (per cell) could be estimated.
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Outline of the experimental work

Additionally, microsensor measurements were performed under elevated substrate

concentrations to evaluate the potential nitrifying activity and to derive some information on

the substrate affinities of the uncultured nitrifiers. The results were compared with literature

data of different nitrifying bacteria and discussed in an ecophysiological context. A hypothesis

was constructed predicting that Nitrosomonas europaea and Nitrobacter sp. should dominate

under high substrate conditions while Nitrosospira sp. and Nitrospira sp. might be better

competitors in low substrate environments.

This hypothesis was tested in another biofilm that initially contained all four

populations and was grown under high substrate concentrations. Abundance and spatial

distribution of the different nitrifiers along gradients of oxygen and nitrite are described in

Chapter 6.

Finally (Chapter 7), the principles of in situ structure and function analyses were

applied to the investigation of activated sludge flocs, that might be regarded as mobilized

biofilms. Microsensor measurements were performed to detect anoxic microniches,

denitrification, or sulfate reduction in single activated sludge flocs. Incubation experiments

with 15N03' and 35S0/' yielded independent control of the obtained results. Furthermore, 3D­

floc structure and community structure of sulfate reducing bacteria were investigated using

CLSM and FISH, respectively. Anoxic microniches and denitrification were found to be

possible and detectable by microsensor measurements in aerated activated sludge. Apparently,

the structure of the activated sludge flocs played an important role for the occurrence of this

phenomenon. However, anoxia seemed to be rather the exception than the rule in conventional

wastewater treatment plants, and sulfate reduction was fully absent.
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Chapter 2

.Structure and Function of a Nitrifying Biofilm as Determined by

In Situ Hybridization and the Use of Microelectrodes
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This chapter has been published in Applied and Environmental Microbiology 62: 4641-4647 (1996)
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Front page:

The Nitrogen Cycle (from: Madigan, M.T., Martinko, J.M., and Parker, J. (1997) Brock Biology of

Microorganisms, 8th edition, Prentice-Hall, New Jersey)

Note Nitrosomonas and Nitrobacter spp. as reference organisms for nitrification (on top)
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Micro~rofiles of 0 o and NO., - were measured in nitrifying biofilms from the trickling filter of an aquacul­
ture water recirculation system. By use of a newly developed biosensor for NO,-, it was possible to avoid
conventional interference from other ions. Nitrification was restricted to a narrow zone of 50 I-'-m on the very
top of the film. In the same biofilms, the vertical distributions of members of the lithoautotrophic ammonia­
oxidizing genus Nitrosolllo/Uls and of the nitrite-oxidizing genus Nitrobacter were investigated by applying
fluorescmce in situ hybridization of whole fixed cells with 168 rRNA-targeted oligonucleotide probes in
combination with confocal laser-scanning microscopy. Ammonia oxidizers formed a dense layer of cell clusters
in the upper part of the biofilm, whereas the nitrite oxidizers showed less-dense aggregates in close vicinity to
the Nitrosomonas clusters. Both species were not restricted to the oxic zone of the biofilm but were also detected
in substantially lower numbers in the anoxic layers and even occasionally at the bottom of the biofilm.

Lithoautotrophic nitrification is a two-step process in which
the combined action of ammonia- and nitrite-oxidizing bacte­
ria results in the transformation of NH, to NO, via NO, . It
can lead to significant loss of fertilizer' nitrogen in soil and to
nitrate pollution of groundwater and surface water (40). On
the other hand, nitrification is the initial step of total nitrogen
removal from sewage via denitrification. There, it is important
to prevent eutrophication of receiving waters or at least-when
denitrification fails-to avoid contamination of receiving wa­
ters with ammonium salts that are toxic to most fish species
(38).

Increased attention has, therefore, been paid to the physi­
ology and ecology of nitrifying bacteria during the last decade.
The genera NitrosomolJas and Nitrobacter are still the two
best-known catalysts of the two respective steps (7, 29), but
recent studies of nitrification have resulted in the isolation of
new species (e.g., see references 8 and 28). and the discovery of
unexpected metabolic steps (for example, see references 9 and
39). Various techniques for the determination of nitrification
rates, e.g., by using nitrification inhibitors (23). "N dilution
techniques (27), or isotope pairing (46), have been developed.
However, determination of the exact localization of nitrifica­
tion and nitrifying bacteria remained difficult. Both the ammo­
nia and the nitrite oxidizers are typical examples of fastidious
bacteria. They are slowly growing bacteria and are difficult to
enumerate by cultivation-dependent methods (5). Therefore,
in situ identification methods have been evaluated. First. flu­
orescent-antibody techniques were used to detect and count
nitrifiers microscopically (I, 6). However. because of the large
serological diversity of ammonia oxidizers (6) and nonspecific
bindings of fluorescent antibody to extracellular polymeric sub­
stances (48), these methods were not completely satisfying.
More recently, progress in molecular ecology has enabled the

• Corresponding author. Mailing addres!:l: Ldustuhl FUr Mikrobiolo­
gie, Technische Universitat Mi.inchen, Arcisstr. 16. 0-80290 Munich,
Germany. Phone: 49 89 2892 2373. Fax: +498928922360. Electronic
mail address: amann@mbitum1.biol.chemie.lu-muenchen.de.

succe",ful application of tluorescence in situ hybridization with
16S rR A-targeted oligonucleotide probes in more complex
environments as well (for a review. see reference 4). With this
background, Wagner el 'II. could design a probe specific for
halotolcranl and halophilic members of the genus Nitrosomo­
JIlIS and successfully apply it to the detection of ammonia­
oxidizing bacteria in activated sludge (51). Furthermore, two

.probes specific for all hitherto-sequenced species of Nitrobacler
have been developed (52).

This introduction of a new. very powerful technique for in
situ analysi" of complex community structure coincided with
the introduction of microelectrodes into the field of microbial
ecology. These sensors make it possible today to monitor sev­
eral metabolic reactions on a scale relevant for the study of
stratified bacterial communities (for reviews. see references 43
and 45). For monitoring the nitrogen cycle. microsensors for
nitrous oxide-oxygen (44), ammonia (15), and nitrate (14) have
been developed and used for investigations in different habitats
(12, 17, 24, 25, 36, 44). Despite an interference especially of
HCO, on the applied NO, sensor, the work of Jensen et al.
(24,25) provides valuable information on the stratification of
nitrifying activity and regulating ellects of oxygen and ammo­
nia. With a recently developed biosensor for nitrate (13, 3J), it
is. however. now possible to avoid the restrictions imposed by
interfering ions.

In this study, we combined for the first time microprofiles of
nitrification activity and data on the microdistribution of nitri­
fying bacteria in a biofilm. Fluorescent-oligonucleotide prob­
ing has already been applied to biofilm studies several times
(e.g., see references 2 and 35). In a study of sulfate-reducing
bacteria (SRB) in a trickling-filter biofilm, Ramsing et al. (41)
had used this technique to relate the distribution of SRB to
microprofiles of oxygen. sulfide. and pH. The present study was
done with another trickling-filter biofilm treating the wastewa­
ter of an eel aquaculture. Growth of nitrifying bacteria was
supported in this system by high concentrations of ammonia
and stable temperatures of approximately 25°C. The relation
between chemical gradients and the bacterial stratification is
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(kteetion limit is appfllximaL\"'ly 3 IJ..M NO.. The only intl.."rfl:ring suhstann:s
wl.."re NO~ ;md N~O. which wcrl: ITll'ilsllrt:u as NO., ill1<.1 appro..... imatt.:ly 2x
NO.1 ,rl'spel,tively, It was. tht.:rl'l'llrl'. lll'Cl."S\ilry to check the pn)dul'ti{111 of NO~
and N.,:O hy chemical ;In<llysi~ and tht.: ll~e uf a prl."\·i,'usly dl:scrihed Clllllbined
microst:llsnr for 0, '!lll.l N,O ( 12).

MCllsllrin~ setup. Illllllt.:tli<ttdy ahl:r ~i1!l1rlil\g. thl: hi\llilm was trilllsft.:rrl'u to ,I
cllwrl'd <lquarilllll \\ ith :tir-huhhkd ill ~itu "";ltl'r kcpt al room L\,.'l1lpl."ratllfl..'
(22"e), and 0: prntiks Werl' I11l'<L:-url'u as dt.:",nil)l.."d prCVi\lllsly (e.g.. 'I.."t.: rl'k'r­
l'nel' 45). A two.point nilihr,lliun uf Ihe t.:!L'ctrlldc:- was llI<1lh: wilh IlIll'i 0.,:·
salllratt.:U !ltd!.. \\(lIl."r and thl.." anllxic hllthllll of till' !illll. Thl' zerll rl'adi!lt! in the
hottom of thl." hiofilm was ilknticill \\ith thl' rcadinl.!. in N,·hLlhhbJ W'ltl.." I:, Thl."ll.
we l'hllllgl.."d LllL' in situ \\'I1\,.'r Lll :lir-huhhkd tilP w;~tcr. ,ll~d NH. I · was addnllo
a r.:oIlCl:lltratinn or 3011,.1I\1. \Vc a,.\lllllnl tlwt ,I Ill'W st\,.·ad\'-'Itate situation was
reached ilflt.:r It I min. Thl." wallT I.."\dlil11 l!l' was Ile(e:-s:lrv he(~IlISl." Ilf the Vl."rV hil!h
l'onct.:lltnttilllls of N compounds ill tilt.: ~t.:1 rarm watl'r..,\ har.:kgrnund uf appn;x­
illlatl:ly J(J mf\.'1 NO., would have hl.."l.."l1 tOll high for illTuratc lktcrmination of
conel.."lltnllitlll dlilngt.:s in Lhe mil'fIlllllllar range hct:,ws!.." Ill' nitrifying activity in
tht: hiofilll1,

The NO" protilr.:s weI'\,.' 1lll.."asllrl.."u in the saml.." way as that ror 0.,:_ hut a
two-point calihration llf thl.." dl.."clrol.k in II cum:....ponding aquatic medium COll­
taining lln or 100 I.lM NO.1 ,n:spl'ctiwly. \'.:as perfol"llll.."d lor cvcry thrl:e l)r four
profiles, To ensure: equal tl.."mpcralure:, the mCOl!-uring Sl."tup sl:rved as it watl'r
bath for tht: calihration solutions,

Calihration llf the N~O sensor was dOlle hv audilll! l'l.."rlain amounts of N~O­
saturated water to thl.." incuhation water ilnd ~sing th~ values re!"'of!eu hy W~iss
and Price (53) for N...O SOILlhilily,

Profiles of 0, and N0 1 werl: also rccordt:d while tht: incuhatiun water was
only half-saturated with O~, Tht.: 0 .... concl."nlration was adjusted hy l1ushing Ihe
watN with a I: I mixture of atllll)sphl'ric air and N:: ilml was controlkd wilh an
0,2 sensor, The inr.:uhation time under fI:uuccd 0.,: was approxim;ltcly 4 h.

During ,all mcasufI,::mcnts. mir.:rodcetrtx:ks wcrc nUlLJlHl.."U on a t:ull1pllll:r­
cOlllrolku. mowr-dri\'en micfllOwnipulatllf (Miirtzh:iu:-.er Wetzlar Gmhl-l. Wl'tz­
lar, Germany). anu tilt.' cntry tlf tht.: ckctrodl' tip ill thl: hiolilm was monitmed
with a diss~ction microswpl:, Data acquisition was donl.." tllltomalically hy a
cllstnl1l·huilt program on a personal computer,

C~llt.'ulatiolls. Oxygen uptake was ul·tl·rlllinl'd from Ihc 0:, proliks as tht.: Ilu,x.
J, through th~ ditfusive houndary layer (DBL). wherl':ls till.." totill rate of ni(riti­
catioll was calculated from Ihe NO.. pronl~s as the compklc tiux. J, away from
the layer of NO.. prouuction. Net fluxes \wrc cakulawd hy Fick's first law of
difrusion (2fl): J = (& C(x)/& x) , D,{x) , (11(.r), whl."re: ('(.r) is the concentration of
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till." solutl: at Ihl' dcpth x. 0, is the apparl."nt uitru.... ion codlicicnL :.Ind ctJ is the
PllfOSilY. We usetltahlc values of 2,24 ' III 5 cm~ s I (II) anu 1,9' 10 -!o em~ s I
(J:!) I'm the dill'tISiotl coclliclt.:nts of O:! ..lIlU N01 ,n:specti"c1y, in water al 22DC.
Tht.: uitrusion coellkicnts in hiolilms were assumed 10 bc 40% low~r than those
in watt.:r. ael'ording to tht: measuremcnts of D" . eJ) performed by Revsbech et al.
(44) and Gluu et al. (~2) wilh hiofilms and microhial mats. Therefore, we used a
value of 1.14· III -~ cm": s I for Ds · (I) of NO.1 - in the biufilm.

Chemical anulysis, Watcr samples were taken from the trickling filter and
from Ihe.: measuring Sl:tup aftl:r the profiling 10 recalculate the NO) -/NO: - ratio,
Tht.: sampks wcrt.: ston:d at - 200C until photospectrometrical analysis for NH tl -.-,

NO:! ,and NO.1 (10,47,49). For detection of N:,O. a Shimadzu GC-14A gas
chromatograph equipped with an electron capture detector was used.

Uiotilm tixution and CUlling, Immediately uftcr Ihe microelectrode measure·
mt.:llts, the hiLltilm sampleswerl: lixeu in freshly prepured paraformaldehyde (4%
in rhll~phatc-hufrcrcd saline \PBS!) at 4DC for I h and wel'l.." subsequently washed
in PBS (:~), Then. the hiofilm side of the !lilmple W,IS emheddeu in ocr com­
pound ITis~ue·Tck II: Miks, Elkhan. Ind,) und placed abuve eVlIJx)rating liquid
N~ (41), Whl.."n frozen, the biolilm was removed from the plaslic foil hy slightly
!lcnding the !-uh~tratum. Suosequt.:ntly, tht.: biofilm W<l!l emhcddt:d from its bot­
hlln and frozen again. To prt:vcnt the s1l1l1plc!l from thawing, the last steps were
pl.."rforml.."d in thc crytlSlat (Ditll."s-Duspiva, Heidelberg. Germany) at -20De. In
thi~ instrume.:nl. 10- 10 20-lJ..m-lhick venical cryosections were cut. The sections
\wre plilecd in five llf thc six hyhridization wdl!l on gelatin-coated microscopic
slide", and illllllOhilizl:li hy air drying lInu de.:hydraling with 50, XO, and 96%
cthi.lnol (3). Thl." slides wcrt.: then stort.:u al room tt.:mperature for us long as
sevt.:r,t1 weeks,

Rdcrenn l·clls. DiffL'fl."llt mixtures of known hacterial strains wcre deposilcd
Oil the la~t well of thc microscopic slides and sClVl:d a~ internal eonlrols for
hyhridization etliciel1cy, Mixtures of the following species wert: used: Nitro.wnJO­
I/IJ.\ ('wro"Jw Nm57 1

• N mropc/(.'(/ ATCC 2597~fl/NIll5{JT, and NilrobtiCler sp.
(dOll'ltt.:U hy G. Rath. Inslilut fUr l3otanik. Ahtcilung Mikrnhiologie. Univcrsitat
Hamhurg las positive controls!) anu ~·OIIIl1II/UIIll.'i le,\"IO,WcI"{)//; DSM 50244T and
IJm(~l'Ih;::lIh;IIIII.i(lp()/Ii(,/f1Jl I.. MG 613X 1 (donated by M. Wagner, Lchrsluhl fOr
l\Jlikruhiulogic. Tt.:dHlisdlt.: Univcrsit:it Miint:hen la~ ncgativc controls]).

OIi~unul·It.'otidl· pruhcs. Thc hllluwing rRNA-targetl.."u ulignnuckutiue~ (for
scqul."ncc", and targl:t ,ites, st.:e Tanle J) werc uSl:d: (i) EUB3JES, a gl.."neral probe
l'omplelllt.:lltary ttl a regi\ln of the IllS rRNA of all hactl'ria a~ a positive control
of llyhridil.:ttil'Jl clliL'iclll.."Y (.\): (ii) NEU1.1i.1, a prohe specific for a region of the
1(IS rRNA of somt.: lilhollutotrophk ammonia-oxidizing b;Lett:ria (including N.
l'lII"fIJlIfl'(/ and ,""''', mlI'OpJIlI) as ucscrihed recently hy Wagncr el <II. (51): (iii) NJT2
and NIT3, prohl."~ speeilk ror regions of thc IllS rRNA of all hitht:rto-sequcnced
Nifml){jclel" strains (.":!): (iv) CNIT.1. an unlabelled competitor to ensure the
spL'cilicity of prohl.." NITJ when applied simllltancously (52): and (v) .. negative­
contml probe, NON3J~. which is complt.:mentiJry to the probe EUB33R and,
Ihl.."rdorl..", shoulu bt: inCilpahle of hyhriuization with rRNA of bacteria (34). The
oligonllcle()(idt.:s were synthesizt:d, labelled wilh the fluorescent dyes 5(6)-ear­
hl)xy-lluorl:sct.:in-N-hydroxysuccinimide ester (FLUOS: Boehringer Mannheim,
Mannheim, Gl'rmllny) lind 5,((l)-carboxy·tctramcthylrhodaminc suceinimidyl­
ester (CT: Molecular Probes Inc" Eugent:, Oreg,), and the hydrophilic sulphoin­
docyanine uyc CYJ (l1lonofUlll'tional CY3.2lJ-OSu: Biological Detection Sys­
tems. Pitlshurgh, Pa,), ilnd purified as described previollsly (3, 51).

In situ hybridization. For whole-cell hyhridizafion of hiofilm sections, the
protucol descriheu by Manz et al. (34) was used. Formamide was added 10 the
tinal concentralions listed in Table I to ensure optimal hybridization stringency,
All hyhriuizatio[ls were performed at a tcmperature of 411DC <lnd an incubation
time of 3 h, A stringl'nt wilshing step was performed at 48°C for 10 min in a buffer
containing 10 mM Tris-HCI (pH 8(0), 11.01% sodium dodecyl sulf:.tte, and NaCI
at lilt: cOllcclllrations listed in Table I,

Mil.'roscopy. Biofilm s~ctions wer~ examined with an Axioplan epifluoresccnee
microscope (Carl Zeiss, Ob~rkochcn, Germany) with Zeiss tilter sets 09 and IS
and lilll'r sd CYJ-HO (Chroma Technology Corp.. BraUleboro, Vt.). Color
micrographs wcrl· tilkcn on KOllak Ektachrome PI60n color reversal film, Ex­
pusure times Wert' OJU s for phase-contrast micrographs and 10 to 20 s for
t:pifluoresccncc micrographs, A Zeiss LSM 410 confocal laser-scanning micro­
scope (Carl Zeiss), equipped with an Ar-ion laser (488 nm) and an HeNe laser
(543 nm), .....as used to record optical sections as described by Wagncr el al. (50).
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RESULTS

Image processing. depth profiles. and three-dimensional reconstructions were
performed with the standard software delivered with the instrument.
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Microgradients. All 0, profiles measured with fully 0,­
saturated water showed a decrease of 0, within the DBL from
270 IJ.M in the bulk water down to 20 to'60 IJ.M on the biofilm
surface. The thickness of the DBL varied between 150 and 250
IJ.m because of a heterogeneous biofilm structure with protrud­
ing fluffy arms. 0, penetrated approximately 100 IJ.m into the
biofilm, with fluctuations from 50 to 150 IJ.m. Two representa­
tive depth profiles are shown in Fig. IA and B.

To interpret the NO, - microprofiles, it should be kept in
mind that both NO, - and N,O are also detected by the bio­
sensor. Therefore, NO, - was determined chemically together
with NO, - from the bulk water after incubation and profiling.
NO, - amounted to as much as 30% of the NO) - values.
Because of this high percentage, the profiles should be consid­
ered as combined NO,- plus NO,- profiles. The measured
N,O profiles display a slight increase of N,O from zero in the
bulk water up to a maximum concentration of 4 IJ.m at approx­
imately 150 to 200 ,.,m. The effect of N,O was subtracted from
the measured profiles, and the resulting combined NO)- plus
NO,- profiles (Fig. I) show a distinct peak just below the
surface, indicating a high nitrifying (or at least ammonia-oxi-

FIG. I. Microprofiles of O:! (open diamonds) and NO) - plus N02- (filled
triangles) in nitrifying biofilm in air-saturated tap water with 300 fLM NH4 + (A
and B) and in tap water with 115 I-'-M O 2 and 300 f..l.M NH4 + (C). Profiles were
measur~d at different points in the same biofilm.

dizing) activity. In the deeper layers of the biofilm, the NO,­
plus NO, - concentration often decreased but never reached
zero, which indicates a substantially lower denitrification than
nitrification rate in the biofilm.

Rate calculations. 0, consumption took place in the upper
50 to 100 IJ.m of the biofilm, with a rate of 0.81 :t 0.13 IJ.mol .
cm -, . h- I. The production of NO)- plus NO,- appeared in
the same layers, with a rate of 0.73 :t 0.18 IJ.mol . cm-' . h- I

(averages and 95% confidence limits for 10 different profiles,
respectively). Stoichiometrically, the production of 1 mol of
NO,- or NO, - consumes 1.5 or 2.0 mol of 0" respectively,
and, therefore, if 30% of the NO, - plus NO, - pool is NO,-,
we would expect an O 2 consumption of approximately 1.2
IJ.mol . cm-, . h-I only for nitrification. The discrepancy be­
tween the calculated 0, demand for nitrification and the O 2
flux calculated from the 0, profile will be discussed later.
Denitrification in the layers below 150 IJ.m ranged from 0 to
O.28IJ.mol· cm-'· h- ' , with an average of 0.11 ,.,mol· cm-'·
h- I .

In situ water measurements. To check whether we changed
the metabolism within the biofilm dramatically by substituting
organic matter-containing in situ water with tap water plus
nitrogen salts, we measured 0, profiles before and after the
substitution (data not shown). The depth penetration ofO, did
not change much, but a steeper concentration gradient in the
DBL under in situ water (0.839 to 1.491 IJ.mol· cm-'· h- ' ,
with an average of 1.216IJ.moi . cm-' . h- ' , compared with an
average of 0.812 IJ.mol . cm-' . h- ' under enriched tap water)
indicated a decrease in heterotrophic activity. A shift in oxygen
uptake by 30% would usually result in a substantial change in
oxygen penetration, but the penetration in the applied biofilm
was so shallow that the change was masked by temporal and
spatial heterogeneity.

In situ detection of nitrifiers. An extremely dense layer of
ammonia oxidizers could be detected with probe NEU23a
throughout the aerobic part, and a few clusters were also found
in deeper parts of the biofilm. They formed characteristic ag­
gregates as described for Nitrosomonas species (33) and as
seen before in other habitats (51, 52) (Fig. 2B). In addition,
Nitrobacter sp. was detected in the biofilm. Reliable visualiza­
tion required the simultaneous use of both probes NITI and

coocentralioo I~MJc
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NITI. The colonies were less dense than the Nitrosomollas
clusters and occurred in lower numbers than the dominating
ammonia oxidizers. The maximum of this nitrite-oxidizing pop­
ulation was in the aerobic nitrification zone. but some single
cells and colonies still existed in the upper anoxic layers (at a
depth of 100 to 200 f.Lm) and even occasionally on the bottom
of the film (Fig. 20). In general, Nitrobacter colonies and cells
were more evenly distributed than the ammonia oxidizers.

In the oxic zone. investigation by confocal laser-scanning
microscopy (CLSM) revealed a close coexistence of ammonia
and nitrite oxidizers, supporting a sequential metabolism from
ammonia to nitrate (Fig. 2E).

Oxygen eWect. Incubation with reduced 0, concentration
(115 f.LM) decreased both 0, penetration and metabolic rates.
The 0, concentration reached levels of less than 20 f.LM on the
biofilm surface and zero within 25 to 75 f.Lm of depth. The total
oxygen uptake was 0.35 :!: 0.07 f.Lmol . em -, . h - ,whereas the
production of NO, - plus NO,- decreased to 0.28 :!: 0.14
f.Lmol . em .. , . h -I (averages and 95% confidence limits for 10
different profiles, respectively). The main activity of nitrifica­
tion was found at a depth of approximately 20 to 50 f.Lm, and
denitrification occurred in the deeper la~ers (100 to 200 f.Lm),
with an average rate of 0.10 f.Lmol· cm-" h-'. Again, the 0,
consumption was approximately 30% lower than that required
for the measured nitrification rate (see Discussion). Represen­
tative profiles of 0, and NO, - plus NO, -, respectively, are
shown in Fig. IC. As expected in a short-term experiment with
slowly growing aototrophic nitrifiers, no change in their spatial
distribution could be seen.

DISCUSSION

Microprofiles. It has long been difficult to obtain accurate
microprofiles of nitrification. One of the problems of the LlX
electrodes for NO, - used in the study described by Jensen et
al. (24), was the interference of HCO,- (selectivity coefficient,
0.006) and, therefore, the need to perform measurements at
artificial low alkalinities. However, the HCO, - production of
biologically active biofilms and sediments does create steep
concentration gradients within these systems. Thus, even with
low concentrations of HCO,- in the overlying water, its bio·
genic accumulation resulted in inaccurate NO, - determina­
tion within the biofilm when the concentrations were less than
approximately 25 f.LM (24). With the new biosensor, these
problems were avoided, since the only agents interfering with
the determination of NO, - are NO, - and N,O. The additive
determination of NO, - plus NO, - by the biosensor may be an
advantage in some contexts. In the present investigation, it
made it possible to determine the activity of NH. + oxidation
without having to consider how much of the intermediate
NO,- was further oxidized to NO, -. For a detailed study of
NO, - oxidation and the synergism between NH. + and NO, ­
oxidizers, however, a microsensor for NO, - would be neces­
sary. Such a microsensor was not available during this investi­
gation.

The nitrifying activity of approximately 0.8 f.Lmol· cm-'·
h-I found in this study is very high compared with previous
microsensor studies of nitrifying sediments (24) but is compa­
rable to rates found at the surface of manure clumps in soil
(37). The nitrifying layer in the investigated biofilm was only
approximately 25 f.Lm thick, indicating extremely high specific
rates of approximately 30 f.Lmol· cm-' . h- '. The manure-soil
interface was analyzed by 15N isotope techniques, and we do
not know the exact thickness of the nitrifying layer in this
system, but diffusion-reaction models indicated that the zone
was very narrow. Such narrow zones with extremely high nitri-

fication activities are possible only when both NH.+ and 0,
are supplied to the active layers in adequate amounts. For
oxygen, this is possible only by diffusion from a thoroughly
mixed phase of overlying water to a superficial nitrification
zone in the case of the biofilm or by gas phase diffusion in the
case of the manure-soil system. It is difficult to obtain highly
active pure cultures of nitrifying bacteria; however, judging
from our environmental data, this must be due to unsuitable
culture conditions.

