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Abstract

We prove the conjectural relationship recently proposed in [9] between certain special
cubic Hodge integrals of the Gopakumar–Mariño–Vafa type [17, 28] and GUE correlators,
and the conjecture proposed in [7] that the partition function of these Hodge integrals is a
tau function of the discrete KdV hierarchy.
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1 Introduction

Let Mg,k denote the Deligne–Mumford moduli space of stable algebraic curves of genus g with
k distinct marked points. Denote by Li the i

th tautological line bundle over Mg,k, and by Eg,k

the rank g Hodge bundle. Denote ψi := c1(Li), i = 1, . . . , k, and λj := cj(Eg,k), j = 0, . . . , g.
The Hodge integrals are integrals over Mg,k of the form

∫

Mg,k

ψi1
1 · · ·ψik

k λ
j1
1 · · ·λjgg , i1, . . . , ik, j1, . . . , jg ≥ 0.
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These integrals will be defined to be zero unless

3g − 3 + k =

k∑

ℓ=1

iℓ +

g∑

ℓ=1

ℓ jℓ.

We consider in this paper the following special cubic Hodge integrals
∫

Mg,k

Λg(p)Λg(q)Λg(r)ψ
i1
1 · · ·ψik

k , (1.1)

where Λg(z) :=
∑g

j=0 λjz
j denotes the Chern polynomial of Eg,k, and p, q, r ∈ C satisfy the

local Calabi–Yau condition
1

p
+

1

q
+

1

r
= 0. (1.2)

The special cubic Hodge integrals play important roles in the localization computation of the
Gromov–Witten invariants of toric Calabi–Yau threefolds [18, 24, 25], the theory of topological
vertex [1, 23], and the BKMP remodeling conjecture [3, 4, 12, 14]. We mainly consider the
case with p = q in the present paper, and leave the general case to a subsequent publication.
Note that the cubic Hodge integrals satisfy the following homogeneity condition:

∫

Mg,k

Λg(ρp)Λg(ρq)Λg(ρr)ψ
i1
1 · · ·ψik

k

= ρ3g−3+k−i1−···−ik

∫

Mg,k

Λg(p)Λg(q)Λg(r)ψ
i1
1 · · ·ψik

k ,

so we only need to consider the following special Hodge integrals:
∫

Mg,k

Λg(−1)Λg(−1)Λg

(
1
2

)
ψi1
1 · · ·ψik

k . (1.3)

We call the following generating function the special cubic Hodge free energy:

Hcubic(t; ǫ) =
∑

g≥0

ǫ2g−2
∑

k≥0

1

k!

∑

i1,...,ik≥0

ti1 · · · tik
∫

Mg,k

Λg(−1)Λg(−1)Λg

(
1
2

)
ψi1
1 · · ·ψik

k . (1.4)

Here t = (t0, t1, . . . ) are independent variables, and ǫ is a parameter often called the string
coupling constant. Denote by Hg = Hg(t) the genus g part of Hcubic(t; ǫ) so that

Hcubic(t; ǫ) =
∑

g≥0

ǫ2g−2Hg(t). (1.5)

We also call the exponential
eHcubic(t;ǫ) =: Zcubic(t; ǫ) (1.6)

the special cubic Hodge partition function.
On the other hand, let H(N) be the space of N ×N Hermitian matrices. Denote by

dM =
N∏

i=1

dMii

∏

i<j

dReMijdImMij
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the standard unitary invariant volume element on H(N). The GUE partition function of size
N with even couplings is defined by

ZN (s; ǫ) =
(2π)−N

Vol(N)

∫

H(N)
e−

1
ǫ
trV (M ; s)dM. (1.7)

Here V (M ; s) is an even polynomial, or more generally a power series in M of the form

V (M ; s) =
1

2
M2 −

∑

j≥1

s2jM
2j (1.8)

with s := (s2, s4, s6, . . . ), and Vol(N) is the volume of the quotient of the unitary group over

the maximal torus
[
U(1)

]N
, which is given by

Vol(N) = Vol
(
U(N)/ [U(1)]N

)
=

π
N(N−1)

2

G(N + 1)
, G(N + 1) :=

N−1∏

n=1

n!.

The integral that appears in (1.7) is considered as a formal power series of s2, s4, s6, . . . ,
whose coefficients are analytic in N . Introduce the ’t Hooft coupling parameter x by

x := Nǫ. (1.9)

Expanding the free energy FN (s; ǫ) := logZN (s; ǫ) in powers of ǫ and replacing the Barnes
G-function G(N + 1) by its asymptotic expansion in ǫ yields

Feven(x, s; ǫ) := FN (s)|N=x
ǫ
− 1

12
log ǫ =

∑

g≥0

ǫ2g−2Fg(x, s). (1.10)

The GUE free energy Feven(x, s; ǫ) with even couplings can be represented [2, 19, 20, 21, 29] in
the form

Feven(x, s; ǫ) =
x2

2ǫ2

(
log x− 3

2

)
− 1

12
log x+ ζ ′(−1) +

∑

g≥2

ǫ2g−2 B2g

4g(g − 1)x2g−2

+
∑

g≥0

ǫ2g−2
∑

k≥0

∑

i1,...,ik≥1

ag(2i1, . . . , 2ik)s2i1 . . . s2ikx
2−2g−(k−|i|), (1.11)

where

ag(2i1, . . . , 2ik) =
∑

Γ

1

#SymΓ

and the last summation is taken over all connected oriented ribbon graphs Γ (with labelled
half edges and unlabelled vertices) of genus g with k vertices of valencies 2i1, . . . , 2ik, |i| :=
i1 + · · ·+ ik, and #SymΓ is the order of the symmetry group of Γ. Here and in what follows,
Bk are the Bernoulli numbers. The exponential of the GUE free energy

eFeven(x,s;ǫ) =: Zeven(x, s; ǫ) (1.12)

is called the GUE partition function with even couplings. It is convenient to change normal-
ization of the even couplings by introducing

s̄k :=

(
2k

k

)
s2k, k ≥ 1. (1.13)

The following statement was formulated in [9].
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Conjecture 1.1 The GUE partition function with even couplings and the special Hodge par-
tition function are related by the identity

Zeven(x, s; ǫ) = e
A(x,s)

ǫ2
+ζ′(−1)Zcubic

(
t
(
x+ ǫ

2 , s
)
;
√
2ǫ
)
Zcubic

(
t
(
x− ǫ

2 , s
)
;
√
2ǫ
)
, (1.14)

where

A(x, s) =
1

2

∑

k1,k2≥1

k1k2
k1 + k2

s̄k1 s̄k2 −
∑

k≥1

k

1 + k
s̄k + x

∑

k≥1

s̄k +
1

4
− x (1.15)

and
ti(x, s) :=

∑

k≥1

ki+1s̄k − 1 + δi,1 + xδi,0, i ≥ 0. (1.16)

Remark 1.2 The left hand side of the logarithm of (1.14) is a formal power series in x−1 and
s̄1, s̄2, . . . . If one expands the right hand side as formal power series in x − 1 and s̄1, s̄2, . . . ,
the coefficients are infinite sums of Hodge integrals. For example, the constant term of the
logarithm of (1.14) is a formal Laurent series of ǫ with powers greater or equal to −2. Acting
by the operator

1

eǫ∂x/2 + e−ǫ∂x/2

on this constant term, and then taking the coefficient of ǫ2g−2 (g ≥ 2)), we obtain

1

2g(2g − 1)(2g − 2)

g∑

g′=0

(2g′ − 1)

(
2g

2g′

)
E2g−2g′B2g′

22g−2g′

= 2g
∑

µ∈Y

(−1)ℓ(µ)

m(µ)!

