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Design, installation and characterisation of a microwave transmission line for
driving the transitions of the 3He+ hyperfine structure in a Penning trap

A new Penning-trap experiment aiming at a measurement of the ground-state hyper�ne struc-

ture of
3
He
+

and the nuclear magnetic moment of
3
He

2+
is being set up at the Max Planck

Institute for Nuclear Physics. The hyper�ne structure measurement will provide values for the

bound state 6-factors of the electron and nucleus with relative uncertainties of 10−10
and 10−9

,

respectively. Additionally, the zero-�eld hyper�ne splitting will be determined to 10−10
preci-

sion or better. As there has been no previous measurement on a system of interacting nuclear

and electron spin in a Penning trap, calculations are made to connect the established theoretical

results used in Penning trap 6-factor experiments to the hyper�ne structure measurement. In

order to drive the hyper�ne transitions, waveguides need to couple microwaves from a room

temperature source to the cryogenic Penning traps over a distance of about 2 m. A numeri-

cal mode matching technique building on the mode propagation in waveguides is developed.

Together with �nite element calculations, it is used to optimise the waveguide for maximum

transmission under the experimental constraints. It is argued that stainless steel oversized

waveguide components are more practical than standard components and that the di�culties

arising with them can be dealt with. Transmission measurements with the assembled system

complement the numerical studies and show that the transmission line provides enough mi-

crowave power to drive the transitions of the hyper�ne structure.

Design, Aufbau und Charakterisierungsmessungen der Mikrowelleneinkopplung
zur Anregung der Übergänge der Hyperfeinstruktur von 3He+ in einer Penning-Falle

Ein neues Penning-Fallen Experiment zur Messung der Hyperfeinstruktur des Grundzustandes

von
3
He
+

und des magnetischen Moments von
3
He

2+
wird derzeit am Max-Planck-Institut für

Kernphysik aufgebaut. Aus der Hyperfeinstrukturmessung können die Werte der gebundenen

Elektron und Kern6-Faktoren mit einer relativen Genauigkeit von 10−10
beziehungsweise 10−9

bestimmt werden. Außerdem wird die Hyperfeinstrukturaufspaltung des Grundzustands mit

einer Genauigkeit von 10−10
oder besser bestimmt. Da bisher noch keine Messungen an einem

System von interagierenden Kern und Elektron Spin in einer Penning-Falle existieren, werden

Berechnungen angestellt um etablierte Resultate aus 6-Faktor Penning-Fallen Experimenten

für die Hyperfeinstrukturmessung zu nutzen. Um die Übergänge der Hyperfeinstruktur zu

treiben, müssen Wellenleiter Mikrowellen über eine Distanz von etwa 2 m von der Quelle in

die kryogenen Penning-Fallen koppeln. Eine numerische Mode Matching Technik, die auf der

Propagation von Moden in Wellenleitern aufbaut, wird hergeleitet. Zusammen mit Rechnun-

gen einer �nite Elemente Methode wird diese genutzt um die Wellenleiter unter den expe-

rimentellen Restriktionen auf maximale Transmission zu optimieren. Es wird argumentiert,

dass übergroße Edelstahl-Wellenleiter praktikabler als gebräuchliche Wellenleiter sind und die

Schwierigkeiten die mit ihnen einhergehen gelöst werden können. Messungen der Transmis-

sion durch das aufgebaute System komplementieren die numerischen Studien und zeigen, dass

die Mikrowellenleitung genug Leistung bereitstellt, um die Übergänge der Hyperfeinstruktur

zu treiben.
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1. Introduction

The implementation of the continuous Stern-Gerlach e�ect in a Penning trap enables the detec-

tion of the spin state of single isolated charged particles [1]. Using quantum-jump spectroscopy,

the transition frequencies between the spin states are determined with high accuracy and the6-

factors associated with the spin system can be extracted. Applying this technique has led to the

most precise measurement of the 6-factors of free [2] and bound [3] electrons, the positron [4]

and, more recently, the 6-factors of the proton [5, 6] and antiproton [7]. These measurements

probe free and bound-state quantum electrodynamics at a very high precision [8] and, for the

comparison of 6-factors of particles and antiparticles, CPT violation [9].

At the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg a new Penning-trap

experiment which uses the continuous Stern-Gerlach e�ect to perform quantum-jump spec-

troscopy on the charged states of
3
He is constructed. The singly charged state

3
He
+

constitutes

a system of interacting nuclear and electron spin never investigated in a Penning trap before.

By measuring the transition frequencies of the ground-state hyper�ne splitting, the values for

the bound 6-factors of the electron and the nucleus are obtained with an aimed relative pre-

cision of 10−10
and 10−9

, respectively. Additionally, the zero �eld hyper�ne splitting of the

ground state will be determined to 10−10
precision or better. This will give an improvement

in precision of at least a factor of 10 compared to the current most precise value obtained by

spin-dependent collision processes of
3
He
+

with Cs atoms in a radio-frequency quadrupole

trap [10]. While the measurement in the radio-frequency trap was operated in the weak �eld

limit of the Zeeman e�ect, the strength of the magnetic �eld in this experiment requires a de-

scription in the intermediate regime. In the second phase of the experiment, the �rst direct

measurement of the nuclear magnetic moment of
3
He

2+
is planned with a relative precision of

10−9
or better. This will help to establish

3
He as a robust nuclear magnetic resonance (NMR)

probe. Additionally, an altogether new direct comparison of the bound state 6-factor of a nu-

cleus to the free 6-factor of the same nucleus is made possible, opening up tests of bound-state

quantum electrodynamics with nuclear 6-factors.

In the electronic ground state, the nucleus experiences the magnetic �eld produced by the

spin magnetic moment of the orbiting electron. The energy associated with the nuclear mag-

netic moment in this �eld depends on the relative orientation of the electron and nuclear spin,

resulting in the splitting of the ground-state energy. Using the ground state wavefunctions

derived from the Schrödinger equation to evaluate the expectation value of the energy shift
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yields the Fermi contact term �F [11]. A more complete description of the energy splitting must

include corrections from quantum electrodynamics XQED, recoil e�ects Xrec, nuclear structure

e�ects Xnucl and from the strong interaction Xstr. In total, the ground-state hyper�ne splitting

is expanded as

Δ�HFS = �F

(
1 + Xnucl + XQED + Xrec + Xstr

)
. (1.1)

The nuclear structure term is composed of the e�ects of nuclear polarisability, charge and

magnetic moment distributions connected to charge and Zeemach radius, respectively, and

contributes to Δ�HFS at about 10−4
[12]. Thus this measurement will be highly sensitive to

investigate these e�ects.

Nuclear magnetic resonance probes allow for high-precision absolute magnetic �eld mea-

surements. These measurements rely on the value of the shielded nuclear magnetic moment

of the probe. The shielding of the magnetic �eld is in �rst approximation provided by the elec-

tron cloud surrounding the nucleus, resulting in the so-called diamagnetic shielding described

by the parameter f . For the currently most common probes based on water, the diamagnetic

shielding f of the proton nuclear magnetic moment needs to be extracted from measurements

that are highly sensitive to temperature, probe shape, pressure and other e�ects [13]. In con-

trast,
3
He is a much simpler atomic system for which f can be theoretically calculated to high

precision and its dependence on the aforementioned systematic e�ects is lower by a factor of

about 10 [14, 15]. Currently, the value of the nuclear magnetic moment of
3
He has only been

measured by a comparison of the NMR frequencies with water or molecular hydrogen sam-

ples [16]. A direct measurement performed at this experiment will enable the use of
3
He as

an uncorrelated NMR probe. The next-generation experiments located at Fermilab [17] and

J-Parc [18] aim at the measurement of the muon anomalous magnetic moment with a relative

precision of 10−7
. Here, the di�erence of the Larmor precession frequency and the cyclotron

frequency of muons in a magnetic �eld, which is a value proportional to the magnetic �eld, is

measured.
3
He probes o�er the possibility to measure the magnetic �eld with high-precision

as an uncorrelated alternative to the already well developed water NMR probes.

Structure of this thesis

In this work, the theoretical and experimental requirements for driving the transitions of the

hyper�ne structure are worked out. Chapter 2 introduces the basic physics of Penning traps

required for the cyclotron frequency measurement. In Chapter 3, the hyper�ne structure of

3
He
+

is investigated. Starting from the general level structure of
3
He
+

in a magnetic �eld, the

expected lineshapes of the spin-�ip resonances inside a Penning trap are worked out and the

measurement scheme is described. To drive the transitions, microwaves need to be coupled

into the trap with waveguides. Chapter 4 deals with the theoretical description of waveguides

and provides a numerical tool for calculating transmission through arbitrarily shaped circular

waveguides. As the requirements for the microwave power inside the Penning trap are quite

strict, an optimisation of the waveguide is necessary and carried out in Chapter 5. By applying

the techniques of Chapter 4 and �nite element method calculations, the waveguide is opti-

mised for maximum transmission. The results of the optimisation are checked with explicit

measurements in Chapter 6.
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2. The Penning trap

A Penning trap stores ions by superimposing a static axial magnetic �eld with a static quadrupo-

lar electric potential. Applied microwave excitations drive the hyper�ne transitions of the

stored
3
He
+

ion. The spin-�ip detection and determination of the magnetic �eld strength nec-

essary for calculating the magnetic moments rely on the measurement of the eigenfrequencies

of the ion inside the trap. This chapter introduces the basic physics necessary to perform such

measurements.

2.1. Ion motion inside a Penning trap

A charged particle moving in a magnetic �eld H = �eI along the axial direction is forced on a

circular motion in the G~-plane with the angular velocity

l2 =
@

<
�. (2.1)

Here @ is the charge and < the mass of the ion. The frequency l2 is termed free cyclotron

frequency.

To trap the particle in the axial direction as well an electric potential is used. However,

Maxwell’s equations do not allow for electric �elds that solely provide a restoring force in a

singular direction. The addition of a quadrupolar electric potential

Φ(I, d) = +0�2

(
I2 − d2/2

)
, (2.2)

with a free geometric parameter �2 and voltage +0, leads to a restoring force in the axial di-

rection and an outward radial force opposite to the force provided by the magnetic �eld. This

results in an oscillation in the axial direction with frequency

lI =

√
2
@

<
�2+0. (2.3)

Additionally, the radial motion in the G~-plane is split into a sum of two circular motions

described by the so-called reduced cyclotron l+ and magnetron l− frequency, respectively,

l± =
1

2

(
l2 ±

√
l2
2 − 2l2

I

)
. (2.4)

3



x
y

z

Full trajectory
Radial motion
Axial motion

Figure 2.1: Motion of an ion inside a Penning trap. The blue curve shows the full trajectory.

In the G~-plane, the green curve shows the radial motion consisting of the fast

reduced cyclotron and the slow magnetron motion. The axial motion is plotted

in red. In order to produce a better visualisation of the motion, the cyclotron fre-

quency used for this graphic was reduced by about a factor of 10 compared to the

actual value in this experiment.

The ion is trapped only if the magnetic �eld is large enough compared to the electrostatic

potential such that l2
2 > 2l2

I . Typically, the frequencies obey l+ � lI � l−. Figure 2.1

shows the ion’s trajectory produced by the superposition of the three eigenmotions.

The free cyclotron frequency can be determined by a measurement of the eigenfrequencies

and relating them according to

l2 = l+ + l−, l2
2 = l2

+ + l2
− + l2

I . (2.5)

The latter is an invariance theorem as it is also valid for slight errors of the trap con�gura-

tion [19]. Using Eq. (2.1) and the charge to mass ratio
@

<
yields the value of the magnetic �eld

at the ion’s position.
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Figure 2.2: Cut of a cylindrical Penning trap with �ve electrodes. The centre ring electrode is

kept at a potential +0 relative to the upper and lower electrodes, called endcaps.

The two electrodes between ring and endcap are termed correction electrodes and

are at a potential+2 relative to the endcaps. The lower correction electrode is split

such that a speci�c RF excitation �eld can be generated.

2.2. Cylindrical Penning trap

The homogeneous magnetic �eld is generated by a superconducting magnet system. To gener-

ate the electrostatic potential given in Eq. (2.2) a stack of cylindrical trap electrodes is used, see

Figure 2.2. A ring electrode at potential +0 relative to the upper and lower endcap electrodes

allows for tuning of the axial frequency of the ion. Two correction electrodes at the potential

+2 relative to the endcaps are used to set the tuning ratio TR = +2/+0. Together they produce

a symmetric potential that is expanded as

Φ(I) = +0

∑
=

�2=I
2= = +0

(
�2I

2 +�4I
4 +�6I

6 + ...
)

(2.6)

on axis [20]. Here I = 0 is the center of the ring electrode and de�nes the ion’s position of rest.

With optimised trap electrode lengths a tuning ratio can be found such that the axial fre-

quency of the ion determined by the parameter �2, compare Eq. (2.3), is independent of the

correction voltage +2 , while at the same time the �rst higher order terms �4 and �6 are can-

celled [21]. A Penning trap that meets these conditions is said to be orthogonal and optimised.

Any residual �4, �6 or higher order terms lead to anharmonicities of the axial oscillation that

result in amplitude dependant shifts of the axial frequency [22].

2.3. Eigenfrequency detection

As the ion moves inside the trap, its charge @ induces tiny image currents in the trap elec-

trodes [5]. The detection of these currents is possible by measuring the voltage drop over a

large resistance. For the purpose of measuring the axial frequency, a coil is connected to one of

5



the endcap or correction electrodes, forming a parallel RLC circuit with the trap capacitance.