The oxygen flux as calculated from the oxygen profile was
too small to account for the nitrifying activity. A likely expla·
nation is a local change in water current imposed by the mi­
crosensor. It has been shown that even microsensors with tips
of a few micrometers cause soch changes and that the diffusive
boundary layer is eroded down to smaller thickness when a
microsensor tip is inserted (21). Larger tips will result in a
more vigorous erosion than thin tips, and since the biosensor
was approximately 30 f.Lm thick, compared with the 10·f.Lm­
thick oxygen microsensor, this could account for the observed
discrepancy. The effect can actually be seen in Fig. I, where near­
constant water phase concentrations of NO, - were reached at
approximately 100 to 150 f.Lm above the biofilm, whereas the
distance for oxygen was 200 to 300 f.Lm. In future studies, it
would be advisable to use microsensors of similar physical di­
mensions near the tip so that the data correspond to the same
hydraulic regime.

Denitrification was heterogeneously distributed, but the rates
were generally low. The concentration of NO, - plus NO, - was
high throughout the anoxic layers of the biofilm; thus, the low
level of activity is very likely due to a shortage of suitable
organic electron donors. This argument is strongly supported
by measuring denitrification at low oxygen concentrations; de­
spite an increased anoxic zooe and sufficieot NO, - plus NO, ­
supply, the rate of denitrification remained the same. How­
ever, there is no doubt that the denitrification activity mea­
sured in our experiments was lower than that occurring in situ.
This is a direct consequence of the substitution of the in situ
water with tap water containing additional inorganic N salt,
such that denitrifiers could use only organic compounds pro­
duced in the biofilm.

Stratification of nitrifiers. The dominance of chemolithoau­
totroph-nitrifying bacteria in the aerobic part of the biofilm is
interesting, since they are considered to be poor competitors
with heterotrophs (19). Reasons for a low level of competitive­
ness of the nitrifiers are high K", values for oxygen compared
with those for heterotrophs (16 f.LM for Nitrosomollas species
and 62 f.LM for Nicrobacler species, but < I f.LM for most of the
heterotrophs) and slow growth (5). Obviously, there was a
limited supply of easily degradable organic matter, whereas
NH. + was close to the optimum concentration of 2 to 10 mM
(7,29). Furthermore, the moderate and constant temperatures
of the eel farm trickling filter at approximately 25'C supported
the nitrifying bacteria, which are known to be especially bad
competitors at cold temperatures.

It is obvious that oxygen is the limiting factor for both nitri­
fication activity and abundance of the nitrifying population,
since oxygen penetration, high rates of nitrification, and high
numbers of nitrifiers are well correlated in the upper 50 f.Lm of
the biofilm. Although oxygen was present down to 100 f.Lm, its
concentration reached the K", values of nitrifiers and therefore
became limiting. In contrast, no depletion of NH. + is expected
in situ at substrate concentrations of a few micromolar, and
even in the experimental setup, saturation with NH4 + is most
likely, but this should be confirmed in future studies by addi­
tional use of an NH.+ microsensor.

As previously reported from other anaerobic environments
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FIG. 2. In ... illl hy~ridil;llions of vertical hiolilm sections. (A and B) Pha<;e+contrast and epifluorcsccnce micrographs. re"pcclivcly. alh:r h)hridi7alion "jlh

CY~-hthC'lkdprobe NEU~.3a. (C and D) Pha~e·contrasL and cpifluorcscencc micrographs. fe'JpcctiH::ly afler. hyhridization with ;1 comhiml!inn of CY~-Iahdled probe<;
Nt 1'2 and NIT]. With the CY.l HO-riltcr sl't. probc-Ctlnfern.'d CY] ftuurochromcs :.In:' \isualizcd in yellow. whereas autofluorescence of the hinlilm appc:tr" in fcd
(magnification. X400; scali: har. SO I-lm. S. ~ubstralUm). (E) CLSM projl.:ctilln (all in focus) of il :W-I-lm-Ihick hiofilm section aftef simuhancoll~ hyhridiDliion \\ilh
FLUOS-Iabclled prol'l\' NEU23a (green) and CT·lahded probes NIT1 and NIT] (red). Only a dC!;lil of 7t-: hy 78 f-lm from the nitrification zone is :-.hown: tilt: hiofilrn
surfa(;c i!l un the rigl1l. Yellow signals do not yiL'ld from hinding of both probe:-. tn one cell but ;trt: the rc ...ul! of overlaying red and green cells. Background fluorescence
\\a:-. n::duccd hy Ule CLSM technique (magniliciltiun. X!.OOD: scak har. 101-'-111).
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(e.g., see reference I), small numbers of nitrifiers were present
in the deeper layers of the biofilm. There may be several
explanations for the survival of nitrifiers in these layers. (i)
Because of hydraulic flow within pores of the biofilm (16), oxic
microniches may have existed in deeper layers. Such locally
deep oxygen penetration was never detected during our mi­
crosensor work in the laboratory, but the hydraulic conditions
in our setup could be very different from those in the trickling
filter. (ii) Formerly oxic layers might have been overgrown
during biofilm development. lt has been shown that some bac­
teria, including Nitrosomollas species, are able to maintain
their ribosome content during periods of nutrient starvation or
inhibition (18, 51). (iii) Anaerobic metabolisms such as a com­
bined ammonia oxidation-denitrification (9, 30) or dissimila­
tory reduction of NO,- with organic electron donors (20) may
enable the survival of ammonia oxidizers and nitrite oxidizers,
respectively, during periods without or at low concentrations of
oxygen. For further investigation of the anaerobic Nitrobacter
cells, a nitrite microsensor would be a useful tool to monitor
specifically their metabolism in situ.

The close vicinity of ammonia and nitrite oxidizers as shown
by the CLSM is a direct result of the sequential metabolism of
ammonia via nitrite to nitrate. By this spatial arrangement, the
diffusion path from the Nitrosomollas clusters to the surround­
ing Ni/robacter cells is extremely short and facilitates an effi­
cient transfer of the intermediate NOz-. When considering the
K", values for oxygen of Ni/rosomonas species and Nitrobacter
species (see above), it is obvious that Ni/rosomollas species
could outcompete Nitrobacter species for oxygen under the
low-oxygen concentrations obtained in the nitrification zone,
and this could be one reason for the accumulation of nitrite in
the bulk water. Additionally, dissimilatory reduction of nitrate
to nitrite, nitric acid, or nitrous oxide, which is performed by
Nitrobacter species in the anoxic layers (20), would be another
source of nitrite in the system. The different K", values for
oxygen could also result in the different cluster size, since
Nitrosomollas cells formed large ball-shaped clusters of as
much as 50 ,...m, whereas the Ni/robac/er colonies generally
appear to be smaller and more irregular. Perhaps Ni/robacter
cells are forced to disaggregate at a smaller size than Ni/ro­
somonas cells because of oxygen depletion in the center of the
cluster to levels less than their K", values.

In conclusion, the combination of a microsensor technique
with specific oligonucleotide probes provides reliable and di­
rect information about nitrification as it occurs in nature. Data
on community structure can be related to the metabolic func­
tions of the respective populations. For further detailed inves­
tigations, microsensors for nitrite and additional oligonucleo­
tide probes for nitrifiers are under development.
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Microscopic view of the tip of a LIX rnicrosensor. The liquid membrane that is visible in the glass

capillary has a length of about 300 j.1m, the tip diameter is about 5 j.1m.
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A highly selective liquid membrane nitrite microsensor based on the hydrophobic ion-carrier aquocyano·
cobalt(IIl).hepta(2-phenylethyl)-cobrynate is described. The sensor has a tip diameter of 10 to IS 11m. The
response is log·linear in freshwater down to 1 11M NO.- and in seawater to 10 11M NO.-. A method is
described for preparation of relatively large polyvinyl chloride (PVC)·gelled liquid membrane microsensors
with a tip diameter of 5 to IS 11m, having a hydrophilic coating on the tip. The coating and increased tip
diameter resulted in more sturdy sensors, with a lower detection limit and a more stable signal than uncoated
nitrite sensors with a tip diameter of 1 to 311m. The coating protects the sensor membrane from detrimental
direct contact with biomass and can be used for all PVC-gelled liquid membrane sensors meant for profiling
microbial mats, biofilms, and sediments. Thanks to these improvements, liquid membrane sensors can now be
used in complex environmental samples and in situ, e.g., in operating bioreactors. Examples of measurements
in denitrifying, nitrifying, and nitrifying/denitrifying biofilms from wastewater treatment plants are shown. In
all of these biofilms high nitrite concentrations were found in narrow zones of less than 1 mm.

Many intermediates and reactants of the nitrogen cycle can
be measured with microelectrodes; however, nitrite is a nota­
ble exception. Microsensors for N20 (28), NH4 + (8, 9), NO, ­
(16, 31), and O2 (26) have been used for nitrification and
denitrification studies in sediments and biofilms. Nitrite is an
intermediate of both nitrification and denitrification. In sedi­
ments and biofilms with a close coupling between nitrification
and denitrification, more than 50% of the nitrite formed by
nitrification may be reduced by denitrification (25). Nitrite is a
highly toxic compound for fish (10), benthic fauna (13), plants
(35), bacterioplankton (12), nitrifiers (15), and methanogens
(5). High nitrite concentrations favor accumulation of nitrous
oxide (34), a greenhouse gas also involved in the destruction of
the ozone layer. Nitrite is formed especially during distur­
bances, e.g., in nitrification bioreactors during oxygen deple­
tion or ammonium overloading (15) or suddenly increased
levels of biodegradable organics (21); by denitrification during
electron donor deficits (32); or in the presence of oxygen (4).
Nitrite can be present in high concentrations in sediments, as
shown by pore water analysis (14) and from flux chamber
measurements (2). Burrowing strongly increases efflux of ni­
trite from sediments (7, 19), possibly by stimulation of nitrite
formation by the increased variation in oxygen conditions in­
duced by animal activity.

Since nitrite is an intermediate, its presence can be very
localized and temporary. This complicates sampling, e.g., by
pore water analysis, as the nitrite concentration may change
during sampling and storage. A nondisturbing measurement
with microsensors would result in more reliable measurements
of nitrite distributions, with high spatial resolution. Recently a
microbiosensor equally sensitive for nitrate and nitrite was
developed (20), but a useful microsensor selectively measuring
nitrite has not been reported. A highly selective liquid ion­
exchanging membrane (UX) for nitrite was described (30).
However, microsensors with a I-fJ.m tip based on this ion

• Corresponding author. Mailing address: Max-Planck-Institut fUr
Marine Mikrobiologie, CelsiusstraBe I, 28359 Bremen, Germany.
Phone: (0)421 2028836. Fax: (0)421 2028690. E-mail: dirk@postgate
.mpi-mm.uni~bremen.de.
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exchanger had a 10- to 100-fold higher detection limit and 10­
to 100-fold lower selectivities than macrosensors. It was con­
cluded that this ion exchanger could not be used to construct
microsensors for measurement of nitrite in physiological con­
centrations (29). We used the same nitrite ion exchanger and,
with a modified preparation procedure, constructed nitrite
microsensors with a submicromolar detection limit that are
sufficiently robust for profiling biofilms and sediments. The
modified preparation procedure can be used for all UX mi­
crosensors to improve their performance.

MATERIALS AND METHODS

LIX microsensors. By using a heating coil, green soda lime glass tubes (model
8516; Schott) were drawn to microcapillaries. The tip diameter was 3 to 5 IJ-m for
ammonium, nitrate, and pH microsensors and 10 to 15 IJ-rn for nitrite microsen­
sors. After the tips were pulled, the glass surface of the capillaries was silanized
Lo obtain a hydrophobic surface for optimal adherence of Lhe LlX membrane. A
previously described procedure was used (I), but with longer preincubation and
reaction times. The capillaries were placed in a 1.5-liter glass container and
baked for at least 3 h at ISaaC to remove traces of water. Then, 0.25 ml of
silanizing agent (N,N-dimcthyltrimethylsilylamine) was added and the vessel wa~
closed and left overnight at a temperature of 200°C. Excess silane vapor was
released in a fume hood, and the remaining silane was baked off at ISOaC for
another 2 h.

Each capillary was placed in a casing made from a Pasteur pipette, with the
micraeapillaries protruding ca. 2 em. The casing was glued to the capillary with
a silicon kit. Arter the preparation as described below, the casing was filled with
0.3 M KCI solution and connected to the reference with an AglAgCI wire. This
is a highly effective way to protect the signal from electrical noise (16).

As UX for nitrite sensors. we used a solution of 7% (wt/Wt) aquocyanocobalt·
(1lt)-hepla(2-phenylethyl)-cobrynate (nitrile ionophore-I) and 1% (wl/wt) so­
dium tctraphenyl borate in 2-nitrophenyl aetyl ether. We used the Orion nitrate
exchanger (model 92-07·01) for nitrate microscnsors, 10% (wt/wt) of nonactin
and 1% (wl/Wt) sodium tetraphenyl borate in 2-nitrophenyl octyl ether for am­
monium microsensors, and a solution of 6% (wtJwt) 4-nonadecylpyridine
(H< lonophore tI. ETH1907) and 1% (wt/wt) potassium tetrakis(4-chlorophe­
nyl)borate in 2·nitrophenyl octyl ether for pH microsensors. To a portion of each
type of UK, 10% (wt/wt) high-molecular-weight polyvinyl chloride (PVC) was
added. Then. ca. 3 volumes of tctrahydrofuran (Selectophore quality) was added
10 the mixture. The PVC was dissolved within 24 h, after which the solution was
mixed carefully. Addition with PVC improves the stability and performance of
LIX microsensors, as described previously (33). The nitrate UX was obtained
from Orion, and all other LlX components, the tetrahydrofuran, and the silaniz·
ing agent were obtained from Fluka.

The filling electrolytes llsed were 10 mM sodium nitrite, 300 mM Kel, and 10
mM sodium phosphate adjusted to pH 7.0 for the nitrite sensor, 50 mM KNOJ
and 50 mM KCI for the nitrate sensor, 30 mM KCI for the ammonium sensors,
and 300 mM KCI and 50 mM sOOium phosphate adjusted to pH 7.0 for the pH
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sensors. The filling solutions were degassed under vacuum and filtered Ihrough
a O.2·J1.m·porc-size Milliporc mcmhranc. The silanized capillaries were filled
with electrolyte by using a plaslic syringe drawn in a flame to a O.)-mm lip: Ihe
air pocket that Iypically was left in the tip was pushed QUI by applying prcs."Ourc
from the back. Then. under microscopic inspection the tips were dipped in L1X
and suction was applied until a rncmhranc with a thickness of ca. 300 J1.rn was
introduced. Additionally. 100 to 200 ~m of Ihe PVC containing LlX was sucked
in. The capillaries were left for .tt least 2 h, during which the Ictrahydrofuran
evaporated and a solid ion-selcclivc membrane was formed in the tip.

After hardening of the membrane. the sensors were dipped in a solution of
100/0 cellulose acetate in acetone. This was done as briefly as possiblc to avoid
dissolutiun of the membrane in the 'lCctone. If this treatment caused recessing of
the membrane from the tip. PVC comaining L1X was reapplied. To 1 ml of 10%
(wt{vol) bovine serum albumin (BSA) in 50 mM sodium phosphate (pH 7.0) 10
.....1of 25% glutaraldehyde was added and immediately thoroughly mixed. This
mixture solidifies in a few minutes. Under microscopic guidance the tip of a
microscnsor was dipped ca. 400 J.Lrn deep in the protein solution and moved in
and out slowly. As soon as the protein solution hecame syrupy. a protein layer
formed on the microsensor tip. After drying. a cross-linked protein layer of ca.
1-J.L01 thickness was formed, which was water insoluble and firmly fixed. Finally.
the casing surrounding the capillary for shielding of the signal was filled with 0.3
M KCI and connected with a Ag/AgCI wire to the reference.

Nitrite. nitrate, and ammonium microsensors were calibrated in dilution series
of nitrite. nitrate. or ammonium in the medium used for the experiment. Cali­
bration of the pH microsensors was performed with standard pH solutions.

The selectivity constants were determined by using the fixed interference
method (22). with 0.6 M NaCI. 10 mM NaHCO, (pH 8.0). and 10 mM NaNO,.

O2 microsensor. Clark-type Oz O1icrosensors with internal references and
guard cathodes were prepared and calibrated as described previously (26). Their
tip diameter was 10 J.Lm. and their slirring sensitivity was <2%.

HIS microsensor. Stirring-insensitive amperometric H2S gas sensors with a tip
diameter of 15 ~m were prepared and used as described previously (17).

Microsensor measurements. The electrodes were mounted on a micromanip­
ulator and moved manually. The position relative to the biofilm surface was
determined visually by using a dissection microscope. Due to irregularities. the
surfaces of biofilms and aggregates arc not always well defined. The surface was
assumed to be reached if the tip disappeared.

Samples. A 2- to 3-cm-thick hiofilO1 was removed from the walls of (he outlet
channel of the first aClivated sludge basin of the municipal wastewater treatment
plant Seehausen (Bremen, Germany). After removal. it was transported to the
laboratory and pieces of ca. 5 by 3 cm were incubated at 18°C in 0.5 liter of
medium containing 25 mM K2HPO.j, 380 J.LM (NH 4hSO... 100 ).I.M Na-acetate,
and 20 IJ.M MgSO... adjusted to pH 7.0. The medium was mixed by sparging with
air and refreshed twice per day. Nitrate and nitrite profiles were measured with
0.5 mM nitrate in the bulk medium.

Nitrifying aggregates were obtained from the inlet region of a lab·scale fluid·
ized bed reactor as described previously (8). Aggregates with a diameter of ca. 2
mOl were placed in a flow cell with insect needles and perfused with medium as
described previOUSly (8). The aggregates were left for 15 min before profile
measurements started. Microclectrodes penetrated the aggregates at an angle of
120" with respect to the direction of flow. Microclectrodcs could be positioned
with an accuracy of 10 J.Lm relative 10 the surface.

Nitrifyingldenitrifying biofilms growing in a 22-liter pilot-scale membrane re·
actor were analyzed in situ. The reactor and its operating principle were de­
scribed previously (24). Oxygen was supplied through permeable silicon tubing,
with an exchange surface of 243 m~/m-'. through which air was pumped under a
pressure of 3 atm. The studied biofilms grew on the tubing. The reduced sub·
strates ammonium and acetate were supplied from the bulk liquid. The reactor
was fed continuously with synthetic wastewater (24) containing 34 mM ammo·
nium and 17 mM acetate. The reactor liquid was recycled continuously with a
rate of 2,000 litcrs/h. the liquid residence time was 4.2 h, the temperature was
26.5°C, and the pH was 7.7. The bulk liquid was anaerobic. The biolilms were 2
to 3 mm thick. The cylindrical reuctor was placed horizontally with the sample
ports on top, 50 that microsensors could be introduced through the sample ports.

RESULTS
The nitrite microsensor showed a log-linear response down

to a nitrite concentration of 1 ~M in 25 mM phosphate buffer
and nitrite sensitivity to at least 0.1 ~M (Fig. 1). Identical
results were obtained in pure water (data not shown). The
signal was stable, was not sensitive to noise, and drifted less
than 1 to 2 mV/h. The signal was not influenced by stirring. The
response time (/90' the time needed to reach 90% of the end
value upon a concentration change) was 10 to 15 s, allowing
nitrite profiles with 25 measuring points to be measured within
10 min. Noncoated sensors showed the same calibration curve
but had a response time of ca. 5 s (three sensors tested). The
selectivity constants for 0-, NO, -, and HCO, - were 10-4

.5,
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FIG. I. Calibration curves of nitrite microsensors with a 15- .....m tip in 25 mM

phosphate buffer (.A.), with a 15-J.Lrn tip in seawater (0), and with a 3-).I.m tip in
25 mM phosphate buffer (.).

10-4
.
5

, and 10-4
, respectively. Sensors with a tip diameter of 3

~m consistently (six sensors tested) had a high detection limit
(Fig. 1). To obtain a useful sensor, the tip diameter had to be
at least 10 ~m (15 sensors tested). The response in seawater
was log-linear down to 10 ~M N02 - and then bent off sharply
due to chloride interference (Fig. 1). Addition of a pH buffer
to the electrolyte resulted in more stable sensors. Upon expo­
sure to more than 40 ~M sulfide, the signal drifted in a nega­
tive direction and the sensitivity for nitrite was irreversibly lost.
The damage could occur within a few seconds. Occasionally
the sensitivity was not totally lost, but then the sensor became
extremely slow, with response times measurable in minutes.
Undamaged coated sensors could be used for months if stored
dry and in the dark between experiments.

LIX membranes completely gelled with PVC were not stable
in larger microcapillaries. Short circuits between electrolyte
and sample solution occurred, due to shrinking of the mem­
brane, or the membrane expanded by an unknown process and
was pushed through the tip. Only the combination of PVC­
gelled and nongelled LIX in the tip resulted in a functional
microsensor. Without priming with cellulose acetate, the pro­
tein coating did not stick to the tip. After drying, the protein
coating cracked and the sensor was not protected. Good results
were obtained only with the combined coating of cellulose
acetate and cross-linked BSA. During drying the coating
shrank so that the tips sometimes became slightly curved, with­
out affecting the sensor characteristics.

The protein coating was used for ammonium (data not
shown), pH (data not shown), nitrite, and nitrate sensors with
satisfying results. Uncoated nitrate sensors often drifted at
nitrate concentrations below 5 ~M; with protein coating, this
was not observed. The response time was 5 to 10 s, similar to
that for the uncoated sensor. Coated sensors could be used for
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nitrite profiles showed a peak of 80 fJ-M at the depth where
nitrate was consumed. Nitrite profiles were measured to a
depth of 0.5 mm, below which sulfide induced signal drift.

The nitrifying aggregates were rather irregularly shaped con­
glomerates of spheroids. The spheroids had a diameter of ca.
50 fJ-m and were clustered into solid aggregates of ca. 2 mm in
diameter. In these aggregates, ammonium was not completely
converted to nitrate. The nitrite profile showed an increase to
a maximum concentration of ]05 fJ-M, whereas nitrate in­
creased only from 100 to 135 fJ-M (Fig. 3). Oxygen penetrated
150 fJ-m into the aggregate, and nitrate and nitrite were formed
in the outer 200 fJ-m.

Nitrite, nitrate, ammonium (not shown), and pH (not
shown) profiles could be measured without noise problems in
the operating pilot-scale membrane reactor placed in a hall
with numerous other operating units. In the nitrifying/denitri­
fying biofilms the oxygen and nitrate concentration decreased
in the direction from the membrane to the bulk liquid (Fig. 4).
Oxygen concentration at the membrane surface was 800 fJ-M,
corresponding with the partial pressure in air under 3 atm, and
decreased to zero within ca. 1.5 mm. Nitrate reached a con­
centration of 2 mM at the membrane and penetrated the whole
biofilm, extending into the reactor liquid outside the biofilm. In
the oxic zone a 300 fJ-M nitrite peak was measured. Nitrite did
not reach the anoxic zone.

o 100 200 300 400 500 600

FIG. 2. Profiles of NO, - (e). NO, (6). 0, C"). and H,S (D) in a .hick
denitrifying biofilm from a wastewater treatment plan!. The hiofilm surface is at
a dep.h of O.

DISCUSSION

Liquid membrane microsensors are relatively easy to pre­
pare, and the great variety of ion exchangers allows measure­
ment of many different compounds. However, their use in
bioreactors and in the environment has been frustrated by
three main problems: their noise sensitivity, which required
working in a Faraday cage; their sensitivity to other ions; and

-0.3

0.2
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FIG. 3. Profiles of NO, - (e). NO, (6). and 0, (~) in a nitrifying aggrega.e
from a fluidized bed reactor. The aggregate surface is at a depth of O.

a few days when stored dry between experiments, while the
uncoated sensors had a lifetime of ca. 5 h. For ammonium and
pH sensors the coating did not influence calibration or re­
sponse times «5 s). Coated pH and ammonium sensors could
also be used for a few days.

Initially well functioning microsensors (pH, ammonium, ni­
trate, and nitrite) without coating were immediately destroyed
by touching the biofilm from the activated sludge plant. During
penetration, sudden signal changes, drift, and increase or de­
crease of the offset potential were observed. After touching the
biofilm, ammonium, nitrate, and nitrite microsensors no longer
responded to substrate changes. The pH microsensor became
extremely slow, with response times measurable in minutes.
Microscopic inspection did not reveal any visual damage to the
microsensor tip or LIX membrane. Microsensors coated with
only cellulose acetate were damaged in the same way. How­
ever, the sensors coated with cellulose acetate and protein
were insensitive for the destructive effect of the biofilm, even
after exposure of several hours. Nitrate sensors were also sen­
sitive to sulfide, causing a signal drift in the negative direction,
but the effect was reversible. Ammonium and pH sensors were
insensitive to sulfide.

The thick biofilm from the activated sludge plant showed
high nitrate consumption rates. In the absence of nitrate in the
bulk, no nitrate or nitrite could be detected in the oxic zone of
the biofilm, indicating that nitrification was not significant. If
present in the bulk, nitrate penetrated the biofilm more deeply
than oxygen (Fig. 2). At a nitrate concentration of 0.5 mM,
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Irregular behavior of L1X sensors, such as sudden potential
shifts, loss of signal, drift, and strong increase of response time,
is observed especially during measurements in environmental
samples with high cell densities, such as biofilms from waste­
water treatment plants and microbial mats (27). This phenom­
enon is unpredictable-no problems occurred in sediments (9,
16, 31) or in mcthanogenic and nitrifying aggregates (8)-but
when it occurs it affects all types of LIX electrodes. Sensor
damage occurs during contact with the biomass and not during
penetration of the boundary layer, indicating that the damage
on the L1X membrane is caused by direct interaction with a
water-insoluble biomass component. Since no physical damage
was observed, we suspect a chemical change of the L1X mem­
brane by a hydrophobic substance. The thin protein coating
shields the hydrophobic LIX membrane surface effectively
from interaction with hydrophobic surfaces in the environmen­
tal sample matrix. Cross-linked BSA forms dense layers in
which the diffusion coefficient is 3 orders of magnitude lower
than in water (18). The unknown damaging substance cannot
penetrate the protein layer, either because its pore size is too
small or because the damaging substance is too hydrophobic to
penetrate the hydrophilic coating. The extra diffusional resis­
tance does not significantly increase the response time as
shown by the pH and nitrate sensors. Possibly, the slower
response of the nitrite sensor is caused by reversible binding of
nitrite to the coating.

As a result of the improvements (increased tip diameter,
gelation with PVC, protein coating, and shielding), L1X mi­
crosensors can now be used in a variety of environmental
samples, outside the laboratory and even in operating reactors,
as illustrated by the profiles in Fig. 4.