∫

Mg,ℓ(µ)

Λg(−1)Λg(−1)Λg

(
1
2

) ℓ(µ)∏

i=1

ψµi+1
i . (1.17)

Here Y denotes the set of partitions of non-negative integers, ℓ(µ) denotes the length of µ ∈ Y,
mi(µ) denotes the multiplicity of i in µ, m(µ)! :=

∏∞
i=1mi(µ)!, and Ek are the Euler numbers

defined by the generating function

2

ez + e−z
=

∞∑

k=0

Ek

k!
zk.

Note that the right hand side of (1.17) is actually a finite sum due to the dimension reason, so
these terms are well-defined. Due to similar reasons, each Taylor coefficient of the right hand
side of the logarithm of (1.14) is well-defined.

We refer to the conjectural identity (1.14) as a Hodge–GUE correspondence.
The Hodge–GUE correspondence conjecture was verified in [9] for g = 0, 1, 2. In the present

paper we prove it for any genus.

Theorem 1.3 (Main Theorem) The Conjecture 1.1 holds true.
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The proof will be given in Sections 2, 3, 4 below. For the readers’ convenience, we outline
here the sketch and the main ideas of our proof. The first step is to show that both sides of
(1.14) after suitable and explicit transformations satisfy the same linear constraints defined
by explicit linear operators, which will be called the Virasoro constraints. The next step is
to prove a certain uniqueness theorem for solutions of the Virasoro constraints. Our idea of
proving the uniqueness theorem is as follows: the higher genus terms in the genus expansions of
the logarithms of both sides of (1.14) admit the so-called jet-variable representations. The same
linear constraints then lead to the same loop equation for the higher genus terms as functions
of the jet variables. The uniqueness theorem is then established by the uniqueness of solution
of the loop equation, which completes the proof. We note that this idea was used in the study
of the so-called Gromov–Witten potentials [10]. The loop equation for the special cubic Hodge
potentials, which is given in (1.21), can also be used to compute the Hodge integrals as we
show in the following proposition.

Proposition 1.4 Let us denote

v(t) =
∑

k≥1

1

k

∑

i1+···+ik=k−1

ti1
i1!

· · · tik
ik!
, (1.18)

and vk = ∂kt0v(t), k ≥ 0. Then there is a unique sequence of functions {Hg(v, v1, . . . , v3g−2)}g≥1

satisfying the following recursion equations:

H1 =
1

24
log v1 −

1

16
v, (1.19)

3g−2∑

j=1

jvj
∂Hg

∂vj
= (2g − 2)Hg, g ≥ 2, (1.20)

∑

q≥0

(
∂qt0

(
1

B2

)
+

q∑

r=1

(
q

r

)
∂r−1
t0

(
1

B

)
∂q−r+1
t0

(
1

B

))
∂△H
∂vq

− ǫ2

2

∑

q1,q2≥0

∂q1+1
t0

(
1

B

)
∂q2+1
t0

(
1

B

)(
∂△H
∂vq1

∂△H
∂vq2

+
∂2△H
∂vq1∂vq2

)

− ǫ2

2

∑

q≥0

∂q+2
t0

(
1

8B4
− 1

4B2

)
∂△H
∂vq

+
1

8B2
− 1

16B4
= 0 (1.21)

with △H :=
∑

g≥1 ǫ
2g−2Hg, B =

√
1− 4ev

λ . Moreover, the special cubic Hodge potentials can

be represented as

Hg(t) = Hg

(
v(t),

∂v(t)

∂t0
, . . . ,

∂3g−2v(t)

∂t3g−2
0

)
, g ≥ 1.

This proposition follows from Propositions 4.2, 4.6, 4.7 of Section 4. From the Main Theo-
rem, we also have the following corollary which relates the special cubic Hodge integrals with
the discrete KdV hierarchy.
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Corollary 1.5 Introduce a shift operator Λ1 = eǫ∂t0 , and define

W (t; ǫ) =

(
Λ

1
2
1 + Λ

− 1
2

1

)(
Λ1 − 2 + Λ−1

1

)
Hcubic(t;

√
2ǫ), (1.22)

∂

∂Tk
=
∑

i≥0

ki+1 ∂

∂ti
, k ≥ 1. (1.23)

Then we have

2ǫ
∂W

∂T1
=
(
Λ1 − Λ−1

1

)
exp (W ),

6ǫ
∂W

∂T2
=
(
Λ1 − Λ−1

1

) (
exp(W )

(
Λ1 + 1 + Λ−1

1

)
exp(W )

)
, . . . .

More generally, ∂W
∂Tk

is given by the k-th equation of the discrete KdV hierarchy (also called the
Volterra lattice hierarchy) (

2k

k

)
ǫ
∂L1

∂Tk
=

[(
L2k
1

)
+
, L1

]
, (1.24)

where L1 = Λ1 + exp(W )Λ−1
1 .

The paper is organized as follows: In Sections 2, 3, 4 we give the proof of the Main
Theorem. In Section 5 we give the proof of Corollary 1.5. In Section 6 we give a brief review of
an application of the Main Theorem. In the Appendix we present some Givental quantization
formulae that are used in this paper.

Acknowledgements. We are grateful to Don Zagier and Jian Zhou for several very use-
ful discussions. This work is partially supported by NSFC No. 11771238, No. 11725104 and
No. 11371214. The work of B.D. is partially supported by the Russian Science Foundation
Grant No. 16-11-10260 “Geometry and Mathematical Physics of Integrable Systems”. Parts
of the work of D.Y. were done in SISSA, Trieste and in MPIM, Bonn while he was a postdoc;
he acknowledges both SISSA and MPIM for excellent working conditions and supports.

2 Virasoro constraints for the cubic Hodge partition function

By using the results of [13], it is shown in [7] that the special cubic Hodge partition function
has the following expression:

Zcubic(t; ǫ) = exp




∞∑

j=1

B2j

j(2j − 1)
(2−2j − 1)Dj(ǫ

−1t̃, ǫ∂/∂t)


Z(t; ǫ). (2.1)

Here

Dj(ǫ
−1t, ǫ∂/∂t) := −

∑

i≥0

ti
∂

∂ti+2j−1
+
ǫ2

2

2j−2∑

a=0

(−1)a
∂2

∂ta∂t2j−2−a
, j ≥ 1, (2.2)

t̃ =
(
t̃0, t̃1, . . .

)
is defined by the dilaton shift

t̃i = ti − δi,1, i ≥ 0, (2.3)
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and Z is the partition function of 2d topological gravity [31] given by

Z = Z(t; ǫ) := exp


∑

g≥0

ǫ2g−2
∑

k≥0

1

k!

∑

i1,...,ik≥0

∫

Mg,k

ψi1
1 · · ·ψik

k ti1 · · · tik


 .

It is well known that Z satisfies the following Virasoro constraints [5, 22, 31]:

Lm

(
ǫ−1t̃, ǫ∂/∂t

)
Z(t; ǫ) = 0, m ≥ −1, (2.4)

where the Virasoro operators Lm = Lm

(
ǫ−1t, ǫ∂/∂t

)
, m ≥ −1 are given by

L−1 =
∑

i≥1

ti
∂

∂ti−1
+

t20
2ǫ2

, (2.5)

L0 =
∑

i≥0

2i+ 1

2
ti
∂

∂ti
+

1

16
, (2.6)

Lm =
ǫ2

2

∑

i+j=m−1

(2i + 1)!!(2j + 1)!!

2m+1

∂2

∂ti∂tj
+
∑

i≥0

(2i + 2m+ 1)!!