By tuning the ion’s frequency to the resonance frequency of the RLC circuit, the image current

�ind =
@

�
¤I, (2.7)

where � is the e�ective electrode distance [20], produces a voltage drop

*ind = 'p�ind (2.8)

over the parallel resistance 'p of the tuned circuit. Here ¤I is the time derivative of the ion’s

axial position I. The additional voltage on the endcap electrode results in a force

� =
@

�
*ind (2.9)

on the electrons motion. Using Eq. (2.7) the harmonic oscillation of the ion’s axial coordinate

I is replaced by a damped oscillation described by

¥I + 'p@
2

<�2
¤I + l2

II = 0. (2.10)

This de�nes the damping constant

W =
'p@

2

<�2
, (2.11)

which is a measure for the interaction of the ion with the resonator.

The thermal Johnson noise on the detection system drives the damped oscillation. By letting

the ion’s axial motion come into thermal equilibrium with the detection system, it e�ectively

provides a short circuit for the thermal noise on the resonator. In the Fourier spectrum of the

measured thermal voltages, a so-called dip appears at the ion’s axial frequency [23]. Using

sideband coupling to the magnetron and cyclotron motion with RF excitations results in a

modulation of the axial frequency. The two frequency components appear as separate dips

(double dip) in the frequency spectrum and give access to either the magnetron or the cyclotron

frequency [24].

Phase-sensitive measurements use coupling pulses to transfer the cyclotron motion’s phase

acquired after a free evolution period to the axial motion. The coupling pulse excites the axial

motion of the ion such that it dominates the thermal noise of the resonator enabling much

faster integration times of the Fourier spectrum. Systematic errors arising with the pulse and
phase method [25] can be avoided with the newer pulse and amplify method [26].
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3. Hyper�ne structure of 3He+ inside
a Penning trap

Brown and Gabrielse [27, 28] calculated the spin-�ip lineshape of a single charged spin-
1
2 parti-

cle inside a Penning-trap. Fitting this lineshape to the measured spin-�ip spectrum gives access

to the frequency of the transition. In order to use this calculation for the hyper�ne splitting of

3
He
+
, which is described by the interaction of its spin-

1
2 nucleus with the spin-

1
2 electron, the

possible transitions have to be modelled as separate spin-
1
2 systems.

Starting from the Hamiltonian of the interacting electron-nucleus system, the e�ective two-

level Hamiltonians of the hyper�ne transitions are derived and then used to calculate the line-

shape. Lastly, the scheme to measure the transition resonance is described.

3.1. Static magnetic �eld

In a simple hydrogen-like atom or ion with non-vanishing nuclear spin, a splitting of the level

structure arises due to the magnetic moment of the nucleus interacting with the magnetic �eld

generated by the orbiting electron. Even for zero orbital angular momentum of the electron, it

generates a magnetic �eld, attributed to its spin, at the position of the nucleus. In this case the

Hamiltonian

�̂ = �
(
2̂4 · 2̂ �

)
− (`4 2̂4 + `� 2̂ � ) · H (3.1)

describes the hyper�ne splitting of an electron bound to a spin-
1
2 nucleus in an external mag-

netic �eld H [29]. Here 2̂4 and 2̂ � are the Pauli matrices associated with the electron and

nuclear spin, respectively, and `4 , `� the magnetic moments of the spins. The �rst term de-

scribes the interaction of the electron and the nuclear spin with a coupling constant � to be

later connected with the zero-�eld hyper�ne splitting and the second term the interaction of

the electron and the nuclear spin with the external magnetic �eld. The Hamiltonian is an

operator on the product states of the electron and the nuclear spin which will be written as

|BI〉4 ⊗ |BI〉= =
��BI,4BI,=〉, where |BI〉 will be either |+〉 or |−〉 corresponding to spin up or spin

down.

In the following, the magnetic �eld will be assumed to be static. Then its direction can be

chosen to coincide with the I-axis, i.e. H = �ez . In the basis {|++〉 , |+−〉 , |−+〉 , |−−〉} and with
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the de�nitions ` = −`4 − `� , ` ′ = −`4 + `� , the matrix representation of the Hamiltonian

�̂ =̂

©«
� + �` 0 0 0

0 −� + �` ′ 2� 0
0 2� −� − �` ′ 0
0 0 0 � − �`

ª®®®¬ (3.2)

shows that two of its eigenstates will generally be mixtures of the |+−〉 and |−+〉 states. The

diagonalisation of the Hamiltonian reduces to the diagonalisation of the centre 2 × 2 matrix.

Using the de�nitions

sinh\ =
�` ′

2�
, A± =

1√
2

√
1 ± tanh\ (3.3)

and some algebra the eigenstates and the corresponding energies are calculated and listed in

Table 3.1.

State Energy

|1〉 = |++〉 �(+1 + 2
`

`′ sinh\ )
|2〉 = A+ |−+〉 − A− |+−〉 �(−1 − 2 cosh\ )
|3〉 = A+ |+−〉 + A− |−+〉 �(−1 + 2 cosh\ )
|4〉 = |−−〉 �(+1 − 2

`

`′ sinh\ )

Table 3.1: Eigenstates for the Hamiltonian given in Eq. (3.2).

It is now worthwhile to consider the case of
3
He
+

speci�cally. At zero magnetic �eld, the states

|1〉, |3〉 and |4〉 are degenerate and the di�erence of their energy to the state |2〉 corresponds

to the zero-�eld hyper�ne splitting Δ�HFS. In contrast to hydrogen, the constant � is negative

for
3
He
+

and it connects to Δ�HFS as � = −1
4Δ�HFS. The sign of sinh\ is therefore negative

and A+ approaches zero for large magnetic �elds, whereas A− approaches unity. The Breit-Rabi

diagram of the level scheme is shown in Figure 3.1.

3.2. Coupling to a microwave �eld

To drive a transition between the di�erent states of the hyper�ne splitting an oscillating mag-

netic �eld perpendicular to the static �eld is needed. Using a classical description of the mi-

crowave �eld, the Hamiltonian still has the form given in Eq. (3.1). Without loss of generality,

the �eld oscillating with frequency l and strength �RF can be chosen to lie in the G-plane.

Thus, an interaction term

�̂� ,RF = −�RF cos(lC)
(
`4f̂

4
G + `� f̂ �G

)
(3.4)

is added to the static magnetic �eld Hamiltonian described by Eq. (3.2). The matrix repre-

sentation of �̂� ,RF in the basis spanned by the eigenvectors of the time independent Hamilto-

nian Eq. (3.2), compare Table 3.1, is

�̂� ,RF =̂ − �RF cos(lC)
(
f̂G (`4A+ − `�A−) f̂I`4A− + 1`�A+
f̂I`4A− + 1`�A+ f̂G (`4A+ + `�A−)

)
, (3.5)
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Figure 3.1: Breit-Rabi diagram of
3
He
+
. At zero �eld the energies of the three lower states

are degenerate. The energy di�erence between the two negative/positive states is

nearly constant for high �elds. In contrast, the energy di�erence from one negative

to one positive energy state grows linearly with magnetic �eld.

where f̂G , f̂I and 1 are 2 × 2 matrices.

The transition probabilities are best calculated in the interaction (Dirac) picture, where they

are given by the matrix element of the time evolution operator that solves

8ℏ
3

3C
*̂� (C) = �̂�� (C)*̂� (C) . (3.6)

Here, �̂�� = *̂0(C)†�̂� ,RF*̂0(C) is the interaction Hamiltonian in the Dirac picture, with *̂0(C)
being the time evolution operator of the time-independent system. In the chosen basis, *̂0(C)
is diagonal and has entries (*̂0(C))88 = exp(−8�8C/ℏ). This yields

�̂��,RF =̂ − �RF cos(lC)
©«

0 −*12"
=− *13"

4+ 0
−*21"

=− 0 0 −*24"
4−

*31"
4+ 0 0 *34"

=+
0 −*42"

4− *43"
=+ 0

ª®®®¬ , (3.7)

with *8 9 = exp
(
8 (�8 − � 9 )C/ℏ

)
. The coe�cients "4/=

± are de�ned as "4± = `4A− ± `�A+ for the

high frequency (electron spin-�ips) transitions and "=± = `�A− ± `4A+ for the low frequency

(nuclear) transitions.
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Generally it is very hard (or just not possible) to analytically solve Eq. (3.6) for systems with

more than two states. Usually, larger systems can be approximated as two-state systems if the

frequency of the oscillating �eld is close to resonance with one of the transitions. This is done

with a rotating wave approximation (RWA) [30]. To see that a RWA can be applied, the cosine

in Eq. (3.7) is written as cos(lC) = 1
2

(
48lC + 4−8lC ) and l is set equal to one of the transition

frequencies. The Hamiltonian can then be written in terms of a time independent part and

fast oscillating parts. For example, the transition from the state |1〉 to |2〉 with frequency l =

(�2 − �1)/ℏ is approximated by

�̂��,RF =
1

2
�RF"

=
− ( |1〉 〈2| + |2〉 〈1|) + fast oscillating terms. (3.8)

The RWA is valid if the Rabi frequency de�ned by Ω12 = �RF"
=−/ℏ (or similarly for the other

transitions) is much smaller than the frequency of the transitionl . This can be safely assumed

to be the case for this experiment, as shown later in Table 3.2. Applying the RWA by dropping

all the fast oscillating terms reduces the four-level system to a two-level system.

3.3. E�ect of oscillations in the magnetic bottle

To be able to detect the state of the spin, a quadratic magnetic �eld in the I-direction, termed the

magnetic bottle, is needed inside one of the traps. Thus the ion experiences a time dependant

magnetic �eld

�(C) = �0 + �2I (C)2. (3.9)

Adding the additional I-�eld component to the Hamiltonian given in Eq. (3.2) in its eigenbasis

results in an additional interaction term for the Dirac picture Hamiltonian, compare Eq. (3.7)

�̂��,2 =̂ − �2I (C)2
©«
−` 0 0 0
0 tanh\` ′ 2A+A−*23`

′ 0
0 2A+A−*32`

′ − tanh\` ′ 0
0 0 0 `

ª®®®¬ . (3.10)

The axial frequency is about 4 orders of magnitude smaller than the frequencies of the hyper�ne

transitions. It is thus not possible to omit the terms on the diagonal with a RWA. The terms o�-

axis have additional oscillating contributions at the large frequency l23 and could be omitted.

Now, a rede�nition of the non-interacting Hamiltonian and the interaction Hamiltonian in the

Schrödinger picture according to

�̂0 =̂

©«
�1 0 0 0
0 �2 0 0
0 0 �3 0
0 0 0 �4

ª®®®¬ − �2I (C)2
©«
−` 0 0 0
0 tanh\` ′ 0 0
0 0 − tanh\` ′ 0
0 0 0 `

ª®®®¬ , (3.11)

�̂� =̂ − �RF cos(lC)
©«

0 −"=− "4+ 0
−"=− 0 0 −"4−
"4+ 0 0 "=+
0 −"4− "=+ 0

ª®®®¬ − �2I (C)2
©«

0 0 0 0
0 0 2A+A−` ′ 0
0 2A+A−` ′ 0 0
0 0 0 0

ª®®®¬ ,
(3.12)
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changes only the de�nition of the time-evolution operator *̂0 and the elements *8 9 , as the

eigenstates themselves are not changed:

(*̂0(C))88 = exp

(
8

ℏ

∫ C

0
3C̄ (�8 + X�8 (C̄))

)
= exp (8�8C/ℏ) exp

(
8

ℏ

∫ C

0
3C̄X�8 (C̄)

)
, (3.13)

*8 9 (C) = exp
(
8l8 9C

)
exp

(
8

∫ C

0
3C̄Xl8 9 (C̄)

)
, (3.14)

with l8 9 = (�8 − � 9 )/ℏ and X�8 (C), Xl8 9 (C) de�ned from the time dependant part of �̂0.

Back in the Dirac picture the factors *8 9 need to be added to the interaction Hamiltonian

as in Eq. (3.7) and Eq. (3.10). The RWA is still applicable because *8 9 still includes the same

fast oscillating term at the transition frequency which leads to slow oscillating terms when

multiplied with the cosine from the microwave �eld. The factor that includes the integral

in *8 9 can be assumed to oscillate maximally at the axial frequency of the particle, which is

always much slower than the hyper�ne transitions frequencies. Therefore, the second term in

the interaction Hamiltonian Eq. (3.12) still completely drops out as argued before. It is thus still

possible to approximate the four-level system as separate two-level systems, if the frequency

of the applied microwave �eld is close to one of the transition frequencies.

The e�ective two-level interaction Hamiltonian in the Dirac picture for the transition 8 → 9
with l8 9 = (�8 − � 9 )/ℏ can be written as

�̂��,RWA =̂
ℏΩ8 9

2

(
0 48Δ8 9 C+8

∫ C

0
3C̄Xl8 9 (C̄ )

4−8Δ8 9 C−8
∫ C

0
3C̄Xl8 9 (C̄ ) 0

)
, (3.15)

where Ω8 9 is the Rabi frequency of the transition as explained in the previous section and

Δ8 9 = l − l8 9 de�nes the detuning. Each of the transitions is now e�ectively modelled by a

Hamiltonian which is equivalent to the that of a single spin-
1
2 particle in a Penning trap under

the in�uence of an external microwave excitation.

