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Homological stability for Artin monoids

Rachael Boyd

ABSTRACT

We prove that certain sequences of Artin monoids containing the braid monoid as a submonoid
satisfy homological stability. When the K(m, 1) conjecture holds for the associated family of
Artin groups, this establishes homological stability for these groups. In particular, this recovers
and extends Arnol’d’s proof of stability for the Artin groups of type A, B and D.

1. Introduction
A sequence of groups or monoids with maps between them
Gi—-Gy— - =Gy — -
is said to satisfy homological stability if the induced maps on homology
H;(G,) = Hi(Gp11)

are isomorphisms for n sufficiently large compared to 1.

This paper concerns homological stability for sequences of Artin monoids and groups, and in
this paper the associated maps will always be inclusions. In particular, we consider sequences
of Artin groups that have the braid group as a subgroup, and the corresponding sequences
of monoids.

We recall the definition of Artin groups. Given a finite set X, to every unordered
pair {os,0:} € ¥ x X associate either a natural number greater than 2 or the symbol oo, and
denote this by m(s,t). An Artin group A with generating set ¥ has the following presentation

A= {(Y]|n(os,00m(s,t)) = w(or,05;m(s,1))),

where w(og,01;m(s,t)) is the alternating product of o, and o, starting with o, and of
length m(s,t). The braid group with its standard presentation is the archetypal example of an
Artin group, with presentation
Bn:<0i forléi<n—1|ala]_0]al |Z, J|>2>.
0i0;410; = 0;410;0;11 1<i1<n—2
Every Artin group has an associated Coxeter group (discussed in Section 2), and in fact
Artin groups were first introduced by Brieskorn [2] as the fundamental groups of hyperplane
complements built from Coxeter groups. The information of the presentation can be packaged
into a Coxeter diagram. This diagram has vertex set ¥ and edges corresponding to m(s, t) for
each pair of vertices: no edge when m(s,t) = 2, an unlabelled edge when m(s,t) = 3 and an
edge labelled with m(s,t) otherwise. For example, the braid group B,, has diagram
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01 02 03 Op—2 Op-1
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which is known as the Coxeter diagram of type A and has corresponding Coxeter group the
symmetric group S,.

The sequences of Artin groups studied in this paper correspond to the following sequence of
diagrams:

Ay As An

where the grey box indicates that the sequence begins with an arbitrary diagram: an arbitrary
Artin group with finite generating set. The type A subdiagram corresponds to a subgroup
of A,, being the braid group B, 11, with an increasing number of generators as n increases.
This gives rise to a sequence of groups and inclusions

Al =5 Ay — - 5 Ay — -

and the goal of this paper is to discuss stability for sequences of Artin groups of this form. This
was motivated by work of Hepworth [13], who proved homological stability for the associated
sequence of Coxeter groups.

While the argument used for the proof of homological stability is similar to that used by
several authors, the novel part of this paper comes from dealing with Artin groups and monoids.
Very little is known for Artin groups in general, for instance, the centre of a generic Artin group
is unknown and it is not known whether all Artin groups are torsion free. In particular, there
are no tools to date for working with Artin cosets (for example, there is no canonical way to
choose a coset representative), something that is usually desirable when proving homological
stability for a family of groups. Therefore, the results of this paper are stated and proved for the
corresponding Artin monoids, for which a technical ‘coset’ theory is developed in Section 4 (the
notion of coset of a submonoid is not defined in general). Key properties of Artin monoids, such
as the existence of a well-defined length function and the existence of lowest common multiples
under certain conditions, allow us to define a canonical choice of ‘coset representative’ for these
monoids. From the monoid result, we then deduce homological stability for Artin groups that
satisfy the K(m,1) conjecture (discussed in more detail below).

We denote the Artin monoid corresponding to A, by A;. The inclusion map between the
monoids is denoted s and called the stabilisation map. The main result of this paper is the
following, which to my knowledge is the first instance where homological stability is proved for
monoids.

THEOREM A. The sequence of Artin monoids
AT 5 AT — o AT e
satisfies homological stability. More precisely, the induced map on homology
H.(BA} ) = H.(BA})
is an isomorphism when * < 5 and a surjection when * = 3. Here, homology is taken with

arbitrary constant coefficients, that is, coeflicients in an abelian group.

The classifying space of an Artin monoid BA™T is homotopy equivalent to some interesting
spaces that arise naturally in mathematics. One manifestation of this is that in the study of
Artin groups, there is a well-known conjecture by Arnol’d, Brieskorn, Pham and Thom called
the K (m,1) conjecture (discussed in Section 3). For this introduction, it suffices to know the
following fact due to Dobrinskaya.
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THEOREM [10, Theorem 6.3]. Given an Artin group A and its associated monoid AT,
the K(m,1) conjecture holds if and only if the induced map between their classifying
spaces BAT — BA is a homotopy equivalence.

Thus, if the K(m,1) conjecture holds for a family of Artin groups, Theorem A establishes
homological stability as below.

COROLLARY B. When the K (7, 1) conjecture holds for all A,,, the sequence of Artin groups
Al 5 Ay = Ay -
satisfies homological stability. More precisely, the induced map on homology
H.(BA,_1) — H.(BA,)

is an isomorphism when * < 5 and a surjection when * = 5. Here, homology is taken with
arbitrary constant coefficients, that is, coefficients in an abelian group.