2m+1(2i− 1)!!
ti

∂

∂ti+m
, m ≥ 1. (2.7)

They satisfy the following Virasoro commutation relations:

[Lm, Ln] = (m− n)Lm+n, ∀m,n ≥ −1. (2.8)

Define the operators Lcubic
m by

Lcubic
m

(
ǫ−1t, ǫ∂/∂t

)
= eG ◦ Lm

(
ǫ−1t, ǫ∂/∂t

)
◦ e−G, m ≥ −1, (2.9)

where

G :=
∞∑

j=1

B2j

j(2j − 1)

(
2−2j − 1

)
Dj, m ≥ −1.

By a straightforward calculation we obtain that [7, 32]

Lcubic
−1 =

∑

k≥1

tk
∂

∂tk−1
+

t20
2ǫ2

− 1

16
. (2.10)

It follows from (2.8) that

[
Lcubic
m , Lcubic

n

]
= (m− n)Lcubic

m+n, ∀m,n ≥ −1.

By using (2.1) and (2.4) we also obain the following lemma.

Lemma 2.1 ([32]) The special cubic Hodge partition function satisfies the Virasoro constraints

Lcubic
m

(
ǫ−1t̃, ǫ∂/∂t

)
Zcubic(t; ǫ) = 0, ∀m ≥ −1. (2.11)

7



Let us proceed to give a second version of Virasoro constraints for the special cubic Hodge
partition function Zcubic(t; ǫ) which is crucial to establish, in Section 4, its relation with the
GUE partition function. These Virasoro constraints are obtained by linear combinations of the
ones given in (2.11), and the associated Virasoro operators are defined as follows:

L̃cubic
m

(
ǫ−1t, ǫ∂/∂t

)
:=

∞∑

k=−1

mk+1

(k + 1)!
Lcubic
k

(
ǫ−1t, ǫ∂/∂t

)
, m ≥ 0. (2.12)

In order to obtain the commutation relations of the operators L̃cubic
m , we need to use the

following lemma which can be proved by a straightforward calculation.

Lemma 2.2 Let {am |m ≥ −1} be a basis of an infinite dimensional Lie algebra satisfying the
commutation relations

[am, an] = (m− n)am+n ∀m,n ≥ −1,

where [ , ] denotes the Lie bracket of the Lie algebra. Define

ãm :=
∑

k≥−1

mk+1

(k + 1)!
ak, m ≥ 0.

Then
[ãm, ãn] = (m− n)ãm+n, ∀m,n ≥ 0.

By using the above lemma and Lemma 2.1, we obtain the following corollary.

Corollary 2.3 The special cubic Hodge partition function satisfies the following constraints:

L̃cubic
m

(
ǫ−1t̃, ǫ∂/∂t

)
Zcubic = 0, ∀m ≥ 0. (2.13)

Moreover, the operators L̃cubic
m satisfy the Virasoro commutation relations

[
L̃cubic
m , L̃cubic

n

]
= (m− n)L̃cubic

m+n, ∀m,n ≥ 0. (2.14)

We call (2.13) the 2nd version of Virasoro constraints for Zcubic.

Theorem 2.4 We have the following explicit expressions of the first three Virasoro operators:

L̃cubic
0

(
ǫ−1t, ǫ∂/∂t

)
=
∑

i≥1

ti
∂

∂ti−1
+

t20
2ǫ2

− 1

16
, (2.15)

L̃cubic
1

(
ǫ−1t, ǫ∂/∂t

)
=

1

2

∑

i≥0

i∑

j=0

(
i

j

)
(2tj+1 + tj)

∂

∂ti
+

t20
2ǫ2

, (2.16)

L̃cubic
2

(
ǫ−1t, ǫ∂/∂t

)
=
ǫ2

8

∑

i,j≥0

∂2

∂ti∂tj
+
∑

i≥0

i∑

j=0

(
i

j

)
2i−j (tj+1 + tj)

∂

∂ti

− 1

8

∑

i≥1

i−1∑

j=0

i−1−j∑

r=0

(−1)r
(

i

i− 1− j − r

)
2i−j−rtj

∂

∂ti
+

t20
2ǫ2

+
1

16
. (2.17)

8



Proof. From the definition (2.12) it follows that L̃cubic
0 = Lcubic

−1 . So by using (2.10) we get the
formula (2.15).

For m > 0, the direct calculation of L̃cubic
m becomes complicated, so we are to use Givental’s

quantization formulae (see Appendix A) to simplify the computations. To this end, let us
introduce a function

Φ(z) = 2−2z Γ(1− z)

Γ(1 + z)

√
Γ(1 + 2z)

Γ(1− 2z)
. (2.18)

It is a multivalued meromorphic function of z ∈ C with branch points at nonzero half-integers.
With a suitable choice of the branches one has

Φ(z) → e∓
πi
4 , |z| → ∞, ±Re(z) > 0.

It satisfies the identity
Φ(−z)Φ(z) = 1,

and so it defines a canonical transformation

f(z) 7→ Φ(z)f(z)

on the Givental symplectic space (see Appendix A for the details about Givental quantization
formalism). We now identify the function Φ(z) with its asymptotic expansion at |z| → ∞
(see Appendix A). Denote by Φ̂ the quantization of this symplectomorphism acting on the
corresponding Fock space. By using Lemma A.3 we obtain

eG = Φ̂.

So the operators Lcubic
k defined in (2.9) have the expressions

Lcubic
k

(
ǫ−1t, ǫ∂/∂t

)
= Φ̂Lk

(
ǫ−1t, ǫ∂/∂t

)
Φ̂−1, k ≥ −1.

Thus by using Lemma A.1 we obtain

Lcubic
k

(
ǫ−1t, ǫ∂/∂t

)
=

[
Φ̂

(
l̂k +

δk,0
16

)
Φ̂−1

]∣∣∣∣
qi 7→ti, ∂qi 7→∂ti , i≥0

, k ≥ −1, (2.19)

where
lk = (−1)k+1z3/2∂k+1

z z−1/2, k ≥ −1. (2.20)

Denote Φk(z) = Φ(z)lkΦ(z)
−1, then from (2.19) we have

Lcubic
k

(
ǫ−1t, ǫ∂/∂t

)
= Φ̂k|qi 7→ti, ∂qi 7→∂ti , i≥0 +

δk,0
16

− δk,−1

16
, k ≥ −1.

Here we have used the fact that the non-zero cocycle terms of the above quantization formula
appear only when k = −1. Thus the operators L̃cubic

m , m ≥ 0 have the following expressions:

L̃cubic
m

(
ǫ−1t, ǫ∂/∂t

)
= Ψ̂m|qi 7→ti, ∂qi 7→∂ti , i≥0 +

m− 1

16
, (2.21)

where

Ψm(z) =
∞∑

k=−1

mk+1

(k + 1)!
Φk(z).

9



Now let us employ the quantization formulae (2.21) of the operators L̃cubic
m to prove the

theorem. From (2.20) we have

Ψ1(z) = Φ(z)z3/2e−∂zz−1/2Φ−1(z) = z3/2(z − 1)−1/2 Φ(z)

Φ(z − 1)
e−∂z .

By using the identity
Φ(z)

Φ(z − 1)
=

z − 1
2√

z(z − 1)
, (2.22)

we arrive at

Ψ1(z) = z
z − 1/2

z − 1
e−∂z .

In order to prove the formula (2.16), we need to compute the residue

−1

2
Resz=∞ f(−z)z − 1/2

z − 1
f(z − 1)

dz

z

for f(z) = q(z)+p(z), where q(z) =
∑

i≥0 qi z
−i and p(z) =

∑
i≥0 pi (−z)i+1. The computation

of the above residue can be decomposed into the following four parts:

S1 = −1

2
Resz=∞ p(−z)z − 1/2

z − 1
p(z − 1)

dz

z
, S2 = −1

2
Resz=∞ p(−z)z − 1/2

z − 1
q(z − 1)

dz

z
,

S3 = −1

2
Resz=∞ q(−z)z − 1/2

z − 1
p(z − 1)

dz

z
, S4 = −1

2
Resz=∞ q(−z)z − 1/2

z − 1
q(z − 1)

dz

z
.