The irreversible damage of the nitrite sensor by sulfide is
caused by reduction of the Co(lII) in the porphyrin ring (11).
Sulfite will have the same effect. This phenomenon is a prob­
lem for measurements in anaerobic biofilms and sediments, as
nitrite and sulfide may be present simultaneously. However,
from the continuous drift induced by sulfide it can easily be
recognized when the nitrite signal becomes unreliable.

In both the denitrifying and nitrifying!denitrifying biofilms
the nitrite and nitrate profiles were shaped differently. The
straight profiles of nitrate and nitrite showed that in the aer­
obic zone no significant nitrogen conversions occurred. No
nitrite formation was observed in the aerobic zone, which was
reported to indicate aerobic denitrification (4). The nitrite
accumulation was the highest where nitrate consumption oc­
curred, just below the oxic zone. Nitrite diffused from this zone
into the deeper layers of the biofilm, where it was further
reduced, and it diffused out of the biofilm into the bulk liquid.
The nitrite peak showed that the reduction rate of nitrate is
locally higher than that of nitrite. Denitrification does not
always lead to nitrite accumulation, since in the nitrifying!
denitrifying biofilm a nitrite peak was observed in the nitrifying
zone but not in the anaerobic denitrifying zone.

In the nitrifying aggregates the ammonium oxidation was
faster than the nitrite oxidation. From the interfacial gradients
it can be calculated that about six times more nitrite is pro­
duced than nitrate. No nitrite peak was observed. A previous
study on aggregates from the same reactor showed complete
ammonium conversion to nitrate (8). Also, the appearance of
the aggregates was changed from smooth spheres into a struc­
ture resembling a bunch of grapes. This might have been
caused by a population change due to a reactor breakdown 8
months prior to the measurements. The 200-fLm-thick zone
where nitrite and nitrate were formed did not perfectly match
with the oxygen penetration of 150 fLm. This may be attributed
to the rather irregular surface, which made it difficult to match
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FIG. 4. Profiles of NO, - te), NO, (6), and 0, ('t') in a nilrifyingldenilrify·
ing biofilm from a mcmhranc rcaClOr. The hiofilm surface is at a depth of 0: the
membrane surface is at a depth of 2.5 mOl.

their signal instability after and during contact with biomass.
The noise sensitivity was effectively cured by shielding (16),
which functions much better and is more convenient than a
Faraday cage. The latter two problems will be discussed below.

The interference of other ions is partly caused by the need
for an extremely small sensor tip to stabilize the liquid mem­
brane in the tip by capillary force. The contribution to the
signal of ion shunts through thc glass wall and at the glass-L1X
interface becomes increasingly important with smaller tip di­
ameter and can dominate over the ion exchange through the
LIX membrane (6). Most likely, this phenomenon was respon­
sible for the poor behavior of 3-,...m nitrite microelectrodes.
The ion shunts can to some extent be countered by good
silanization (23). The problem was solved by increasing the tip
diameter. However, by increasing the tip size, the capillary
force was reduced and, therefore, the membrane had to be
stabilized in the tip by gelation with PVc. This resulted in a
nitrite microsensor with a response similar to that of a macro­
electrode. Enlarging the tip also increased the mechanical
strength of the microsensor. A tip diameter of ca. JO ,...m
excludes use for intracellular studies but is excellent for prob­
ing microbial mats and biofilms. With exception of the pH L1X,
the limited selectivity of ionophores requires calibration of
LIX sensors in the experimental medium.
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the diffcrent profiles. Alternatively, the 15-min incubation time
before the start of the measurements may have been too short
to develop steady state.

Nitrite profiles often show a peak, as can be expected from
an intermediate that is both produced and consumed. There­
fore, nitrite efflux from biofilms, scdiments, and aggregates can
be minimal, even when considerable concentrations are
present. The maximum nitrite concentrations measured in the
biofilms ranged from 80 to 400 fLM. Although nitrite is gener­
ally known to be toxic, consistent data are hard to find. The
effect of nitrite is strongly species dependent. Nitrite is highly
toxic for Nitrobacter agilis (Kj for HNOz, 10 to 20 fLM) but not
very toxic for Nitrosomollas europaea (Kj HNO" >50 mM)
(15). A concentration of 140 fLM nitrite reduced methanogen­
esis in sewage sludge by 60%, and 700 fLM totally blocked
methanogenesis (5). A concentration of 700 fLM nitrite killed
50% of a crayfish population in 48 h (13), 5 fLM nitrite in­
creased the susceptibility of trout to pathogens by 50% (3), and
100 fLM nitrite decreased ion uptake by plant roots (35). This
list is certainly not comprehensive, but it can be concluded that
the measured nitrite concentrations will have a variety of phys­
iological effects on plants, animals, and bacteria.

These preliminary studies showed that considerable nitrite
concentrations are present in nitrifying and denitrifying bio­
films, as well as in biofilms where both nitrification and deni­
trification occur simultaneously. The nitrite-containing zones
were narrow, in the order of 0.5 to I mm in thickness. Since
alternative methods such as pore water extraction or slicing do
not have sufficient spatial resolution, accurate profiles could be
detected only with microsensors. The nitrite microsensor is
expected to be highly useful for further studies to elucidate
which factors regulate the nitrite concentration in biofilms and
sediments.
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the different profiles. Alternatively, the 15-min incubation time
before the start of the measurements may have been too short
to develop steady state.

Nitrite profiles often show a peak, as can be expected from
an intermediate that is both produced and consumed. There­
fore, nitrite efflux from biofilms, sediments, and aggregates can
be minimal, even when considerable concentrations are
present. The maximum nitrite concentrations measured in the
biofilms ranged from 80 to 400 IJ-M. Although nitrite is gener­
ally known to be toxic, consistent data are hard to find. The
effect of nitrite is strongly species dependent. Nitrite is highly
toxic for Nitrobacter agilis (K, for HN02, 10 to 20 IJ-M) but not
very toxic for Nilrosomonas europaea (K, HN02 , >50 mM)
(15). A concentration of ]40 11M nitrite reduced methanogen­
esis in sewage sludge by 60%, and 700 IJ-M totally blocked
methanogenesis (5). A concentration of 700 IJ-M nitrite killed
50% of a crayfish population in 48 h (13), 5 IJ-M nitrite in­
creased the susceptibility of trout to pathogens by 50% (3), and
100 IJ-M nitrite decreased ion uptake by plant roots (35). This
list is certainly not comprehensive, but it can be concluded that
the measured nitrite concentrations will have a variety of phys­
iological effects on plants, animals, and bacteria.

These preliminary studies showed that considerable nitrite
concentrations are present in nitrifying and denitrifying bio­
films, as well as in biofilms where both nitrification and deni­
trification occur simultaneously. The nitrite-containing zones
were narrow, in the order of 0.5 to I mm in thickness. Since
alternative methods such as pore water extraction or slicing do
not have sufficient spatial resolution, accurate profiles could be
detected only with microsensors. The nitrite microsensor is
expected to be highly useful for further studies to elucidate
which factors regulate the nitrite concentration in biofilms and
sediments.
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Flow cell for microsensor measurements in aggregates. The bacterial aggregate is fixed by two

needles and perfused with medium via the tubing to the left. An oxygen microsensor (middle) is

inserted in the medium chamber to monitor the bulk water oxygen concentration during the

measurements. The profiling microsensor is mounted on a micromanipulator to the right. Sensor tip

and aggregate surface are watched by help of a dissection microscope (right, in front).
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Bacterial aggregates from a chemolithoautotrophic, nitrifying fluidized bed reactor were investigated with
microsensors and rRNA-based molecular techniques. The microprofiles of 02' NH.+, N02-, and NO,­
demonstrated the occurrence of complete nitrification in the outer 12S fLm of the aggregates. The ammonia
oxidizers were identified as members ofthe Nitrosospira group by fluorescence in situ hybridization (FISH). No
ammonia- or nitrite-oxidizing bacteria of the genus Nitrosomollas or Nitrobacter, respectively, could be detected
by FISH. To identify the nitrite oxidizers, a 16S ribosomal DNA clone library was constructed and screened by
denaturing gradient gel electrophoresis and selected clones were sequenced. The organisms represented by
these sequences formed two phylogenetically distinct clusters affiliated with the nitrite oxidizer Nitrospira
moscoviensis. 16S rRNA-targeted oligonucleotide probes were designed for in situ detection of these organisms.
FISH analysis showed that the dominant populations of Nitrospira spp. and Nitrosospira spp. formed separate,
dense clusters which were in contact with each other and occurred throughout the aggregate. A second, smaller,
morphologically and genetically different population of Nitrospira spp. was restricted to the outer nitrifying
zones,

Lithoautotrophic nitrification, the sequential transformation
of NH4 + via N02- to NO, -, is typically catalyzed by two
phylogenetically distinct groups of bacteria, i.e., the ammonia­
oxidizing bacteria and the nitrite-oxidizing bacteria. All char­
acterized freshwa ter ammonia oxidizers belong to a coherent
group within the 13 subclass of the class Pro/cobacterio, com­
prising the genera Ni/rosomonas (formerly Nitrosococcus mo­
bilis and Nitrosomollas), and Nitrosospira (formerly Nitroso­
spira, Nitrosovibrio, and Nitrosolobus) (14,30). For a long time,
all nitrite oxidizers isolated from freshwater habitats belonged
to the genus Nitrobacter within the a subclass of Proteobacteria
(7). Recently, Nitrospira 1110scoviellsis, a member of an inde­
pendent phylum (13), was isolated from a corroded iron pipe in
Moscow.

Although nitrification is the central aerobic process of mi­
crobial nitrogen cycling, only limited knowledge about the eco­
logical relevance of its various protagonists is available. Me­
dium selectivity and the ability of some Ni/rosol11ollas strains
to outcompete other ammonia oxidizers in liquid cultures (6)
made Nitrosomollas europaea the most commonly isolated and
best investigated ammonia oxidizer. However, there is increas­
ing evidence of dominance by other species or genera in par­
ticular environments (24). This situation might be similar for
the Nitrobac/er spp., the best-investigated nitrite oxidizers. The
introduction of molecular techniques into microbial ecology
has enabled the detection and reliable quantification of natural
populations of nitrifiers. Based on comparative I6S rRNA se­
quence analysis, PCR primers (15, 20, 31, 35) and oligonucle­
otide probes (16, 21, 33) specific for ammonia oxidizers from
the 13 subclass of the class Proteobacteria have been developed.
Application of specific PCR in combination with the construc­
tion of clone libraries (28) or denaturing gradient gel electro-

• Corresponding author. Mailing address: Max-Planck-Institut fUr
Marine Mikrobiologie, Celsiusstralle I, D-28359 Bremen, Germany.
Phone: 49 4212028834. Fax: 494212028690. E-mail: aschramm@mpi­
bremen.de.
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phoresis (DGGE) (18) revealed a high genetic diversity within
the ammonia oxidizers of the 13 subclass of Proteobacteria and
a wide distribution of Nitrosospira-like sequences in natural
samples like lake water, sediments, or soils. On the other hand,
quantitative hybridizations with oligonucleotide probes showed
that in ammonium-rich systems like activated sludge (33) or
biofilm reactors (21, 26), the dominant ammonia oxidizers
were members of the genus Nitrosomonas.

DNA from the genus Nitrobacter has been amplified from
soil by using specific PCR primers (12), and oligonucleotide
probes have been designed for use in quantitative hybridiza­
tions (34). However, with the exception of two biofilm reactors
(21, 26), no Nilrobaeter spp. could be detected in activated
sludge, eutrophic and oligotrophic biofilms, river water (21,
34), or aquaria (16) by using molecular techniques. It was
therefore suggested that other nitrite oxidizers are present and
active in these systems. Consistent with this hypothesis, Hov­
anec et al. recently reported Nitrospira spp. to be' associated
with nitrite oxidation in freshwater aquaria (17).

In this study, the nitrifying community of a chemolitho­
autotrophic fluidized bed reactor was investigated. The reac­
tor, originally operated with high ammonia concentrations
(11), was for this study operated with low ammonia concen­
trations, so that it rather resembled a natural freshwater hab­
itat than a wastewater treatment system (24). The construction
of a 16S rRNA clone library from directly isolated DNA was
combined with fluorescence in situ hybridization (4). Mi­
crosensor measurements to relate the localization of the nitri­
fying populations to functional zones within the biofilm were
performed.

MATERIALS AND METHODS

Nitrifying aggregates. The lab-scale fluidized bed reactor used as a source for
nitrifying aggregates has been described in detail before (11). However, the re­
circulation rate was increased from 1 to 1.8 ml/s, resulting in ammonium limi­
tation in the reactor instead of oxygen limitation; i.e., ammonium was depleted
50 em above the inlet but oxygen was still present. At the time of sampling, the
reactor had been running for more than 8 months under constant conditions. The
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TABLE I. Oligonucleotide probes
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Prohe Specificity
Probe sequence Target site"

% FAh NaCI
Reference

(5'·3') (rRNA positions) (mM)'

EUB.B8 Bw.:tcria GCTGCCTCCCGTAGGAGT 165 (338-355) 20 225 3
ALFlb 0. Suht'lass of the dass Prul('ohtl("fct1a. sc"c:ral CGTTCGYTlTGAGCCAG 165 (19-35) 20 225 19

members of thl: b subclass of Prou'ohllC"!L'r;a.
genus Nilrmpira. most spirochctes

BET42a 13 Suhcl<lsS of Proll'o!uwe,-ia GCClTCCCAlTTCGTTT 235 ( 1027- 1(43) 35" 80 19
GAM42a "y Sutx..l<lss of Pru/{'ohaCla;a GCClTCCCACATCGTTT 235 (1027-1043) 35" 80 19
N50190 Ammlmia-oxidizing f3-suhcl<lsS Prol('oha('/a;a CGATCCCCTGCTTTTCTCC 165 (190-208) 55 20 21
N5V443 NirroJmpim spp. CCGTGACCGTTTCGTTCCG 165 (444-462) 30 112 21
N5MI56 Nitro.wmol/as spp. TATTAGCACATCTTTCGAT 165 (653-670) .S &36 21
NID Nitrahac"fa spp. CCTGTGCTCCATGCTCCG 165 (1035-1048) 4()' 56 34
N5R826 Frcshwala Nitrospim ~pp. GTAACCCGCCGACAClTA 165 (82f>-843) 20 225 This study
N5RII56 Freshwater Nitrospira spp. CCCGTTCTCCTGGGCAGT 165 (JJ5f>-1 173) 30 112 This study
N5R447 Clones g6, u9. and 014 GGTTTCCCGTTCCATClT 165 (447-464) 30 112 This study

" E. coli numbering (9).
/, Pcrcenwgc fmmamide in the hyhridizution huffer.
r Millimolar concentrmion of sodium chloride in the wCl~hing nuffer.
d Used with ;:In equirnolal' amount of unlabeled competitor oligonuclcOlide GAM42.
" Used with an equimolar <lmount of unlabeled competitor oligonucleotide BET42a.
fUsed with an equimolar amount of unlaheled competitor oligonucleotide CNIT3 (34).

temperature W;:IS kept ,'It 3£rc. and the pH was adjusled 10 8 in the aeration tank.
Chemical parameters at Ihe S<lmpling point. 30 cm <thovc Ihe inlet. were as
rnllows: 10,1. 150 ~M; INH, -I. ~O ~M; INO,-I. 6.7 ~M; INO,-I. 55 mM; pH
7.7. No organic carhon :-.ource l,l,iI~ added to the reactor. The nitrifying aggrcgates
were irregularly sh;:lped conglomerates with di::lmeter~ tlf I 102 mOl Clnd consi~l­

cd of sphcroid suhunils with ca. )U·J.lm diameh:rs.
Microsensor measurements, Clark.t)'pe 0 1 micro:-'l'n:-.or, with internal rdcr­

enccs and guard cathutk.\> were prcpared and calihrateu i1:-. dCM:rihcd prt'vinll!'.ly
(25). Tip diameter~were < IU j.l.m. and sllrring ~ensilivilie:\ wcre <2';.

Li411iLl ion.exchanging mr.::mhrOine lUX) microsen~or:-. for NH J '. NO~ . and
N0.l- with soliditied tip~ and protein cuating.\> wcr~ prl'pan:LI a:-. L11:M:rihcu hy ue
Bc:er et ill. (10). The tip dial1lctl:rs wcn.: 5 ~m for NH J • and N0.l- l11icro~l:n~or~

and 15 I-LI11 for NO" - microscn:-.nrs. Calihratioll was donI: in il dilution serie~ of
NH.1+. NO:; . :tnLl-NO, - in Ihl: mediulll u~l'd for the mr.::aSlln:mcnt~.

Aggrcgates werc iLltachr.::d ttl imr.::ct lll'r.::dks, placed in a tlow cell, and pr.::rfu~r.::L1

with medium a:-. dcscrihcLi rrr.::viou~ly (II). to!]. INHJ 'I. INO~ -I. pH. ,tilL!
(CmpCrillUre in thl' medium ""l're adju~ted to in silU conuitillns: INO.1 -1 was 100
IJ.M. Arter 15 min of incuhatioll_ .\>ullicil'nt lime 10 rr.::ach ~(eat..ly Male. minllpro­
files were recordet..l hy moving Ih~ :.cn~llf~ with a moltlr-L1riwn micromanipulator
at depth steps of 2.'i j.l.m from the hulk li4UiLl intu the ilggrr.::gillc. The po:.ilinn
relative tu the i1ggrcgalc ~urfacc ""it:. lklennined wilh a di~~ecti()n micro~opc.

Chemit.:al analysis. INHJ -1.1 O~ I. ilnd IND., - I in Ihe re<lctm column were
determined colorimetrically (Spcctroquant: Merck. Dilrm~I;:H.J.t. Germany). 1011
and pH wcre measured by an 0 1 microsensor and il pH eleclrotlc (Radiomett:r.
Copenhagen. Denmark). respectivel)'. which were positioned in the reactor at the
sampling point.

DNA extraction, Aggregale samples were homogenized by vigorous vonexing
and subjected to three freeze-thaw cycles. An aliquot of 200 iii was suspended in
500 1'1 of AE buffer (20 mM sodium acetale [pH 5.51. I mM EDTA), and I ml
of hot phenol-chloruform-isoamyl alcohol (25:24:1) and 100 j.l.1 of 25% (WI/vol)
sodium dodecyl sulfate (5DS) were added. The mixture was shaken at 60"C for
30 min and then chilled on icc. The subsequent hot phenol extraction was done
as described in the protocol of Wawer et ill. (36). Nucleic acids were resuspended
in distilled, sterile water, and their quality was checked hy ilgarose gel electro­
phoresis (I %. wtjvol).

Amplification and cloning of 165 rONA, Almost-full.length bacterial 16S
rRNA gene (rONA) fragmenls were amplified from extracted DNA by the PCR.
According to Muyzer el al. (23), primer pair GM3F (Escherichia coli 165 riho­
somal DNA positions 8 10 2~ 19J)-GM4R (E. coli positiuns 14Q2 to 1507) was
used. One microliter of the PCR product was directly ligated into the pGEM-T
vector cloning system (Promega. Mannheim. Germany) and transformt:d into
competent cells (high-efficiency E. culi JMI09IPromt"gaJ) as described in the
manufacturer's instructions.

DGGE screening or the gene library. A 550-bp-lung 165 rONA fmgment for
DGGE analysis was directly amplified from each 165 rONA c1un~ hy using I fJ.1
of cell suspension in the peR. peR and DGGE weft: perfurmed ,IS described hy
Muyzer ct al. (22). For DGGE, ;:1 gradicnillf 35 to 65r~ t..knaturant at 6QOC <lnd
an electrophoresis lime uf 17 h ill 100 V were used.

165 rONA sequencing. Plasmids were extracted and purified from clones of
interest with the Wizard Plus Minipreps DNA purification system (Promega) in
accordance with thc manufacturer's instructions. Sequencing of the 165 rONA
inserts was done with a LlCOR automated sequencer by MWG-Biotech, Ebers­
berg. Germany. Partial sequences (ca. 900 bases) and almost full sequences (ca.
1,500 bases) were determined on one strand.

36

Data analysis. Sequences were added to the 16S rRNA database of the Tech­
nical University Munich by usc of the program paCkage ARB (29). The tool
ARB EDIT was used for sequence alignment. The 16S rRNA-based phyloge·
nt:tic tree was calculated by using distance m;l!rix. maximum-parsimony, and
maximum-likelihcK>d .anal)'!.cs. and the topologie~ llf the resulting trees were
compared. Branching.\> nut suppt.lrled oy all three methods are displayed as
multifurcilliun~.Only sC4uencc!. that were at len!'>l (}(Jr, complele were used for
trce reconstruction. Panial se4ucnccs were added hy u~ing maximum parsimony
wilhout t'hanging the overall topology of the tree.

BiI~cd lIll the ncwly retrieved Nitmspim-like scqucncc~. uligonucleotide prohc~

were de~igned. Their ~pr.::citicity was r.::valuateJ hy u~jng the ARB tlKll PROBE_
FUNCfIONS and thc rRNA dawbilsc of the Technical University Munich
(version 3/97).

Fixntinn and sectioning or uggregates. Fur in ~itu hybridization, aggregates
wcre fixed in 471. parafurmaldchydc for I hal 4°C. wa~hcd in phosphatc-hulTercd
saline. and stored in a I: I mixture uf phosphalc-buffered saline and 96% ethanol
;1( - 2Uoe (2). Prior to the cryu~ectioning, aggreg<ltcs were embedded in ocr
compound (Ti~~uc·Tek 11: Miles. Elkhart, Ind.) overnight and subsequently
fruzen in a cryomicfOlnmt: (Mikrom. WaliLlorf. Germany) at - 3SOC. Scmithid
cryu~r.::clit.lns(5 tn 20 IJ.m) were cut al -Ire. and the single sections were placed
IJn poIY'L-ly~ine (O.Olr; ~lliutitln: Sigma. Deiscnhofen, Germany)-coated micro-

160
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FIG. I. Typical microprofiles oflO,I. [NH?).INO,-I. and INO,-) in nitri­
fying aggregates. The gray area marks the zone with nitrifying activity.
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TABLE 2. Similarity malrix of clones affiliated with Nilrospira spp.

% Similarity 10:
Species or

clone N. mosco-
N. marina b2 bl8 b30 g6 09viet/sis

N. moscoviensis
N. marina 89.3
b2 92.8 87.8
bl8 92.1 87.5 97.1
b30 92.8 88.2 98.9 97.5
g6 95.8 87.6 91.7 92.6 91.6
09 95.8 87.6 90.1 92.3 90.1 99.5
Clone 710-9 (17) 94.7 87.7 90.4 90.1 90.3 92.3 89.9

scopic slides. After air drying overnight 10 allow optimal attachment of the
sections 10 the slides, the ocr compound was removed by dissolving it in a drop
of distilled water and carefully dipping the slide in distilled water. Again the
slides were allowed to <liT dry. Finally, the sections were dehydrated in an ethanol
dilution series (50, 70, and 96%) and stored al room temperature.

Oligonucleotide pr4lbes. The following rRNA-targeted oligonucleotides were
used (probe nomenclature according 10 Aim et al.111 is given in parentheses): (i)
EUB (S-D-BacI-0338·a-A-18); (ii) ALFlb (S-Sc-aProl-OOI9-a-A-17), BET42a
(L-Sc-bProt-I027-a-A-17), and GAM42a (L-Sc-gPrOl-1027-a-A-17); (iii) NSOl9O
(5-' -Ntros-019O-a-A-19); (iv) NSV443 (S-' -Nlros-0443-a-A-19); (v) NSM 156 (5­
'-Nsom-0156-a-A-19); (vi) NITI (S-G-Nbac-1035-a-A-18); (vii) NSRI156 (5-'­
Nspir-1I56-a-A-18); (viii) NSR826 (S-'-Nspir-0826-a-A-18); and (ix) NSR447
(S···Nspir..()447-a~A- ]8). Oligonucleotides were synthesized and fluorescenlly
labeled with a hydrophilic sulfoindocyanine dye, CY3 or CYSt or with 5(6)-carb­
oxyfluorescein-N-hyd roxysllccinimide ester (FLUOS) at the 5' end by Interactiva

MPL. ENVIRON. MICROBIOL.

Biotechnologic GmbH (Ulm, Germany). All probe sequences, their hybridiza­
tion conditions. and references arc given in Table 1. The respective target or­
ganisms of probes specific for nitrifying bacteria are indicated in the phylogenetic
tree (see Fig. 2).

In situ hybridization. All hybridizations were performed as described by Manz
el al. (19) al 46°C for 90 min in hybridization buffer containing 0.9 M Nael,
formam ide al the percentage shown in Table I. 20 mM Tris-HCI (pH 7.4), and
0.01 % SDS. The probe concentration was 5 nglJ.L1. Hybridization was followed by
a stringent washing step at 4SOC for 10 min in washing buffer containing 20 mM
Tris-HCI (pH 7.4), NaCI at the concentrations listed in Table I, and 0.01 % SDS.
Washing buffer was removed by rinsing the slides with distilled water. The slides
were air dried, stained with 4.6.diamidino-2-phenylindole (DAPI; I J.Lg/ml) for 10
min in the dark on ice. and finally rinsed again with distilled water. The slides
were mounted in Vectashield (Vector Laboratories Inc_. Burlingame, Calif.) to
avoid bleaching and examined with a Zeiss Axioplan epiftuorescence microscope
equipped with filter sets CY3·HQ and CY5·HQ (Chroma Technology Corp.,
Brattleboro, Vt.) and 01 and 09 (Carl Zeiss. Jena, Germany). A Zeiss LSM 510
confocal laser scanning microscope, equipped with an Ar ion laser (488 nm) and
two HeNe lasers (543 nm, 633 nm), was used to record optical sections as
described by Wagner et al. (32).

Nucleotide sequence accession numbers. 16S rONA sequence data ob­
tained in Ihis study will appear in the EMBL. GenBank. and DDBJ databases
under accession no. AJ224038 to AJ224047.

RESULTS
Microsensor measurements. All investigated aggregates

showed consumption of 0z, NH4 +, and NOz- and production
of NO)- (Fig. 1). The consumed NH4 + was completely con­
verted to NO)- without an intermediate NO z- peak, and even
NOz- present in the bulk water was consumed. This indicates
that nitrite oxidation was at least as fast as ammonia oxidation.