3.4. Spin-�ip lineshape

Having obtained e�ective two-level Hamiltonians for the hyper�ne transitions, the calculation

of the lineshape now follows that of Brown and Gabrielse [27, 28]. In the following, the term

spin-�ip is meant as a transition from one of the four hyper�ne states to another. Technically,

these are not spin-�ips in the sense that a single spin changes its orientation in the magnetic

�eld, as the states |2〉 and |3〉 are still very much superposition states at the relevant magnetic

�eld of ≈ 5 T. For example, at 5 T the state |2〉 ≈ 0.03084 |−+〉 − 0.99952 |+−〉 is mostly equal

to the |+−〉 state. The main contribution, in the sense of the matrix element in Eq. (3.7), to the

transition to the |++〉 state however is the |−+〉 �ip to |++〉, because |`4/`� | ≈ 864.

The lineshape arises due to the varying transition frequency over the course of one spin-�ip

excitation. This change in frequency, as mentioned before, is caused by the oscillation of the

ion inside the magnetic bottle. While this oscillation would cause the frequency to oscillate in

time, an excitation could still be coherent. This coherency is lost due to the coupling of the

axial motion to the detection system, which constitutes a heat bath and causes the amplitude
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of the axial motion to randomly change. The averaged maximum of Xl (C) is a measure for the

spread of the transition frequency due to the oscillation in the magnetic bottle and thus called

the linewidth parameter Δl , which is proportional to the average of the thermally distributed

axial amplitude

〈I2〉 = :)

<l2
I

. (3.16)

The time constant de�ned by the inverse of the coupling to the resonator 1/W , compare Eq. (2.11),

is connected to a dephasing time. Random jumps of the transition frequency due to the ther-

mal noise on the resonator, occurring with frequency W , lead to acquisition of random phase

between the two spin states and thus decreasing expectation value of transverse spin. The nat-

ural linewidth of the transitions can be neglected, as the lifetimes of the states are very large in

comparison to 1/Δl and 1/W . As derived by Brown [28], de�ning the line pro�le as the Fourier

transformation

j (ΔRF) = 1

2c

∫ ∞

−∞
3C48ΔRFC j̃ (C) (3.17)

of the correlation function
1

j̃ (C) =
〈
exp

{
8

∫ C

0
3C̄Xl (C̄)

}〉
(3.18)

provides the spin-�ip probability at a detuning ΔRF after excitation of g seconds

% (ΔRF, g) = 1

2

{
1 − exp

[−cΩ2j (ΔRF)g
]}
. (3.19)

The brackets in the correlation function denote a classical statistical averaging over the random

variable I (C) appearing inside Xl (C). In this way, Eq. (3.18) includes correlations of the random

amplitudes of the axial motion.

In the analysis and precision trap, di�erent line pro�les arise. The strong magnetic bottle

�2 required for measuring spin-�ips inside the analysis trap results in the linewidth parameter

being much larger than the coupling constant, i.e. W � Δl . Over a single oscillation cycle of

the complex exponential in Eq. (3.18) with frequency ∼ Δl , the amplitude of Xl (C) is therefore

constant and Xl (C) can be replaced by a time averaged value. This leaves an averaging over

many oscillation periods, where for every period the axial amplitude takes a new random value

drawn from the thermal (Boltzmann) distribution of axial energies. This averaging may now

be switched with the time integration appearing in Eq. (3.17) leading to

j (ΔRF) = \ (ΔRF)
Δl

exp

(
−ΔRF

Δl

)
, (3.20)

where Δ is the detuning and \ the step function.

In the precision trap there is only a residual �2. For the low frequency nuclear spin transi-

tions this leads to W � Δl . Over one oscillation of the complex exponential in Eq. (3.18) the

1
The integrand of Eq. (3.17) is just the matrix element of the Hamiltonian Eq. (3.15).
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frequency Xl (C) �uctuates fast, and thus averages quickly to Δl . The line pro�le function of

the correlation function exp(−8ΔlC) is thus just the shifted delta function

j (ΔRF) = X (ΔRF − Δl) . (3.21)

For large times the correlation function is expected to vanish, as the uncorrelated thermal noise

driving the axial motion will eventually dominate the correlated oscillations of I (C). Therefore

a next order correction to the correlation function is the addition of the factor exp
(
−Δl2

W
|C |

)
.

This leads to a Lorentzian line pro�le

j (ΔRF) = 1

c

Δl2/W
(ΔRF − Δl)2 + (Δl2/W)2 . (3.22)

However, for the electron spin transitions the linewidth parameter Δl > W , but much less

than in the analysis trap. Then the line pro�le can not be computed for a limiting case, but the

result for arbitrary Δl and W needs to be used. Brown and Gabrielse’s general result is

j (ΔRF) = 4

c
Re

W ′W
(W ′ + W)2

∞∑
==0

(W ′ − W)2= (W ′ + W)−2=

(= + 0.5)W ′ − 0.5W − 8ΔRF

, (3.23)

where W ′ =
√
W2 + 84WΔl .

In order to understand the consequences of the di�erent line pro�les and their implications

on the experimental realisation, the relevant parameters for the analysis and precision trap are

calculated. The lineshape parameter Δl can be read o� from the time dependant part of �̂0

in Eq. (3.11), where I (C)2 is substituted by its average Eq. (3.16). Similarly, the Rabi frequencies

are the elements of the �rst term in the interaction Hamiltonian Eq. (3.12).

Table 3.2 lists the parameters for this experiment. The nuclear transitions have a very small

linewidth compared to the electron spin transitions. This can be understood in the following

way.z The electron only sees the external magnetic �eld �. In contrast, the nucleus also expe-

riences the �eld generated by the orbiting electron, which dominates the external �eld. Thus,

changes in the external �eld induce only slight changes of the transition frequency, see also

Figure 3.1. As the coupling constant is expected to be W ≈ 5, the above cases for the line pro-

�les are justi�ed. The very large linewidths of the electron spin transitions inside the analysis

trap motivate the requirement of a precision trap with very small �2. Figure 3.2 shows the

theoretical spin-�ip line pro�les for the analysis and precision trap. Clearly, the lineshape of

the nuclear transitions inside the precision trap have a very reduced width, which is due to the

additional factor Δl/W appearing in Eq. (3.22), while the width of the electronic transitions in

the PT is nearly equal to Δl .

In the analysis trap, the spin-�ip probability given in Eq. (3.19) should be as large as possible

such that spin-�ips can be driven e�ciently on a large range of frequencies, whereas in the

precision trap it should not be oversaturated away from resonance to achieve the best frequency

resolution. However, the tiny linewidth of the nuclear transitions in the precision trap might

require an oversaturation as well. Quantifying this with the requirement that the argument

of the exponential in Eq. (3.19) should be approximately (or bigger than) negative unity on
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Transition aAT (GHz) ΔaAT (kHz) aPT (GHz) ΔaPT (Hz) Ω/�RF (rad/s/nT)

4→ 3 4.387 18.90 4.401 16.56 · 10−3 2.48
1→ 2 4.278 18.90 4.264 16.56 · 10−3 2.28
3→ 1 148.8 9.65 · 103 156.1 8.77 88.0
4→ 2 157.5 9.65 · 103 164.8 8.77 88.0

Table 3.2: Transition frequencies a , lineshape parameter Δa and Rabi frequency per mi-

crowave �eld Ω for the four di�erent transitions in the analysis (AT) and pre-

cision (PT) trap. The following parameters were used: External magnetic �eld

�AT = 5.46 T, �PT = 5.72 T, magnetic bottle �2,AT = 110 kT/m2, �2,PT = 0.1 T/m2
,

temperature ) = 10 K, axial frequency aI = 472 kHz. These are expected values

for this experiment and are not measured (some estimated from the similar trap

speci�c parameters from [31]). The Rabi frequencies for analysis and precision trap

di�er only slightly and are listed only for the latter.. Note: This table and the axial

frequency were adjusted after handing in the thesis. A sign error in the calculation

script was �xed and the axial frequency was measured, resulting in new values.

These values do not not change any of the arguments in this thesis, but are impor-

tant for the measurements thereafter.

resonance gives a condition for Rabi frequency and excitation time

Ω2g


≈ 1

c j (0) ≈
{
Δl/c, electron spin transitions in the PT,

Δl2/W, nuclear transitions in the PT,

> 1
c j (0) ≈ Δl/c, in the AT.

(3.24)

Owing to the much larger linewidth in the analysis trap, the last condition enforces the strongest

requirement of radio-frequency �eld power and excitation time. As will be explained in the next

section, only the electron spin transitions need to be driven in the analysis trap, for which the

above evaluates to

�RF '
11√
g

nT

√
s. (3.25)

3.5. Detecting spin-�ip transitions and measurement scheme

The Continuous Stern-Gerlach E�ect pioneered by Dehmelt [1] has been used for the detection

of spin-�ips inside Penning traps for the determination of the electron [2] and proton [5] 6-

factor as well as for several other magnetic moment Penning-trap experiments [32].

Using a ferromagnetic nickel ring electrode similar to that used for the proton 6-factor ex-

periment [5], a strong magnetic parabola �eld �2 ≈ 110 kT
2

is superimposed on the constant

�eld. The resulting shift of the energies of the hyper�ne splitting has been calculated in the

2
This value was calculated using a FEM simulation with COMSOL Multiphysics

®
[33] to �2 ≈ 87 kT but later

measured.
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Hamiltonian given in Eq. (3.11). E�ectively, the ion experiences a spin state dependant poten-

tial in the I-direction, which produces an additional restoring force on the ions axial motion.

Let `8 be the element of the matrix in the time dependant term of Eq. (3.11), then the axial

motion I (C) solves

¥I (C) + l2
II (C) −

2�2`8
<

I (C) = 0, (3.26)

where lI is axial frequency without any �2. This shifts the e�ective axial frequency

lI,8 =

√
l2
I −

2�2`8
<
≈ lI − �2`8

<lI
. (3.27)

A jump in the monitored axial frequency indicates a spin-�ip. For the nuclear and electron

spin-�ip transitions this amounts to ΔlI = 43 mHz and ΔlI = 21.9 Hz (also adjusted, see 3.2),

respectively. While it is easy to resolve the frequency jump of 21.9 Hz, a jump of just a few

mHz can not be measured with the planned setup and a di�erent approach to detect the nuclear

transitions will be used.

This experiment uses a double-trap technique [34]. For the electron spin transitions the

scheme is identical to the one employed by other 6-factor experiments. The spin state is �rst

initialised in the analysis trap by driving and observing an electron spin-�ip. Following an

0

1

0

50

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

ΔRF/Δ𝜔

0

1

𝜒
(Δ

RF
)·

Δ
𝜔

Figure 3.2: Line pro�les in the analysis trap (top), nuclear transitions (middle) and electron

spin transitions (bottom) in the precision trap. Note that the linewidthsΔl are very

di�erent for the electron and nuclear spin transitions and depend on the speci�c

trap. For the general result given in Eq. (3.23) the series was found to converge for

= = 50.
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Figure 3.3: Spin-�ip probability for the electron spin transitions inside the analysis trap. The

top graph is for a Rabi frequency of Ω = 1000 rad/s and the lower graph for Ω =

2000 rad/s. The lower graph shows the broadening of the resonance that will be

used for e�ciently driving spin-�ips at 50 % in the analysis trap.

adiabatic transport, the transition is probed in a precision trap, which is optimized for a very

small �2 and linewidth. The ion is then transported back to the analysis trap, where the spin

state is again read out by measuring the axial frequency shift following an excitation. If the

direction of the observed frequency jumps in the analysis trap did not change, the spin-�ip

in the precision trap was successful. To e�ciently drive the transition in the analysis trap at

% = 50 %, the transition frequency only needs to be known on the order of l/Δl ≈ 10−5
.

Additionally, the spin-�ip probability can be oversatured by increasing the microwave power,

see Figure 3.3.

In order to detect nuclear spin-�ips, a novel detection scheme will be used [35]. After an

RF-pulse at the nuclear spin-�ip frequency in the precision trap, a state selective RF-pulse

resonant with an electron transition probes whether a nuclear spin-�ip has occurred. The full

measurement scheme for the nuclear transitions is shown in Figure 3.4.

A possible improvement to this scheme is the use of a technique called adiabatic fast pas-

sage [36], which enables spin-�ip probabilities of up to 100%. By rapidly sweeping the fre-

quency of the microwave �eld (or equivalently the static �eld) over the resonance of the spin-

�ip transition, the spin state is adiabatically changed. Applying this technique inside the anal-

ysis trap can drastically decrease the measurement time as only a single sweep determines the

spin state.
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Figure 3.4: Nuclear spin-�ip measurement scheme shown exemplarily for the 4.03 GHz |4〉 →
|3〉 transition. After preparation in the analysis trap, the ion is transported to the

precision trap, where the nuclear spin-�ip is probed with microwaves detuned by

Δ. The ion has switched its state with probability % (Δ). Back in the analysis trap,

the two electron spin-�ip transitions are alternately driven, while the axial fre-

quency is monitored. This will eventually lead to a detected axial frequency jump,

identifying whether the nuclear spin-�ip in the precision trap was successful. Af-

terwards the ion is in the known state |2〉 or |1〉 and the other nuclear transition

can be probed.
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3.6. Determination of 64 , 6� and Δ�HFS

The electron and nuclear 6-factors 64 and 6� are connected to the spin magnetic moment

through

64 = `4
4<4

4ℏ
, 6� = `�

4<?

4ℏ
, (3.28)

respectively, where<4 and<? are the mass of electron and proton and 4 is the electron charge.

By measuring the transition frequencies l8 9 and the cyclotron frequency l2 of
3
He
+

in the

Penning trap, compare Eq. (2.1) and Table 3.1, the 6-factors are determined by

64 =
1

l2

<4

<3
He
+

[
(l24 − l12) +

√
(l24 − l34)2 − (l12 + l34)2

]
, (3.29)

6� =
1

l2

<?