It is easy to see that S1 = 0, S4 =
1
2q

2
0 and S2 = S3. By using

z − 1/2

z − 1
= 1 +

1

2

∑

k≥1

z−k, z → ∞,

we obtain

S3 =
1

2

∑

i≥0

pi

(
i+1∑

j=0

qj

(
i+ 1

j

)
+

1

2

i∑

j=0

qj

i+1−j∑

k=1

(−1)k
(
i+ 1

j + k

))

=
1

4

∑

i≥0

pi

i∑

j=0

(
i

j

)(
2 qj+1 + qj

)
.

Note that in the last equality we have used the following elementary identity

i+1−j∑

k=1

(−1)k
(
i+ 1

j + k

)
= −

(
i

j

)
.

As a result, we proved the formula (2.16).
To prove the formula (2.17), we first use the identity

Φ(z)

Φ(z − 2)
=

(
z − 1

2

) (
z − 3

2

)

(z − 1)
√
z(z − 2)

10



to represent Φ2(z) in the form

Ψ2 = z3/2 (z − 2)−1/2 Φ(z)

Φ(z − 2)
e−2∂z =

z (z − 1/2) (z − 3/2)

(z − 1) (z − 2)
e−2∂z .

Then by calculating the following residue

−1

2
Resz=∞ f(−z) z (z − 1/2) (z − 3/2)

(z − 1) (z − 2)
f(z − 2)

dz

z2

we arrive at the proof of validity of the formula (2.17). The theorem is proved. �

3 Virasoro constraints for the GUE partition function with

even couplings

We show in this section that the GUE partition function Zeven(x, s; ǫ) with even couplings
satisfies certain Virasoro constraints, and that it also gives a tau function of the discrete KdV
hierarchy. To this end, we first consider the GUE partition function which also depends on
the odd integer numbered coupling constants s1, s3, . . . . We recall the well-known results that
this GUE partition function satisfies the Virasoro constraints, and it gives a tau function of
the Toda lattice hierarchy. We then take the odd coupling constants to be zero to obtain the
desired properties of the GUE partition function with even couplings.

We use the same symbol ZN (s) as we do in (1.7) to denote the GUE partition function of
size N with couplings s = (s1, s2, s3, . . . ), i.e.

ZN (s) =
(2π)−N

Vol(N)

∫

H(N)
e−

1
ǫ
trV (M ; s)dM (3.1)

with

V (M ; s) =
1

2
M2 −

∑

j≥1

sjM
j .

Introducing the variable x as we do in (1.9) and expanding the free energy FN (s) := logZN (s)
in powers of ǫ yields the GUE free energy

FGUE(x, s; ǫ) := FN (s)|N=x
ǫ
− 1

12
log ǫ =

∑

g≥0

ǫ2g−2Fg(x, s). (3.2)

It can be represented in the form [2, 20, 21, 29]

FGUE(x, s; ǫ) =
x2

2ǫ2

(
log x− 3

2

)
− 1

12
log x+ ζ ′(−1) +

∑

g≥2

ǫ2g−2 B2g

2g(2g − 2)x2g−2

+
∑

g≥0

ǫ2g−2
∑

k≥0

∑

i1,...,ik≥1

ag(i1, . . . , ik)si1 . . . sikx
2−2g−

(
k−

|i|
2

)
, (3.3)

ag(i1, . . . , ik) =
∑

Γ

1

#SymΓ
, (3.4)

11



where the last summation is taken over all connected oriented ribbon graphs of genus g with k
vertices of valencies i1, . . . , ik. The exponential

eFGUE(x,s;ǫ) =: ZGUE(x, s; ǫ) (3.5)

is called the GUE partition function. From (3.3) we see that the GUE free energy FGUE(x, s; ǫ)
lives in the following Bosonic Fock space

B =
1

ǫ2
C[ǫ][[x− 1, s1, s2, . . . ]].

By using the shift operator
Λ = eǫ∂x , (3.6)

we define two functions

U = U(x, s; ǫ) := (Λ− 1)(1 − Λ−1)FGUE(x, s; ǫ), (3.7)

V = V (x, s; ǫ) := ǫ
∂

∂s1
(Λ− 1)FGUE(x, s; ǫ), (3.8)

and the operator
L = Λ + V + exp(U)Λ−1. (3.9)

Lemma 3.1 The functions U, V satisfy the following equations of the Toda Lattice hierarchy:

ǫ
∂L

∂sj
= [Aj , L] , Aj :=

(
Lj
)
+
, ∀ j ≥ 1. (3.10)

Moreover, ZGUE is a tau function (cf. Definition 1.2.4 in [8]) of the Toda lattice hierarchy.

The proof of the above lemma can be obtained by using the orthogonal polynomial tech-
nique [29], see for example [15] (see also [8], esp. Corollary A.2.2 and Definition 1.2.4 therein).
The following lemma is also well known, see e.g. [15, 27, 29, 30].

Lemma 3.2 The GUE partition function ZGUE satisfies the following Virasoro constraints:

LToda
m (s; ǫ)ZGUE(x, s; ǫ) = 0, ∀m ≥ −1. (3.11)

Here the Virasoro operators LToda
m = LToda

m (s; ǫ) are given by

LToda
−1 :=

∑

k≥2

ksk
∂

∂sk−1
− ∂

∂s1
+
xs1
ǫ2
, (3.12)

LToda
0 :=

∑

k≥1

ksk
∂

∂sk
+
x2

ǫ2
− ∂

∂s2
, (3.13)

LToda
m := ǫ2

m−1∑

k=1

∂2

∂sk∂sm−k
+ 2x

∂

∂sm
+
∑

k≥1

ksk
∂

∂sk+m
− ∂

∂sm+2
, m ≥ 1. (3.14)

They satisfy the commutation relations
[
LToda
m , LToda

n

]
= (m− n)LToda

m+n, ∀m,n ≥ −1.

12



We note that one can use the observation of [6] and the results of [11] to give a simple and
straightforward proof of this lemma.

By using the formulae (3.3), (3.4) and the fact that the total valency of any ribbon graph
is an even number, we have the following lemma on the property of the GUE free energy.

Lemma 3.3 The GUE free energy FGUE satisfies the following property: if k1 + · · ·+ km is an
odd number, then

∂mFGUE

∂sk1 . . . ∂skm

∣∣∣∣
s1=s3=s5=···=0

≡ 0.

We also list some other useful identities on the GUE free energy in the next lemma.