~--c:= Nitrosomollas o/igolropha-lineage

L..-_.1"""""7 Nilrosomollas communis-lineage

NitrosomOIlQs marina-lineage

Nilrosomonas europaea-lineage

Nilrosococcus mobilis

NSMI56

NSOl90

Nitrosomonas cf)'Otolerans

Jl-proteobacteria

Nitrosospira-duster ] NSV443

a-proteobacteria
Nitrobacter sp. ]

Nitrobacter winogradskyi NIT3

Nitrobacter hamburgensis

L..- Nitrospira marina

NSRttS6

NSR826l

b2t*
b37'

b9'
b2
b30
bl8

:: JNSR44~
014* ., I
SBR clone X85584' ,

SBR clone X84468· :
IL gBR clone X84499. I

Nilrospira moscoviensis -.J
aquarium clone 710-9

Nitrospira-phylum

0.10

FIG. 2. PhylogenEtic tree inferred from comparative analysis of J6S rRNA sequences. The tree is based on the results of maximum-likelihood analysis of sequences
of >1,400 nucleotide$. Partial sequences (marked by an asterisk) were added by maximum·parsimony analysis without changing the tree topology. Target organisms
of probes used in this llUdy are indicated by brackets; SBR clones are not sequenced in the probe target regions. The bar represents 0.1 estimated change per nucleotide.
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The active nitrifying zone was restricted to the outer 125 j.un of
the aggregates, although O 2 and NH" + were both still present
in Ihe center of the aggregates at concentrations of about 75
and 10 j.LM. respectively.

FISH analysis. Phase-contrast light microscopy of the ag­
gregate sect ions showed dense bacterial clusters, void spaces,
and an irregular surface. If excited with blue light (488 nm),
cells and extracellular material exhibiled strong green auto­
fluorescence, which made it difficult to reliably detect FLUOS­
labeled oligonucleotide probes. Therefore, we exclusively ap­
plied CY3- or CY5-labeled probes for fluorescence in situ
hybridization (FISH) analysis.

In situ hybridization with probe EUB proved that the ribo­
some eolllent of most cells was sufficient for single-cell delee­
tion and that probes penetrated most, if not all, cell clusters.
Only a few DAPI-stained cells in the central regions of aggre­
gates were not detectable by FISH. Application of probes
ALFlb. BET42a. and GAM42a indicated tbat the population
consisted mainly of approximately equal fractions of ALFlb­
and BET42a-positive cells. No cells hybridizing with probe
GAM42a were detected. ALFlb-positive cells had diameters
of below 0.6 j.Lm and formed clusters 3 to 10 j.Lm in size
which were situated close to BET42a-positive cells that had
diameters of ca. I j.Lm and formed clusters 5 to 20 j.Lm in size.
Taken together. both populations made up >90% of all cells
in the nitrifying zone as well as in the central region of the
aggregates. Virtually all cells detected by probe BET42a also
hybridized with probes NSO 190 and NSV443 (Fig. 3), but no
cells could be detected with probe NSM 156. Thereby, the am­
monia-oxidizing cells were identified as members of the genus
Nilrosospira. In contrast, none of the cells detected by probe
ALFlb hybridized with probe NIT3. which was specific for the
nitrite-oxidizing bacteria of the" subclass of Proleobacleria of
the genus Nilrobacler.

Clone library. A 16S rONA clone library was constructed
from aggregate samples to identify the unknown nitrite oxidiz­
ers. Fifty-five clones were selected at random. To avoid redun­
dant sequencing, PCR-amplified rONA fragments of all clones
were analyzed by DGGE. Ten distinct categories of bands
could be identified. and one representative of each category was
selected for comparative sequence analysis. The 16S rRNA
sequences of 9 of the 10 clones were affiliated with those of the
nitrite oxidizers nf the genus Nilrospira (13). Three clone se­
quences (g6. 09, and 014) were closely related to Nilrospira
mosco!'iellsis (96% similarity), whereas the other six (b2. b9,
h 18, b21. h30. and b37) formed a distinct branch within the
genus Nilrospira but were still more closely related to Nilrospira
lIIosco!'iellsis (92% similarity) than to Nilrospira lIIarilla (87%
similarity). Table 2 shows the 16S rRNA similarity values for
the five almost-full-length sequences determined in this study,
and Fig. 2 illustrates their affiliation in a phylogenetic tree. The
remaining partial sequence (gI4) was related to the 16S rRNA
gene of a Hyp!lo/l1ollas sp. of the" subclass of Proleobacreria.

FIG. 3. In situ identificatioll llf nitrifying hal'tLTia in ag.gregate ~eclions dem­
onstrating their spalial distribution. Imagl..'s arc c{lmpo~ed of overlays of ph<lse­
cnnlra~l mit:rll~C\lpil.: irnagl'~ ,1lltl1WO cnnfnctll11inoSCllpic images. (A) Simulta­
neous in situ hyhridiz:ltion with CY5-labefcd probe NSV-l43 and CY3-ltlhclcd
prohe NSR 1156. Ccll~ of Nilms().1]1ira spp. art' shllwn in hlue: celb of Nilrmpim­
like hal"lnia arl,;' red. (B) Simultanl:llus in situ hyhridizatioll with CY5-1ahdl..'d
prohe NSV4-L' :lnt! CY3-lahdcd probe NSR447. Cells of Nirrwmpim spp. afC
hlue: a smaller SUbpllpulatinn (If Nirrospira spp. i:-. visualized in red. (C) Simul­
WllCOUS in silu hybridization with CY5-lahcled probe NSV443 and CY3-Jabded
prohe NSRl156 displaying th~ morphology and close associ:1tion of ammonia­
and nilrilc-o.xidizing haclaia.
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No sequences affiliated with the genus Nitrobacter or with any
known ammonia-oxidizing bacterium were retrieved.

Probe design and in situ detection of Nitrospira. Based on
the retrieved seq uences, two probes specific for all clones that
included Nitrospira moscoviel1sis, NSRl156 and NSR826 (with
one mismatch to clone b 18), were developed. Another probe,
NSR447, was designed to be complementary to clones g6, 09,
and 014 only (Fig. 2). Hybridization conditions of the prohes
were evaluated in situ by using increasing concentrations of
formamide in the hybridization buffer. Probes NSRl156 and
NSR447 showed good signal and specificity in buffer with 30%
formamide; probe NSR826 did so in buffer with 20% form­
amide. When applied to the aggregate sections, probes NSRI156
and NSR826 hybridized to virtually all ALFI b-positive cells. A
16S rRNA sequence database check revealed that, indeed, all
Nitrospira spp. have the target sequence for probe ALFI b. The
nitrifying community active in the fluidized bed reactor was
shown to consist of members of the genera Nitrosospira and
Nitrospira (Fig. 3A). Only a minor fraction of all NSRIl56­
and NSR826-positive cells also hybridized with probe NSR447.
These cells were slightly bigger, formed smaller clusters than
the major part of the Nitrospira sp. cells, and were located ex­
clusively in the nitrifying part of the aggregates (Fig. 3B). Single­
cell resolution of the very small Nitrospira spp. was almost impos­
sible even with confocal laser scanning microscopy (Fig. 3C).

DISCUSSION

Microprofiles. The in situ activity measurements clearly in­
dicate that both ammonia and nitrite oxidizers were active with­
in a 125-fJ-m zone at the aggregate surface (Fig. I). In contrast,
no activity was measured in the inner part of the aggregates,
although dense populations of nitrifiers could be detected (Fig.
3) and oxygen and ammonium were present. One possible ex­
planation is that the ammonium concentration in this zone (to
fJ-M) was substantially below the half-saturation constant (KJ
for ammonia oxidation. Indeed, the lowest K, values reported
so far for ammonia-oxidizing bacteria are 30 to 75 fJ-M NH4 +

plus NH, (at pH 7.8) for strains of the Nitrosomol1as oligotro­
pha group, isolated from the River Elbe (27). No such data are
currently available for members of the genus Nitrosospira.

Ammonia oxidizers. By using FISH with a set of specific
probes, it was shown that members of the genus Nitrosospira
(in its extended definition [14] also including the former gen­
era NitrosolobliS and Nitrosovibrio) were the only ammonia­
oxidizing bacteria in the aggregates. As previously shown for
members of the genus Nitrosomol1as in biofilms (21, 26), Ni­
trosospira spp. also tended to form monospecies clusters in
close association with clusters of nitrite oxidizers. Cluster for­
mation could be disadvantageous due to the longer diffusion
path of substrates. However, since the nitrifying bacteria
rely on CO2 fixation by ribulose bisphosphate carboxylase
(RubisCO), it might be a mechanism for increasing the efficacy
of CO2 fixation by lowering the [02] in the clusters. Cluster
formation might also provide protection against hazardous en­
vironmental factors, or it might just be an ecologically neutral
result of cell division. In our study, the clustering of Nitroso­
spira sp. was probably the reason that no 16S rONA clone se­
quences of this genus were obtained. Intact clusters could still
be detected after the DNA isolation procedure, indicating re­
sistance against the DNA extraction protocol based on freeze­
thawing and hot phenol and SDS extraction. This potential for
formation of highly resistant clusters should be considered in
all attempts to monitor ammonia-oxidizing bacteria with meth­
ods based on DNA extraction.
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The in situ detection of Nitrosospira spp. in this ammonium­
poor system is in agreement with observations that in natural
systems that are low in ammonium, Nitrosospira spp. can be
detected rather than Nitrosomol1as spp. (15, 18, 28). However,
these studies depend on DNA extraction and PCR while true
quantitative in situ analyses of these habitats are missing. In
contrast, Nitrosol1lollas spp., i.e., members of the Nitrosomollas
europaea lineage, are more abundant in activated sludge, bio­
films, and enrichments with millimolar concentrations of am­
monium (21,26,28,33). The main adaptations to the different
niches are probably via the ammonia oxidation kinetics and the
growth rate. In that respect, Nitrosospira and Nitrosomollas
seem to be typical K and r strategists, respectively (5). How­
ever, the isolation of Nitrosomollas oligotropha and related strains
with remarkably low K, values (27) already indicates limits for
such a generalizing statement.

Nitrite oxidizers. Nitrospira-like bacteria were identified in
the nitrifying aggregates by a combination of comparative 16S
rRNA sequence analysis and FISH. Their localization within
the nitrifying zone and their association with the ammonia­
oxidizing Nitrosospira species lend strong evidence that they
are responsible for nitrite oxidation in our system. Two genet­
ically different populations were distinguished in this study.
The main population, which was more distantly related to
Nitrospira moscoviellsis, also occurred in the inactive center of
the aggregates. The second, smaller population had a higher
level of 16S rRNA similarity to Nitrospira moscoviellsis. It was
restricted to the active nitrifying zone. The genotypic differ­
ences obviously coincide with different physiological adapta­
tions leading to these distinct spatial distributions. The exact
description of the differing physiological properties of the new
nitrite oxidizers, however, will require their isolation. A direct­
ed isolation can be monitored by the oligonucleotide probes
developed in this study.

The detection of Nitrospira spp. also yields independent sup­
port for a recent molecular study reporting that Nitrospira-like
bacteria were the main nitrite-oxidizing population in freshwa­
ter aquaria (17). Before, Nitrospira-like 16S rONA sequences
had also been isolated from activated sludge (8), but, at that
time, reference sequences of cultured Nitrospira spp. with prov­
en nitrite-oxidizing capability were not available. Therefore, it
was impossible to link the genotype with a phenotype. This
clearly shows the importance of cultivation of bacteria. Con­
sidering the rare in situ detection of Nitrobacter species in
freshwater systems (16, 21, 34), Nitrospira spp. might be of
more general importance for nitrite oxidation. The molecular
detection of Nitrospira-like bacteria in habitats as diverse as
activated sludge, freshwater aquaria, and an oligotrophic flu­
idized bed reactor and the initial isolation of Nitrospira mosco­
viel1sis from a corroded water pipe may indicate a wide distri­
bution in nitrifying systems.

Conclusion. Nitrosospira and Nitrospira spp. were identified
as main components of nitrifying aggregates. Their activity and
spatial distribution could be shown by the combination of mi­
crosensor measurements and in situ hybridization. Whether
the combination of these two genera is unique to the investi­
gated system or is of general relevance in more oligotrophic
freshwater habitats must be evaluated in the future.
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Chapter 5

Microscale Distribution of Populations and Activities

of Nitrosospira and Nitrospira spp. along a Macroscale Gradient

in a Nitrifying Bioeactor: Quantification by

In Situ Hybridization and the Use of Microsensors

This chapter has been submitted to Applied and Environmental Microbiology
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Fluidized bed reactor with nitrifying aggregates. The vertical reactor consists of a conical reaction

column (middle), a settler (left, on top), and a conditioning vessel (left). Fresh medium is introduced

to the bottom of the reaction column, and part of the purified water is recirculated from settler and

conditioning vessel via the blue tubing.
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The change of activity and abundance of Nitrosospira sp. and Nitrospira sp. along a bulk

water gradient in a nitrifying fluidized bed reactor was analyzed by the combination of

microsensor measurements and fluorescence in situ hybridization. Nitrifying bacteria

were immobilized in bacterial aggregates that remained in fixed positions within the

reactor column due to the flow regime. Nitrification occurred in a narrow zone of 100-150

/lm on the surface of these aggregates, the same layer that contained an extremely dense

community of nitrifying bacteria. The central part of the aggregates was inactive, and

significantly less nitrifiers were found there. Under conditions prevailing in the reactor,

i.e. when ammonium was limiting, ammonium was completely oxidized to nitrate within

the active layer of the aggregates, the rates decreasing with increasing reactor height. To

analyze the nitrification potential, profiles were also recorded in aggregates subjected to a

short-term incubation under elevated substrate concentrations. This lead to a shift in

activity from ammonium to nitrite oxidation along the reactor and correlated well with

the distribution of the nitrifying population: Along the whole reactor the numbers of

ammonia-oxidizing bacteria decreased while the numbers of nitrite-oxidizing bacteria

increased. Finally, volumetric reaction rates were calculated from microprofiles and

related to cell numbers of nitrifying bacteria in the active shell. Therefore it was possible

for the first time to estimate the cell-specific activity of Nitrosospira sp. and hitherto

uncultured Nitrospira-Iike bacteria in situ.

Immobilized micro-organisms are used for the purification of a variety of wastewaters in fixed-film

treatment plants like trickling filters, rotating biological contactors or fluidized beds (7). In all these

systems, the organisms responsible for treatment are present in a microbial biofilm. Unlike in well­

mixed activated sludge basins, sequertial transformations of the sewage compounds may occur while

the wastewater passes the filter, and pronounced gradients of, e.g., oxygen, dissolved organic carbon

(DOC) or ammonium can be measured in the bulk water along such a reactor (7). In comparison,

changes of the underlying microbial communities and activities within the biofilm are more difficult

to assess. However, these data are needed for the improvement of mathematical models used to design

and dimension fixed-filter reactors.

Nowadays, fluorescence in situ hybridization with rRNA-targeted oligonucleotide probes offers a

reliable tool for the direct identification and quantification of bacteria in their natural environment (1,

3). For the determination of gradients and activities on a micrometer scale microsensors have been

developed for various compounds (22, 30). The combination of both methods (2) has been shown to
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bear great potential for direct observations of structure and function of sulfate reducing (28) and

nitrifying biofilms (32, 34).

In this study, a lab-scale fluidized bed reactor (12) was used as a model system for the in situ analysis

of structure and function of a whole biofilm reactor. The nitrifying community of this reactor had

recently been identified as Nitrosospira sp. and Nitrospira sp. by the rRNA approach (32). Here, we

present data on the changes of abundance and activity of these nitrifying populations with the bulk

water gradient along the reactor. In a more ecological context, this can be regarded as an example how

environmental parameters structure microbial communities.

In an additional experiment, the microsensor measurements were repeated under excess of substrate

(ammonium or nitrite) to test the nitrification potential of the system and to evaluate the maximum

specific activities of its components. This again is important for mathematical models but also to

estimate the competitiveness of yet uncultured species like Nitrospira sp. in the environment.

(A preliminary account of part of this work appeared in Proceedings of the 2nd International

Conference on Microorganisms in Activated Sludge and Biofilms, IA WQ, Berkeley, CA, 1997)

METHODS

Reactor operation. The conical 360-ml continuous-upflow reactor used as a model system has been

described in detail by de Beer et al. (12). For this study, it was fed with mineral medium containing 72

~M NH/ (influent concentration), and the liquid phase was recirculated at a rate of 1.8 mI S-I (32)_

Temperature was kept at 30°C. The chemical gradients that developed along the reactor are displayed

in Table I. The conical shape of the vertical reactor column creates also a flow velocity gradient that

stabilizes aggregates of different diameter and density at different heights in the column according to

their settling velocity. Aggregate samples were taken from three different points of the reactor,

labeled AI through A3.

TABLE I. Axial gradient along the nitrifying fluidized bed reactor

sample distance O2 [~M1 pH NH/[~M1 N02- [~M1 aggregate diameter

from inlet [cm1 [mm1
.-----

inlet 0 236 8.0 72 0

Al 10 212 7.9 50 3 2.0-2.5

A2 30 142 7.7 40 7 1.5-2.0

A3 50 87 7.5 0 4 0.8-1.3

outlet 80 59 7.3 0 0

Microsensor measurements. Clark-type O2 microsensors (29) and liquid ion-exchanging membrane

(LIX) microsensors for NH/, N02-, and N03- (11) were prepared and calibrated as described

previously. Tip diameters were <10 ~m for O2, 5 ~m for NH/ and N03-, and 15 ~m for N02­

microsensors.

Aggregates were placed in a flow cell, perfused with medium, and microprofiles were recorded at

depth steps of 25 ~m from the bulk liquid into the aggregate as described by de Beer et al. (12) and

Schramm et al. (32). Measurements were performed under in situ conditions, i.e. when [021, [NH/1,

[N02-1, and pH in the medium were adjusted to the values at the respective sampling points (referred

to as "in situ conditions", see Table 1), and in air-saturated mineral medium containing 300 ~M NH/
(referred to as "incubation conditions"). Profiles of aggregate samples from point A3 were also

recorded in air-saturated mineral medium containing 300 ~M N02- (labeled "A3nilri1e"). [N03-1 was

always 100 ~M.
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Chemical analysis. [NH/], [N02-], and [NOd in the reactor column were determined

colorimetrically (Spectroquant, Merck). [02] and pH were measured by an O2 microsensor and a pH

electrode (Radiometer, Denmark) which were lowered into the reactor to the sampling points.

Calculations. Oxygen uptake and the rates of ammonium and nitrite oxidation were determined from

the O2, NH/ and N03- profiles as the fluxes, J, through the diffusive boundary layer (DBL). Net

fluxes for O2, NH/, N02- and N03- were calculated using Fick's first law:

C -c
J=-Dw ----O

(jeff

where Dw is the molecular diffusion coefficient in water, C_ is the bulk water concentration, Co is the

concentration at the aggregate surface, and 8eff is the effective DBL thickness. The 8eff is defined by

extrapolating the concentration gradient at the aggregate-water interface to the bulk water phase

concentration (26). Diffusion coefficients of O2, NH/, N02- and N03' at 30°C were taken as 2.75.10-5
,

2.25.10-5,2.17.10-5 and 2.16.10-5 cm2
S-I, respectively (8, 23).

Volumetric reaction rates were calculated from the volume of the active shell and the net fluxes into

whole aggregates:

J ·4nr2

V = 4 4
-nr3--n(r-r)3
3 3 {/

where 41tr
2 and 4/3 1tr3 are the surface and the volume of a the aggregate, respectively, ra is the

thickness of the active shell as determined by microsensor measurements, and 4/3 1t (r-ral is the

volume of the inactive central part of the aggregate.

Oligonucleotide probes. Previously described oligonucleotide probes specific for certain ammonia­

(25) and nitrite- (32) oxidizing bacteria were used. Their sequences and target sites are presented in

Table 2. Probes were synthesized and f1uorescently labeled with the hydrophilic sulfoindocyanine

dyes CY3 or CY5 at the Y end by lnteractiva Biotechnologie GmbH (Ulm, Germany).

TABLE 2. Oligonucleotide probes applied

Probe Specificity Sequence (5'-3 ') of probe rRNA [%] [mM]

target site" FAb NaClc

NSOl225 ammonia-oxidizing CGCCATTGTATTACGTGTGA 16S, 35 80

~-proteobacteria 1225-1244

NSV443 Nitrosospira spp. CCGTGACCGTTTCGTTCCG 16S, 444-462 30 112

NSR826 Nitrospira spp. GTAACCCGCCGACACTTA 16S, 826-843 20 225

NSR1156 Nitrospira spp. CCCGTTCTCCTGGGCAGT 16S, 30 112

1156-1173

NSR447 Nitrospira spp. GGTTTCCCGTTCCATCTT 16S,447-464 30 112

"E. coli numbering (9)

bpercentage formamide in the hybridization buffer

C mM sodium chloride in the washing buffer

Sample preparation and in situ hybridization. Aggregates were fixed in paraformaldehyde, cut on

a cryomicrotome, and the single cryosections (thickness 14 /lm) were immobilized on microscopic

slides. This whole procedure was described in detail by Schramm et al.(32). In situ hybridization of

fixed and dehydrated aggregate sections was carried out at 46°C in an isotonically equilibrated
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humidity chamber according to the protocol of Amann et al. (4). Stringent hybridization conditions

for the different oligonucleotide probes were adjusted using the formamide and sodium chloride

concentrations listed in Table 2 in the hybridization and washing buffers, respectively (24). Double­

hybridizations with two probes that require different stringencies (e.g. NSR826+NSRI156) were done

as subsequent hybridizations starting with the probe of higher thermal stability.

Confocal microscopy and image analysis. Digital images of aggregates after hybridization were

taken by confocal laser scanning microscopy (CLSM) on a Zeiss LSM510 (Carl Zeiss, lena,

Germany), equipped with two HeNe lasers (543 nm, 633 nm). We applied optical sections of 1.5 and

0.7 11m thickness for Nitrosospira sp. and Nitrospira sp., respectively. As these represent about the

mean cell diameters of the two populations the optical sections were assumed to contain single-cell

layers. For each probe, cell numbers per volume were derived from randomly chosen optical sections

using the "area" function of the standard software delivered with the instrument. A threshold was set

manually to exclude empty spaces and background fluorescence from the record, and the remaining

cell area was quantified relative to the total aggregate area. Threshold levels were calibrated

separately for each probe and sample by determining mean values for the area of at least 300 single

cells, counting cells within a defined area, and adjusting the threshold to match the calculated total

cell area. The same calibrations were used to calculate cell numbers from the cell area values.

Assuming only one layer of cells in an optical section, this numbers were regarded as cell numbers

per volume, where the volume was the total measured area multiplied with the thickness of the optical

section. Nitrifying bacteria in the active shell and in the central part of the aggregates were

enumerated separately.

RESULTS

Microgradients. For all three sampling sites 3-7 profiles (Table 3) of Oz, NH/, NOz' and NO}' were

measured each in a separate aggregate under in situ and under incubation conditions. Examples of

these profiles are shown in Fig. I. The effective diffusive boundary layers (DBL) ranged from 70 to

225 11m, depending on aggregate size, surface structure, and solute type (data not shown). Oxygen

consumption, ammonium and nitrite oxidation were always restricted to a shell of 75-200 11m at the

aggregate surface while the central part of the aggregates appeared to be inactive. The mean thickness

of the nitrifying zone as defined by ammonium, nitrite and nitrate profiles decreased with increasing

distance of the aggregate sampling site from the inlet from about 150 11m (sample AI) to 125 11m (A2)

to 100 11m (A3).

Under in situ conditions, oxygen was only partially consumed within the nitrifying zone. In contrast,

ammonium and nitrite present in the bulk water phase were almost completely converted to nitrate

within the aggregate, only less then 10 ~M ammonium being left in the central part of Al and A2

aggregates (Fig. Ia, c, e).

Because nitrification obviously was substrate limited under reactor conditions, we also measured

microprofiles while aggregates were incubated in 300 11M ammonium under air saturation to extract

some information about the nitrification potential (Fig. Ib, d, f). In Al and A2 aggregates, oxygen was

now depleted within the nitrifying zone while ammonium was consumed to concentrations down to

100-150 11M within the aggregate. Nitrite accumulated to significant concentrations (-100 11M) in Al

aggregates but only to negligible amounts in A2. Almost no change in the concentrations of oxygen,

ammonium and nitrate were detected in A3 aggregates, showing very low ammonium oxidation

potential. Therefore, a third set of microprofiles was measured in these aggregates, supplying 300 11M

nitrite under air saturation (Fig. 19). Oxygen and nitrite were consumed but not depleted within the

active shell, resulting in an enhanced production of nitrate.
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TABLE 3. Fluxes through the aggregate-bulk liquid interface calculated from microprofiles

flux [nmol.mm-2 h- ' j'

in situ conditionsb

sample oxygen ammonium nitrite nitrate

Al -4.67 ± 1.02 (5) -1.83 ± 0.86 (3) -0.16 ± 0.02 (3) 2.06±0.11 (4)

A2 -3.62 ± 0.96 (4) -1.30 ± 0.43 (4) -0.16 ± 0.05 (3) 1.46 ± 0.14 (3)

A3 -0.44 ± 0.02 (3) not detectable -0.23 ± 0.Q7 (3) 0.62 ± om (3)

incubation conditionsC

sample oxygen ammonium nitrite nitrate

Al -13.70 ± 5.50 (7) -6.69 ± 3.84 (3) 3.18±0.92(3) 4.03 ± 0.52 (3)

A2 -9.78 ± 2.49 (4) -4.60 ± 3.29 (4) 0.34 ± 0.04 (3) 3.85 ± 3.15 (5)

A3amroonium -1.51 ± 0.01 (3) -0.62 (I) 0.00 (2) 0.62 (2)

A3nitrite -4.13 ± 2.5 I (3) no NH4+ present -6.09 ± 1.02 (3) 5.60 ± 2.47 (3)

amean values ± SD (95% confidence limit); the number of profiles is given in parentheses.

b in situ conditions refer to the conditions as measured in the reactor (Table I)

C incubation conditions were 300 flM ammonium, pH 8.0, air saturation for samples AI, A2, and
A3,mmoaium, ; for sample A3nitrilc it was 300 flM nitrite, pH 8.0, and air saturation.

Rate calculations. Net fluxes of oxygen, ammonium, nitrite and nitrate through the aggregate-bulk

liquid interface were calculated from the microprofiles and are summarized in Table 3. In general, the

fluxes measured under incubatioll conditions exceeded the in situ fluxes. Rates were highest at the

bottom (A I) of the reactor and lowest at the top (A3) with one exception: the highest nitrite oxidation

rate was found in A3nilri,c aggregates.

The ratio of the fluxes for NH/-02-N03' was close to I :2: I for all samples where all species were

present. When ammonium was absent (i.e. in samples A3in situ and A3nitri,e) the ratio of the fluxes of

N02--02-N03- was I: 1.9:2.7 and I :0.7:0.92, respectively.

Volumetric reaction rates of respiration, ammonium and nitrite oxidation were calculated from the net

fluxes into the active layer of the aggregates (Table 4). Again, the rates were higher for the incubation

conditions than in situ, and for the in situ incubations highest on the bottom of the reactor. The same

was true for the volumetric respiration and ammonium oxidation rates under incubation conditions.