<3
He
+

[
(l12 − l24) +

√
(l24 − l34)2 − (l12 + l34)2

]
, (3.30)

where <3
He
+ is the mass of

3
He
+
. It should be noted that only three transitions enter the

determination of the 6-factors, as the fourth frequency can always be calculated from the other

three. As masses enter as ratios only, the high accuracy values obtained in Penning traps,

which measure masses relative to
12

C, can be used, see [37] for the electron, [38] for the proton

and [39] for the
3
He mass. While for both 6-factors the errors on the mass ratios and the

cyclotron frequency enter equally, the errors from the measurement of the hyper�ne transition

frequencies enter more strongly in the nuclear 6-factor 6� . This is due to the Zeeman e�ect in

the intermediate regime. For higher magnetic �elds the uncertainty of 6� and 64 resulting from

the precision of the measured frequencies become equal. For the expected relative uncertainty

of
Δl8 9

l8 9
∼ 10−10

the relative errors on 64 and 6� obtained through standard propagation of

errors are 10−10
and 2 · 10−9

, respectively.

The zero-�eld hyper�ne splitting Δ�HFS is the sum of the two nuclear transitions

Δ�HFS = l12 + l34. (3.31)

Owing to the e�ective magnetic shielding of the nuclear spin by the electron, the determination

of the value of the zero-�eld hyper�ne splitting is very insensitive to changes of the external

magnetic �eld. If the magnetic �eld � �uctuates between measurement of l12 and l34 by

the amount Δ�, the associated error on Δ�HFS is suppressed by 2 orders of magnitude, i.e.

Δ(Δ�HFS)
Δ�HFS

∼ 10−2 Δ�
�

.
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4. Microwave propagation in
waveguides

To perform the electron spin-�ip transitions, microwaves at ∼ 150 GHz, see Table 3.2, need

to be coupled into the Penning traps. To this end, it is crucial that enough radial magnetic

microwave �eld is present at the ion’s position, compare Eq. (3.24). In contrast to the lower

frequency microwaves of around 4.5 GHz needed for the nuclear spin-�ips, which can be cou-

pled into the trap chamber with coaxial cables, the losses of microwaves at millimetre wave-

lengths are to high to e�ciently transmit them with cables. This leaves hollow metal conduc-

tors (waveguides) as the only alternative.

Due to restrictions imposed by the setup, the transmission line can not be realised with a sin-

gle long uniform waveguide, but requires non-uniform transition sections. In order to quantify

the amount of microwave power that is transmitted through the experimental setup, a theoret-

ical description of the electromagnetic �elds inside the waveguide is needed. Additionally, the

Penning trap itself constitutes a cylindrical hollow conductor and the same waveguide theory

is needed to characterise the structure of the microwave �eld inside the stack of electrodes.

4.1. Transverse modes

The electromagnetic �elds inside a waveguide are found by solving Maxwell’s equations in free

space [40]

∇ × K + mCH = 0, ∇ · H = 0,

∇ × H − 1

22
mCK = 0, ∇ · K = 0,

(4.1)

with the appropriate boundary conditions. Here, 2 denotes the speed of light inside the medium

that �lls the waveguide. Maxwell’s equations in free space result in the wave equations

1

22
m2
C K (x, C) = ΔK (x, C), 1

22
m2
C H(x, C) = ΔH(x, C), (4.2)

for the electric and magnetic �eld, respectively. The basis set of solutions to these equations

without boundary conditions are plane waves with time and spatial dependence 4±8lC and
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48k ·x , respectively. Here, l is the frequency of the electromagnetic wave and k the wavevector

with |k |2 = :2 = l2/22
. The boundary conditions imposed by the conducting walls of the

waveguide constrain the vector space spanned by these free space solutions.

For the subsequent sections it will be assumed that the waveguide has an uniform cross-

section. It is thus sensible to express the �elds in terms of a component parallel to the axis of

the waveguide (chosen to coincide with the I-axis) and a transverse component

K = K) + �IeI, H = H) + �IeI . (4.3)

The time dependence of the fundamental solutions of the wave equations inside the waveguide,

called modes, are not constrained by the geometry and therefore equal to 4±8lC . The modes fur-

ther retain the I-dependence 4±8:II of the free space solution due to the translational symmetry

of the uniform waveguide. These considerations lead to wave equations for the I-components

of the �elds [41] (
Δ) + :2

)

)
�I = 0,

(
Δ) + :2

)

)
�I = 0, (4.4)

where Δ) = Δ − m2
I is the transverse part of the Laplace operator and :2

)
= :2 − :2

I is the

transverse wavevector. Maxwell’s equations (4.1) relate the transverse �elds to the axial �elds

:2
) K) = −8leI × ∇)�I + mI∇)�I,
:2
)H) = 8

l

22
eI × ∇)�I + mI∇)�I .

(4.5)

On the surface of a perfectly conducting wall, the components of the electric �eld tangential

to it and the components of the magnetic �eld normal to it vanish. Therefore, the axial com-

ponent �I of the electric �eld and the transverse component H) of the magnetic �eld vanish

on the surface. The condition on H) can be transformed with Eq. (4.5) resulting in

�I |( = 0, m=�I |( = 0 (4.6)

for the I-components of the electric and magnetic �elds on the walls of the waveguide. Be-

cause these boundary condition can be ful�lled separately and �I and �I solve independent

di�erential equations, there exist two distinct types of modes:

Transversemagnetic (TM) waves have no axial magnetic �eld and obey the Dirichlet bound-

ary condition �I |F = 0.

Transverse electric (TE) waves have no axial electric �eld and obey the Neumann boundary

condition m=�I |F = 0.

Solving Eq. (4.4) under the boundary conditions of Eq. (4.6) for a waveguide with a given

cross-section results in the axial �elds of the TE and TM modes. The transverse components

can be calculated using Eq. (4.5). Because either �I or �I are zero for the TE and TM modes, the

two equations in Eq. (4.5) can be used to directly connect the transverse electric and magnetic

�eld through

H) = ±`0

/
eI × K) , 1

(4.7)

1
The ± sign stems from the spatial I-derivative.
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where `0 is the vacuum permeability and / is called the wave impedance which is de�ned by

/ = /0
:

:I
, for TE waves,

/ = /0
:I
:
, for TM waves.

(4.8)

Here,/0 = `02 is the impedance of the vacuum. The wave impedance, like the usual impedance,

connects currents (H) and voltages (K ) inside a conductor.

4.2. Circular waveguide modes

The mode structure in a waveguide with circular cross-section and radius ' can be calculated

analytically. First, the axial wave equation (4.4) needs to be solved in cylindrical coordinates

(G,~, I) = (d cos(i), d sin(i), I). This calculation, which is the same for the TE (�I) and TM

(�I) waves, results in the �elds [41] (omitting the I-dependence)

�I (d, i) = �0 �< (:) d)4±8<i , for TE waves,

�I (d, i) = �0 �< (:) d)4±8<i , for TM waves,
(4.9)

where < is the azimuthal wavenumber, �< are the Bessel functions of the �rst kind and �0,

�0 specify the absolute amplitude of the waves. Applying the boundary conditions given

in Eq. (4.6) to the above �elds restricts the transverse wavevector :) according to

:),<= =
V<=
'
, � ′< (V<=) = 0, for TE waves,

:),<= =
U<=
'
, �< (U<=) = 0, for TM waves,

(4.10)

where � ′< is the �rst derivative of the Bessel function and = ≥ 1 the radial wavenumber, which

speci�es the =’th zero of the Bessel function (derivative).

The quantisation is easily understood: The <-quantum number ensures that the wave is

symmetric under a rotation about the I-axis by an angle of 2c and, due to the boundary con-

ditions, the �elds need to be zero (TM) or extremal (TE) at d = ' and thus have = wave crests

(throughs) in the radial direction.

4.3. Cuto� frequencies and ohmic losses

Since for any kind of waveguide cross-section there are restrictions on two of the three spatial

directions, a quantisation of the transverse wavenumber :),<= with two mode numbers< and

= occurs. Given the frequency of the microwave �eld l , the total wavevector norm : = l/2 is

divided into a transverse and an axial component. The transverse component is �xed by the

mode of the �eld, which leaves the axial component with

:I =

√
l2

22
− :2

)
. (4.11)
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For small enough values of l the propagation in the I-direction is exponentially damped as :I
becomes imaginary. This de�nes the cuto� frequency

a2 =
2

2c
:),<=, (4.12)

below which propagation of the microwaves inside the waveguide is not possible. The mode

with the smallest cuto� frequency is called the fundamental or dominant mode of the waveg-

uide. Modes that have an imaginary axial wavevector component are evanescent modes.

Mode Cuto� frequency Fundamental mode cuto�

TE circular a2 =
2

2c
V<=

'
a2,TE11 ≈ 0.586 2

2' , _2,TE11 ≈ 1.706 · 2'
TM circular a2 =

2
2c

U<=

'

TE rectangular a2 =
2
2

√
<2

02
+ =2
12 a2,TE10 = 0.5 2

0
, _2,TE11 = 2 · 0

TM rectangular a2 =
2
2

√
<2

02
+ =2
12

Table 4.1: Cuto� frequencies a2 for circular waveguides with radius ' and rectangular waveg-

uides [41] with side lengths 0 > 1 and cuto� frequency and wavelength _2 of the

corresponding fundamental mode. For the circular waveguide < ≥ 0, = ≥ 1 and

for the rectangular waveguide = and< cannot both be zero for the TE modes and

= ≥ 1,< ≥ 1 for the TM modes.

Table 4.1 lists the cuto� frequencies for circular and rectangular waveguides and Figure 4.1

shows the spatial structure of the fundamental modes. In rectangular waveguides the largest

possible wavelength is exactly twice the side length 0, whereas in circular waveguides the

largest wavelength is slightly smaller than twice the diameter.

To include ohmic losses on the waveguide walls due to �nite surface conductivity an imag-

inary term is added to the axial wavenumber :<=I leading to exponential damping of the wave

amplitude. For circular waveguides a calculation gives [42]

:I,<= → :I,<= + 8
√√ cn0a

'2f
(
1 − a22

a2

) , for TM modes,

:I,<= → :I,<= + 8
√√ cn0a

'2f
(
1 − a22

a2

) (
a2
2

a2
+ <2

V2
<= −<2

)
, for TE modes,

(4.13)

where f is the conductivity of the material of the waveguide and a > a2 the frequency. The

losses reduce with increasing radius ' of the waveguide and increase with higher mode num-

bers<,= for< ≥ 1.

Standard waveguides are usually used for frequencies that only allow the fundamental mode

to propagate. The structure of the �elds inside these waveguides is thus easy to calculate.

Except from the losses on the waveguide walls, the fundamental mode does not lose any power.
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Figure 4.1: Transverse �eld structures for the fundamental TE11 mode in circular (left) and the

fundamental TE01 mode in rectangular (right) waveguides. Equipotential lines of

the magnetic and electric �eld are coloured blue and green, respectively.

4.4. Scattering matrix of the non-uniform circular waveguide

As the ion oscillates on the symmetry axis of a waveguide, namely the cylindrical trap itself, a

transverse �eld component at d = 0 is needed. Fortunately, as shown in 4.1, the fundamental

TE11 mode provides just that. Thus, starting with the power of the fundamental mode at the

microwave generator, the transmission of the TE11 into the setup needs to be calculated.

Since the experimental setup includes circular waveguide sections with varying diameter,

calculating the transmission through such a non-uniform section is needed. This is possible

with �nite element calculations or using a numerical mode-matching technique [43]. In order

to have a tool for analysing non-uniform circular waveguide sections and to have an indepen-

dent validation of the �nite element calculations the mode matching technique is described in

this section and an algorithm for computing the transmission is presented. The more mathe-

matical details are worked out in Appendix A.

Figure 4.2 shows two circular waveguides of di�erent radii connected via a circular waveg-

uide with an arbitrary pro�le. The transverse electric K ;,A
)
(x) and magnetic H;,A

)
(x) �elds on the

left (; ) and right (A ) side of the non-uniform waveguide can be written as a sum over circular

waveguides modes and both negative and positive I-direction:

K ;,A
)
(x) =

∑
=

(
� ;,A= 4

∓8:II +$;,A= 4±8:II
)
e;,A= (G,~),

H;,A
)
(x) =

∑
=

± `0

/ ;,A=

(
� ;,A= 4

∓8:II −$;,A= 4±8:II
)
h;,A= (G,~).

(4.14)

Here, O is the vector of incoming (relative to the center section) electric �eld wave amplitudes

and U the vector of outgoing amplitudes. The magnetic �eld amplitudes are related to the

electric �eld through the wave impedance / and Eq. (4.7). The mode vectors e;,A= (G,~) and
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Figure 4.2: Cross-section of two sections of uniform circular waveguides connected by another

circular waveguide with an arbitrary pro�le. The red lines indicate the discretisa-

tion of the problem. For a detailed description of the variables see text.

h;,A= (G,~) = eI × e;,A= (G,~) contain the transverse spatial dependence of the speci�c mode =.

Eq. (4.14) can also be interpreted as the electromagnetic �eld being written as a sum of com-

ponents of a vector multiplied by the basis functions e;,A= (G,~) and h;,A= (G,~).
Using the de�nition of the scattering matrix (S-matrix)(

U;

UA

)
= S

(
O ;

O A

)
=

(
S11 S12

S21 S22

) (
O ;

O A

)
, (4.15)

the in- and outgoing amplitudes can be connected. The S-matrix completely describes trans-

mission and re�ections inside the arbitrary shaped waveguide piece. As an example, the di-

agonal entry (S21)== corresponding to = = TE11 is considered. Given unity input of the TE11

mode on the left side, its value is the output amplitude of the TE11 mode on the right side.