Lemma 3.4 The following formulae hold true for the GUE free energy FGUE:

ǫ2
∂2FGUE

∂s1∂s1
=exp(U), (3.15)

ǫ2
∂2FGUE

∂s1∂s3
=exp(U)

(
V (x)2 + V (x− ǫ)2 + V (x)V (x− ǫ)

)

+ exp(U)
(
1 + Λ + Λ−1

)
exp(U), (3.16)

ǫ2
∂2FGUE

∂s2∂s2
=exp(U) (V (x− ǫ) + V (x))2 + exp(U)

(
Λ+ Λ−1

)
exp(U), (3.17)

ǫ

(
∂FGUE

∂s2

)
=(Λ− 1)−1

(
V 2 + (Λ + 1) exp(U)

)
. (3.18)

Proof. We can obtain these identities by using (1.2.8) and (2.1.7)–(2.1.13) of [8]. The lemma
is proved. �

Now let us consider the GUE free energy and partition function with even couplings, they are
obtained from the GUE free energy and partition function by putting s1 = s3 = s5 = · · · = 0,
namely,

Feven(x, s; ǫ) = FGUE(x, s1 = 0, s2, s3 = 0, s4, . . . ; ǫ),

Zeven(x, s; ǫ) = ZGUE(x, s1 = 0, s2, s3 = 0, s4, . . . ; ǫ)

Here and in what follows we restore the notation

s = (s2, s4, s6, . . . )

introduced in Sect.1. It follows from Lemma 3.3 and the definition (3.8) of V that after the
restriction s1 = s3 = s5 = · · · = 0 we have V ≡ 0. The Lax operator L given in (3.9) now
becomes

L = Λ+ exp(U)Λ−1 (3.19)

with
U = U(x, s; ǫ) = (Λ− 1)

(
1− Λ−1

)
Feven(x, s; ǫ). (3.20)

Here we note that

Feven(x, s; ǫ) ∈ Beven =
1

ǫ2
C[ǫ][[x− 1, s2, s4, . . . ]], U(x, s; ǫ) ∈ ǫ2Beven.

From Lemma 3.1 we have the following lemma.
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Lemma 3.5 The function U satisfies the discrete KdV hierarchy (aka the Volterra hierarchy)

ǫ
∂L

∂s2k
=

[(
L2k
)
+
, L

]
, k ≥ 1 (3.21)

and the initial condition
exp(U(x,0; ǫ)) = x. (3.22)

It should be noted that solution to the equation (3.21) with initial condition (3.22) exists
and is unique in ǫ2Beven. Moreover, one can easily get an analogue of the definition of tau
function of the discrete KdV hierarchy from [8] such that Zeven is a particular tau function.
The tau function of any solution to the discrete KdV hierarchy is uniquely determined up to
a linear function of s and x. This linear function can further be fixed by the so-called string
equation (see below) up to a linear function in x. We omit the details because these are just
specializations of the results of [8] to the even couplings.

Example 3.6 The k = 1 flow of the discrete KdV hierarchy (3.21) is given by

∂U

∂s2
=

1

ǫ

(
Λ− Λ−1

)
exp(U).

Theorem 3.7 Let us introduce a modification Z̃(x, s; ǫ) of the GUE partition function with
even couplings by using the relation

logZeven(x, s; ǫ) =
(
Λ1/2 + Λ−1/2

)
log Z̃(x, s; ǫ).

Then Z̃(x, s; ǫ) satisfies the followings system of Virasoro constraints:

Leven
n

(
ǫ−1x, ǫ−1s̃, ǫ∂/∂s

)
Z̃(x, s; ǫ) = 0, n ≥ 0, (3.23)

where s̃ = (s̃2, s̃4, . . . ) is defined by

s̃2k = s2k − 1
2δk,1, (3.24)

and the Virasoro operators Leven
n = Leven

n

(
ǫ−1x, ǫ−1s, ǫ∂/∂s

)
have the expressions

Leven
0 =

∑

k≥1

ks2k
∂

∂s2k
+
x2

4ǫ2
− 1

16
, (3.25)

Leven
n = ǫ2

n−1∑

k=1

∂2

∂s2k∂s2n−2k
+ x

∂

∂s2n
+
∑

k≥1

ks2k
∂

∂s2k+2n
, n ≥ 1. (3.26)

These operators satisfy the commutation relations

[
Leven
m , Leven

n

]
= (m− n)Leven

m+n, ∀m,n ≥ 0. (3.27)

Proof. The Virasoro commutation relation (3.27) can be verified straightforwardly. It then
suffices to prove (3.23) for n = 0, 1, 2, because the rest of (3.23) can be proved by using (3.27).
We denote F̃ = log Z̃(x, s; ǫ).
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Let us start with the case when n = 0. By taking m = 0 in (3.11) of Lemma 3.2 we obtain

∑

k≥1

ksk
∂ZGUE

∂sk
+
x2

ǫ2
ZGUE − ∂ZGUE

∂s2
= 0.

Put s1 = s3 = s5 = · · · = 0 in this equation and divide it by Zeven we arrive at

∑

k≥1

2ks2k
∂Feven

∂s2k
+
x2

ǫ2
− ∂Feven

∂s2
= 0. (3.28)

Now by applying the operator
(
Λ1/2 + Λ−1/2

)−1
on both sides of (3.28) we get

∑

k≥1

k s2k
∂F̃
∂s2k

+
x2

4ǫ2
− 1

16
− 1

2

∂F̃
∂s2

= 0.

This proves (3.23) with n = 0.
For the case when n = 1, we take m = 2 in (3.11) and obtain

2x
∂ZGUE

∂s2
+
∑

k≥1

k sk
∂ZGUE

∂sk+2
+ ǫ2

∂2ZGUE

∂s21
− ∂ZGUE

∂s4
= 0.

Put s1 = s3 = s5 = · · · = 0 in this identity and divide it by Zeven we get

2x
∂Feven

∂s2
+
∑

k≥1

2k s2k
∂Feven

∂s2k+2
+ ǫ2

(
∂2FGUE

∂s21
+

(
∂FGUE

∂s1

)2)∣∣∣∣∣
s1=s3=···=0

− ∂Feven

∂s4
= 0.

Then from Lemma 3.3 and the identity (3.15) it follows that

2x
∂Feven

∂s2
+
∑

k≥1

2ks2k
∂Feven

∂s2k+2
+ exp(U)− ∂Feven

∂s4
= 0. (3.29)

On the other hand, by putting s1 = s3 = s5 = · · · = 0 in (3.18) we obtain

ǫ
Λ− 1

Λ + 1

(
∂Feven

∂s2

)
= exp(U). (3.30)

By applying the operator
(
Λ1/2 + Λ−1/2

)−1
on both sides of (3.29) and by using (3.30) we

arrive at

x
∂F̃
∂s2

+
∑

k≥1

k s2k
∂F̃

∂s2k+2
− 1

2

∂F̃
∂s4

= 0,

which proves the Virasoro constraint (3.23) for n = 1.
The validity of the Virasoro constraint (3.23) for n = 2 can be proved in a similar way as

we did for the n = 1 case by using Lemmas 3.2–3.4, so we omit the details here. The theorem
is proved. �
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Remark 3.8 It was an open question to find the Virasoro constraints for Zeven(x, s) in a
compact form [27, 15]. Of course, Zeven itself does satisfy certain Virasoro type constraints,
but these constraints may contain non-linear terms. For example, the Leven

1 constraint for Zeven

reads
(
2x

∂

∂s2
+
∑

k≥1

2ks2k
∂

∂s2k+2
+ exp(U)− ∂

∂s4

)
Zeven = 0, U = (Λ− 1)

(
1− Λ−1

)
logZeven,

which is a non-linear action on Zeven. The key of our study is the introduction of the mod-
ification Z̃ of the GUE partition function with even couplings which linearizes the nonlinear
constraints, and this enables us to write down all the Virasoro constraints in a closed form.

To finish this section, let us note that the Virasoro constraints (3.23) correspond to the
Virasoro symmetries of the discrete KdV hierarchy. The first two of them, in terms of the
function U defined in (3.20), have the following form:

∂U

∂τ0
=
∑

k≥1

ks2k
∂U

∂s2k
+ 1,

∂U

∂τ1
=

1

2

(
3Λ + 3Λ−1 + 2

)
exp(U) + x

∂U

∂s2
+
∑

k≥1

ks2k
∂U

∂s2k+2
.