TABLE 4. Volumetric conversion rates calculated from microprofiles

volumetric rates [nmol·mm-3 h- 1j

in situ conditions

sample

AI

A2

A3

incubation conditions

sample

AI

A2

A3ammonium

A3nitrite

respiration

35.82 ± 7.82

33.40 ± 8.86

5.44 ± 0.22

respiration

105.03 ± 42.16

90.15 ± 22.95

18.5 I ± 0.23

50.75 ± 30.84

ammonium oxidation

14.01 ± 6.65

11.98 ± 3.99

no NH/ present

ammonium oxidation

51.29 ± 29.43

42.45 ± 30.38

7.61

no NH/ present

48

nitrite oxidation

15.77 ± 0.87

13.44 ± 1.27

7.65±0.15

nitrite oxidation

30.90 ± 3.97

35.46 ± 29.07

7.65

68.86 ± 30.32



In contrast, the nitrite oxidation potential

increased from bottom to top (taken the values

for A3nitrite as potential activity; the nitrite

oxidation rates for A3ammonium just equaled the

ammonium oxidation rates).

In situ detection, quantification and

specific reaction rates of nitrifying bacteria
The principal composition of the nitrifying

community of the reactor had been resolved

previously as Nitrosospira spp. and Nitrospira

spp. by the rRNA approach (32). Here, the

stratification of these populations within the

aggregates as well as along the reactor column

is reported (Table 5 and Fig. 2). The relative

close match of cell numbers for probes

NSOl225 and NSY443, targeting all

ammonia-oxidizing ~-Proteobacteria and all

known members of the genus Nitrosospira,

respectively, confirmed our observation that

Nitrosospira spp. represent the vast majority if

not all ammonia-oxidizing bacteria in the

system. The numbers of ammonia-oxidizers.

decreased from the bottom (AI, Fig. 2a) to the

top (A3, Fig. 2c) of the reactor, and much

fewer cells were detected in the central

aggregate than in the outer shell. Moreover,

ammonia-oxidizers in the nitrifying zone

formed substantially larger cell clusters than in

the inner part of the aggregate (Fig. 2).

Concerning the stratification within a single

aggregate, the same observation is also true for

nitrite-oxidizing bacteria of the genus

Nitrospira as detected by a combination of

probes NSR826 and NSR1156. Taken

together, these probes target all known

Nitrospira-like sequences from freshwater

habitats.

FIG.2. CLSM-images of part of aggregate cross­
sections after FISH with CY5-labelled probe
NSV443, specific for Nitrosospira sp. (displayed in
red), and with CY3-1abelled probes NSR826 +
NSR1156, specific for Nitrospira sp. (displayed in
yellow). For each picture, two confocal images and
the respective phase contrast image were combined.
Aggregates are shown from AI (a), A2 (b), and A3
(c). The aggregate surface is indicated by arrows.
bar =100 flm.
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TABLE 5. Quantification of nitrifying bacteria by FISH

sample cells [107
. mm,3] detected by probe

NSOl225 NSV443 NSR826INSRI156 NSR447

Al shell' 5.55 ± 2.75 4.30 ± 0.70 62.1 ± 17.9 1.71 ± 0.90

centerb 1.80 ± 0.62 1.35±0.13 12.3 ± 11.6 0.06 ±0.02

A2 shell 4.39 ± 2.22 4.80 ± 2.56 78.5 ± 25.4 1.75 ± 0.90

center 1.92 ± 0.59 1.87 ± 0.54 31.3 ± 19.0 0.07 ± 0.02

A3 shell 2.74 ± 0.38 2.24 ± 1.17 93.4 ± 55.0 3.9 ± 0.71

center 0.97 ± 0.57 1.14 ± 0.21 42.1 ± 27.3 0.14±0.12

• cell numbers within the active, nitrifying shell of the aggregates

b cell numbers within the inacti ve central part of the aggregates

In contrast, the cell volume of Nitrospira sp. increased from the bottom to the top of the reactor, and

equaled in aggregate A2 the cell volume of Nitrosospira sp. (cf. Fig. 2). However, due to their much

smaller cell size, numbers of nitrite-oxidizing bacteria exceeded that of ammonia-oxidizing bacteria

for more than an order of magnitude. Interestingly, a distinct, minor part of Nitrospira sp., as detected

by probe NSR447, was almost exclusively restricted to the active shell of the aggregates.

Cell numbers were used to calculate specific oxidation rates of ammonium and nitrite per cell from

the volumetric ammonium and nitrite oxidation rates (Table 6). Generally, the specific reaction rates

of Nitrosospira sp. were one order of magnitude higher than the rates of Nitrospira, and rates were

higher under incubation conditions than in situ. However, no significant change in the specific rates

per cell was observed along the reactor column. An exception was the ammonium oxidation rate of

Nitrosospira sp. in aggregate A3 that was considerably lower than the rates from aggregates A I and

A2 when incubated with 300 IlM ammonium.

TABLE 6. Specific reaction rates of nitrifying bacteria in the active shell

in situ conditiolls

sample specific reaction rates
[10'4 pmol-celr'.h"]

incubation conditions

sample specific reaction rates

[10'4 pmo!·celrl·h"]

AOR' NORb AOR NOR

Al 2.5 ± 2.4 0.2±0.1 Al 9.2 ± 9.9 0.5 ± 0.2

A2 2.7 ± 2.3 0.2 ± 0.1 A2 9.7 ± 11.8 0.5 ± 0.5

A3 0 0.1 ±0.05 A3.mmonium 2.8 ± 0.4 0.1 ±0.05

A3n;.".e 0 0.7 ± 0.8

a ammonium oxidation rate per NSO 1225-positive cell

b nitrite oxidation rate per NSR826INSR I I56-positive cell

DISCUSSION

Accuracy of the calculations. The nitrifying aggregates investigated in this study were rather

heterogeneous regarding their irregular surface structures and the patchy distribution of nitrifying

bacteria within the active shell (Fig. 2). Consequently, also the measured profiles showed some

variability, and the standard deviations on both rate calculation and FISH quantification, were rather

high. The ratio of the fluxes for NH/-Oz-N03', however, was close to the expected stoichiometric
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ratio of I :2: I, thus lending support to our mean values. In contrast, in sample A3 (in situ conditions)

the flux ratio clearly indicates that not enough profiles have been measured to reliable calculate

average fluxes of nitrite and/or nitrate. A small source of uncertainty, again due to the irregular shape

of the aggregates, was the determination of the radius used to calculate volumetric reaction rates.

However, the error made by a deviation of ±100 11m was only about 2% and can therefore be

neglected.

For the FISH-based quantification of nitrifying populations the threshold set point for the area

measurement was critical. Thus, special effort was taken in its calibration, and occasionally the results

from image analysis were compared with conventional counts of hybridized cells in defined areas of

an optical slice. The results from both procedures never differed more than 10%, and we concluded

that the enumeration of nitrifying bacteria per area by our image analysis procedure was accurate

enough for our study. However, this was only possible because of the morphological homogeneity of

the respective nitrifying populations. Another source of uncertainty was the extrapolation of these

values to cell numbers per volume. Biofilm samples have been reported to shrink during

immobilization to microscopic slides and dehydration, especially in z-direction (33). This would lead

to an underestimation of the total aggregate volume and hence to an overestimation of the cell

numbers per volume. A comparison of the thickness of sections after hybridization with the

cryosection thickness revealed a shrinkage of about 15% for all samples. Therefore, the numbers of

nitrifiers per volume might have been overestimated by 15%, while the specific rates per cell might

have been underestimated by 15%, but both to the same amount in all samples. For all the reasons

discussed above, we are aware that the absolute numbers reported in this study, especially for the

specific reaction rates per cell, might be best estimates only. Still we are convinced that they reliably

describe the trends in the investigated system and are within the right order of magnitude.

Analysis under in situ conditions. The decrease of ammonium in the bulk water along the reactor

column (Table I) most likely leads to the decreasing numbers of ammonia-oxidizing bacteria in the

active shell with increasing reactor height (Table 5, Fig.2) and to a decreasing thickness of this shell

(Fig. I a, c, e). However, as also the volumetric ammonium oxidation rate decreases from AI to A2

(Table 4) the specific rates per cell Nitrosospira sp. remain about the same at these points (Table 6).

Their value of approximately 0.25 fmol·celrl·h- I is comparable to specific rates reported by Wagner et

at. (20, 35) for Nitrosococcus mobilis in activated sludge but is one to two orders of magnitude below

the rates reported for Nitrosospira sp. and other ammonia oxidizers from pure culture studies (6, 27).

This might be due to the apparent ammonium limitation under in situ conditions but might as well be

a strain-specific feature. In aggregates from the top of the reactor (A3) and in the central parts of all

aggregates no or very low concentrations of ammonium (probably below Km as has been discussed

previously (32» and no ammonium oxidation activity were detected (Fig. I). Nevertheless, ammonia­

oxidizing bacteria were detectable by FISH although in significantly lower numbers than in the active

zones (Fig. 2, Table 5). This again demonstrates the capacity of ammonia-oxidizing bacteria to

maintain their ribosomes even under conditions not conducive to activity and growth (34, 35).

Nitrite oxidation was almost completely coupled to nitrite production by ammonia-oxidizers.

Consequently, despite an increase in number of Nitrospira sp. found in the active shell from AI to A3

(Fig. 2, Table 5) nitrite oxidation rates decreased with reactor height (Table 4). Specific nitrite

oxidation rates per cell also slightly decreased but were always extremely low (max. 0.02 fmokelr

I.h- I
). No pure culture data are currently available for Nitrospira sp. but the values reported for

Nitrobacter sp. are about 200-2000 times higher (27). Again, this difference might result from

unfavorable in situ conditions and/or from the differing physiological properties of these only

distantly related (13) nitrite-oxidizers.
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Nitrification activity under elevated substrate concentrations. To test the nitrifying capacity of the

system additional measurements were performed under air saturation in medium containing 300 f!M

ammonium (AI, A2, A3) or 300 f!M nitrite (A3). The volumetric respiration rates in AI and A2 are

high (-100 nmo(·mm·3·h·1
) compared to values of 2 - 40 nmol·mm·3 h· 1 reported from sediments (31),

activated sludge floes (Schramm et al. unpublished), and heterotrophic aggregates (26) or biofilms

(21). But they are similar to rates determined earlier under the same conditions in the same system

(12), in a nitrifying trickling filter biofilm (34), or in a hypersaline microbial mat (19). Such high rates

are only possible if bacteria and hence activities are extremely concentrated like shown for the

nitrifying shell in this study (Fig. 2).

The specific ammonium oxidation rates per cell under incubation conditions (Table 6) are

approximately the same in A I and A2, and both are higher than the rates under in situ conditions.

Although oxygen limited, we assume this values to be close to the maximum specific activity as

higher levels of oxygen had been previously shown to inhibit nitrification in the same system (12).

Still the specific activity is well below the rates reported for pure cultures (see above). Interestingly,

ammonia-oxidizers in A3, i.e. the population subjected to starvation in situ, developed significantly

less activity even when supplied with enough substrate (Tables 4 and 6, A3.nunonium). This leads to the

hypothesis that Nitrosospira sp. adapts to starvation by entering a dormant or inactive state that is not

coupled to the reduction of the sellular ribosome level as proven by FISH. Whether this is due to a

decreased activity or concentration of ammonia monooxygenase, or by some other unknown

mechanisms, might be addressed by the application of mRNA-targeted probes or ammonia

monooxygenase-targeted antibodics in the future.

Cell-specific nitrite oxidation rates increased for all sampling points when aggregates were released

from nitrite limitation (Table 6). However, it is questionable if maximum nitrite oxidation activity was

reached during the incubation. Ammonia-oxidizers are thought to possess lower Km values for oxygen

than nitrite-oxidizers (14, 27). Therefore, the nitrite accumulation detected in A I and A2 (Fig I b, d)

might indicate that ammonia-oxidizers have out-competed nitrite-oxidizers for oxygen. On the other

hand, Km values are only available for Nitrosomonas spp. and Nitrobacter spp., and nitrite

accumulation was less pronounced in A2 although the oxygen concentration within the active layer

was even less than in A 1. Furthermore in A3, when neither oxygen nor nitrite were limiting, the

specific nitrite oxidation rates were not significantly higher. For these reasons, we assume that the

specific rates at least closely approached the maximum activity. Like mentioned for the ammonia­

oxidizers, still these activities are much lower (100-900 times) than those described for Nitrobacter.

The recent detection of Nitrospira-like sequences and cells in various environments (10, 13, 16, 20)

and the absence of Nitrobacter sp. in similar habitats (15, 33, 36) might therefore indicate other

competitive advantages of Nirrospira sp. like, e.g., higher substrate affinities for oxygen and/or nitrite,

better adaptations to starvation, or better resistance against toxic shocks.

In principle, substrate affinities (expressed as KM values) can be estimated from ammonium and nitrite

microprofiles and cell numbers assuming Michaelis-Menten kinetics. For this approach, cell-specific

reaction rates were calculated for each data point using the second derivative of the profiles. Relating

these values to the respective substrate concentration in a Lineweaver-Burk-plot, KM values as low as

40 f!M ammonium (pH 7.8) and 10 f!M nitrite were retrieved for Nitrosospira sp. and Nitrospira sp.,

respectively. This was one to two orders of magnitude lower than the KM values for Nitrosomonas

europaea and most other Nirrosol11onas strains (18, 27) and most Nitrobacter spp. (17,27) found in

literature. In an ecological context, Nitrosospira sp. and Nitrospira sp. thus could indeed be regarded

as typical K-strategists with high substrate affinities and low maximum activity (or growth rate)

compared to the r-strategists Nitrosol11onas europaea and Nitrobacter sp. (5, 32). However, it has to
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be stressed again that a lot of uncertainties affect these numbers: firstly, the sample is highly

heterogeneous as has been discussed above; secondly, it is not absolutely sure whether maximum

reaction rates could be reached at all under the conditions applied; thirdly, the oligonucleotide probes

used in this study are not specific on the species level, leaving a possibility for phylogenetic and

physiological diversity as discussed for Nitrospira sp. below. Therefore, these numbers again should

be regarded as the best possible estimates, correct within the order of magnitude.

It may be tempting to speculate about the small fraction of Nitrospira sp. that was detected

exclusively in the active shell of the aggregates by probe NSR447. What makes them different

compared to the main population? This can certainly not be decided on the basis of this study, and is

more intended to read as a caution: There are currently two dozens of Nitrospira-like sequences

available, representing probably at least five distinct species, that must not be presumed to have

identical physiologies. Clearly, pure culture studies are needed to address this question.

In conclusion, the combination of microsensor measurements and FISH allowed a detailed analysis of

the in situ structure and function of the nitrifying bioreactor on a microscale. Measurements under

elevated substrate concentrations were used to extract valuable information about the in situ activity

of hitherto uncultured nitrifying bacteria.
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Chapter 6

Microenvironments and Distribution of Nitrifying Bacteria

in a Membrane-Bound Biofilm

ANDREAS SCHRAMM, DIRK DE BEER, ARMIN GIESEKE, AND RUDOLF AMANN

Max Planck Institute for Marine Microbiology, D-28359 Bremen. Germany

The distribution of nitrifying bacteria of the genera Nitrosomonas, Nitrosospira,

Nitrobacter, and Nitrospira was investigated in a membrane-bound biofilm system with

opposed supply of oxygen and substrate. Gradients of oxygen, pH, nitrite and nitrate were

determined by means of microsensors while the nitrifying populations along these

gradients were identified and quantified using fluorescence in situ hybridisation in

combination with confocal laser scanning microscopy. Due to high ammonium and nitrite

concentrations the oxic part of the biofilm was dominated by close relatives of

Nitrosomonas europaea and by members of the genus Nitrobacter. In contrast, Nitrospira

sp. was most abundant in zones in which oxygen concentrations were very low or zero. In

the totally anoxic part of the biofilm cell numbers of all nitrifiers were relatively low.

Interestingly, Nitrobacter sp. frequently co-aggregated with ammonia-oxidising bacteria,

whereas this was only seldom observed for Nitrospira sp.. Based on these observations the

ecophysiology of yet uncultured Nitrospira sp. is discussed in the context of environmental

competitiveness.

Nitrifying bacteria which participate in the nitrogen cycle by the successive oxidation of ammonium

via nitrite to nitrate have been intensively studied for years using Nitrosomonas europaea (Koops &

Moller, 1992) and Nitrobacter sp. (Bock & Koops, 1992) as model organisms (Laanbroek &

Woldendorp, 1995; Prosser, 1989). However, recent data obtained by molecular techniques show that

yet uncultured ammonia- and nitrite-oxidisers of the genera Nitrosospira (Hiorns et al., 1995;

Kowalchuk et al., 1997; Stephen et al., 1996) and Nitrospira (Burrel et al., 1998; Hovanec et al.,

1998; Juretschko et al., 1998; Schramm et al., 1998) are equally or even more important in the

environment. It now remains to be investigated whether ecophysiological knowledge on Nitrosomonas

or Nitrobacter species can be extrapolated to Nitrosospira or Nitrospira (Laanbroek and Woldendorp,

1995). A challenging task for microbial ecologists is therefore the elucidation of characteristic

properties of these uncultured strains, with the ultimate goal of understanding the environmental

factors that select for certain nitrifying populations in nature.

The classical way to tackle this problem was the isolation and characterisation of ecologically

relevant nitrifiers. With these fastidious and slowly growing bacteria, unfortunately, the cultivation

approach appears to be difficult.

Alternatively, one might detect nitrifying bacteria in a cultivation-independent way in various habitats

based on their 16S rDNA sequences and relate this to data of some important environmental factors

like pH, nitrogen or oxygen concentrations (Hastings et al., 1998; Kowalchuk, et aI., 1997; Princic et

al., 1998). However, due to the occurrence of chemical microgradients and microniches in soil,

sediment or biofilms, the information derived from such correlations is rather indirect and therefore
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limited. More direct information about microenvironments and distribution of nitrifying bacteria can

be obtained by the combined use of microsensors and fluorescence in situ hybridisation (FISH), as

already previously demonstrated for biofilms (Schramm et ai., 1998; Schramm et al., 1996). Recently,

even the in situ kinetics of uncultured nitrifying bacteria have been estimated by this approach

(Schramm et al., this thesis, Chapter 5). Based upon these results, it was hypothesised that members

of the Nitrosomonas europaea-lineage (Pommerening-Roser et al., 1996) and Nitrobacter sp. could

out-compete Nitrosospira sp. and Nitrospira sp. in habitats with high substrate concentrations due to

their higher maximum growth rates, whereas Nitrosospira sp. and Nitrospira sp. were better

competitors in low-substrate environments due to their lower KM values (Schramm, et aI., 1998),

(Schramm et al., this thesis, Chapter 5).

In this study, a membrane-bound nitrifying biofilm was investigated that was supplied with oxygen

via a gas-permeable membrane while ammonium was provided from the bulk water. The concept of

separating oxygen supply from substrate supply in order to enhance nitrification and to enable

simultaneous nitrification-denitrification in biofilms, has been reported previously (Timberlake et al.,

1988). A similar pilot reactor (Ozoguz, 1997) was shown to exhibit microgradients of oxygen, nitrite,

and nitrate within the biofilm (de Beer et al., 1997) and to contain a diverse nitrifying community, i.e.

Nitrosomonas sp., Nitrosospira sp., Nitrobacter sp. and Nitrospira sp. (de Beer & Schramm, in press).

Therefore, this reactor was chosen as a model system to study the distribution of these different

nitrifiers along the microgradients.

EXPERIMENTAL PROCEDURES
Biofilm reactor operation. Design and performance of the pilot membrane reactor have been

described previously (Ozoguz, 1997). To facilitate biofilm sampling and true in situ microsensor

measurements a slightly modified lab-scale reactor was established (Fig.l) and inoculated with

material from the pilot plant. Pieces of silicon tubing were mounted as substratum perpendicular to

the flow in the lumen of a Plexiglas pipe. Above each tubing an opening in the pipe that was sealed

with a rubber stopper during normal reactor operation enabled the insertion of microsensors. The

model system had a volume of 20.8 I, a recirculation rate of 900 I·h- I
, and artificial wastewater

(KzHP04 0.14 gT I
, MgS04 0.17 gT I

, (NH4)zS04 1.32 g.r l
, HJBOJ 2 mg·r l

, MnCl 1.25 mg.r l
,

NasMo04 0.27 mg·r l
, ZnS04 0.15 mg.r l

, CUS04 0.06 mg·r l
, Co(NOJh 0.035 mg·r l

) was added at a

rate of 5 l·h- I
. Temperature was kept at 28°C, pH was adjusted to 7.8, and the conditioning vessel was

flushed with dinitrogen gas during start-up to prevent biofilm growth apart from the Oz-supplying

membrane. Occasionally, NH/, NOz-, and NOJ- in the bulk water were determined by routine

chemical analysis (LCK 303, 341, and 339, Dr. Lange, Germany). Oxygen and pH were monitored

continuously in the conditioning vessel by macroelectrodes (WTW, Germany).

pump

plexiglas pipe
(reaction vessel)

silicone tubing with pressurised air (3 atm)
serving as substratum
for the growth of biofilm

openings
for microsensor
measurements
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conditioning vessel:
pH, 0" T control

+­
substrate

inflow

Fig. I.
Scheme of model
system set-up for
growth of a
membrane-bound
biofilm
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Microsensor measurements. Clark-type microsensors for O2 (Revsbech, 1989) and H2S (Kiihl et al.,

1998), and liquid ion-exchanging membrane (LIX) microsensors for pH, NH/, N02-, and NO)- (de

Beer, et aI., 1997) were prepared and calibrated as described previously. Tip diameters were <10 /lm

for O2 and H2S, 5 /lm for pH, NH/ and NO)', and 15 /lm for N02- microsensors. LIX microsensors

were connected to a millivoltmeter, and the potential was recorded relative to a calomel reference

electrode (Radiometer, Denmark), while O2 and H2S sensors were connected to a picoamperemeter

with internal polarisation unit. Microprofiles in the biofilm were measured directly in the running

reactor by inserting the microsensors through openings in the reactor pipe (de Beer, et aI., 1997). The

spatial resolution of the measurements was 50 /lm as controlled by a micromanipulator, and the

profiles were read on a strip chart recorder. For each parameter at least ten profiles were measured at

different sites in the biofilm.

Biofilm preparation. After the microsensor measurements, part of the tubing with the attached

biofilm was sampled and immediately fixed in paraformaldehyde solution (4% w/v) for 60 min at 4°C

(Amann et al., 1990). The sample was washed in phosphate buffered saline, embedded over night in

OCT compound (Tissue-Tek II, Miles, Elkhart, Ind.) and frozen in a cryomicrotom at -35°C as

described previously (Schramm, et aI., 1998). When frozen, it was possible to cut the tubing with the

biofilm into two longitudinal sections by use of a scalpel and to remove the embedded biofilm

material from the tubing without losses (Yu et al., 1994; Schramm, et aI., 1996). The biofilm was

then mounted with OCT compound to the object holder of the cryomicrotom. Sections of 14 /lm

thickness were made at a temperature of _17°C perpendicular to the biofilm surface, and immobilised

on gelatine-coated (Amann, et aI., 1990) microscopic slides as previously described (Schramm, et aI.,

1998).

Fluorescence in situ hybridisation. The sequences of all oligonucleotide probes used in this study,

their target organisms, hybridisation conditions, and references are given in Table I. Probes were

synthesised and fluorescently labelled with the hydrophilic sulfoindocyanine dyes CY3 or CY5 at the

5' end by Interactiva Biotechnologie GmbH (Ulm, Germany). In situ hybridisation of dehydrated

biofilm sections was carried out at 46°C in an isotonically equilibrated humidity chamber according to

the protocol of Amann et al. (Amann, et aI., 1990). Stringent hybridisation conditions for the different

oligonucleotide probes were adjusted using the formamide and sodium chloride concentrations listed

in Table 1 in the hybridisation and washing buffers, respectively (Manz et al., 1992). Double­

hybridisations with two probes that require different stringencies (e.g. NSR826+NSRI156) were done

as subsequent hybridisations starting with the probe of higher thermal stability.

The nitrifying populations were quantified using confocal laser scanning microscopy (LSM 510, Carl

Zeiss, lena, Germany) and image analysis as described in detail by Schramm et al. (this thesis,

Chapter 5). Shortly, threshold values were defined to exclude background fluorescence and the probe­

positive cell area was quantified. This procedure was calibrated by comparative cell counts, and the

results were expressed as cells per volume. Each 50 /lm-Iayer of the biofilm, starting at the membrane,

was quantified separately.

RESULTS

Biofilm succession. Within two weeks after inoculation a thin, homogeneous biofilm became visible

on the surface of the silicone tubing and traces of nitrite were measured in the bulk water. After five

weeks the biofilm was about 300 /lm thick, and grew up to 600 /lm after 10 weeks. During the whole

period, [NH/] in the bulk water decreased while [N02'] and [NO)-] fluctuated but constantly

increased, with [N02-] always exceeding [NO)} No oxygen was detectable with a macroelectrode at

any time in the bulk water. From week 10 to week 14 the biofilm had reached a relatively stable state.
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Table 1. Oligonucleotide probes I~
::l
<;:;.
0

Probe Specificity Sequence (5'-3 ') of probe Target site" [%] [mM] Ref. II(rRNA positions) FAb NaCic

0....
EUB338 Bacteria GCTGCCTCCCGTAGGAGT 16S,338-355 20 225 Amann et aI., 1990 :=.

5.
NON non-binding control CGACGGAGGGCATCCTCA 20 225 Manz et aI., 1992 -<'

5'
(JQ

NSOl225 ammonia-oxidising ~-proteobacteria CGCCATTGTATTACGTGTGA 16S,1225-1244 35 80 Mobarry et aI., 1996 0-

~
NSOl90 ammonia-oxidising ~-proteobacteria CGATCCCCTGCTTTTCTCC 16S,190-208 55 20 Mobarry et aI., 1996 0-

::l.
~

NSV443 Nitrosospira spp. CCGTGACCGTTTCGTTCCG 16S,444-462 30 112 Mobarry et aI., 1996

NSMI56 Nitrosomonas spp. TATTAGCACATCTTTCGAT 16S,156-174 5 636 Mobarry et aI., 1996

0- NEU23a Nitrosomonas europaea-lineage CCCCTCTGCTGCACTCTA 16S,653-670 40 56 Wagner et aI.,I995tv

CTE unlabelled competitor for NEU23a TTCCATCCCCCTCTGCCG 16S,659-676 40 56 Wagner et al., 1995

Nsel472d N. europaea, N. eutropha, N. halophila ACCCCAGTCATGACCCCC 16S, 1472-1489 50 28 Juretschko et al., 1998

NmV Nitrosococcus mobilis TCCTCAGAGACTACGCGG 16S,174-191 35 80 Juretschko et aI., 1998

NIT3 Nitrobacter spp. CCTGTGCTCCATGCTCCG 16S,1035-1048 40 56 Wagner et aI., 1996

cNIT3 unlabelled competitor for NIT3 CCTGTGCTCCAGGCTCCG 16S, 1035-1048 40 56 Wagner et aI., 1996

NSR826 freshwater Nitrospira spp. GTAACCCGCCGACACTTA 16S, 826-843 20 225 Schramm et aI.. 1998

NSRI156 freshwater Nitrospira spp. CCCGTTCTCCTGGGCAGT 16S,1156-1173 30 112 Schramm et aI., 1998

"E. coli numbering (Brosius et al., 1981) C mM sodium chloride in the washing buffer

b percentage formamide in the hybridization buffer d published as S-*-Nse-1472-a-A-18
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However, it was obvious from the nitrite accumulation that nitrification was incomplete during the

whole succession.