O�-diagonal entries (S21)<= give conversion between modes, for example, given unity input

amplitude of the = = TE11 mode its value is the amplitude of the< = TE12 mode at the output.

If both input and output have radii such that they support only the fundamental mode, the

additional modes created through mode conversion decay very fast. Thus, there are e�ectively

only diagonal terms in the submatrices of the S-matrix and it is fully described by re�ection

and transmission of the fundamental mode.

The amplitudes associated with the scattering matrix are the electric �eld amplitudes. In

analogy to the power inside an electrical conductor given by the voltage and the resistance, the

power of a waveguide mode is proportional to the electric �eld amplitude squared divided by

the wave impedance [44]. The transmitted power %<= in mode< at the output given unity input

power in mode = is calculated by multiplying the square of (S21)<= with the wave impedances

of the initial and �nal waveguide geometry:

%<= = | (S21)<= |2
/ 8=

/
5
<

. (4.16)

The mode-matching technique calculates the scattering matrix of a non-uniform waveguide

by discretising the arbitrary shaped waveguide into small pieces of uniform waveguide and

24



junctions between those, see Figure 4.2. Both junctions and uniform waveguide sections can

be described by a corresponding scattering matrix. The straight section scattering matrix S( is

straightforward to calculate, as the waves acquire only a phase given by the axial wavenumber

:=I and the length of the section XI:

S(12 = S(†21 = diag

(
48:

=
I XI

)
,

S(11 = S(22 = 0.
(4.17)

By requiring continuity of the transverse �elds at the junctions between the uniform sections

there is mode conversion. Mathematically, this can be thought of as a change of basis from one

side of the junction to the other, as the basis functions e;,A= (G,~) and h;,A= (G,~) depend on the

radius. The overlap between these basis functions, i.e. the integral of their product over the

common cross-section, quanti�es the mode coupling. Its easy to see that the overlap between

circular modes of di�erent azimuthal mode number < is zero, compare Eq. (4.9), because the

integral over the angle i always gives a vanishing result. These considerations result in the

scattering matrix of the junction S� , given in Eq. (A.12).

Given two waveguide components with S-matrix S1
and S2

, the composite S-matrix S is

calculated by cascading the two matrices [43]

S11 = S1
11 + S1

12S
2
11ES

1
21,

S12 = S1
12

(
I + S2

11ES
1
22

)
S2

12,

S21 = S2
21ES

1
21,

S22 = S2
22 + S2

21ES
1
22S

2
12,

(4.18)

with E being a matrix inverse

E =

(
I − S1

22S
2
11

)−1
. (4.19)

The total scattering matrix for the waveguide for di�erent microwave frequencies is then

calculated as follows:

1. Discretisation: Discretise the radial pro�le of the waveguide, see Figure 4.2, assign the

number of modes via Eq. (A.13) and calculate the frequency independent mode coupling

matrices with Eqs. (A.16, A.17, A.18) for each junction.

2. For each frequency a and at each junction: Calculate the axial wavenumbers given in

Eq. (4.13) to include ohmic losses, the impedances ` (a), Eq. (4.7), and the scattering

matrix S(a) of the junction, Eq. (A.12). Cascade the scattering matrix with the total

scattering matrix of all preceding sections, Eq. (4.18), and with the scattering matrix of

the following straight section, Eq. (4.17).

3. For each frequency: With the radii of the input and output of the waveguide calculate the

transmitted power according to Eq. (4.16).

Using the programming language C++ and the linear algebra library Eigen [45], a program

that implements this algorithm was developed. It takes the discretised radial pro�le together

with conductivities as inputs and calculates the transmission of the TE11 mode.
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5. Design of the waveguide for the
microwave transmission line

In order to excite electron spin-�ips inside the apparatus, microwaves at a frequency of about

150 GHz, corresponding to a wavelength of ∼ 2 mm, need to be coupled into the Penning traps.

Compared to the much lower frequency microwaves of the nuclear spin-�ip at ∼ 4.5 GHz,

which can be coupled into the trap chamber with coaxial cables, the losses of microwaves at

millimetre wavelengths are to high to e�ciently transmit them with cables, leaving waveguides

as the only alternative.

In terms of construction, a transmission line using waveguides poses considerably more

problems than using conventional cables. As can be seen from the experimental setup shown

in Figure 5.1, the total length the microwaves need to be transmitted inside the experiment

is larger than 1.5 m. Additionally, there are two vacuum transitions that require the hollow

conductor to be interrupted by glass windows.

The frequencies required are part of the D-band, for which the rectangular waveguide stan-

dard WR6 with dimensions of 1.651 × 0.826 mm is used if transmission of microwaves in

a waveguide with only a single propagating mode is required. Ideally these waveguides are

made of gold plated copper, which results in losses of the order of 10 dB/m [47]. There are a

few reasons making standard WR6 waveguides impractical for usage in this experiment. Cop-

per waveguides connecting the high temperature part at the top of the experiment with the

cryogenic trap chamber would result in a large heat load, requiring higher consumption of liq-

uid helium by the cryostat. In addition, due to the very small dimensions, manufacturing WR6

waveguides at the required lengths is not easy and the maximum length found to be commer-

cially available was 50 cm. Custom made parts needed for the vacuum transition sections and

connections to the Penning traps would need to be made at the workshop of the MPIK. Having

one end of the custom made part at the very small size of the single mode waveguide would

place some impractical limits on the dimensions machinable. For example, the length of such

parts could not exceed a few centimetres.

Transferring microwaves over distances of the order of a few meters is also possible by us-

ing oversized waveguides, i.e. waveguides that allow a multitude of modes to propagate [48].

In principle, larger waveguides have lower ohmic losses than single mode waveguides, com-

pare Eq. (4.13), allowing for the usage of worse conducting materials like stainless steel. Using
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Microwave pick-up

Window to prevacuum

Microwave coupling
and filter stages

Trap chamber

Detection systems

Figure 5.1: CAD model of the experimental setup for the
3
He
+

hyper�ne structure measure-

ment. For a description of the parts for the microwave injection see text. On the

right hand side a close up shows the prevacuum chamber [35]. Inside the blue

marked region the voltage bias lines for the trap electrodes and the ampli�ers are

�ltered using LC circuits. The green marked region shows the trap chamber. The

ions are produced inside this chamber using a glass sphere containing
3
He as a

source and a �eld emission point for ionisation, see [46] for more details. Inside

the red marked region the detection system with the superconducting coils and

the cryogenic ampli�ers are located.

easily available stainless steel pipes with a radius of 4 mm as the oversized waveguide reduces

the heat load drastically and enables the workshop to manufacture the additional parts more

easily. The main challenge presenting itself with oversized waveguides is mode conversion at

transition sections, see Section 4.4. In contrast to a single mode waveguide where any modes
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beside the fundamental mode are evanescent, here the modes converted at transition sections

can propagate in regions where the radius is large enough. Cavity like resonances due to trap-

ping of modes inside these regions can cause considerable loss of power in the fundamental

mode.

In the following, the requirements for the microwave injection in terms of power transmis-

sion are worked out. Then the viability of using oversized waveguides is further investigated.

To this end the numerical method of Section 4.4 and �nite element calculations with COMSOL

are used to optimise di�erent transition sections for maximum transmission. This chapter con-

cludes with an estimate for the total expected losses.

5.1. Required performance of the microwave injection

The waveguide injection system needs to transmit microwaves at the four electron spin-�ip

transition frequencies listed in Table 3.2. As explained at the end of Section 3.4, the frequencies

inside the analysis trap pose the strongest requirement in terms of RF-�eld amplitude.

Because the ions oscillate on the symmetry axis of a waveguide, namely the cylindrical trap

itself, driving spin-�ip transitions requires a transverse magnetic �eld component at d = 0.

Fortunately, as shown in 4.1, the fundamental TE11 mode provides just that. Thus, the problem

of obtaining a large enough RF-�eld amplitude at the ions position, translates to being able to

transmit enough power of the TE11 mode into the analysis trap. Given a required transverse

magnetic �eld on axis �RF, the corresponding power inside the TE11 mode is

% =
2c2

`0

:

:I

1

:2
)

� 2
< (V11) (V2

11 − 1)�2
RF
, (5.1)

with the de�nitions elaborated in Chapter 4. The derivation here relies on [44] and the explicit

form of the normalisation of the TE11 mode found in Appendix A.2.

Allowing for an excitation time of g = 10 s, the needed magnetic �eld given by condi-

tion Eq. (3.25) is �RF ≈ 3.5 nT. Together with a radius of A�) = 1.8 mm, the power injected into

the analysis trap has to be

% > 15 nW ≈ −48 dBm. (5.2)

In contrast, the �eld required inside the precision trap due to the condition given in Eq. (3.24) is

only ∼ 9 pT. Again using Eq. (5.1) and A%) = 3.5 mm, this gives the much weaker condition of

% > −95 dBm. The output power of the acquired Signal Generator Extension Module WR6.5SGX
from VDI producing the microwaves is advertised to be ∼ 5 dBm [49], limiting the allowed

total losses of the microwave injection to a maximum of 53 dB.

5.2. FEM calculations

As an alternative to the mode matching approach presented in Section 4.4, �nite element

method (FEM) calculations with COMSOL Multiphysics
®

[33] are used to compute microwave

transmissions and �eld structures. Additionally, FEM calculations also allow for modelling of

free space regions as opposed to the mode matching technique. For this purpose the RF Module
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of COMSOL is used to solve for the structure of the microwaves, given an input mode. The

calculation mesh needs to be about on order of magnitude smaller than the wavelength of the

microwaves. As the structures on which the �nite element method will be applied are gener-

ally much larger than a wavelength, i.e. oversized, models that use a full three dimensional

structure can not be solved in a reasonable amount of time. This restricts models to have an

axisymmetric geometry which reduces them e�ectively to two dimensions.

In the following, the setup procedure for a calculation in COMSOL is described brie�y:

1. Model definition: A 2D axisymmetric model using the Electromagnetic Waves, Frequency
Domain physics interface and a Frequency Domain study is set up.

2. Geometry: The geometry of the waveguide problem is set up. In order to model free space

transitions, a circle with appropriate radius (condition explained later in the last step) is

drawn around the section. Materials for the boundaries and domains are set up.

3. Physics definitions: In order to use a TE11 wave as the input �eld, the azimuthal mode

number is set to < = 1. On metal surfaces the Impedance Boundary Condition is used

to account for imperfectly conducting surfaces [50]. This condition is a more general

version of the one given for perfectly conducting walls in Eq. (4.6). At the free space

boundaries the electromagnetic �eld should ideally pass through and be lost into free

space. This is approximately realised using the Scattering Boundary Condition [51]. The

input surface boundary is de�ned as a Circular Port [52] with radial mode number = = 1
and a given input power. This sets the boundary to the �eld structure of the TE11 mode.

In general, the �eld at the surface is a superposition of all modes that can propagate,

compare Eq. (4.11). Therefore, additional Circular Ports without excitation are set up for

all allowed modes at both input and output boundaries.

4. Mesh: The mesh size is a parameter for which generally a convergence study is necessary.

Here the mesh maximum grid spacing of about a �fth of the wavelength showed con-

vergent results. If more accurate results are needed on axis, a separate mesh with closer

spacing can be used there.

5. Study and results: The model is solved with the desired range of frequencies. It is useful

to add a Power �ow, time average arrow surface to the solution of magnetic/electric �eld

to see whether the power in the free space regions exits the circle at right angles (and is

not re�ected).

See also Figure 5.6 for an example showing a geometry and the corresponding boundary con-

ditions.

As a result, the S-Matrix parameters of the waveguide section and the structure of the �elds

inside the waveguide are given. The values of the �elds are time averaged values, meaning that

the time evolution of the individual �eld components is governed just by an oscillation at the

frequency of the microwaves.
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5.3. Oversized waveguides

Employing oversized circular waveguides for low loss transmission of millimetre microwaves

is an established technique and has been investigated thoroughly [48, 53, 54]. A major problem

of oversized waveguides are trapped modes, as illustrated in Figure 5.2. Essentially modes are

trapped in the region ΔI in which they are able to propagate, i.e. where the axial wavevec-

tor Eq. (4.11) is real. For speci�c frequencies, the phase that builds up in the region ΔI due to

the axial propagation with exp(8:II) is exactly a multiple of 2c leading to constructive inter-

ference and power being resonantly transferred to this mode. These cavity resonances lead to

sharp drops in the transmission of the fundamental mode [48].

In a waveguide with a �nite conductivity, the build-up of amplitude in a re�ected mode is

dampened, compare Eq. (4.13), leading e�ectively to cavity losses. Additionally, the losses for

the individual mode decrease with a/a2 , resulting in the fundamental mode to have the lowest

losses. Therefore, it is expected that these resonances vanish, if the oversized section is long

enough.

In the following sections, all calculations including the materials copper, stainless steel and

gold use conductivity values offCu = 5.98·107
S/m, fAu = 4.25·107

S/m andfSS = 1.33·106
S/m,

respectively [55]. The surface quality of the materials is also relevant for the transmission of

microwaves. This is most relevant for the 1.5 m long stainless steel pipe, but due to the very

good surface roughness of only 0.6 µm achieved with electropolishing, which is less than the

skin depth of around 1 µm, this e�ect can be neglected [56].