4 Proof of the Main Theorem

In the previous section we introduced a modification Z̃(x, s; ǫ) of the GUE partition function
with even couplings, which plays a crucial role in our presentation of the associated Virasoro
constraints in terms of linear actions of certain Virasoro operators on the partition function.
We also introduced the following modification of the GUE free energy with even couplings

F̃(x, s; ǫ) =
(
Λ1/2 + Λ−1/2

)−1
Feven(x, s; ǫ). (4.1)

From Theorem 3.7 we know that F̃(x, s; ǫ) satisfies the Virasoro constraints

Leven
n

(
ǫ−1x, ǫ−1s̃, ǫ∂/∂s

)
eF̃(x,s;ǫ) = 0, n ≥ 0, (4.2)

where the linear operators Leven
n are given by (3.25), (3.26). Now let us introduce the following

modification of the special cubic Hodge free energy:

F̂(x, s; ǫ) = Hcubic

(
t(x, s);

√
2ǫ
)
+ ǫ−2 A(x, s)

2
+
ζ ′(−1)

2
. (4.3)

Here A(x, s) and t(x, s) are defined in (1.15) and (1.16).
In order to prove the Main Theorem, we first show that F̂(x, s; ǫ) satisfies the same system

of Virasoro constraints as F̃(x, s; ǫ) does, and then by using the genus expansions of the special
cubic Hodge free energy and the GUE free energy with even couplings we arrive at the identity

F̃(x, s; ǫ) = F̂(x, s; ǫ). (4.4)

In this way we prove the validity of (1.14) and also the Main Theorem.
The following lemma is important in establishing the relationship between the Virasoro

constraints (4.1) and the ones for F̂(x, s; ǫ).
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Lemma 4.1 The Virasoro operators L̃cubic
m , Leven

m defined in (2.15)–(2.17) and in (3.25), (3.26)
for m ≥ 0 are related by the following identity:

e−
A(x,s)

2ǫ2 ◦ Leven
m

(
ǫ−1x, ǫ−1s̃, ǫ ∂/∂s

)
◦ e

A(x,s)

2ǫ2 = 4mL̃cubic
m

(
(
√
2ǫ)−1t̃,

√
2ǫ ∂/∂t

) ∣∣∣
t=t(x,s)

. (4.5)

Here t(x, s) = (t0(x, s), t1(x, s), . . . ) is defined as in (1.16).

Proof. In the case when m = 0, we have

e−
A(x,s)

2ǫ2 ◦ Leven
0

(
ǫ−1x, ǫ−1s̃, ǫ ∂/∂s

)
◦ e

A(x,s)

2ǫ2

= Leven
0

(
ǫ−1x, ǫ−1s̃, ǫ ∂/∂s

)
− 1

2ǫ2
[
A(x, s), Leven

0

(
ǫ−1x, ǫ−1s̃, ǫ ∂/∂s

)]

=
∑

k≥1

ks̄k
∂

∂s̄k
− ∂

∂s̄1
+
x2

4ǫ2
− 1

16
+

1

4ǫ2

∑

k1,k2≥1

k1k2s̄k1 s̄k2

+
x− 1

2ǫ2

∑

k≥1

ks̄k +
1

2ǫ2

(
1

2
− x

)

=
∑

i≥1

ti
∂

∂ti−1
− ∂

∂t0
+
x2

4ǫ2
− 1

16
+

1

4ǫ2
(t0 + 1− x)2

+
x− 1

2ǫ2
(t0 + 1− x) +

1

2ǫ2

(
1

2
− x

)

=
∑

i≥1

ti
∂

∂ti−1
− ∂

∂t0
+

t20
4ǫ2

− 1

16

= L̃cubic
0

((√
2ǫ
)−1

t̃,
√
2ǫ∂/∂t

)
.

In a similar way, one can prove the validity of (4.5) for m = 1, 2. By using the Virasoro
commutation relations (2.14) and (3.27) we know that the identity (4.5) also holds true for
m ≥ 3. The lemma is proved. �

From Theorem 2.3 and the above lemma we obtain the following proposition.

Proposition 4.2 The function F̂(x, s; ǫ) satisfies the following Virasoro constraints

Leven
n

(
ǫ−1x, ǫ−1s̃, ǫ ∂/∂s

)
eF̂(x,s;ǫ) = 0, n ≥ 0. (4.6)

To deduce the validity of the identity (4.4) from the Virasoro constraints (4.2) and (4.6),
we need to use the property of the following genus expansions of the special cubic Hodge free
energy Hcubic(t; ǫ) and the GUE free energy Feven(x, s; ǫ) with even couplings:

Hcubic(t; ǫ) =
∞∑

g=0

ǫ2g−2Hg(t), (4.7)

Feven(x, s; ǫ) =

∞∑

g=0

ǫ2g−2Fg(x, s). (4.8)
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Recall that the genus 0, 1 parts of Conjecture 1.1 is proved in [9], i.e. we have

F0(x, s) = H0(t(x, s)) +A(x, s), (4.9)

F1(x, s) = 2H1(t(x, s)) +
1

8

∂2H0(t(x, s))

∂x2
+ ζ ′(−1). (4.10)

From the definitions given in (4.1) and (4.3) it follows that F̃ and F̂ also have the genus
expansions

F̃(x, s; ǫ) =:

∞∑

g=0

ǫ2g−2 F̃g(x, s), (4.11)

F̂(x, s; ǫ) =:

∞∑

g=0

ǫ2g−2 F̂g(x, s), (4.12)

and we have

F̃0(x, s) =
F0(x, s)

2
, F̂0(x, s) =

H0 (t(x, s))

2
+
A(x, s)

2
, (4.13)

F̃1(x, s) =
1

2
F1(x, s) −

1

16

∂2F0(x, s)

∂x2
, F̂1(x, s) = H1 (t(x, s)) +

ζ ′(−1)

2
. (4.14)

Thus by using (4.9) and (4.10) we obtain the following identities

F̃0(x, s) = F̂0(x, s), F̃1(x, s) = F̂1(x, s). (4.15)

Let us recall two lemmas on properties of the genus g free energies Hg(t) and Fg(x, s) which
are proved in [7] and [9].

Lemma 4.3 ([7]) There exist functions Hg(z, z1, z2, . . . , z3g−2), g ≥ 1 of independent variables
z, z1, z2, . . . such that

Hg(t) = Hg

(
v(t),

∂v(t)

∂t0
, . . . ,

∂3g−2v(t)

∂t3g−2
0

)
, g ≥ 1 (4.16)

and that

H1 =
1

24
log z1 −

1

16
z,

3g−2∑

j=1

j zj
∂Hg

∂zj
= (2g − 2)Hg, g ≥ 2.

Here v(t) := ∂2H0(t)
∂t20

is the unique power series solution to

v = t0 +
∑

i≥1

ti
vi

i!
, v(t)|ti=0, i≥1 = t0. (4.17)

We note that the explicit expression of v(t) in this lemma is given in (1.18).
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Lemma 4.4 ([9]) There exist functions Fg(z, z1, . . . , z3g−2), g ≥ 1 of independent variables z,
z1, z2, . . . such that

Fg(x, s) = Fg

(
u(x, s),

∂u(x, s)

∂x
, . . . ,

∂3g−2u(x, s)

∂x3g−2

)
, g ≥ 1, (4.18)

and that

F1 =
1

12
log z1 +

iπ

24
+ ζ ′(−1),

3g−2∑

j=1

j zj
∂Fg

∂zj
= (2g − 2)Fg , g ≥ 2.