In week 15, acetate was added to study the effect of organic carbon amendation on the nitrifying

community. The system reacted promptly by onset of denitrification and sulfate reduction, both

proven by microsensor measurements, and by massive growth of fungi. This resulted in destruction of

the biofilm structure by hyphae and poisoning of the biofilm community by H2S, essentially

terminating the experiment. Despite similar substrate and operational conditions, sulfate reduction

was never observed in the pilot reactor. Therefore, we presume that the biomass-volume ratio in our

model system was not high enough to produce sufficient amounts of nitrite/nitrate to control sulfate

reducing bacteria either by direct inhibition (Reinsel et at., 1996) or by competition of denitrifying

bacteria for organic carbon.

Microsensor measurements. In situ microprofiles of oxygen, pH, nitrite and nitrate were measured

in the biofilm after five, ten and 14 weeks, and again after the addition of acetate. Ammonium was

shown to always penetrate the whole biofilm at concentrations of 15-20 mM but the resolution of the

LIX microsensor in this concentration range was not high enough to record more accurate profiles.

Detection of the biofilm surface in the reactor was difficult. However, when the sensor tip reached the

silicone membrane a signal peak was observed due to the mechanic touch. When introduced further,

the signal of the LIX sensors disappeared, probably because they lost electric contact to the reference

electrode, while oxygen sensors showed a perfectly linear profile within the silicone membrane.

Thereby it was possible to align the different profiles with respect to the biofilm base.

The profiles measured after five weeks showed depletion of oxygen usually within a distance of 150­

250 ~m from the membrane, and a decrease of pH from -7.6 (biofilm surface) to 6.8 - 7.0 at the

biofilm base. [N02-] was with 200-300 ~M highest within 100 ~m from the membrane and decreased

towards the biofilm surface to values of 50-150 ~M. The same was true for [NO)-] although the

profiles showed more heterogeneity and the concentrations were slightly lower, i.e. 50-250 ~M at the

biofilm base and 30-100 ~M towards the surface. This indicates a nitrifying zone directly at the

biofilm base with ammonium-oxidation rates exceeding nitrite-oxidation rates. As ammonia-oxidising

bacteria catalyse the first reaction of a two-step process and are faster growing than nitrite-oxidising

bacteria (Bock et at., 1986; Prosser, 1989) this is to be expected for the start-up phase of a succession

experiment.

The profiles measured in week 10 and 14 were virtually the same, and similar to the measurements in

week 5. However, the concentrations of nitrate (towards the membrane: 100-400 ~M; towards the

biofilm surface: 80-150) and especially nitrite (towards the membrane: 400-1200 ~M; towards the

surface: 150-300) were now higher (Fig. 2A). Although ammonia and nitrite oxidation were

obviously still not in balance we concluded that the biofilm had reached a relatively mature state, as

neither bulk water measurements, microprofiles, nor the community structure of nitrifying bacteria

(see below) showed any significant change from week IO to 14. Figure 2A displays the

microgradients found after 10 weeks in the biofilm.

Distribution of nitrifying bacteria. Probes EUB338 and NON were used as positive and negative

controls, respectively. Probe penetration was sufficient to enable FISH in all parts of the biofilm,

whereas unspecific binding of probes and autofluorescence, except for some easily distinguishable,

crystalline particles, were negligible. A hierarchical set of oligonucleotide probes (Table I) was

applied to reliably identify ammonia-oxidising bacteria of the ~-subclass of Proteobacteria as

outlined before (Amann et at., 1995). Populations identified by the different probes were quantified

and compared on the basis of their cell area, and in all samples a close match (within the standard

deviations) was found for the areas detected by probes NSOI90, NS01225 and NSMI56 + NSV443.
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However, only about 5% of all ammonia-oxidisers hybridised also with probe NSV443, specific for

the genus Nitrosospira. Furthermore, hybridisations with probes NSMI56, NEU23a and Nsel472

yielded very similar area values. Thereby, the vast majority of the ammonia-oxidisers is demonstrated

to belong to the Nitrosomonas europaea-eutropha-halophila group while Nitrosospira sp. accounted

only for about 5% of all ammonia-oxidisers in all samples. Additionally, few cells of Nitrosococcus

mobilis have been detected by probe NmV. These constituted in no case more than 0.1% of all

amrnonia-oxidisers. This low number is not surprising as N. mobilis is a halophilic strain which is

easily overgrown by N. europaea in low-salt environments (Juretschko, et aI., 1998). Nitrite-oxidising

bacteria were identified using probe NIT3, specific for all sequenced strains of Nitrobacter (Wagner

et al., 1996) and a combination of probes NSR826 + NSR 1156 which together target all known

Nitrospira-Iike sequences from freshwater habitats (Schramm, et aI., 1998).

After five weeks, all nitrifying populations initially detected in the pilot plant (de Beer and Schramm,

in press) were also found in the model reactor. However, N. europaea-like amrnonia-oxidisers already

dominated the first 100 J.lm of the biofilm directly on the membrane, with cell numbers 1-2 orders of

magnitude higher than those of all other nitrifiers in that zone, i.e. 1.8.1011 cm,J.

In samples from week 10 and 14, a clear stratification of nitrifying bacteria (Fig. 2B, C) was

established along the gradients (Fig. 2A) within the biofilm. N. europaea-like ammonia-oxidisers still

formed an extremely dense layer of cells directly on the membrane surface (2.5.10 11 cells cm'\ and

their numbers decreased gradually with decreasing oxygen concentrations. From 250 J.lm, the distance

from the membrane where oxygen disappeared, till almost to the biofilm surface cell numbers were in

the range of 3.109 cm,3 In contrast, Nitrosospira sp. occurred throughout the biofilm in lower

numbers of I· 109 to 6.109 cells cm').

Among the nitrite-oxidisers, Nitrobacter sp. showed a preference for the high oxygen and mtnte

concentrations within the first 100 J.lm at the membrane. When oxygen became very low or zero, cell

numbers of Nitrobacter sp. decreased while Nitrospira sp., which was absent from the first 100 J.lm at

the membrane, reached maximum abundance in the zone where the oxygen concentration became

very low. Generally, the numbers of nitrite-oxidisers were much lower than the numbers of N.

europaea in the nitrifying zone. Maximum cell numbers of Nitrospira sp. were 9.7.109 cells cm') and

thus lower than the maximum cell numbers of Nitrobacter sp., 7.4.10 10 cells cm'). Like reported

previously (Mobarry et al., 1996; Schramm, et aI., 1996), Nitrobacter sp. was almost always situated

in close proximity to ammonia-oxidisers while this was only seldomly found for Nitrospira sp..

Fig. 2
A) Gradients of oxygen (e), pH (+), niirite (.), and nitrate (D) in the 10 weeks-old membrane-biofilm as

measured with microsensors. For each data point, mean values and standard deviations (95% confidence limit)

out of 10 profiles are shown, except for the nitrate profile, where standard deviations were in the same range as

mean values. Therefore they had to be omitted in order to keep the figure readable. The ammonium concentration

(dotted line) was extrapolated from three measuring points, i.e. at the membrane, at the biofilm surface, and in the

bulk water.

B) Distribution of ammonia-oxidising bacteria and

C) nitrite-oxidising bacteria in the membrane-biofilm as detected by FISH. Abundance of the different

populations was quantified in steps of 50 f.lm starting at the membrane (to the left). Note different scale.
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DISCUSSION

Questions of competition, coexistence or syntrophy of micro-organisms in the environment are often

addressed by competition experiments with isolates either in chemostat (Visscher et al., 1992) or

gradient systems (Thomas & Wimpenny, 1993). However, this is not well suited for nitrifying

bacteria because environmentally relevant strains are difficult to obtain in pure culture in high density

and activity (Laanbroek and Woldendorp, 1995; Prosser, 1989). This seems to be especially true for

the recently recognised Nirrospira-like nitrite-oxidisers (Juretschko, et aI., 1998, Schramm et aI., this

thesis, Chapter 5). In contrast, extremely dense and active nitrifying communities have been reported

from various biofilms (Mobarry, et aI., 1996; Schramm, et aI., 1998; Schramm, et aI., 1996) and

activated sludges (Juretschko, et aI., 1998; Wagner et al., 1995). In this study, we used therefore a

biofilm reactor as natural gradient system to study competition and mutualism among nitrifying

bacteria. Although the results might be somewhat restricted and more difficult to interpret than those

from pure culture experiments it is currently the most direct possibility to gain information on the

ecology of nitrification in the absence of relevant pure cultures. The resulting community was

dominated by ammonia-oxidisers closely related to N. europaea and N. eutropha. Considering the

high ammonium concentrations (15-20 mM) in the reactor, this confirms earlier reports on their

adaptation to high substrate and product concentrations (Pommerening-Roser, et aI., 1996). Oxygen

seems to be the main factor controlling this population in the biofilm as its distribution correlates well

with the oxygen concentration. A similar situation was reported previously for Nitrosomonas sp. in a

trickling filter biofilm (Schramm, et aI., 1996). Nitrosospira sp. was not competitive under the

conditions prevailing in the biofilm. Whether this was due to a lower specific growth rate as

suggested by pure culture (Belser, 1979) and in situ studies (Schramm et al., 1998, Schramm et ai,

this thesis, Chapter 5), or due to substrate and/or product inhibition (Prosser, 1989), can not be

resol ved on the basis of our data.

Interestingly, the two nitrite-oxidiser populations found in our system, Nitrobacter sp. and Nitrospira

sp., appear to be spatially almost fully separated. Nitrobacter sp. was only detected close to the

membrane where oxygen and nitrite concentrations were highest. This supports the idea that

Nitrobacter sp. outgrows Nitrospira sp. at high substrate concentrations (Schramm et ai, this thesis,

Chapter 5). Low growth rates have been reported for pure cultures of Nitrospira sp. (Ehrich et al.,

1995; Watson et al., 1986), and low nitrite-oxidation rates were proposed for uncultered Nitrospira

sp. in situ (Schramm et al., this thesis, Chapter 5). Why then did Nitrospira sp. establish in the micro­

aerobic zone of the biofilm, i.e. between 150 and 300 llm away from the membrane, even out­

competing Nitrobacter sp.? Affinity for nitrite is unlikely to playa selective role because the nitrite

concentrations in this part of the biofilm are still about 400 llM and thus above or about the K,w(N02')

values reported for almost all Nirrobacter spp. (60-600 llM, Hunik et al., 1993; Prosser, 1989).

Oxygen concentrations, however, are with 0-15 llM well below the K,w(02) of Nitrobacter sp. (62-256

flM, Prosser, 1989). A competitive advantage for Nitrospira sp. on the basis of oxygen affinity would

therefore imply that its KM(02) is significantly lower than that of Nitrobacter sp..

Furthermore, the differing positioning of the two nitrite-oxidisers relative to the ammonia-oxidising

bacteria should be noted. This might indicate differing saturation concentrations for nitrite-oxidation

of the two populations. The observed close vicinity of Nitrobacter sp. to any ammonia-oxidiser

despite high nitrite concentrations of 500-1000 llM might be explained if nitrite-oxidation was not

saturated at this level and therefore could be accelerated by the direct uptake of nitrite at the source of

its production. Alternatively, the relatively high oxygen concentrations (100-230 llM) within a

distance of 50 llm from the membrane might play an important role. Nitrobacter sp. have been
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reported to be sensitive to high oxygen partial pressures (Bock and Koops, 1992) and therefore might

take advantage from a local oxygen decrease due to ammonia-oxidiser neighbourhood. In contrast,

Nitrospira sp. is subjected to high nitrite and low oxygen concentrations in the zone of its occurrence,

resulting in oxygen limitation of nitrite-oxidation rates. Therefore, co-aggregation with ammonia­

oxidisers might be a disadvantage because of the competition for oxygen rather than a strategy to

enhance nitrite-oxidation activity, and might therefore not have been realised.

We believe that the data presented here support the idea that Nitrospira sp. might be a typical K­

strategist compared to the r-strategist Nitrobacter sp. (Schramm et ai, this thesis, Chapter 5), based on

its putative higher affinities for nitrite and oxygen and its lower growth rate. In natural environments,

where nitrite concentrations are often negligible and nitrifiers have to compete for oxygen with

heterotrophic bacteria, K-strategy might provide a selective advantage. However, physiological

diversity might occur within the genus Nitrospira, and one should be cautious to generalize our

findings as long as no information as available from in situ studies on the species level or from pure

culture experiments.

In conclusion, the analysis of the distribution of nitrifying bacteria along gradients of oxygen and

nitrite yielded insights into the factors that might govern the establishment of populations of different

nitrite-oxidising bacteria in the environment. Nevertheless, efforts should be made to isolate the

respective strains to determine K", values and growth rates for pure cultures and to evaluate their

growth and competitiveness in defined co-cultures.
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Microsensor measurements in a single activated sludge floc by use of "Helle's net-jet". The floc is
kept on a fixed position above a nylon net by an upward flow that equals the sinking velocity of the
floc. Picture courtesy of Dirk de Beer.
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An Interdisciplinary Approach to the Occurrence of Anoxic Microniches,

Denitrification, and Sulfate Reduction in Aerated Activated Sludge
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A combination of different methods was applied to investigate the occurrence of anoxic

processes in aerated activated sludge. Microsensor measurements (02, N02-, N03-, H28)

were performed on single sludge floes to detect anoxic niches, denitrification, or sulfate

reduction on a microscale. Incubations of activated sludge with 15N0 3- and 3580/ were

used to determine denitrification and sulfate reduction on a batch scale.

In five out of seven investigated sludges, no anoxic zones developed during aeration, and

consequently denitrification rates were very low. However, in two sludges anoxia in floes

coincided with significant denitrification rates. No sulfate reduction was found in any

sludge by neither microsensor nor batch investigations, not even under totally anoxic

conditions. In contrast, the presence of sulfate reducing bacteria could be shown by

fluorescence in situ hybridization with 168 rRNA-targeted oligonucleotide probes and by

peR-based detection of genes encoding for the dissimilatory sulfite reductase.

A possible explanation for the absence of anoxia even in most of the larger floes is that

oxygen transport is not only diffusional but enhanced by advection, facilitated by flow

through pores and channels. This is indicated by the irregularity of some oxygen profiles

and further supported by confocal laser scanning microscopy of the three-dimensional

floc structure which showed that floes from the two sludges in which anoxic zones were

found were apparently denser than floes from the other sludges.

Activated sludge is currently the most widely used process for the treatment of both domestic and

industrial wastewaters and, at least by scale, one of the most important microbiological technologies

(18). It primarily relies on the degradation and uptake of organic matter by a microbial community

under aerobic conditions. Modern plants are often supplemented with anoxic/anaerobic reactor stages

to enhance nitrogen and phosphorous removal. The biomass is finally separated from the purified

water by gravitational settling prior to recirculating part of it back into the aeration basin. The

process, therefore, selects for microorganisms that remain in the system due to their growth in floes.

This immobilized growth leads to conditions that markedly differ from conditions of suspended

growth in the bulk water phase. Closer interactions of different physiological types of microorganisms

are possible (i.e. ammonia and nitrite oxidizers (22», and bacteria are better protected from protozoan

grazing (13) or harmful substances. On the other hand, the transport of solutes (e.g. oxygen and

nutrients) in floes is expected to be mainly diffusional (50, 51). Although the vast majority of

73



Anoxic processes in activated sludge?

activated sludge floes has been reported to be smaller than 20 11m, i.e. of a size where diffusion

limitation is unlikely, floes larger than 50 11m contribute most to surface area, volume and mass (28).

In those larger floes, the development of anoxic zones has been postulated due to diffusion limitation

(50, 51). This would allow for combined nitrification-denitrification in quasi-stratified floes, hence

saving reaction space and time (e.g. 16, 51, and references therein). Less beneficial, anoxic

microniches could also support the survival and activity of sulfate reducing bacteria (SRB) in aerated

activated sludge, resulting in the production of H2S and subsequent problems with sludge bulking (58)

or floc disintegration (38).

These hypotheses have been supported indirectly by several reports of nitrogen losses from aeration

basins (16, 20, 51), and by the detection of SRB in activated sludge by cultivation (26, 58) and

fluorescence in situ hybridization (FISH) (34). In contrast, no anoxic zones could be detected by

microsensor measurements in large activated sludge floes (diameter 1.6 mm) at air saturation (26).

Recently, a flow system was developed for microelectrode measurements in freely sinking aggregates

('marine snow') that also enables the analysis of smaller and more fragile floes in a natural flow field

(40, 41). We used this setup for microsensor measurements of oxygen, nitrate, nitrite and hydrogen

sulfide in individual activated sludge floes. These single floc measurements were complemented with

15NO)' and )5S0/ incubation experiments (15, 37) to determine overall rates of denitrification and

sulfate reduction in the different sludges tested. Finally, the 3D structure, that is critical for the

transport mechanism in a floc (diffusion or advection), was recorded by confocal laser scanning

microscopy (CLSM), and the samples were screened for SRB by FISH with rRNA-targeted

oligonucleotide probes (4, 34) and by PCR specific for the dissimilatory sulfite reductase gene (53).

By this interdisciplinary approach we hoped to achieve a more comprehensive picture of the

occurrence and preconditions of anoxic processes in activated sludge floes.

MATERIAL AND METHODS

Samples, Activated sludge samples were obtained from the aeration basins of municipal wastewater

treatment plants (WWTP) in Bremen/Seehausen (Germany), AarhuslMarselisborg, Odder (both

Denmark), and Prague (Czech Republic), from a pilot plant in Aarhus (Denmark), and from two lab­

scale sequencing batch reactors (SBR) receiving artificial wastewater (peptone 1000 mg COD r l
,

acetic acid 300 mg COD r l
, glucose 400 mg COD r ', ethanol 300 mg COD r l

, N,olal 82 mg r ', N­

NH/ 0.2 mg r ', P'o'al 14 mg r l). The sulfate concentration was 102 mg S04-2 r l Both SBR were

operated with rapid filling periods (5-10 min) to simulate the conditions in a plug-flow reactor with

high substrate concentration gradients. SBRI was operated with a complete oxic cycle (23 h aeration,

I h settling), whereas SBR2 was subjected to an alternating cycle (3 h anoxic, 8 h aeration, I h

settling). Some operational data of the investigated sludges are summarized in Table I.

TABLE I. Operational data of the investigated activated sludge plants

WWTP WWTP WWTP WWTP Pilotplant SBRI SBR2

Aarhus Bremen Odder Prague Aarhus

-*COD (mg r') 419 476 450 242 n.d. 2000 2000

*N-NH4 (mg r') 33.1 37.5 34 20 n.d. 0.2 0.2

*P,otal (rng r l
) 3.2 7.0 12 3.65 n.d. 14 14

MLSS (g r ') 4.3 3.04 3.14 2.7 n.d. 7.4 3.2

reaction time (h) 5.7 6.5 n.d. 3.3 n.d. 46 33

sludge age (d) 25 10 n.d. 3.3 n.d. 25 8

*influent values; n.d. not determined
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For microsensor measurements a small portion of sludge was diluted to avoid massive agglomeration

of floes after sampling, and single floes were carefully transferred to the measuring setup by means of

a pipette with the tip cut open. For the batch experiments freshly collected sludge was allowed to

settle, the supernatant was discarded, and the concentrated sludge was used for the incubations.

Microsensor measurements. Clark-type microsensors for Oz (42), LIX-type microsensors for NOz'

and NO,' (8), and amperometric HzS microsensors (25) were constructed, calibrated, and used for

measurements as previously described. The lower detection limits of NOz' and HzS were 0,1 11M and

111M, respectively. Microprofiles of single activated sludge floes were recorded by keeping the floes

freely suspended in a vertical flow system, where the flow velocity opposed and balanced the sinking

velocity of the individual floc. To create a parallel, non-turbulent, uniform flow a nylon stocking was

mounted in the flow chamber horizontally to the flow, and the floes were positioned just above this

net (40,41). By this net-jet system the floes could be stabilized in the upward flowing water column

allowing microsensor measurements with a spatial resolution of 25 - 50 11m inside the floes. For

practical reasons microprofiles of different chemical species were usually recorded in different floes.

The artificial wastewater used in the flow chamber contained 200 11M sodium acetate, 760 11M

(NH4)zS04, 220 11M KHzP04, 400 11M K2HP04, and 41 11M MgS04, representing an F:M (food to

microorganism) ratio of approximately 0.1, which is a value typical for most nutrient removal plants

(47). For measurements of N02' and N03' this medium was supplemented with 100 11M KN03•

Microsensor measurements were performed at 20°C at three different oxygen concentrations: air

saturation (- 280 11M), 2 mg 1'1 (- 60 11M), the oxygen set-point of most aeration basins, and anoxic

conditions.

Additionally, 10 ml of activated sludge were amended with a mixture of acetate, propionate and

butyrate (final concentration I mM each) in a test-tube and incubated for approximately I h without

aeration. After oxygen was depleted (proven by microsensor measurements) an H2S microsensor was

repeatedly introduced into the sludge.

Calculations. The volumetric oxygen respiration rate R of a sphere with zero order kinetics at steady

state is described by (41):

DW(OX)(C~ - Co)

°eff

(I)

where ro is the radius of the sphere, 4nr02 and ~ nr03 are the surface area and volume, respectively, rc

is the radial distance from the center at which the oxygen concentration becomes zero (if there is no

anoxic zone rc = 0), DW(ax) is the molecular diffusion coefficient of oxygen in water, C~ and Co are the

concentrations of oxygen in the bulk water phase and at the floc surface, respectively, and Oeff is the

effective diffusive boundary layer (DBL) thickness. The same formula was used to calculate

denitrification rates of single floes from nitrate microprofiles. D w for oxygen at 20°C is 2.12.10.5 cm2

S·1 (5), for nitrate 1.66.10.5 cm2
S·l (29). Determination of /jeff and data processing was done by a

simple diffusion-reaction model assuming zero order kinetics as described in detail by Ploug et al.

(41).

Acetate concentration at the floc center was estimated from the volumetric oxygen respiration rates R

using (41)

(2)

where Cc is the acetate concentration at the floc center, /jeff is the effective DBL thickness determined

from the oxygen profiles, and Dagg(ac) and DW(ac) are the molecular diffusion coefficients of acetate in
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the floc and in water which were assumed to be the same. Dw(uc) was calculated using standard tables

and formulas (30) and corrected for co-diffusion of NH/ (the cation with the highest concentration in

the medium) to a value of 1.00.10.5 cm2 S·I (29). The same formula was also applied with respect to

oxygen, where C and D are concentrations and diffusion coefficients of oxygen, respectively (41).

Thereby, the respiration rates required to create anoxic conditions at the floc center (i.e. Cc =0) were

calculated as a function of floc size at different bulk water concentrations of oxygen (Fig. 5).

15N03··incubations. Denitrification rates were determined using a batch reactor with a liquid volume

of 1.2 I and a gas volume of 0.5 I (including tubing). The reactor was cylindrical with a diameter of 10

cm and a height of 17 cm. The bottom section was funnel shaped with a porous glass grid in the

center, through which gas was supplied. This arrangement prevented the development of stagnant

zones. The gas flow rate was just sufficient to keep the flocs in suspension. Oxygen concentration

measurements at different positions within the reactor showed that it was well mixed under test

conditions. Prior to the incubations, N2 in the reactor was exchanged by argon to lower the

background, thereby improving the detection of 15N-enriched N2. Rate measurements were performed

at air saturation, at an oxygen concentration of 40-60 /-1M, and in the absence of oxygen by adjusting

the oxygen/argon ratio in the gas supply. An oxygen microelectrode was inserted in the reactor for

continuous monitoring during the experiments. 300 mI of concentrated activated sludge was added to

the reactor, which was then filled up with I I of artificial wastewater (as described for the microsensor

measurements) and amended with sodium acetate to a concentration of 7.8 mM. The reactor contained

2 - 4 g TSS }"I (TSS =total suspended solids). After the oxygen concentration was adjusted, 8.3 mI of

Nal5N03 was added from a 12 mM stock solution of 99.2 atom% 15N03·, corresponding to a final

concentration of 100 /-1M 15N03·. During the 30 min incubation experiment, gas samples of I mI were

taken from the reactor headspace every 3 minutes through a septum with a gas-tight syringe

(Hamilton, 1001RN) and transferred to gas-tight exetainers (Labco), that had been filled with Nrfree

desti lied water.

Subsamples of gas (250 /-II) were analyzed on an isotope ratio mass spectrometer with collectors for

28N2, 29N2, and 30N2 (Sira Series II, VG Isotech, Middlewich, Chesire, UK) as described previously

(37,44). Total denitrification rates were calculated as the sum of denitrification of 15N03· and 14N03-,

that were derived from the measured production of 14NI5N and 15NI5N as described in detail by

Nielsen (37).

35S0/-incubations. Sulfate reduction rates were determined by the 35S-radiotracer method (15) in

samples from SBRI, SBR2, and from the WWTP Prague. Reactor design, incubation conditions, and

filling of the reactor were as described for the 15N-experiments. After the oxygen concentration was

adjusted, 20 ml of tracer was added (Na2
35S04, 2 Mbeq ). Through a septum samples of 5 ml were

taken from the reactor during the first 10 minutes once per minute, then for another 10 minutes once

every two minutes. Subsequently, samples were taken every 10 minutes until one hour after the start

of the test. To each sample, 5 mI of fixation solution (20% ZnAc, 1% formaline, pH 5) were added

and shaken well. Samples to which 0.1 mJ of tracer was added after fixation were used as blanks for

each incubation. Fixed samples were stored at 4°C until further analysis within two months. The

samples were then centrifuged at 10,000 g and the reduced sulfur species in the pellet were

determined with the single-step chromate distillation according to Fossing and J¢rgensen (15). The

detection limit of the method was a sulfate reduction rate of 5 /-Imol S g.1 TSS h· l
.