Mode conversion Reflection

… …

Figure 5.2: Illustration of the formation of trapped modes inside an oversized waveguide con-

nected to single mode waveguides at both ends. With increasing radius, more

modes can propagate and are formed through mode conversion. On the right side,

these additional modes are re�ected as the radius decreases below the value needed

for the mode to propagate.
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5.3.1. Comparison of FEM calculations and mode matching technique

A waveguide section as shown in Figure 5.2 is now used to compare the TE11 transmission

calculated with the mode matching method and the FEM calculations. For this, values of A1 =

700 µm for the single mode section and A2 = 1.2 mm for the oversized section are used. The

linear transition section connecting them is ;12 = 5 mm long. For all sections copper is used as

the material.

Figure 5.3 clearly shows an excellent agreement between the two methods, with a maximum

relative deviation of just a few times per 10−3
. This con�rms that the FEM calculations are

properly set up and is a good check for the correctness of transmission calculations using
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Figure 5.3: Top: TE11 transmission calculated by the mode matching method (blue line) and

the COMSOL calculations (green line). The geometry is described in the text. For

the mode matching method the transition section was divided into 100 discrete

step junctions and an initial number of = = 5 modes was used for the single mode

section. The FEM computation took around 15 minutes to �nish, whereas the mode

matching algorithm completed in just 3 minutes. Bottom: Relative deviation of

the transmission calculated by the two methods, showing that both methods are

in excellent agreement.
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the �nite element method that are not possible with the mode matching technique. A major

advantage of the mode matching method is the much faster computation time, allowing for

fast checks and parameter adjustments of simple geometries. While the FEM calculation needs

to solve Maxwell’s equations at every point of the two-dimensional geometry, the numerical

algorithm directly computes the transmission. Additionally, increasing the length of oversized

section does not increase the computation time of the mode matching algorithm, as any straight

section just corresponds to a single scattering matrix that needs to be cascaded.

Figure 5.3 also shows the features appearing due to trapped modes. For frequencies higher

than ∼ 152 GHz the TM11 mode is allowed to propagate, leading to equally spaced resonances

due to the re�ection of the mode at the transition section. As the damping of microwaves in the

TM11 mode decreases with increasing frequency, compare Eq. (4.13), the resonances increase.

5.3.2. Damping of resonances

Using the mode matching method, the damping of trapped mode resonances is investigated

with the geometry described in the previous section and increasing length of the oversized

waveguide. Figure 5.4 shows that with increasing the oversized waveguide length, the spacing

between the resonances decreases, but their depth also decreases relative to the mean trans-

mission.

The shape of the transition section determines the amount of mode conversion from the fun-

damental mode to the other modes. Generally, mode conversion is higher for a shorter transi-
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Figure 5.4: Damping of trapped mode resonances. Geometry described in Section 5.3.1. The

length of the oversized waveguide section is increased by factors of 2 starting from

;2 = 5 cm (blue line) and ending at ;2 = 40 cm (purple line).
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Figure 5.5: Transmission through a waveguide section with ;2 = 5 cm (blue line) and ;2 =

40 cm (green line) with a transition section that has been reduced from ;12 = 5 mm

to ;12 = 1 mm compared to Figure 5.4.

tion section. Figure 5.5 shows that a reduction of the transition section length to ;12 = 1 mm

leads to much larger resonances due to the increased mode conversion. It is therefore desired

to avoid short sections of waveguides placed in-between waveguides with smaller diameter

and that any transition sections be as long as possible. There are some methods for reducing

mode conversion by using complex transition pro�les [57]. In the �nal design of the waveg-

uide system those were not used, as linear transition sections could be designed long enough

to reduce mode conversion su�ciently.

5.4. Free space transitions

There are two di�erent vacuum stages inside the experimental setup, compare Figure 5.1. First,

the microwaves need to be transmitted through a standard CF �ange viewport to the prevac-

uum stage and then through a fused silica window leading to the trap chamber. Both transitions

demand short gaps between waveguides. The mode matching method can not deal with free

space regions, as the microwaves do not propagate in waveguide modes, limiting the estima-

tions to FEM calculations with COMSOL.

Horn antennas are used to e�ciently transmit microwaves into free space. The cross-section

of the waveguide is increased in order to match the impedance of the vacuum [58], compare

Eq. (4.7) with :I → : . For a conical horn there is a formula for the optimal horn aperture radius
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Ahorn given the slant length ! of the conus and the wavelength _ of the microwaves:

Ahorn =
√

3_!, (5.3)

which results in minimal re�ections at the boundary to the free space region [59].

Antenna theory provides gain values for the far �eld of the microwaves radiated by the horn.

However, for the purpose of this experiment, the free space regions are of the order of just a

few wavelengths, making a far �eld approximation unsuitable. Additionally, the oversized

waveguides with a radius of 4 mm used in this setup have a wave impedance of / ≈ 0.99/0,

which is already much closer to the impedance of the vacuum compared to the wave impedance

of / ≈ 0.68/0 of the single-mode waveguide with a radius of 800 µm. Therefore, the free space

transitions relevant at this experiment can not be directly compared to standard use cases for

horn antennas, making numerical calculations and measurements necessary in order to �x a

�nal design for the experiment.

5.4.1. Transition to the prevacuum

First, the transition to the prevacuum is modelled. Starting from the microwave generator,

WR6 waveguides connect to a pyramidal horn optimised, similar to Eq. (5.3), for the center of

the WR6 band at 140 GHz [60]. The microwaves pass through the CF window and are picked

up by a horn �anged to the 4 mm stainless steel oversized waveguide. The FEM calculations

will concentrate on the transition from horn to horn and ignore the CF window for now. In

order to reduce the geometry to two dimension, the WR6 waveguide is replaced by a cylindrical

waveguide with radius A1 = 800 µm and the WR6 horn by an equivalent optimal conical horn

at 140 GHz, compare Eq. (5.3).

Figure 5.6 schematically shows the geometry used for the FEM calculation. For varying

gap length ;gap and opening radius Ahorn,2 the transmission of the TE11 mode is averaged over

the interval from 148 to 166 GHz, see Figure 5.7. For the given length ;horn,2 = 3 cm condi-

Figure 5.6: Schematic of the radial pro�le for the free space transitions calculated with

COMSOL. The colours indicate boundary conditions: red for port, green for

impedance and blue for scattering boundary condition. The solid black lines in-

dicate material di�erent from air, i.e. copper on the left and stainless steel on the

right. The length ;horn,1 = 3.5 cm, radius Ahorn,1 = 8 mm and length ;horn,2 = 3 cm

are �xed and Ahorn,2 is varied.
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Figure 5.7: Left: For three di�erent gap lengths ;gap the horn opening radius is varied and

the mean transmission from 148 to 166 GHz is plotted. Right: Transmission for

di�erent horn opening radii and ;gap = 1.5 cm.

tion Eq. (5.3) gives an optimal horn radius of Ahorn,2 = 9 mm. The FEM calculation, however,

shows an optimal value between 6 and 7 mm which increases with ;gap. The transmission over

the whole WR6 band with Ahorn,2 = 9 mm, the optimum value of Ahorn,2 = 6.4 mm and for an

open ended waveguide, Ahorn,2 = 4 mm, is shown in Figure 5.7. Interestingly, the transmission

spectrum with the open ended option has a clear sinusoidal shape that does not decrease with

frequency as the other two options. Potentially, the open ended waveguide has the advantage

of reducing trapped mode resonances, because modes forming on the �rst horn that do not �t
into the oversized waveguide are just lost into free space.

In a cavity resonances build when an integer number of half wavelengths is equal to the

cavity length !. These resonances are spaced by
2
2! . By doing a Fourier transform of the

transmission spectrum, trapped modes can be identi�ed by the corresponding cavity length

!, which appears as an extremum at the position
2!
2

. These length do not directly correspond

to geometrical lengths, as the e�ective axial wavelength _I = 2c/:I varies with the radius

of the waveguide. Nevertheless, increases in the gap size transform one to one to increases

in the cavity length, because inside the gap the axial wavelength _I is equal to the free space

wavelength _, see Figure 5.8. This method is used in the measurements to identify trapped

modes.

5.4.2. Transition to the trap chamber

Storing single charged ions over periods of several months, as is required for the
3
He
+

hyper�ne

structure measurements and for other 6-factor measurements, requires a very good vacuum
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Figure 5.8: Part of the Fourier transform (absolute square) of the calculated transmission for

Ahorn,2 = 4 mm, ;gap = 1.5 cm (blue) and ;gap = 2.5 cm (green). The resolution

is limited by the span of the frequencies for which the transmission is calculated.

Here the WR6 frequencies from 110 to 170 GHz were used.

inside the trap chamber. To ensure this, the trap chamber is pumped separately and sealed

o� [5].

Figure 5.9 shows the transmission line connecting the 4 mm steel pipe with the trap tower.

The waveguide is �anged to a long transition section reducing the radius to 2.5 mm in order

to match the inner radius of the following copper tube
1
. At this section there should be essen-

Figure 5.9: CAD render of the waveguide section leading to the trap chamber. For details see

text.

1
This part was originally designed to allow for a laser to be coupled into the trap and could not be redesigned for

the microwave injection as it was already in the manufacturing process.
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Figure 5.10: Left: For di�erent horn opening radii, the mean transmission from 149 to

166 GHz is plotted. Right: Transmission for Ahorn = 3.5 mm. The sharp drops in

the transmission on the right were checked to be fully resolved by increasing the

frequency resolution.

tially no re�ections, as the preceding uniform section of waveguide is over 1 m long and any

unwanted modes are su�ciently damped. To ensure that the di�erent thermal properties of

steel and copper do not lead to mechanical stress, the reduction piece is just tucked into the

next piece of pipe, leaving some room for thermal expansion. A fused silica window, which is

cryogenically sealed with indium, is used as a viewport for the microwaves. In order to me-

chanically decouple the trap tower, it can not be connected directly to the trap chamber �ange.

A copper horn with a small opening angle connects to a long electrode with a radius of 3 mm.

The reducing piece could be chosen su�ciently long to avoid any mode conversion. To re-

duce the number of trapped modes, the diameter of the glass window was chosen just large

enough (5 mm) such that there is still enough contact surface to seal the vacuum. That leaves

the horn opening radius as the only parameter to be optimised. Using COMSOL, the transmis-

sion through the geometry of Figure 5.9, starting from the end of the reducing piece and ending

just after the horn connected to the trap tower, is calculated. The glass window was included

in the COMSOL calculation by introducing a region with a relative permittivity of nA = 2.4 at

its position.

The average transmission over the relevant frequencies from 148 to 166 GHz was used to �nd

the optimal horn opening radius, see Figure 5.9. The open ended waveguide option produces

a good result with the optimal radius of Aopt ≈ 3.5 mm being just slightly better. Nevertheless,

a horn with an opening radius of 3.5 mm is still used in the �nal geometry. This should allow

for slight misalignments of the trap tower relative to the �ange, as more solid angle is covered

compared to the open ended option. Comparing with the ideal horn equation (5.3), which gives

Aopt ≈ 7.4 mm, this shows once more that the standard arguments are not valid here.
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Creation trap PT Transport electrodes AT 25 mm

Figure 5.11: CAD render of the trap tower used for the hyper�ne structure measurement. The

radii are ACT = 3 mm for the creation trap, APT = 3.5 mm for the precision trap

and the transport electrodes and AAT = 1.8 mm for the analysis trap. The trap

electrodes are all gold plated.

5.5. Microwave �eld inside the Penning traps

Due to the non-uniformity of the section preceding the precision trap and the linear transi-

tion section leading to the analysis trap, the microwave �eld is not a that of a single forward

propagating TE11 mode. The interference of modes causes local minima in the transverse �eld

amplitude, which may even be at the ion’s exact position. Especially in the analysis trap, where

the highest microwave power is needed, this may lead to insu�cient spin-�ip rates.

Figure 5.11 shows the trap tower. The small gaps introduced by the sapphire spacers are

approximately 100 µm thick and can be neglected as this is much less than the wavelength

of the microwaves. In contrast, the hole with a radius of 8 mm through which atoms enter

the creation trap is larger than a wavelength and is expected to have some in�uence. As the

hole destroys the cylindrical symmetry, it is not included in the calculations and an estimate is

made later. There is a linear transition section reducing the radius from the precision trap to

the analysis trap. At this section microwaves are re�ected, including power of the fundamental

TE11 mode. This may lead to additional interference in the precision trap. It will be assumed

that no re�ection happens after the analysis trap. Experimentally this is realised by inserting

a microwave absorbing cone made of a carbon nanotube peek material [61] into the last trap

electrode, compare [32]. Apart from the TE11, the TM11 and TE12 mode propagate in the

forward direction inside the analysis trap.

Because it can not be assumed that a single mode enters the precision trap, the geometry of

Figure 5.9 has to be included in the calculation. The absolute value of the radial magnetic �eld

on the axis of the analysis trap is calculated with COMSOL. This is done in a 0.5 GHz inter-

val around the two frequencies of 157.5 and 148.8 GHz such that any frequency dependence

may become clear. In order to compare these values with the loss values calculated before,

they are transformed into e�ective power loss values of the TE11 mode using Eq. (5.1) and the

corresponding radius of AAT = 1.8 mm.
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Figure 5.12: Top: Equivalent TE11 mode power calculated from the radial magnetic �eld on

axis in the analysis trap for the two transition at 148.8 (left) and 157.5 GHz (right).

The blue curves are the mean transition over a 0.5 GHz interval, the green areas

are standard deviations of transmission in that frequency interval and the red

curves are the values at the center frequencies. Bottom: Transmission of modes

into the analysis trap, given only a TE11 mode at the input. These curves corre-

sponds to values according to Eq. (4.16) with = = TE11 and< = TE11,TM11,TE12.