Here u(x, s) := ∂2F0(x,s)
∂x2 = logw(x, s), and w(x, s) is the unique series solution to

w = x+
∑

k≥1

k s̄k w
k, w(x, s)|s̄k=0, k≥1 = x. (4.19)

We note that the explicit expression for w(x, s) in this lemma is given by

w(x, s) =
∞∑

n=1

1

n

∑

i1,...,in≥0
i1+···+in=n−1

wt(i1) · · ·wt(in) s̄i1 · · · s̄in ,

where we put s̄0 = x and denote

wt(i) =

{
1, i = 0

i, otherwise.

Lemma 4.5 For any g ≥ 1, there exist functions F̃g(z, z1, . . . , z3g−2) and F̂g(z, z1, . . . , z3g−2)
of independent variables z, z1, . . . , z3g−2 such that

F̃g(x, s) = F̃g

(
u(x, s),

∂u(x, s)

∂x
, . . . ,

∂3g−2u(x, s)

∂x3g−2

)
, (4.20)

F̂g(x, s) = F̂g

(
u(x, s),

∂u(x, s)

∂x
, . . . ,

∂3g−2u(x, s)

∂x3g−2

)
(4.21)

with u(x, s) defined as in Lemma 4.4.

Proof. Observe that, as in [9], under the substitution

ti(x, s) =
∑

k≥1

ki+1s̄k − 1 + δi,1 + x δi,0,

we have v(t(x, s)) = u(x, s), where v(t) is defined as in Lemma 4.3. The lemma then follows
from Lemmas 4.3, 4.4 and the defining equations (4.1), (4.3). �

Now let us proceed to show that equation (4.6) (or (4.2)) possesses a unique solution F̃
under a certain assumption.
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Proposition 4.6 Consider the Virasoro constraints

Leven
n

(
ǫ−1x, ǫ−1s̃, ǫ ∂/∂s

)
eP(x,s;ǫ) = 0, n ≥ 0 (4.22)

for function P of the form

P = ǫ−2P0(x, s) +△P, △P =
∑

g≥1

ǫ2g−2Pg

(
u(x, s),

∂u(x, s)

∂x
, . . . ,

∂3g−2u(x, s)

∂x3g−2

)
, (4.23)

where P0 = F̃0(x, s) =
1
2F0(x, s), u(x, s) =

∂2F0(x,s)
∂x2 . Then △P satisfies the following equation:

∑

k≥0

(
∂kx

(
1

B2

)
+

k∑

r=1

(
k

r

)
∂r−1
x

(
1

B

)
∂k−r+1
x

(
1

B

))
∂△P
∂uk

− ǫ2
∑

k1,k2

∂k1+1
x

(
1

B

)
∂k2+1
x

(
1

B

)(
∂△P
∂uk1

∂△P
∂uk2

+
∂2△P
∂uk1∂uk2

)

− ǫ2
∑

k

∂k+2
x

(
1

8B4
− 1

4B2

)
∂△P
∂uk

+
1

8B2
− 1

16B4
= 0. (4.24)

Here we denote B =
√

1− 4eu

λ and uk = ∂ku(x,s)
∂xk with u0 = u. Note that equation (4.24) holds

true identically in λ.

Proof. Let us denote

S(λ) :=
∑

k≥1

k(s2k −
1

2
δk,1)λ

k−1, T (λ) :=
∑

ℓ≥1

1

λℓ+1

∂

∂s2ℓ
.

Then it is easy to check that the Virasoro constraints (4.22) can be represented as

(S(λ)T (λ))≤−2 P0 +
x

λ
T (λ)P0 + (T (λ)P0)

2 +
x2

4λ2
= 0, (4.25)

(
(S(λ)T (λ))≤−2 +

x

λ
T (λ) + ǫ2 T (λ)2 + 2 (T (λ)P0)T (λ)

)
△P

=
1

16λ2
− T (λ)2P0 − ǫ2 (T (λ)△P )2 . (4.26)

Here we use the notion (W (λ))≤−2 to denote the part of a power series W (λ) which consists of
terms with powers of λ less than or equal to −2. We note that the equation (4.25) holds true
since it is just the genus zero Virasoro constraint for F0(x, s).

We know from [9] that the genus zero GUE two point functions can be represented in terms
of u(x, s) as follows:

∂2P0

∂s2k∂x
=

1

2

(
2k

k

)
eku,

∂2P0

∂s2l∂s2k
=

1

2

kl

k + l

(
2k

k

)(
2l

l

)
e(k+l)u, k, l ≥ 1.

From these identities it follows that

T (λ)P0,x = − 1

2λ
+

1

2λB
, T (λ)2 P0 = − λ− 8eu

16λ(λ− 4eu)2
+

1

16λ2
, (4.27)

T (λ)u =
1

λ
∂x

(
1

B

)
, T (λ)uk =

1

λ
∂k+1
x

(
1

B

)
, k ≥ 1. (4.28)
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On the other hand, by differentiating the l.h.s of (4.25) with respect to x twice we obtain

1

2
(S(λ)T (λ))≤−2 u+

2

λ
T (λ)P0,x +

x

2λ
T (λ)u+ 2 (T (λ)P0,x)

2

+ (T (λ)P0) (T (λ)u) +
1

2λ2
= 0.

Thus by using the relations (4.27), (4.28) we obtain

2 (T (λ)P0) (T (λ)uk) = − (S(λ)T (λ))≤−2 uk −
x

λ
T (λ)uk −

1

λ2
∂kx

(
1

B2

)

− 1

λ2

k∑

r=1

(
k

r

)
∂r−1
x

(
1

B

)
∂k−r+1
x

(
1

B

)
, k ≥ 0. (4.29)

Note that when acting on functions of uk = ∂kxu(x, s), k ≥ 0, the operators T (λ) and S(λ) have
the following properties:

T (λ) =
1

λ

∑

q≥0

∂q+1
x

(
1

B

)
∂

∂uq
,

(S(λ)T (λ))≤−2 =
∑

q≥0

(S(λ)T (λ))≤−2 (uq)
∂

∂uq
,

T (λ)2 =
1

λ2

∑

q≥0

∂q+2
x

(
1

8B4
− 1

4B2

)
∂

∂uq
+

1

λ2

∑

p,q≥0

∑

m,l≥1

∂q+1
x

(
1

B

)
∂p+1
x

(
1

B

)
∂

∂up

∂

∂uq
.

By using these relations and the formulae given in (4.27)–(4.29), we obtain from (4.26) the
equation (4.24). The proposition is proved. �

Following the notations of [10], we call equation (4.24) the loop equation for the modified
GUE potential.

Proposition 4.7 The loop equation given by (4.24) has a unique solution

{Pg(u, u1, . . . , g3g−2) | g ≥ 1}

up to the addition of constants.

Proof. The right hand side of the loop equation (4.24) can be expanded as a series
∑

g≥1Agǫ
2g−2

in ǫ2. From the coefficient of ǫ0 we get the equation

3

2
u1
∂P1

∂u1

1

B4
− 3

2
u1
∂P1

∂u1

1

B2
+
∂P1

∂u

1

B2
+

1

8B2
− 1

16B4
= 0,

which is equivalent to the equations

3

2
u1
∂P1

∂u1
=

1

16
, −3

2
u1
∂P1

∂u1
+
∂P1

∂u
= −1

8
.

By solving this system of linear equations we obtain

P1 =
1

24
log u1 −

1

16
u+ constant.
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In general, from the coefficients of ǫ2g−2 we get a system of linear equations for
∂Pg

∂u ,
∂Pg

∂u1
, . . . ,

∂Pg

∂u3g−2

with upper triangular coefficient matrix Mg. It is easy to see that

detMg = u
(3g−2)(3g−1)/2
1

3g−2∏

j=1

(2j + 1)!!

2j
.