SRB screening. Activated sludge samples were fixed with paraformaldehyde, immobilized on

microscopic slides and dehydrated as described previously (3). For fluorescence in situ hybridization

(FISH), a set of oligonucleotide probes specific for SRB was used, i.e. SRB385, targeting a broad

range of SRB but also numerous non-sulfate-reducing bacteria (2), probes DSV698, DSV407,
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DSVI292, and DSV214, specific for the family Desulfovibrionaceae (34), probes 221 and 660,

specific for the genus Desulfobacterium and Desulfobulbus, respectively (10), and probes DSB985

and DSS658, specific for the genus Desulfobacter and the taxon Desulfosarcina-Desulfococcus (34),

respectively. All probes were purchased labeled with the fluorescent dye CY3 (Interactiva

Biotechnologie Ulm, Germany) and applied for FISH using the protocol and the conditions recently

described by Manz et al. (34). After the hybridization procedure the samples were stained with 4',6­

diamidino-2-phenylindole (DAPI) according to Wagner et al. (52), mounted with antifading reagent

(Vectashield, Vector Laboratories Inc., Burlingame, CA) and examined under an epifluorescence

microscope (Zeiss, lena, Germany).

Independent testing for the presence of SRB was done by amplification of a 1.9 kb DNA fragment

encoding most of the a and p subunits of the dissimilatory sulfite reductase (DSR). DNA was

extracted from four activated sludge samples (WWTP Bremen and Prague, SBRI, SBR2) by a

combined freeze-thaw (3 times freezing in liquid nitrogen and heating at 37°C) and hot phenol­

chloroform-isoamyl alcohol treatment (49). The DSR gene fragments were then amplified using the

primer pair DSRIF (5'- ACSCACTGGAAGCACG-3') and DSR4R (5'-GTGTAGCAGTTACCGCA­

3') described by Wagner et al.(53). The PCR reaction mixture (100 lJ.I) contained 100 pmol of each

primer, 25 nmol of all four deoxynucleoside triphosphates, 200 lJ.g of bovine serum albumin, 10 lJ.1

lOx PCR buffer (HT Biotechnology Ltd) and 10 - 100 ng of template DNA. A hot-start PCR program

was used, in which I U of SuperTaq DNA polymerase (HT Biotechnology Ltd) was added at 80°C

after 5 min heating at 94°C, followed by 35 cycles, each cycle consisting of I min at 94°C, 1 min at

60°C, and 3 min at n°e. The PCR products were loaded and evaluated on a 1% agarose gel. As a

positive control for proper PCR performance with DNA from activated sludge samples, a 550-bp-long

16S rONA fragment was amplified with universal primers as described by Muyzer et al. (36).

3D analysis of floes. For the staining with f1uorescein-isothiocyanate (FITC) which covalently binds

to proteins (19), 0.2 ml of settled floes were added to 15 ml staining solution (0.1 M sodium

phosphate, pH 7.0 and 4 mg r l FITC). After 5 minutes of gentle mixing the aggregates were allowed

to settle, the solution was decanted and the floes were washed twice with 0.1 M sodium phosphate,

pH 7.0. The aggregates were stored at 4°C in 0.1 M sodium phosphate, pH 7.0, with 4%

paraformaldehyde. For CLSM analysis the pH was raised to 9 by the addition of I M carbonate

buffer. Staining with calcofluor to visualize polysaccharides was performed similarly in the same

buffer with 300 mg r l calcofluor (7). The staining time was 2 hours. Washing and storage was as

described above. The aggregates were microscopically examined at pH 7.0. DNA within the floes was

stained with ethidiumbromide (I Ilg mr!) for 15 min in the same buffer. The floes were washed as

described above, and immediately observed under the CLSM.

CLSM-analysis. FITC-, calcofluor- and ethidiumbromide-stained floes were transferred into 1 ml

buffer to a chamber sealed on the bottom with a cover glass and analyzed with an inverse confocal

laser scanning microscope (LSM51 0, Carl Zeiss, lena, Germany). A 40x Plan-Neofluar 1.3 lens was

used, and three different lasers (Argon-ion: UV [351-364 nm]; 458 nm and 488 nm; HeNe: 543 nm)

were applied for excitation. Image processing, including three-dimensional reconstruction, was

performed with the standard software package delivered with the instrument (version 2.01, service

pack 2). Images were printed on a Kodak printer 8650 by use of the software package Microsoft

Power Point (version 7.0, Microsoft, Redmont, USA).
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RESULTS
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FIG. 1. Typical microprofiles of oxygen, nitrite, and nitrate in activated sludge floes from WWTP Prague (A)
and SBRI (B), measured in the net-jet flow chamber at 2 mg O2 r 1

Hatched area =floc, ro = floc surface, rc =distance from floc center where oxygen disappears, oere. =effective
diffusion boundary layer (DBL). The dotted nitrate profile in Fig lA was recorded under anoxic conditions and
displays the denitrification potential of the floc.

Microprofiles. Microsensor measurements for the different parameters were performed in different

activated sludge floes, all in all in 250 individual floes with a size range of 400 - 2300 Ilm (maximum

length as observed by dissection microscopy). Larger floes often consisted of a loose agglomeration

of compact subunits of 50 - \00 Ilm, suggesting a dynamic aggregation and disintegration. Floes

smaller than 400 Ilm could not be sufficiently stabilized in the flow chamber for profiling.

When incubated under air saturation (-280 IlM) oxygen was never depleted but showed values of 90­

200 IlM in the floc center. In several floes (indicated by arrows in Fig. 3) oxygen gradients were

somewhat irregular or weak, and oxygen increased locally inside the floc. This might result from

advective transport of oxygen-rich bulk medium through pores into the floc. Nitrite concentrations
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slightly increased towards the center reaching 0.5-2 flM, probably due to nitrification. Nitrate

concentrations increased to above bulk water concentrations in some floes indicating nitrifying

activity, appeared unchanged in other floes, and in only three large floes (SBR2) a decrease of 5-10

flM was observed.

Incubation under 40-60 flM oxygen, resembling the conditions in aeration basins, lead to oxygen

concentrations of typically less than 20 flM in the floc center. Complete depletion of oxygen was

observed within 12 out of 14 floes from the two SBR and within 2 out of 8 floes from the WWTP

Bremen but not within floes from any other sample. Accordingly, a significant decrease of nitrate

towards the floc center was only detected within the SBR floes, and denitrification rates of individual

floes were calculated in the range of 2-14 nmol·mm-3 h- ' (average SBRI 5.9 nmol mm-3 h- I
, SBR2 10.2

nmol·mm-3·h- I
). All other samples showed no or very little nitrate consumption (maximum

denitrification rate 1.7 nmol·mm-3·h- l
, averages 0-0.7 nmol·mm·3 h-\ Most nitrite gradients were

insignificant. In some floes nitrite accumulated to concentrations of 5-20 flM, possibly because nitrite

oxidation was inhibited by low oxygen concentrations. Typical profiles of oxygen, nitrate and nitrite

in activated sludge floes from the WWTP samples and from SBR samples are displayed in Fig. 1 A

and B, respectively.

To test the samples for their denitrification capacity we also recorded nitrate and nitrite profiles while

oxygen was absent. A decrease of nitrate was measured in virtually all tested floes from all sludges.

The derived denitrification rates were quite heterogeneous, spanning a range of 0.5-27 nmol·mm-3 h- l
.

Nitrite profiles were similar to the ones measured under 40-60 flM oxygen, although nitrite

production in this case must be attributed to nitrate reduction.

No HzS was detectable by microsensor measurements in any floc from any sample, not even after

prolonged anoxic incubations (1 h) at stagnant conditions in a test-tube.
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FIG. 2. Mean volumetric
respiration rates R and mean floc
sizes d with standard deviations of
all flocs from all samples in which
oxygen gradients have been
measured. Sludges in which anoxic
microniches were detected are
marked with a star. The dotted line
indicates a floc diameter of I mm.
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floc diameter [mml

Respiration rate. Volumetric respiration rates R of individual floes were calculated from the oxygen

profiles assuming diffusion to be the only transport process. They were between 0 and 18 nmol Oz

mm-3h- l
, with the highest R values found in those sludges in which anoxic microniches had been

detected, i.e. in SBR 1, SBR2, and WWTP Bremen (Fig. 2).
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Under 40-60 IlM oxygen the respiration rates obviously decreased with floc size (Fig. 3B)., while this

trend was not as pronounced under air saturation (Fig. 3A).
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FIG. 3. Volumetric oxygen respiration rates versus floc diameter as measured under air saturation (A) and under

2 mg O2 1'1 (B). Arrows indicate floes where the oxygen profile was most likely influenced by advective transport

(liquid flow). These data points were excluded from the regression curve, as the respiration rates are most

probably underestimates (see discussion)
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TABLE 2. Denitrification rates as determined by '5N03 incubations

air saturation 20% air saturation anoxic conditions

WWTPAarhus 0.003±0.001 0.114±0.058 1.496±O.151

WWTPBremen n.d. 0.046±0.013 3.212±1.690

WWTPOdder 0.007±0.004 0.040±0.003 1.592±OAOI

WWTPPrague 0.005±0.001 0.038±0.005 1.198±0.358

Pilotplant Aarhus n.d. n.d. n.d.

SBRI 0.191±0.12 OA70±0.234 1.257±O.128

SBR2 0.101±0.022 0.940±0.282 1.826±O.246

all values ±SD in /lmol N g-I TSS min -I

Incubation experiments. Batch experiments to determine denitrification and sulfate reduction rates

using stable and radio-isotope techniques were performed under the same conditions, and with similar

results, as the microsensor measurements (Table 2). Under air saturation virtually no denitrification

occurred, and the rates under reactor conditions were extremely low except for the SBR samples. All

sludges were, however, capable of denitrification under anoxic conditions, at rather diverse rates.

Sulfate reduction could not be detected neither in sludge from Prague WWTP nor in sludges from the

SBR, regardless of the aeration conditions applied (air saturation, reactor conditions, or anoxia).

SRB screening. FISH with probe SRB385 suggested the presence of SRB in all tested sludges. The

abundance of specifically hybridized cells was roughly estimated to be 1-2% in the SBR and in the

Aarhus pilot plant, and 3-5% of total cells stained by DAPI in all other samples. Of the more specific

probes only DSV698 and DSV1292, complementary to the majority of Desulfovibrio species,

detected significant numbers of target cells, i.e. 0.5-1 % in the SBR and in the Aarhus pilot plant, and

2-4% of total cells in the other samples. In comparison, members of the genera Desulfobacterium,

Desulfobacter, Desulfobulbus, Desulfomicrobium, and Desulfosarcina detected by FISH together

made up less than 0.2% in all samples. Additionally, DNA was extracted from activated sludge

samples of the SBR as well as from samples of the WWTP Prague and Bremen. Using the same

amount of DNA (ca. 20 ng) for the PCR reaction we obtained no PCR product of the DSR gene

fragments from the SBR samples, but distinct PCR products of the expected size were retrieved from

the WWTP samples (data not shown). As dissimilatory sulfite reductase is a key-enzyme for sulfate

reduction, the detection of its genes indicates the presence of sulfate reducing bacteria (or of at least

their DNA) in the WWTP activated sludges but not in the SBR.

3D analysis of activated sludge floes. For a qualitative analysis of the three-dimensional floc

structure of different sludges (WWTP Prague, Bremen, SBRI, SBR2), flocs were stained either with

FITC, calcofluor or ethidium bromide. These fluorescent dyes bind to proteins, polysaccharides and

DNA, respectively, which represent the main compounds of extracellular polymeric substance (EPS)

of activated sludge flocs (50). Staining of these substances should therefore give a good impression of

its structure. A comparison of the different stains revealed that, at the low resolution needed to

visualize complete flocs, all three yielded approximately the same picture, i.e. the same ratio of

stained floc material to unstained pore volume. However, as FITC-conferred fluorescence of the flocs

was brightest and gave best CLSM images, all further 3D analyses were performed on FITC-stained

flocs. CLSM analysis revealed clear differences of the floc structure between the different sludge

types. WWTP flocs appeared to have a more fluffy structure with more and larger pores (i.e. the
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unstained part), which were estimated to comprise 50-80% of the entire floc volume. In contrast, SBR

floes seemed to be denser and more compact (pore volume 30-65%). An example of each kind of floc

is shown in Fig. 4. It should be mentioned, however, that the numbers must be treated as estimates

after examination of 52 floes rather than as quantitative description of pore volumes and floc

populations. Nevertheless, the qualitative difference in porosity and structure was evident.

FIG. 4. CLSM image (red-green overlay, use red-green glasses) of the 3D structure of activated sludge flocs from

WWTP Prague (A) and SBRI CB) after FITC staining. 300 x 300 11m.

DISCUSSION

Anoxic microniches and denitrification. When incubated under air saturation anoxia was never

detected inside activated sludge floes which is in agreement with the measurements of Lens et al.

(26). Calculation of acetate concentrations in the center of the floes, based on the measured oxygen

respiration rates (equation 2), showed that only in 2 out of 35 floes acetate could be completely

depleted. Therefore, assuming that acetate (this study) or glucose and starch (26) were suitable

substrates for the microbial community in activated sludge, respiration was most likely not limited by

the availability of organic carbon. This indicates that the respiration capacity of activated sludge is

simply not sufficient to consume such high amounts of oxygen. However, even when incubated under

more realistic conditions (2 mg O2 1'1) no anoxic zones and no denitrification were detected in

activated sludge f10cs except of the SBR and few floes from Bremen WWTP. The question has to be

raised how representative the microsensor measurements in single floes have been, i.e. if the

measuring approach was suited to detect anoxic microniches, and if the results are meaningful for a

complete activated sludge basin. In our study we only analyzed floes larger than 400 Ilm. From

literature data, this seems to be not an important fraction in terms of number but might be most

relevant in terms of volume or mass (12, 28), and hence the fraction that contributes most to the

activity of a plant. Furthermore, anoxic zones due to diffusion limitation are primarily to be expected

in larger flocs since the volumetric respiration rates required to create anoxia exactly at the center of a

floc increase with the square of the floc radius (equation 2, Fig. 5; (41)). Therefore, under reactor

conditions volumetric respiration rates of more than 70 nmol·mm-3 h- 1 are necessary for anoxia in

floes with a diameter of 400 Ilm or less. Such high rates have only been found in microbial mats (21)

and nitrifying aggregates (9) while the rates reported from various other systems such as detritus
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pellets (41), trickling filter biofilms (23, 24), or sediments (14, 43) are all in the same range (1.2 ­

39.6 nmol·mm-3 h- ') as the values measured in this study (0 - 19 nmol·mm-3.h- I
). It is thus questionable

if the respiration rates required for anoxia in floes smaller than 400 11m can be ever reached in

activated sludge. Furthermore, microprofiles were investigated simulating sinking floes, i.e. in a flow

chamber with laminar flow, where no turbulent mixing or collisions of floes occur. The latter

processes, however, are typical for aerated activated sludge basins and obviously lead to a steady

aggregation and disintegration of floes. Gradients and floes are consequently dynamic features, e.g.

the center of a floc might become exposed to oxygen again after an anoxic period by the disruption of

the floc. For these two reasons, the size of the studied floes and the measuring conditions, it is more

likely that we overestimated anoxic processes in the activated sludges by microsensor analysis rather

than to overlook them.

The isotope incubation experiments yield independent control for the microsensor data as they

averaged over all floes present in a large sample and better simulated the mixing regime in an

activated sludge basin. Consistent with the microprofiles, significant denitrification under 2 mg O2 r 1

was only measured in the SBR, while under anoxic conditions all sludges showed rates of 1.2 - 3.2

I1mol N gol TSS min- r, comparable to conventional anoxic activated sludge basins designed for

denitrification (6, 50). This shows that denitrifiers were present in all sludges, and the virtual absence

of denitrification in most sludges during aeration can be indeed explained by the absence of anoxic

niches inside the activated sludge floes. Furthermore, denitrification under 2 mg O2 r l represented a

similar percentage of maximum denitrification activity in both, 15N-incubations and microsensor

measurements (data not shown). This indicates that microprofiles actually were recorded under

realistic conditions and show data relevant for the whole aeration basin. Some nitrate microprofiles

showed denitrification under air saturation, and also denitrification rates determined by 15N_

incubations are slightly above the detection limit in samples where no anoxic zones were found. Thus,

one may speculate about the occurrence of aerobic denitrifiers (31, 39, 45). However, their

contribution to overall denitrification seems to be almost negligible in the analyzed systems.
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Another considerable factor is the bulk water concentration of oxygen. Obviously, reducing the

aeration of activated sludge will immediately increase the probability of anoxic microniches and
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processes inside a diffusion controlled floc (Fig. 5). Indeed there have been reports on enhanced

denitrification rates in aerated activated sludges when the bulk oxygen concentration was set to 0.5 ­

1.5 mg rl (17, 20, 57). However, nitrification might be less effective or become incomplete; therefore

attempts to achieve nitrogen removal by simultaneous nitrification-denitrification by simply lowering

the bulk oxygen concentration would require continuous monitoring and careful balance of both

processes.

Respiration rates. Valuable information can be derived from the measured volumetric respiration

rates R of indi vidual floes in relation to their size. As displayed in Fig. 5, smaller floes require higher

respiration rates to become anoxic because of their higher surface to volume ratio. This also applies to

the investigated samples (Fig. 2). For example, the mean floc sizes of analyzed floes from SBRI,

Aarhus WWTP and Aarhus Pilot are almost the same, however only the respiration rates of SBRI are

sufficient to create anoxic zones. Furthermore, the volumetric respiration rate R was negatively

correlated with floc size d (Fig. 3). This was more pronounced for floes under reactor conditions than

for floes under air saturation. A decrease of R with d2 usually would indicate diffusion limitation

within the floc (Fig. 5). The observed decrease of R with d15 at 40-60 f.lM oxygen (Fig. 3B) might be

explained by the different extent of oxygen limitation in the different floes that contributed to the

regression analysis: (i) floes with anoxic centers, which are truly diffusion limited, (ii) floes with

rather low oxygen concentrations (1-10 f.lM), that might already slow down respiration rates, and (iii)

floes with higher oxygen levels that should allow for maximum respiration rates since the Km for

oxygen consumption by heterotrophic bacteria is about I f.lM (56). In contrast, diffusion limitation can

be excluded to account for this trend under air saturation (Fig. 3A). Oxygen as well as organic carbon

are present in concentrations high enough to prevent any limitations as has been discussed before. An

alternative explanation lies in the structure and the geometry of the floc. Larger floes might be less

dense than smaller ones, i.e. contain less active cells per volume and more voids and dead material.

This seems to be partially the case, as large floes (> I mm) often enclose bigger particles which do not

contribute to respiration. Furthermore, activated sludge floes are fractal in their geometry, with fractal

dimensions of 1.0 - 1.8 (27, 33,48). As is typical of fractal aggregates, the porosity of floes increases

with increasing floc size (I), resulting in reduced mass and hence respiration rate per volume as the

aggregates get larger. The same applies of course also under the lower oxygen concentrations but this

weak correlation is covered by the more pronounced diffusion limitation. Fractal geometry of the

activated sludge floes might therefore provide an explanation why the volumetric respiration rates of

most sludges have been too low to create anoxic conditions even in the larger floes. Alternatively, this

might be due to advective transport through pores and channel-like structures (32) since larger floes

often consist of dense subunits that are only loosely connected. Flow might have been detected in

some of our oxygen profiles that showed a local increase in oxygen concentration (data points marked

with an arrow in Fig. 3). Flow could substantially enhance oxygen transfer compared to diffusion. In

this case, our calculations of volumetric respiration rates (and denitrification rates) based on

diffusional transport underestimate R. If advection is important as transport mechanism in activated

sludge floes, a reduced oxygen bulk concentration does not necessarily result in anoxic zones and

enhanced denitrification as discussed above.

Considering fractal geometry and advective transport might help to understand the differences

between the floes from the SBR and the other samples. SBR have been reported to form more

compact (and larger) floes (54) which would allow for higher volumetric respiration rates compared

to conventional WWTP floes and prevent advective transport of oxygen inside the floc. This

hypothesis is supported by CLSM analysis of the 3D floe structure that demonstrated SBR floes to be
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more compact than WWTP flocs (Fig. 4). However, further research is needed to better understand

the impact of floc structure, i.e. fractal geometry and advective transport, on the floc's function.

Sulfate reduction. Low numbers of SRB were detected by FISH in all samples, and the amplification

of the DSR gene fragments indicated the presence of SRB in samples from WWTP Bremen and

Prague. In contrast, no sulfate reduction was detected in any experiment by microsensor or

radioisotope analysis. The sensitivity of the applied techniques was high (IliM HzS and 5 limol S g')

TSS·h·), respectively). Re-oxidation was excluded during anoxic incubations, and by the 35S analysis

even immediate precipitation of HzS, e.g., as FeS (38), would have been detected. Consequently,

sulfate reduction did not occur during oxic incubations and no sulfate reduction potential was

apparent in the anaerobic incubations. However, a shortcoming of the approach was the use of acetate

as sole carbon source in almost all experiments. Acetate is not utilized as electron donor by

incompletely oxidizing SRB including Desulfovibrio sp. (55), which were detected by far as the main

component of the SRB community in the analyzed samples. Most likely, sulfate reduction in our

experiments had therefore to rely on endogenous electron donors of the activated sludge that were

either produced from the acetate added or had been stored within the floes. Whereas this assumption

is doubtful for the microsensor experiments, due to the small volume of a single floc compared to

incubation volume and time, it is well sound for the radiotracer and the test-tube incubations. Here,

about one third of the reactor volume consisted of concentrated activated sludge, and only two third of

the sludge bulk water had been replaced by the artificial medium. Essentially, the substrate spectrum

was similar to the original activated sludge sample but slightly diluted. Therefore, we are convinced

that we would have been able to detect sulfate reduction in the observed systems if it had occurred.

The complete absence of sulfate reduction, and the detection of significantly lower numbers of SRB

in the pilot plant and SBR compared to the WWTP samples most likely indicate unfavorable

conditions for SRB in the investigated sludges. It might be possible that SRB are not able to grow and

multiply in the aerated activated sludge but rely on the continuous re-inoculation via sewer, biofilm

wall growth in the basin (46), or backwash from settler and anaerobic digester. The lack of these

sources in the lab-scale SBR and the pilot plant might explain the low numbers of SRB detected there

by FISH. This low amount of SRB might also explain the failure to detect the DSR gene fragment in

samples from the SBR. Possibly, the same amount of DNA that resulted in reliable amplifications

from the other samples might have been to low to yield PCR products from the SBR. Considering the

reported occurrence of higher numbers of SRB in activated sludge (e.g. 26, 34, 58) in the light of our

results, we would suggest that the actual function of these SRB in the aeration basins might not be

sulfate reduction. For instance, oxygen (II) and nitrate (35) have been described as alternative

electron acceptors. However, also plant-to-plant differences have to be kept in mind, and sulfate

reduction may occur in other activated sludge systems.

Conclusion. We found that anoxic microniches and denitrification are possible and detectable in

aerated activated sludge. The structure of the activated sludge flocs plays an important role for the

occurrence of this phenomenon. However, anoxia seems to be rather the exception than the rule in

conventional wastewater treatment plants, and sulfate reduction seems to be almost fully absent. The

exact interrelations between structure and function of the activated sludge floc require further

investigation, especially to describe on a quantitative basis the fractal geometry - respiration

correlation.
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Summary

SUMMARY

Biofilms are complex communities of immobilized microorganisms in which various

processes occur in close spatial and functional coupling. In wastewater treatment, they are

used, e.g., for nitrogen elimination. Ammonium is oxidized by nitrifying bacteria to nitrate,

which is further converted by denitrifying bacteria into gaseous dinitrogen. In this thesis,

activity, identity, and spatial distribution of nitrifying bacteria in biofilms were investigated by

the combined application of microsensors and fluorescence in situ hybridization (FISH).

An initial study, performed with a nitrate/nitrite-biosensor, showed that nitrification was

restricted to a narrow but highly active zone at the surface of a trickling filter biofilm. This

correlated well with the detection of dense clusters of ammonia-oxidizing Nitrosomonas sp. in

close vicinity to nitrite-oxidizing Nitrobacter sp. in the same layer.

The development of an ion-selective microsensor for nitrite and the improvement of sensors

for ammonium and nitrate facilitated the subsequent, more detailed analyses regarding

products and substrates of nitrification and the respective nitrifying populations in biofilms.

By means of the rRNA approach, yet uncultured relatives of Nitrospira moscoviensis were

detected in nitrifying aggregates, and were identified as active nitrite oxidizers by the use of

microsensors. Together with ammonia-oxidizing Nitrosospira sp. they dominated the

nitrifying shell of these aggregates from a fluidized bed reactor. Abundance and volumetric

activity of the ammonia- and nitrite-oxidizers were quantified along the decreasing

ammonium concentration in the reactor column. From these data it was possible to calculate

cell-specific in situ reaction rates and to estimate substrate affinities of uncultured nitrifiers for

ammonium and nitrite. Comparing these values with literature data it was hypothesized that in

habitats with high substrate concentrations Nitrosomonas sp. and Nitrobacter sp. dominated

due to their higher maximum specific reaction rates. In contrast, in low-substrate

environments Nitrosospira sp. and Nitrospira sp. might be better competitors due to their

higher substrate affinity. This conclusion was supported by the abundance and distribution of

Nitrosomonas/Nitrosospira and NitrobacterlNitrospira in a biofilm under high ammonium

concentrations and with pronounced gradients of oxygen and nitrite.

Activated sludge floes are in many features similar to biofilms. The occurrence of

anoxic centers in floes has been proposed. Therefore, in the last part of this thesis anoxic

microniches, denitrification and sulfate reduction in single floes were investigated using

microsensors. These data were complemented by incubation experiments to reveal

denitrification and sulfate reduction rates in sludge samples. Furthermore, the three­

dimensional floc structure and the community structure of sulfate reducing bacteria in

activated sludge were analyzed.
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Appendix

APPENDIX

ZUSAMMENFASSUNG

Biofilme sind komplexe Lebensgemeinschaften immobilisierter Mikroorganismen, in denen

verschiedenste Prozesse auf engstem Raum gekoppelt sein konnen. Sie finden u.a. Verwendung zur

Stickstoffeliminierung bei der Abwasserbehandlung. Dabei wird zunachst Ammonium von

nitrifizierenden Bakterien zu Nitrat oxidiert. Denitrifizierende Bakterien konnen anschlieBend Nitrat

zu gasfOrmigem Stickstoff umsetzten und dadurch aus dem System entfemen. 1m Rahmen dieser

Arbeit wurden Aktivitat, ldentitat und raumliche Anordnung von Nitrifikanten in Biofilmen durch den

kombinierten Einsatz von Mikrosensoren und Fluoreszenz-in situ-Hybridisierung (FISH) untersucht.