Figure 5.12 shows the result of the calculation. From the lower graphs it becomes clear that

there is considerable power converted to the TM11 and TE12 modes leading to the interference

patterns of the upper magnetic �eld plots. For the lower frequency the two destructive inter-

ference minima are well away from the center of the trap. The e�ective losses at the center

of the analysis trap, starting from the quartz glass window at the trap chamber �ange, can be

estimated to be no worse than −10 dB.
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5.6. Overview and total loss

While designing the microwave transmission line it is crucial to avoid any non-uniformities of

the waveguide wherever possible. This reduces mode conversion and the possibility of trapped

modes. The optimisation of the microwave horns with the �nite element method showed that

the horn opening radii calculated with the ideal horn equation (5.3) do not yield optimal trans-

mission for short gaps and oversized waveguides and that an individual optimisation is neces-

sary.

The waveguide microwave injection can be split up into individual parts characterised by

the corresponding power loss of the fundamental TE11 mode. In the following the individual

sections are summarised:

Source to first horn: A single mode propagates through standard straight WR6 waveguide

pieces to the �rst microwave horn. In order to reduce the magnetic �eld the microwave

generator experiences, 0.3 m of waveguide are placed between it and the horn. This

results in a loss of about −3 dB [47].

Transition to prevacuum: The standard WR6 gain horn transmits microwaves through a CF

window. A waveguide with a radius of 4 mm picks up the microwaves after a gap length

less than 4.5 cm. The use of a horn on this side of the waveguide was omitted to reduce

trapped modes, see also the measurements in Figure 6.3. A FEM calculation of the losses

was done using an idealised cylindrical geometry that does not include the window, see

Figure 5.6. This will later be expanded on in the measurements. The expected losses from

the calculation are of the order of −10 dB, see Figure 5.7. Displacements of the standard

gain horn relative to the oversized waveguide are estimated in Appendix B.2 and show

no large additional losses.

Long oversized waveguide section: A long stainless steel pipe with a radius of 4 mm trans-

mits the microwaves over a length of 1.5 m, see Figure 5.1. A reducing piece with a

length of 5.7 cm connects to a smaller section with a radius of 2.5 mm. The transmission

over this large section can be e�ciently calculated with the mode matching technique

and is found to be no less than −3 dB with nearly no frequency dependence. This is

consistent with the ohmic loss of a 1.5 m long stainless steel pipe with 4 mm radius,

compare Eq. (4.13).

Transition to the trap chamber and to the analysis trap: A fused silica window followed

by a copper pipe couples the microwaves into the trap chamber. A small horn with a

radius of 3.5 mm picks up the microwaves and a following electrode connects to the

Penning traps, see Figure 5.9 and 5.11. The �eld on the axis of the analysis trap is calcu-

lated with the �nite element method resulting in e�ective losses with a lower bound of

−10 dB at the ion’s position. The hole in the creation trap can be modelled as a gap of

8 mm between two waveguides of 3 mm radius. A FEM calculation of this model results

in losses bounded by −2.5 dB, see Figure B.1.

The total calculated losses sum up to about −29 dB and are two orders of magnitude above

the maximum of −53 dB of allowed losses. It is expected that additional sources of power loss
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will be present in the experimental setup, for example losses due to imperfections of the parts

constructed in the workshop or oxidation of copper surfaces. In the next chapter some of the

sections presented here are analysed with measurements and the total losses are updated.
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6. Waveguide measurements

In the last chapter, the usage of oversized waveguides for the transmission of the high-frequency

microwaves at about 150 GHz was motivated and investigated with �nite element and mode

matching methods. For the �nal optimised waveguide geometry an estimate using these tech-

niques for the total expected losses was calculated, compare Section 5.6. These results are now

compared to explicit measurement of the microwave transmission through oversized waveg-

uides and part of the assembled waveguide transmission line.

6.1. Measurement procedure

Measurement of the power transmitted through waveguide components is done with a WR6

amplitude diode detector from Sage Millimeter [62]. The detector is provided with a calibration

of the frequency dependant measured voltages per input power. Similarly, the signal generator

extension (SGX) module from VDI [49] came with a calibration of the saturated output power

at a given frequency. As those calibrations where provided only in steps of 2 GHz and 0.6 GHz

over the D-Band of 110−170 GHz for the detector and SGX, respectively, they were interpolated

to the desired frequency resolution.

The VDI SGX module multiplies an input microwave signal, provided here by an Anritsu

MG3692C signal generator, by a factor of 12. Internally the SGX module has two passive mul-

tiplier stages with multiplication factors of 3 and 4 and active ampli�cation after each stage.

The output power of the SGX module saturates for input powers higher than 5 dBm. It is

not possible to consistently use the SGX module below the saturation power, as the output

power does not scale linearly with the input power. By sweeping the frequency of the Anritsu

signal generator from 9.16 GHz to 14.17 GHz and measuring the voltage on the detector, a

transmission spectrum over the WR6 frequencies is generated.

To check the calibration of the detector and the saturated output power of the SGX mod-

ule, the power transmitted through a single two inch long WR6 waveguide is measured, see

Figure 6.1. The waveguide should only account for around 1 dB of losses. Thus, there is a

big discrepancy between the measured power and the saturated power provided by the man-

ufacturer. A possible explanation is a power dependence of the detector’s sensitivity. The

sensitivity is de�ned as the slope of the measured voltage* given an input microwave power

% (a) at a frequency a , i.e. Sensitivity = 3
3% (a)* |% (a) . As the sensitivity is only provided at
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Figure 6.1: The measured power transmitted through a single two inch long WR6 waveguide

is shown in blue. To transform the measured voltages to power the calibration of

the detector was used. The saturated power of the microwave frequency multiplier

provided by the manufacturer is shown in green. The sensitivity of the detector at

−20 dBm input microwave power is shown in red.

−20 dBm, see Figure 6.1, it might be very di�erent at the saturation power of the SGX module.

There is only limited information available on the acquired detector, but as the diode is zero

biased it is most likely a Schottky diode detector comparable to [63]. These kinds of detectors

have a linear voltage to power response only in a square-law region of input power and dif-

ferent response at higher powers. Additionally, the measured power shows large losses at the

edges of the D-band, which seem to be correlated with the detector sensitivity, even though

it is already included in the conversion from measured voltage to power. This indicates that

the discrepancy is rather a problem of the detector performance than the SGX module. Nev-

ertheless, because there is no other means to measure the saturated output power of the SGX

module, it can not be ruled out that it is largely below its speci�cations.

For the measurements, the circular waveguide section, referred to as the device under testing

(DUT), is placed in-between two WR6 standard gain horns, which are connected to the SGX

module and detector, respectively, see Figure 6.2. This enables an easy way to exchange two

DUTs and test them against each other. The transition between horn and DUT will be explained

in more detail for the individual measurements. All measurements will be shown as the loss

relative to the absolute measurement of Figure 6.1, referred to as the calibration measurement.

Essentially only the (21 parameter of the transmitted fundamental TE01 rectangular waveguide

mode can be measured with this setup.
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Figure 6.2: Experimental setup for the waveguide transmission measurements. The circular

piece of waveguide (i.e. the DUT) is placed in-between two WR6 pyramidal stan-

dard gain horns connected to the SGX module and the detector, respectively. A

faraday isolator is placed before the detector in order to dampen re�ected waves

by 30 dB.

6.2. Horn-horn transitions

In Section 5.4.1, the transition from the standard gain horn to a horn connected to an oversized

circular waveguide section was investigated with COMSOL using an idealised symmetrical

geometry. Now a circular piece of waveguide of 49.5 cm
1

length and radius of 4 mm with

and without conical horns �anged to each end is placed in-between the two rectangular horns

as the DUT, compare Figure 6.2. The horns were designed with respect to the optimal horn

equation, Eq. (5.3), with a length of 3 cm and opening radius of 9 mm and manufactured at the

MPIK workshop.

Figure 6.3 shows the measured loss through the setup. The loss graphs reveal much more

severe resonances for the options with the conical horns than without them. These large res-

onances are spaced by a few GHz, which corresponds to cavity lengths of a few centimetres.

Only the transitions from the pyramidal horn to the conical horn form a cavity like structure of

that size. Similar to the discussion in Section 5.4.1, it is expected that without the conical horns

the trapped mode resonances disappear, because the �eld structures are not re�ected at the

oversized section but just lost into free space. That the resonances are much deeper than seen

in the calculations of Figure 5.7 may be connected to the idealised symmetrical geometry of

the FEM calculation. In conclusion, this shows that the option without horns on the oversized

section is safer in terms of trapped mode resonances. Keeping in mind that here two free space

transitions occur, the measured absolute transmission values are no worse than expected from

the calculation.

Again, the loss graphs show smaller transmission at the edges of the D-band, which seem to

be correlated to the detector calibration shown in Figure 6.1, even though the calibration mea-

surement is subtracted. This once more indicates some non-linearity of the detectors response.

1
It was cut to be 50 cm but one end needed to be reworked as it became slightly oval.
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Figure 6.3: Measurement of the transmission through the oversized waveguides with (green)

and without (blue) conical horns. On the left the free space distance is 0 cm and

on the right it is 4 cm.

6.3. Damping of resonances

To investigate the damping of trapped mode resonances, two A = 4 mm oversized waveguides

with lengths of 49.5 cm and 100 cm, respectively, are used as the DUT, compare Figure 6.2.

The distance between the horns and the oversized waveguide is chosen to be 0 cm. Modes

are e�ectively trapped only between the two pyramidal horns, as there should be no re�ection

between the pyramidal horn and the oversized waveguide directly.

Figure 6.4 shows the results of the transmission measurement. From the upper graph it is

already visible, that the longer waveguide section produces faster repeating resonances. The

amplitude of these resonances decreases for the longer section. Using the Fourier transfor-

mation, see the lower plot of Figure 6.4, to �nd corresponding cavity lengths as described in

Section 5.4.1 clearly indicates that the modes are trapped between the two pyramidal horns.

The decrease in amplitude of the resonances is also visible.

The increase of cavity length by ∼ 51.5 cm for the largest peaks and by ∼ 52.5 cm for the

second largest indicates that the modes re�ected have small mode numbers. For the TE11 mode

inside a 4 mm waveguide the axial wavelength is _I/_ ≈ 1.011 at 140 GHz, compare Eq. (4.11).

Scaling the increase of 50.5 cm of the waveguide with this ratio gives a length of 51.13 cm.

Similarly, for the TM11 mode, this gives a value of 53.43 cm and for the TE12 mode a value of

56.69 cm. From this it can be concluded that the rectangular TE01 waveguide mode originating

from the WR6 waveguide is mainly converted to the circular waveguide TE11 mode.

46



120 140 160

−12

−10

−8

−6

−4

Lo
ss

(d
B)

130.4 131.2 132.0 132.8

Frequency (GHz)

50 70 90 110

Cavity length (cm)

Tr
an
sm

iss
io
n
FT

(a
.u
.)

51.5cm

52.5cm

Figure 6.4: Top: Loss through A = 4 mm oversized waveguides with lengths of 49.5 cm (blue)

and 100 cm (green), respectively. Bottom: Absolute value of the Fourier transform

of the loss spectrum from the top graph as a function of e�ective cavity length. The

resolution of the Fourier transform is limited by the WR6 band span and evaluates

to 0.25 cm.

6.4. Transmission through the completed oversized stainless
steel section

As the assembly of the experiment progressed, it was possible to measure the microwave trans-

mission through the �nished oversized stainless steel waveguide sections, compare Figure 6.5.

For this measurement the total length of WR6 waveguide leading to the standard gain horn is

30 cm and the distance from the horn to the glass window is 0.5 cm. The total distance from

the horn to the oversized waveguide is 4 cm. A horizontal alignment of the horn above the

glass window is realised with the setup shown on the right side of Figure 6.5. An optimisation

of the alignment is done by sight and by maximising the detector signal at a speci�c frequency.
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Figure 6.5: Left: CAD render of the oversized stainless steel waveguide section used as the

DUT. The window inside the top CF �ange is 1 cm thick. Right: Picture of the

mount for the SGX module above the top �ange. The round cutout in the lower

optic breadboard is centered with respect to the glass window in the top �ange. As

the long pieces of WR6 waveguide are not perfectly straight and the stainless steel

tube inside the experiment is not ideally aligned with the center of the window a

manual horizontal adjustment of the standard gain horn is necessary.

The standard gain horn connected to the detector is placed at a distance of around 1 cm to the

reducing stainless steel piece.

Figure 6.6 shows the results of the measurement after two independent horizontal alignment

procedures. There is only a slight di�erence between the two measurements, indicating that

the alignment is not a big issue, compare also the estimate in Appendix B.2. At around 160 to

170 GHz the losses show a decrease that has a form similar to the increase of losses seen in the
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Figure 6.6: Top: Measurement of the transmission through the setup shown in Figure 6.5 for

two independent alignment procedures. The measured signal is still well above the

detectors smallest detectable signal at around −50 dBm. Bottom: Fourier trans-

form of the above measurements.

calibration measurement of Figure 6.1 indicating a detector artefact. The fast oscillations on

the measured signal from modes trapped between the two horns are comparably smaller than

the ones measured in the previous section, compare Figure 6.4, again showing the damping of

these resonances.

In the Fourier transform of the measurement, see Figure 6.6, the resonance between the

two horns appear as comparably smaller peaks at around 150 cm corresponding to about the

distance between the horns. There are several larger peaks between 30 and 90 cm which could

be attributed to some re�ections happening directly between one horn and a structure in the

assembly that is not part of the transmission line.