So the loop equation uniquely fixes the gradients of the function Pg, and we prove the unique-
ness part of the proposition. The existence part of the proposition follows from the result of
Lemma 4.5. The proposition is proved. �

Now we are ready to finish the proof of the Main Theorem. From [8] we already know the
identities

F̃g(x, s) = F̂g(x, s), g = 0, 1;

see (4.15). We also know from [8] that

3g−2∑

j=1

juj
∂F̃g

∂uj
= (2g − 2),

3g−2∑

j=1

juj
∂F̂g

∂uj
= (2g − 2)F̂g , g ≥ 2.

Thus the identity (4.4) follows from the Virasoro constraints (4.2), (4.6), the genus expansion
property (4.11), (4.12), (4.20), (4.21), and Propositions 4.6, 4.7. The Main Theorem is proved.

5 Proof of Corollary 1.5

We know from the Main Theorem that, under the substitution (1.16), the following identity
holds true:

Feven(x, s; ǫ) =
(
Λ

1
2 + Λ− 1

2

)
Hcubic

(
t(x, s);

√
2ǫ
)
+ ǫ−2A(x, s) + ζ ′(−1). (5.1)

Here Feven is the GUE free energy with even couplings, A(x, s) is defined in (1.15). Then the
function U(x, s; ǫ) defined by (3.20), i.e.

U(x, s; ǫ) = (Λ− 2− Λ−1)Feven(x, s; ǫ),

satisfies the discrete KdV hierarchy (3.21). On the other hand, from the definition of W (t, ǫ)
given in (1.22) it follows that

U(x, s; ǫ) =W (t(x, s); ǫ).

We also know from the relation (1.16) between t and s that

∂

∂t0
=

∂

∂x
,

∂

∂s̄k
=
∑

i≥0

ki+1 ∂

∂ti
, k ≥ 1.

Thus W (t; ǫ) satisfies the discrete KdV hierarchy (1.24). The corollary is proved.
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6 Conclusion

We prove in this paper the Hodge–GUE correspondence conjecture that is proposed in [9], and
show that the partition function of the special cubic Hodge integrals of the form (1.3) gives a
tau function of the discrete KdV hierarchy as it is conjectured in [7].

Let us briefly review an application of the Main Theorem that is presented in [9]. Assuming
the validity of the Hodge–GUE conjecture the following formula was obtained in [9]:

Fg(z, z1, . . . , z3g−2)

=
z2g−2

22g(2g)!
+
D2g−2

0 [H1(z; z1)]

22g−3(2g − 2)!
+

g∑

m=2

23m−2g

(2g − 2m)!
D

2(g−m)
0

[
Hm(z, z1, . . . , z3m−2)

]
, (6.1)

here D0 := z1 ∂z +
∑

k≥1 zk+1 ∂zk , Fg and Hm are related to the GUE and Hodge free energies
by (4.16), (4.18), and g ≥ 2. Based on this formula and on the algorithm of computing Hg

developed in [7], the explicit formulae for Fg, g = 1, . . . , 5 are obtained in [9] (see Conjectures
3.3.1–3.3.2 therein). For any g ≥ 2, Fg was also explicitly expressed by primitive special cubic
Hodge integrals [9] (see Conjecture 1.5.1 therein). These conjectures are now theorems as
they are consequences of the Hodge–GUE conjecture proved in the present paper. The above
mentioned results, obtained from the Hodge–GUE correspondence, produce an algorithm which
allows one to compute the number of tilings of labelled mixed 2m-gons on a given oriented real
surface. The algorithm is in particular quite efficient when the number of polygons is large1.

It is interesting to consider the relationship of the special cubic Hodge integrals (1.1) sat-
isfying the local Calabi–Yau condition (1.2), random matrix models and integrable systems.
In [7, 26] it is conjectured that the partition function of these Hodge integrals is a tau function
of the so-called fractional Volterra hierarchy. We will study the validity of this conjecture in a
subsequent publication.

Appendix A Givental quantization

Denote by V the space of Laurent polynomials in z with coefficients in C. Define a symplectic
bilinear form ω on V by

ω(f, g) := −Resz=∞ f(−z) g(z) dz
z2

= −ω(g, f), ∀ f, g ∈ H.

The pair (V, ω) is called a Givental symplectic space. For any f ∈ V, write

f =
∑

i≥0

qi z
−i +

∑

i≥0

pi (−z)i+1.

Then {qi, pi}|∞i=0 gives a system of canonical coordinates for (V, ω). The canonical quantization
in these coordinates yields operators of the form

p̂i = ǫ
∂

∂qi
, q̂i =

1

ǫ
qi

1It is worth mentioning that in [8] another algorithm for the ribbon graph enumeration, based on the matrix-
resolvent method, is obtained which is in particular quite efficient for large genus.
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on the Fock space of formal power series in qi. For any infinitesimal symplectic transformation A
on (V, ω) which satisfies

ω(Af, g) + ω(f,A g) = 0, ∀ f, g ∈ V,

the Hamiltonian associated to A is defined by

HA(f) =
1

2
ω(f,A f) = −1

2
Resz=∞ f(−z)Af(z) dz

z2
.

This Hamiltonian is a quadratic function on V, and its quantization is defined via

p̂ipj = ǫ2
∂2

∂qi∂qj
, p̂iqj = qj

∂

∂qi
, q̂iqj =

1

ǫ2
qiqj.

Denote the quantization of HA by Â. We have, for any two infinitesimal symplectic transfor-
mations A,B, [

Â, B̂
]
= [̂A,B] + C (HA, HB) ,

where C is the so-called 2-cocycle term satisfying

C(pipj , qkql) = −C(qkql, pipj) = δi,kδj,l + δi,lδj,k,

and C = 0 for all other pairs of quadratic monomials in p, q.
Define the operators lk by

lk = (−1)k+1z3/2∂k+1
z z−1/2, k ≥ −1. (A.1)

Then we have

Lemma A.1 ([16]) The operators lk are infinitesimal symplectic transformations on V, and
their quantizations yield the Virasoro operators defined in (2.5)–(2.7) as follows:

Lk

(
ǫ−1t, ǫ∂/∂t

)
= l̂k

∣∣∣
qi 7→ti, ∂qi 7→∂ti , i≥0

+
δk,0
16

, k ≥ −1.

Lemma A.2 ([16]) The multiplication operators z1−2j , j ≥ 1 are infinitesimal symplectic
transformations on V, and the operators Dj, j ≥ 1 defined in (2.2) can be represented as

Dj = ẑ1−2j
∣∣∣
qi 7→ti, ∂qi 7→∂ti , i≥0

. (A.2)

Consider now the quantization Φ̂ of the symplectomorphism f(z) 7→ Φ(z)f(z), where the
function Φ(z) was defined by equation (2.18). It will be defined by

Φ̂ = e(log Φ(z))∧
∣∣∣
qi 7→ti, ∂qi 7→∂ti , i≥0

,

where we replace log Φ(z) by its asymptotic expansion as |z| → ∞, Re(z) 6= 0. The latter has
the form, up to an inessential piecewise constant term

log Φ(z) ∼
∞∑

k=1

B2k

k(2k − 1)

2−2k − 1

z2k−1
.

Using (2.2) we immediately arrive at the following lemma.
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Lemma A.3 We have

Φ̂ = e
∑∞

k=1
B2k

k(2k−1) (2
−2k−1)Dk . (A.3)

Remark A.4 The function Φ(z) is analytic near z = 0, Φ(0) = 1 and

log Φ(z) = −2z log 2− 2
∞∑

k=1

22k − 1

2k + 1
ζ(2k + 1) z2k+1, |z| < 1

2
. (A.4)

One can define another quantum operator Φ̂0 by quantizing the series (A.4). Geometric inter-
pretation of this quantum operator remains an interesting open question.
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