In einer ersten Studie wurde mit einem Nitrat/Nitrit-Biosensor die Nitrifikationszone als diinne,

hochaktive Schicht an der Oberflache eines Tropfkorper-Biofilms bestimmt. 1m selben Bereich

konnten durch FISH dichte Kolonien von Ammonium-Oxidierem der Gattung Nitrosomonas und

Nitrit-Oxidierer der Gattung Nitrobacter in enger Nachbarschaft nachgewiesen werden.

Die Entwicklung eines ionenselektiven Mikrosensors fur Nitrit und die Verbesserung der Sensoren fiir

Ammonium und Nitrat ermoglichte in den folgenden Arbeiten eine genauere Analyse der Substrat­

und Produkt-Konzentrationen der Nitrifikation in Biofilmen und der damit verbundenen Populationen

nitrifizierender Bakterien.

Mit Hilfe des rRNA-Ansatzes konnten in nitrifizierenden Aggregaten bisher unkultivierte Vertreter

der Gattung Nitrospira detektiert und durch Mikrosensor-Messungen als aktive Nitrit-Oxidierer

identifiziert werden. Gemeinsam mit ammoniumoxidierenden Nitrosospira sp. bildeten sie den

Hauptbestandteil der nitrifizierenden Schicht in diesen Aggregaten aus einem Fliissigbett-Reaktor.

Anzahl und Aktivitat der Ammonium- und Nitrit-Oxidierer wurden entlang der abnehmenden

Ammoniumkonzentration im Reaktor quantifiziert, die in situ Reaktionsraten pro Zelle berechnet, und

die Substrataffinitat der unkultivierten Nitrifikanten fUr Ammonium und Nitrit abgeschatzt. Durch

Vergleich mit Literaturwerten ergab sich die Hypothese, daB in Habitaten mit hohen

Substratkonzentrationen Nitrosomonas europaea und Nitrobacter sp. aufgrund ihrer hoheren

maximalen Reaktionsraten dominieren mii13ten, wahrend bei geringer Substratkonzentration

Nitrosospira sp. und Nitrospira sp. aufgrund ihrer hoheren Substrataffinitaten iiberlegen sein soli ten.

Diese Vermutung wurde durch Abundanz und Verteilung von Nitrosomonas/Nitrosospira bzw.

NitrobacteriNitrospira in einem weiteren Biofilm mit hohen Ammoniumkonzentrationen und

ausgepragten Sauerstoff- und Nitritgradienten gestiitzt.

Belebtschlammflocken ahneln in vieler Hinsicht Biofilmen, und das Auftreten anoxischer

Kembereiche in Flocken war postuliert worden. 1m letzten Teil dieser Arbeit wurde das Vorkomrnen

von anoxischen Milcro-Nischen, Denitrifikation und Sulfatreduktion in einzelnen F10cken mit

Mikrosensoren untersucht. Diese Daten wurden durch die Bestimmung von Denitrifikations- und

Sulfatreduktionsraten in Inkubationsexperimenten erganzt. Zusatzlich wurde die dreidimensionaJe

Flockenstruktur und die Populationsstruktur von sulfatreduzierenden Bakterien im Belebtschlamm

analysiert.
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Appendix

RESUME

Les biofilms sont des communautes complexes de microorganismes au sein desquelles plusieurs

processus sont couples d'un point de vue spatial et fonctionnel. Dans Ie traitement des eaux usees, ils

sont utilises, par exemple, pour l'elimination de l'azote. L'ammonium est oxyde, par les bacteries

nitrifiantes en nitrate, puis converti en azote gazeux par les bacteries denitrifiantes. Cette these

presente une etude de l'activite, de l'identite et de la distribution spatiale des bacteries nitrifiantes au

sein de biofilms, al'aide de l'application combinee de microsondes et de techniques d'hybridation in

situ par fluorescence (FISH).

Une etude initiale, obtenue avec une biosonde nitrate/nitrite, a montre que la nitrification etait

restreinte a une zone etroite mais tres active a la surface d'un biofilm forme dans un filtre a
ecoulement. Paral\element, des groupes importants d'ammonium oxydantes type Nitrosomonas sp. en

relation etroite avec des nitrites oxydantes type Nitrobacter sp. ont ete detectes au sein de la meme

zone.

Le developement d'une microsonde a nitrite et I'amelioration des sondes pour l'ammonium et Ie

nitrate, ont facilite une analyse plus detaillee des produits et substrats de la nitrification ainsi que des

populations bacteriennes nitrifiantes dans les biofilms.

A I'aide de techniques utilisant les ARNr, une bacterie, encore non isolee, se rapprochant de

Nitrospira muscoviensis, a ete detectee dans des aggregats nitrifiants, puis identifiee a l'aide de

microsensors comme etant une nitrite oxydante active. Avec Nitrosopira sp., elles dominent la paroi

de ces aggregats formes dans un reacteur afond fluidifiant. L' abondance et l'activite des ammonium

et nitrites oxydantes ont ete quantifiees Ie long du gradient de concentration en ammonium. Les

activites specifiques par cel\ule et les affinites en ammonium et nitrite ont ete calculees pour des

nitrifiantes non-cultivees. II est suppose qu' en environnement a forte teneurs en substrats,

Nitrosomonas sp. et Nitrobacter sp. seraient les especes dominantes grace a leur forte activites

specifiques. Au contraire, en milieux pauvres en substrats, Nitrosospira sp. et Nitrospira sp.

sembleraient etre de meilleur competiteurs grace a leurs fortes affinites. Cette conclusion est

confirmee par la distribution de ces bacteries dans un biofilm soumis a de hautes teneurs en

ammonium et de forts gradient en oxygene et nitrite.

Les boues flocculentes et les biofilms presentent des caracteristiques communes. La possible

apparition de conditions d'anoxie aux centres des flocculents a ete suggeree. Ainsi, la derniere partie

de cette these a ete consacree al'etude, a l' aide de microsensors, de la denitrification et de la sulfato­

reduction dans des flocculents isoles. Paral\element, la denitrification et la sulfato-reduction on ete

estimee dans des echantillons de boues. De plus, la structure tridimensionelle du floculent et les

communautes de bacteries sulfato-reductrices ont ete analysees dans une boue active.
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RESUMEN

Las biopeliculas estan constitutidas por comunidades de microorganismos inmobilizadas, en las

cuales se desarrollan varios procesos intimamente conectados tanto espacial como funcionalmente. En

tratamiento de aguas residuales estas biopeliculas se usan, por ejemplo, en la eliminaci6n de

nitr6geno. El amonio se ve oxidado a nitrate por las bacterias nitrificantes, y este se ve convertido

posteriorrnente en nitrogeno gas por las bacterias desnitrificantes. En la presente Tesis se investigo la

actividad, identidad y la distribuci6n espacial de bacterias nitrificantes mediante la aplicacion

combinada de microsensores e hibridaci6n in situ por fluorescencia (FISH).

En un primer estudio, en el cual se utilizo un "biosensor de nitrato/nitrito, se observ6 que la

nitrificaci6n estaba restringida a una capa fina y con elevada actividad en la superficie de la

biopelicula del filtro percolador. Estos resultados se correlacionaban con la deteccion, en la misma

zona, de agrupaciones densas de bacterias oxidadoras de amenia (Nitrosomonas sp.) en las cercan!as

de organismos oxidadores de nitritos (Nitrobacter sp.).

EI desarrollo de un microsensor selectivo para el ion nitrate y la mejora de los sensores para amonio y

nitrato, facilitaron tanto el estudio en mayor detalle de los sustratos y productos de la nitrificacion

como el analisis de las poblaciones nitrificantes en biopelfculas.

EI uso combinado de la tecnica FISH y los microsensores permiti6 la detecci6n de el microorganismo

aun no cultivado Nitrospira moscoviensis en el interior de agregados nitrificantes, as! como demostrar

su participacion activa en la oxidacion de nitrito. Este organismo, juntamente con el oxidador de

amonio Nitrosospira sp. se encontraban dominando la corteza nitrificante de los agregados en un

reactor de lecho fluidizado. Se cuantific6 la abundancia y la actividad por volumen de los oxidad<;>res

de amenia y de nitrito paralelamente a la disminuci6n en concentracion de amenia en la columna del

reactor. A partir de estos datos fue posible calcular las tasas de reaccion in situ por celula, as! como

estimar la afinidad por los sustratos amenia y nitrito de organismos nitrificantes no cultivados. De la

comparacion de nuestras valores con los citados en la Iiteratura se pudo hipotetizar que en los habitats

con elevada concentraci6n de sustrato, Nitrosomonas sp. y Nitrobacter sp. dominan debido a la

elevada tasa maxima de catalisis especffica. AI contrario, en ambientes con baja concentraci6n de

sustrato Nitrosospira sp. y Nitrospira sp. deben competir mas eficazmente debido a su elevada

afinidad por el sustrato. Esta conclusion estuvo apoyada por la abundancia y distribuci6n de

Nitrosomonas/Nitrosospira y Nitrobacter/Nitrospira en un biofilm sometido a elevadas

concentraciones de amenia y con gradientes de oxfgeno y nitrito pronunciadas.

Las particulas que conforrnan los lodos activos se parecen en muchos aspectos a biopelfculas. Se ha

propuesto la existencia de nucleos anoxicos en estas partfculas, por tanto en la ultima parte de la tesis

se ha estudiado, con el uso de microsensores, la presencia de micronichos an6xicos, desnitrificaci6n y

reducci6n de sulfatos en particulas aisladas. Los resultados obtenidos se compaginaron con

experimentos donde se pudo poner de manifiesto las tasas de reduccion de sulfato y desnitrificaci6n

mediante incubaciones de lodos activos. Ademas, se analizo la estructura tridimensional de las

particulas, as! como la estructura de la comunidad de bacterias sulfato reductoras en lodos activos.
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PE310ME

bHO<pHHbMbI l'IBlll'llOTCl'I KOMnneKCHbIMH C006lUeCTBaMH MHKpOOpraHH3MOB, TeCHO CBl'I3aHHbiX

npOCTpaHCTBeHHO H <PYHKUHOHaJlbHO. OllHOH H3 <PYHKUHH 6HOllOrH'ieCKHX nneHOK,

npHMeHl'IeMblX llnl'l O'iHCTKH CTO'iHbIX BOll, l'IBnl'leTCl'I npOllYJ<UHl'I raJo06pa:3HorO aJOTa.

AMMOHHH, Hcnonb3yeMblH HHTpH<pHKaTOpaMH, OKHCnl'leTCl'I 110 HHTpaTa, KOTOpblH B llaJlbHeHWeM

BOCCTaHaBnHBaeTCl'I 110 raJOOOpaJHOrO aJOTa lleHHTpH<pHUHPYlOWHMH 6aKTepHl'IMH.

I1ccnelloBaHHe aKTHBHOCTH, COCTaBa H npOCTpaHCTBeHHOH OpraHH3aUHH C006111eCTBa

HHTpH<pHUHPYlOlllHX OaKTepHH B 6H0<pHnb;l.laX C HCnOnb30BaHHeM MHKpOCeHCOpOB H

<pnyopecueHTHoH in situ rH6pHllH3auHH (FISH) 6blnH npeliMeToM HaCTOl'llllerO HccnellOBaHHl'I.

OpellBapHTenbHoe Hccne.nOBaHHe C Hcnonb30BaHHe;l.I HHTpaTHo-HHTpHTHoro 6HoceHcopa

nOKaJaJlO, 'iTO npouecc HHTpH<pHKaUHH npOHCXOllHT B yJKOH, HO 1l0CTaTO'lHO aKTHBHOH 30He Ha

nOBepXHOCTH <pHJlbTpa, rlle 6blna JlOKaJlH30BaHa nJleHKa. B TO;l.I iKe CJloe Ha6JllOllalOTCl'I nJlOTHble

KJlaCTepbl a;l.I:>'IOHHH-OKHCJll'llOlllHX Nitrosomonas sp., aCCOUHHpOBaHHblX C HHTpHT­

OKHCnl'llOlllmlH OaKTepHl'I:>'lH Nitrobacter sp.

Pa3paOOTKa HOHHo-celleKTHBHoro I\IHKpOCeHcopa llJll'l H3MepeHHl'I HHTpHTa, a TaKiKe Pl'lll

ycoBepweHCTBOBaHHH a:>.I:>.IOHHH- H HHTpaT-ceHcopOB n03BOJlHnH npOBeCTH oonee lleTaJlbHOe

HCCJle.JOBaHHe cy6cTpaTOB H nponYJ<TOB HHTpH<pHKaUHH, a TaKiKe COOTBeTCTBYIO!11HX

nonyJll'lUHH HHTpH<pHUHPYlOlllHX oaKTepHH B 6H0<pHllb;l.lax.

C nO;l.lOlUblO rRNA MeTona B arperaTax HHTpH<pHKaTopOB 6bl!Ja OOHapYA\eHa HeKynbTHBHpyeMal'l

Nitrospira moscoviellsis, l'IBnl'llOlUal'lCl'I aKTHBHblM HHTpHT-OKHcnHTene:>'I, 'ITO B CBOIO O'lepellb

nOKaJaJlH MHKpoceHcopHble H3:>.lepeHHl'I. B:-'leCTe C a;l.I:>.IOHHH-OKHCnl'llOlllmlH Nitrosospira sp.

OHH npenCTaBIHlIOT «HHTPH<PHUHPYlOlllHH oapbep», OTlleJll'llOlUHH 3TH arperaTbl OT COOCTBeHHO

paCTBopa B peaKTope. KOnH'IeCTBO H BOnlO;l.leTpH'ieCKa}l aKTHBHOCTb a:-'I:>.IOHHH- H HHTpHT­

OKHcnHTeneH OueHHBaJlHCb B xone y;-.leHbWeHHl'I KOHueHTpamm a:>.I:>.IOHHl'I B KonOHKe peaKTopa.

3TH llaHHble n03BonHnH oueHHTb cneUH<pH'ieCKHe CKOpOCTH peaKUHH in situ, a TaKlKe

cy6cTpaTHYIO H36HpaTenbHocTb HeKynhTHBHpye;l.lhlx HHTpH<pHKaTopoB ll.'ll'l a:>.I:-'IOHH}l H HHTpHTa.

CpaBHHTenhHhlH aHaJlH3 nonyqeHHhlx llaHHhlX C nHTepaTypHhl~1H HCTO'lHHKa:>.m nOKaJaJl, 'iTO B

MeCTax C BhlCOKOH KOHUeHTpaUHeH cy6CTpaTa nonyn}lUHH Nitrosomonas sp. Nitrobacter sp.

1l0MHHHPYlOT 3a C'IeT 60nhWeH cneml<pH'ieCKOH CKOpOCTH peaKUHH. B CBOIO o'lepenh

Nitrosospira sp. H Nitrospira sp. }lBn}lIOTCl'I 1l0MHHaHTHhIMH <popMaMH B ycnoBHl'Ix HH3KOH

KOHueHTpaUI-m cy6cTpaTa 3a C'IeT HX nOBhIweHHOH cy6CTpaTHoH m6HpaTenhHocTH.3TOT BhIBon

nOllTBepiKllaeTCl'I KOnH'ieCTBOM H xapaKTepOI\l pacnpeneneHHl'I NitrosomonaslNitrosospira H

NitrobacterlNitrospira nap B 6HOnOrH'ieCKOH nneHKe npH nOBhlweHHhIX KOHueHTpaUHl'IX

a;l.I;l.IOHHl'I H rpallHeHTax KHcnopona H HHTpHTa.

Xnonhl'l B KaHaJlH3aUHOHHhIX CTOKax BO MHorHX 'iepTaX CXOlKH C 6HOnOrH'ieCKHMH nneHKaMH.

ITpellnonaraeTCl'I, 'iTO ueHTpaJlhHhIe 'iaCTH xnonheB nHweHhl KHcnopOlla. I1ccnelloBaHHe

aHa3p06Hh1X MHKpOHHW, npoueCCOB lleHHTpH<pHKaUHH H HHTpaTpenYJ<UHH B OTllenhHhIX

XnOnhl'lX C Hcnonh30BaHHeM MHKpoceHcopHhIX MeTOllOB 06CYlKJIaeTCl'I B 3aKnIO'iHTeJlhHOH 'iaCTH

pa60ThI. 3TH llaHHhIe 6hInH 1l0nonHeHhI HaTypHhIMH H3MepeHHl'IMH CKopOCTeH lleHHTpH<pHKaUHHo

H cynh<paTpellYJ<UHH B 06paJuax H3 KaHaJlH3aUHOHHhIX CTOKOB. AHaJlH3HpOBaJlaCh TpeXMepHM

CTpYKTypa xnomeB H CTpYJ<TypHM opraHH3aUHl'I C006lUeCTBa cynb<paTpellYKTOpOB.
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SAMENVATTING

Biofilms zijn ingewikkelde gemeenschappen van geimmobiliseerde microorganismen, waarin

verschillende processen dicht bijeen plaatsvinden en vaak onderling gekoppeld zijn. Zij

worden o.m. toegepast in de stikstofverwijdering bij afvalwaterzuivering. Hierbij wordt eerst

ammonium door nitrificerende bacterien tot nitraat geoxideerd. Vervolgens wordt door

denitrificerende bacterien nitraat tot stikstofgas omgezet waardoor stikstof uit het ecosysteem

verdwijnt. In deze studie zijn activiteit, identiteit en ruimtelijke verdeling van nitrificeerders

in biofilms onderzocht door een combinatie van microsensor metingen en fluorescente-in situ­

hybridisatie (FISH).

In eerste studie werd met een nitraat/nitriet biosensor vastgesteld dat nitrificatie plaatsvindt in

een dunne, uiterst actieve zone aan het oppervlak van een trickling-filter biofilm. In deze zone

werden met FISH kolonies met hoge celdichtheden van ammonium oxiderende Nitrosomonas

en nitriet oxiderende Nitrobacter in elkaars dichte nabijheid gevonden.

De ontwikkeling van een ion-selectieve microsensor voor nitriet en de verbetering van

sensoren voor ammonium en nitraat maakten een nadere studie mogelijk van substraat- en

product concentraties in nitrificerende biofilms, in relatie tot de aanwezige nitrificerende

bacterie populaties.

In nitrificerende aggregaten uit een gefluidiseerd bed reactor werden, met behulp van de

rRNA benadering, tot nu toe oncultiveerbare vertegenwoordigers van het geslacht Nitrospira

ontdekt. Met microelectrodes werd aangetoond dat zij nitriet oxideerders zijn, die samen met

ammonium oxiderende Nitrosospira sp. de nitrificerende buitenlaag van deze aggregaten

vormen. Het aantal en de celspecifieke- en volumetrische activiteit van ammonium- en nitriet

oxideerders werd gemeten over de lengteas van de reactor, waarlangs de ammonium

concentratie geleidelijk afneemt. Tevens werden schattingen gemaakt van de ammonium- en

nitriet affiniteiten van de uncultiveerbare nitrificeerders. Na vergelijking met literatuur

gegevens werd de hypothese opgesteld dat in een milieu met hoge substraat concentraties

Nitrosomonas europea en Nitrobacter sp. domineren door hun hoge groeisnelheid, terwijl bij

lagere substraat concentraties Nitrosospira sp. en Nitrospira sp. beter concurreren door hun

hogere substraat affiniteit. Deze hypothese werd bevestigd door de verdeling van

NitrosomonaslNitrosospira, dan wei NitrobacterlNitrospira in een andere biofilm met hoge

ammonium belading en steile zuurstof en nitriet profielen.

Actief slib vlokken zijn in vele opzichten vergelijkbaar met biofilmen. Het voorkomen van

anoxische zones in thet midden van de vlokken werd mogelijk geacht. In de laatste studie van

deze thesis werd de aanwezigheid van anoxische microzones, denitrificatie en sulfaatreductie

in aparte vlokken onderzocht met microsensoren. Deze gegevens werden vergeleken met

denitrificatie en sulfaatreductie metingen m.b.v. incubatie experimenten. Tenslotte werd ook

de 3-dimensionale vlokstructuur en populatie opbouw van sulfaat reducerende bacterien in

actief slib geanalyseerd.
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SAMMENFATNING

Biofilm er komplekse samfund af immobiliserede mikroorganismer, hvori diverse processer

foregar i tret rumligt og funktionelt kobling. Ved spildevandsrensning udnyttes sadanne

processer til blandt andet fjemelse af nitrogen. Af nitrificerende organismer bliver ammonium

oxideret til nitrat og dette bliver af denitrificerende bakterier reduceret til gasformigt

dinitrogen. I denne Ph.D. afhandling er aktiviteten, den rummelige fordeling samt typen af

nitrificerende bakterier unders~gt med en kombination af mikrosensorer og "fluoroscence in

situ hybridization" (FISH).

Et indledende studie udf~rt med nitrat/nitrit biosensor viste at nitrifikations processen var

begrrenset til en tynd men meget aktiv zone ved overfladen af en biofilm fra et

overrislingsrensningsanlreg. Dette korrelerede med tilstedevrerelsen af trette klynger af

ammoniumoxiderende Nitrosomonas sp. sammen med nitritoxiderende Nitrobacter sp. i det

samme lag.

Udviklingen af en ionselektiv mikrosensor til bestemmelse af nitrit samt forbedring af

sensorer til ammonium og nitrat bestemmelse muliggjorde den efterf~lgende detaljerede

analyse af produkter og substrater for nitrification og de respektive populationer af

nitrificerende bakterier i biofilmene.

Ved hjrelp af rRNA teknikker kunne forel~big ikke kultiverede slregtninge til Nitrospira

moscoviensis identificeres i nitrifierende aggregater og samtidig kunne disse med

mikrosensorer piivises at oxidere nitrit. Sammen med ammonium oxiderende Nitrosospira sp.

dominerede de ikke kultiverede Nitrospira sp. i den nitrificerende skal omkring aggregater fra

en fluid-bed reaktor. Hyppigheden og volumen specifik aktivitet af ammonium og nitrit

oxiderere blev kvantificeret langs den faldende ammonium koncentrationsgradient i

reaktorkolonnen. Fra disse data var det muligt at udregne in situ reaktionshastigheden per

celle samt at estimere substrat affiniteten for de ikke kultiverede nitrificerene bakterier for

ammonium og nitrit. Fra sammenligning med tidligere publicerede data opstilledes f~lgende

hypotese: I omgivelser med h~je substrat koncentrationer dominerer Nitrosomonas sp. og

Nitrobacter sp. pa grund af deres h~jere specifikke reaktions hastigheder. I omgivelser med

lave substrat koncentrationer kan Nitrosospira sp. og Nitrosomonas sp. bedre konkurrere pa

grund af deres h~jere substrat affinitet. Denne konklusion blev st~ttet af den observerede

hyppighed og fordeling af Nitrosomonas/Nitrosospira samt Nitrobacter/Nitrospira i en biofilm

under h~je ammonium koncentrationer og strerke gradienter af ilt og nitrit.

Aggregater fra aktiveret slam ligner pa mange milder biofilm og tilstedevrerelse af anoxiske

centre i aggregateme er tidligere blevet foreslaet. Derfor blev anoxiske mikronicher,

denitrification og sulfatreduktion i enkelte aggregater unders~gt med mikrosensorer i den

sidste del af Ph.D. studiet. Disse resultater blev st~ttet med inkubations eksperimenter med

henblik pa at belyse denitrifications og sulfat reduktions hastigheder i slampr~ver. Yderligere

blev den tredimensionale struktur af aggregateme samt strukturen af det bakterielle sarnfund

af sulfat reducerende bakterier i aktiveret slam unders~gt.
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ZAMMAGFASST

A Biofilm is a recht a komplexe Gschicht aus Bakteria und andera kloina Viechln, auf

boarisch a Sehlaaz, der wo auf irgendoana Oberflachn drobsitzt. Hememma kamma des z.B.

fUr d'Abwasser-Reinigung zur Schtickschtoffentfemung. As Ammonium werd dann von

nitrifizierende Bakterien zu Nitrat oxidiert, und des kann naehad von denitrifizierende

Bakterien zum Stiekstoff umgsetzt wern, der as System verlasst. In meiner Dokterarbad hab i

d'Aktivitat, d'Identitat und d'raumliche Verteilung von soiehane Nitrifikanten in Biofilmen

mitra Kombination aus Mikrosensoren und Fluoreszenz-in situ-Hybridisierung (FISH)

ogsehaut.

In am ersehten Sehritt iseh mitram NitratINitrit-Biosensor die Nitrifikationssehieht als a

diinne, mordsaktive Sehieht glei an der Oberflachen von am Tropfkorper-Biofilm besehtimmt

worra. Grad a do ham mir mit FISH dieke Klumpen von Ammonium-Oxidierem von der

Gattung Nitrosomonas und Nitrit-Oxidierer von der Gattung Nitrobacter glei nebenanander

gfund'n.

Als nexschtes isch a ionenselektiver Nitrit-Mikrosensor entwickelt worra, und dia Sensora fUr

Ammonium und Nitrat hamma vabessert. Dadureh hamma im AnsehluB Subschtrat- und

Produkt-Konzentrationa von da Nitrifikation in Biofilmen genauer messen kenna.

In nitrifizierende Aggregate hab i mitram rRNA-Ansatz neie Bakterien vom Typ Nitrospira

gfunden, und hab mit die Mikrosensora zoigt, daB dia im Biofilm Nitrit oxidiera. Mit die

ammonium-oxidierende Nitrosospira sp. mitanand warn dia die grosehte Population in da

nitrifizierenda Schieht in dene Aggregate. I hab dene ihra ZaW iiba da ganza Reaktor

quantifiziert, in situ Aktivitata pro Zelle ausgreehnet und eahna Subsehtrat-Affinitat fUr

Ammonium odr Nitrit abgsehatzt. Wamma des mit da Literatur vagleieht, na sehaugts so aus,

daB da Nitrosomonas europaea und da Nitrobacter sp. die mehreren sei miassten, wanns vui

zum Fressen gibt, indem dass se namIieh die hoheren Reaktionsraten zammabringan. Wanns

aber niedrige Subsehtrat-Konzentrationa hat, naehem soittan da Nitrosospira sp. und da

Nitrospira sp. die andre iiberlegn sei, wei se as Subsehtrat vui besser binden kenna. Dia

Verrnutung iseh schpatr inram andara Biofilm no gsehtiitzt worra.

A Belebtsehlammflockn iseh im Prinzip ganz ahnlieh wiara Biofilm. Drum hot rna se seho

manehmol denkt, daB in soiehene Flocken in da Mittn da Sauerstoff seho vabraucht iseh. 1m

letsehten Deil von meiner Arbad hab i naeherd probiert, soiehe anoxisehe Stelln in Flockn mit

Mikrosensom zum findn, und hab gsehaut, ob da vielleieht Denitrifikation oder

Sulfatreduktion schtattfind. AuBerdem hab i die dreidimensionale Floekenstruktur untersueht,

und gsehaut, wieviele und welche Sulfatreduzierer in die untersuaehten BelebtsehHimmer

dringwesen sind.
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