The total transmitted power is mostly above −25 dB. In the estimates made in the overview

of Section 5.6 which amount to −13 dB, the glass window and the second free space transition

to the detector were not included. The loss due to the latter is estimated with a FEM calculation

similar to the one in Section 5.4.1 resulting in losses of about −9 dB. It seems plausible that the

additional losses of −3 dB compared to the estimate originate from the glass window in the CF

�ange.
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7. Conclusion and outlook

At the Max Planck Institute for Nuclear Physics, a new Penning-trap experiment is set up to

measure the hyper�ne structure of
3
He
+
. With the intended measurement precision, the bound

electron and nuclear6-factors will be determined with a relative uncertainty of 10−10
and 10−9

,

respectively, and the zero-�eld hyper�ne splitting of the ground state with an uncertainty

better than 10−10
. In this work, the theoretical and experimental challenges of driving the

hyper�ne transitions of
3
He
+

inside a Penning trap were investigated.

In a �rst step, the frequencies of the transitions of the hyper�ne structure were derived.

As no Penning-trap experiment has investigated a system with a hyper�ne structure before,

theoretical considerations were necessary to map the transitions of the four-level system to ef-

fective two-level systems which allowed the usage of the lineshape calculations of Brown and

Gabrielse [19]. These lineshape calculations lead to the probability to drive a hyper�ne tran-

sition given input microwaves detuned from the transition frequency. Driving the transitions

with maximum probability on resonance gives relatively strict requirements on the microwave

power in the analysis trap, where electron spin transitions are used for detecting spin-�ips.

Because of the high power requirement and the high frequencies of the electron spin tran-

sitions at 150 GHz, waveguides need to be used to couple the microwaves into the Penning

traps. Due to the restrictions imposed by the experimental setup and construction di�culties,

standard waveguides are not practical to use inside the setup. By using oversized waveguides

made of readily available stainless steel pipes, the heat load can be reduced drastically com-

pared to standard copper waveguides without increasing the microwave losses in the uniform

sections. To deal with the challenges arising at transitions sections, a numerical mode match-

ing technique building on the theory describing the mode propagation inside waveguides is

derived.

Using the mode matching technique and FEM calculations with COMSOL, the oversized

waveguide leading to the Penning traps is optimised for maximum transmission given the

restrictions imposed by the experimental setup. Special care had to be taken with trapped

mode resonances forming in cavity like structures of the waveguide which cause large drops

in the transmission. It was found that these resonances can be su�ciently damped for long

enough oversized waveguide sections.

Lastly, detailed transmission measurements through oversized waveguide sections were per-

formed, which con�rmed the previous considerations. The total expected losses from the nu-
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merical calculations and the measurement sum up to−32 dB, which is well above the maximum

of allowed losses of −53 dB. Potentially, the microwave multiplier is not providing the power

it is speci�ed for, as the calibrations of the detector and the microwave multiplier provided

by the manufacturers were not consistent with a calibration measurement. Nevertheless, even

with the measured performance enough power would still arrive at the ion’s position.

Current status of the experiment

As of the end of this thesis, the experiment has been fully assembled, see for example the

assembled trap tower in Figure 7.1. The waveguide transmission line for the electron spin

transitions is fully implemented in the setup. Further, for the nuclear transitions at about

4 GHz, semi-rigid coaxial cables with low heat conductivity and microwave losses of about

−10 dB lead directly into the trap chamber. Inside the trap chamber, two coils next to the

analysis and precision trap produce a radial magnetic �eld component at the center of the trap.

Loading of
3
He
+

using the glass sphere as an atom source and a �eld emission point, de-

scribed in [46], has been achieved inside a simpli�ed Penning-trap apparatus. For both analysis

and precision trap, axial detection systems have been build and tested. An additional cyclotron

detection system for the precision trap has also been implemented. Following some further

tests, the experiment will be inserted into the superconducting magnet system and Penning-

trap measurements can start.

Figure 7.1: Photograph of the assembled trap tower.
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A. Transmission through
non-uniform waveguides

In Chapter 4 waveguides were introduced in general and in Section 4.4 the mode matching

technique [43] was described. Here the more mathematical details are worked out.

A.1. Waveguide step junction

A waveguide step junction (visualised in Figure A.1) is the simplest case of a discontinuity in

a waveguide and can be used to model any waveguide with a �xed axis direction. The left side

Figure A.1: Cross-section of a waveguide step junction. The red and purple lines indicate

the left side cross-section (; and right side cross-section (A respectively. O ;,A are

the vectors of ingoing mode amplitudes and U;,A the vectors of outgoing mode

amplitudes.

cross-section (; is assumed to �t inside the right side cross-section (A , such that their overlap

is again (; . The transverse �elds on both sides of the junction can be written as a sum over the

modes given by the particular cross-section and both negative and positive I-direction. Let O
be the vector of incoming electric �eld wave amplitudes on the junction and U the vector of
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outgoing amplitudes
1
, then

K ;,A
)
(x) =

# ;,A∑
=

(
� ;,A= 4

∓8:II +$;,A= 4±8:II
)
e;,A= (G,~),

H;,A
)
(x) =

# ;,A∑
=

± `0

/ ;,A=

(
� ;,A= 4

∓8:II −$;,A= 4±8:II
)
h;,A= (G,~)

(A.1)

are the transverse �elds on the left (; ) and right (A ) side of the junction. The vectors e;,A= (G,~)
and h;,A= (G,~) = eI × e;,A= (G,~) contain the transverse spatial dependence of the speci�c mode

=. In praxis, the number of modes # ; and # A has to be �nite and should be large enough to

include all propagating modes. This means that all wave amplitudes of the higher modes are

set equal to zero.

Given the incoming mode amplitudes O ;,A , a set of (#; + #A ) equations is needed to connect

them to the unknown quantities U;,A . To obtain this set of equations it is useful to �rst consider

the vectors e;,A= (G,~) and h;,A= (G,~) as basis vectors of a two-dimensional function space of two

variables constraint to the cross-section of the waveguide. The scalar products∫
(;,A
3�

(
f (G,~) ·

(
e;,A= (G,~)

)∗)
= 5 ;,A= , (A.2)∫

(;,A
3�

(
f (G,~) ·

(
h;,A= (G,~)

)∗)
= 5 ;,A= , (A.3)

where

∫
(;,A
3� is the integral over the cross-section of the waveguide and

∗
means complex

conjugation, can be used to compute the components of a given function f (G,~). The factors

in the sum Eq. (A.1) are thus the components of a vector in this space. At the interface of the

junction, I = 0, the transverse �elds need to be continuous

K ;) (x) =
# ;∑
=

(
� ;= +$;=

)
e;= (G,~) =

# A∑
=

(
�A= +$A=

)
eA= (G,~) = KA) (x), (A.4)

H;) (x) =
# ;∑
=

`0

/ ;=

(
� ;= −$;=

)
h;= (G,~) = −

# A∑
=

`0

/ A=

(
�A= −$A=

)
hA= (G,~) = HA) (x). (A.5)

The scalar products are now used to obtain the (# A +# ; ) equations necessary to determine the

outgoing amplitudes. On equation Eq. (A.4) the scalar product with the modes e;< is applied

resulting in

� ;< +$;< =

# A∑
=

(
�A= +$A=

) ∫
(;
3�

(
eA= (G,~) ·

(
e;< (G,~)

)∗)
, (A.6)

where the orthonormality of the e;< was used on the left hand side. The scalar product with

the magnetic �eld mode vectors hA< is applied on equation Eq. (A.5). Again using the orthonor-

1
Eq. (4.7) connects the amplitudes of the magnetic �eld to the electric �eld through the wave impedance / .
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mality of hA< this produces

1

/ A<

(
$A< − �A<

)
=

# ;∑
=

1

/ ;=

(
� ;= −$;=

) ∫
(;
3�

(
h;= (G,~) ·

(
hA< (G,~)

)∗)
, (A.7)

where the integration over (A reduces to an integration over (; due to h;< being zero outside

of (; . The ordinary cartesian scalar product inside the integral simpli�es to

h;= ·
(
hA<

)∗
=

(
eI × e;=

)
· (eI × eA< )∗

= e;= ·
(
eA<

)∗
. (A.8)

Equations Eq. (A.6) and Eq. (A.7) can be written in matrix-vector form

O ; + U; = P (O A + UA ) ,

UA − O A = diag (`A ) P†diag

(
1

` ;

) (
O ; − U;

)
≡ Q

(
O ; − U;

)
,

(A.9)

where the (# ; × # A ) matrix

(P)<= =

∫
(;
3�

(
eA= (G,~) ·

(
e;< (G,~)

)∗)
(A.10)

quanti�es the coupling between the modes< and =. The dimensions of the matrixQ involving

the wave impedances are (# A×# ; ). The above calculation constitutes essentially a change from

the basis of modes from one of the waveguide to the basis of modes from the other waveguide.

The scattering matrix (S-matrix)(
U;

UA

)
= S

(
O ;

O A

)
=

(
S11 S12

S21 S22

) (
O ;

O A

)
(A.11)

connects the outgoing to the incoming waves. Its four block-matrix components are now easily

expressed through P and Q [64]

S11 = (PQ + I)−1 (PQ − I) ,
S12 = 2 (PQ + I)−1 P,

S21 = Q (I − S11) ,
S22 = I − QS12,

(A.12)

with I being the identity matrix of the appropriate dimension. A junction of decreasing cross-

section can equivalently be treated as one of increasing cross-section by mirroring the junction

and switching the indices 1 and 2 after calculating the S-matrix Eq. (A.12). It has been found

that the number of modes on both sides of the junction should be in proportion to the radii [44]

# A

# ;
=
'A

';
. (A.13)

Then the initial number of modes should be in proportion to the radius of a waveguide in which

only the single TE11 can propagate.
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A.2. Mode coupling parameters

For circular waveguides the solutions to the wave equation (4.4) are given in Eq. (4.9). Using the

relation given in Eq. (4.5) and normalising over the cross-section of the circular waveguide gives

the following solution for the previously introduced mode vectors e<= (d, i) and h<= (d, i) of

the TE and TM mode, respectively [65]:

e<= (d, i) =
√

2 − X<0

�< (V<=)
√
c

(
V2
<= −<2

) [
<

d
�<

(
V<=d

'

)
sin(<i)ed + V<=

'
� ′<

(
V<=d

'

)
cos(<i)ei

]
,

(A.14)

h<= (d, i) =
√

2

�<−1(U<=)
√
cU<=

[
U<=
'

� ′<
(U<=d
'

)
sin(<i)ed + <

d
�<

(
V<=d

'

)
cos(<i)ei

]
,

(A.15)

with the de�nitions as given in Section 4.2 and X01 the Kronecker delta.

Using these normalised mode vectors the coupling matrices can be evaluated according

to Eq. (A.10). It can be easily veri�ed that there is no mode coupling for di�erent azimuthal

wavenumbers because the integral over the anglei gives a vanishing result. Additionally there

is no coupling of TM modes from the smaller side of the junction to TE modes in the larger

side. Thus, the mode coupling parameters are written in terms of the radial wavenumber =1

and =2, where the index 1 indicates the smaller section [65]:

TE→ TE :

%=1=2 =

2'1
'2
V<=2 �

′
<

(
V<=2

'1
'2

)
�< (V<=2)

√(
V<=1 −<2

) (
V<=2 −<2

) (
1 −

(
V<=2

V<=1

'1
'2

)2
) , (A.16)

TE→ TM :

%=1=2 = −
2<�<

(
U<=2

'1
'2

)
U<=2 �<+1(U<=2)

√
V2
<=1 −<2

, (A.17)

TM→ TM :

%=1=2 = −
2�<

(
U<=2

'1
'2

)
U<=2 �<+1(U<=2)

(
1 −

(
U<=1

U<=2

'2
'1

)2
) . (A.18)
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B. Additional estimates for the
waveguide optimisation

In Chapter 5 the oversized waveguide components were optimised and a total loss was cal-

culated. A few additional sources of loss already included in the summary of Section 5.6 are

considered in more detail here.

B.1. Hole in the creation trap

In order to have a direct path from the glass sphere containing the
3
He to the Penning traps a

hole in one of the electrodes with A = 3 mm is needed. As this hole introduces an asymmetry

into the waveguide, see Figure 5.11, a cylindrical symmetric FEM calculation is not directly pos-

sible. Nevertheless, by modelling the hole as a complete gap of waveguide with a length of its

diameter it is still possible to make an estimate of the loss the hole introduces. Figure B.1 shows

the loss calculated with COMSOL. The loss introduced does not show any large resonances and

is bounded by about −2.5 dB.

B.2. Horizontal displacement of microwave horns

It can not be assured that the standard gain horn connected to the WR6 waveguides is perfectly

aligned horizontally with respect to the 4 mm oversized waveguide inside the setup, compare

Figure 5.7. As any horizontal displacement destroys the cylindrical symmetry this can not be

calculated with a cylindrically symmetric FEM geometry. A full three dimensional calculation

is to expensive in terms of computation time, leaving a simpli�ed two dimensional geometry

as an alternative. For this a 8 mm wide waveguide without a horn is placed 3 cm away from

a standard gain horn with 9 mm opening radius and 3.8 cm length. The standard gain horn is

connected to a 800 µm waveguide.

Figure B.2 shows the results of the FEM calculation for varying displacements. Here the

transmission was averaged over the frequency range from 148 to 166 GHz. There is not much

additional loss from the displacement of the waveguide relative to the horn. Apparently, as

the horn is transmitting the microwaves into a solid angle which is larger than the angle cov-
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ered by the 8 mm wide waveguide, a horizontal displacement does not reduce the amount of

microwaves picked up by much.
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Figure B.1: Loss calculated with COMSOL for a waveguide with a radius of 3 mm and a 8 mm

gap.
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Figure B.2: Loss of the fundamental mode through the geometry described in the text for vary-

ing horizontal displacements.
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