The K(r, 1) conjecture has been proven for large classes of Artin groups [19]: the conjecture
holds for Artin groups for which the corresponding Coxeter groups are finite (this is Deligne’s
theorem [9], Theorem 3.1), of large type, of dimension two and of FC type. Proving the K (m,1)
conjecture for families of Artin groups continues to be an active area of research to this day.

CoroLLARY C. Homological stability holds for the sequences of Artin groups (A,) for
which the corresponding Coxeter groups are either finite, of large type, of dimension two or of
FC type.

REMARK 1.1. In the case of finite Coxeter groups, Corollary C therefore recovers the few
known cases of stability for families of Artin groups of the form studied in this paper, that is,
homological stability holds for the sequences of Artin groups {4, },>1 of type A, B and D,
given by the following diagrams:

A, —eo—o - -0—o
4
B, —eo—o - -0—o

These three sequences consist of Artin groups which relate to finite Coxeter groups. Hence, by
Corollary C, the sequences of Artin groups satisfy homological stability.

The three examples in Remark 1.1 were proved by Arnol’d, who computed the full
(co)homology of the groups in question, using the associated hyperplane complement. The
results and proofs are in Brieskorn’s Bourbaki seminar [3]. Despite the theorem in this paper
generalising these results, the method of proof is not a straightforward generalisation of the
proof of stability for the braid group.

REMARK 1.2. Krannich [14] introduced a framework to study homological stability
phenomena in the context of Es-algebras. This generalised a categorical framework of Randal-
Williams and Wahl [21], which ‘automated’ parts of the homological stability proof for
sequences of discrete groups. The sequence of monoids studied in this paper does not fit into
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the categorical set up of [21], however, the classifying spaces of the sequence can be shown to
assemble into an Ej-module over an Fs algebra, as in [14]. Combining the results of [14] with
the high connectivity results established in this paper, our homological stability result with
constant coefficients (Theorem A) can most likely be enhanced to one with abelian coefficients
and coefficient systems of finite degree in the sense of [14, Section 4].

1.1. Outline of proof

The proof follows the outline of a standard homological stability argument, which we describe
below for the benefit of the reader. We indicate where the new ingredients are used.

The proof of Theorem A requires the introduction of a semi-simplicial space A7 for each
monoid in the sequence A, such that:

(1) there exist homotopy equivalences A} =~ BArtqu for every p > 0; and

(2) there is a highly connected map from the geometric realisation of A7 to the classifying
space BA;", which we denote ||¢,||
Az = BT

n?o

that is, ||@e|| induces an isomorphism on a large range of homotopy groups.
The skeletal filtration of ||.A7|| gives rise to a spectral sequence
Bpq = Hy(AD) = Hyrq(|AL])-
From Point (1), it follows
E;),q = Hq(AZ) = HQ(BArJ’z_fpfl)'

We prove that on the E' page under the above equality the differentials are given by either the
zero map or the stabilisation map s, : Hq(BA:_p_l) — Hq(BAI_p). Following this, applying
the inductive hypotheses that previous monoids in the sequence satisfy stability gives that in

a range (when ¢ is small compared to n) the spectral sequence converges to H,(BA;_,):

E;,q = HQ(BA:’L_—])—l) = Hp+q(||-’47:”) = Hq(BA:,_—l) in a range.

The highly connected map of Point (2) above now gives that in a range the spectral sequence
also converges to the homology of BA;", which completes the proof.

For sequences of discrete groups, a usual candidate for A7 would be built out of cosets of
previous groups in the sequence. However, the fact that no tools exist for manipulating Artin
cosets means that this approach cannot be taken. The coset theory developed in this paper
for the corresponding sequence of Artin monoids is used to build A7. The main obstacle in
the proof is the high connectivity argument for Point 2 which follows a ‘union of chambers’
argument inspired by, but more involved than, work of Paris [19] and Davis [8].

1.2. Organisation of the paper

Sections 2 and 3 provide background on Coxeter groups and Artin groups, and the K(m,1)
conjecture, respectively. Section 4 then introduces Artin monoids and develops a novel theory of
‘cosets’ and corresponding technical results. Following this, Section 5 details the required semi-
simplicial background and particular monoid constructions used in the proof, some of which
are new. Section 6 applies the theory of Section 4, and introduces notation used throughout the
proof. Section 7 introduces the semi-simplicial space A7 and the map ||@e|| described above.
High connectivity of ||| is then the topic of Section 8, in which the general method of proof
for the high connectivity argument is introduced, before the proof is split into several cases,
due to the complexity of using Artin monoids. Finally, the spectral sequence argument and
homological stability result are given in Section 9.
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2. Coxeter groups and Artin groups

2.1. Coxeter groups
This section follows The Geometry and Topology of Coxeter Groups by Davis [8].
DEFINITION 2.1. A Coxeter matrix on a finite set of generators S is a symmetric matrix M

indexed by elements of S, that is, with entries m(s,t) in NU oo for {s, ¢} in S x S. This matrix
must satisfy:

e m(s,s) =1 for all sin S;
e m(s,t) = m(t,s) must be either greater than 1, or oo, when s # .
DEFINITION 2.2. A Coxeter matrix M with generating set S has an associated Coxeter
group W with presentation
W = (S| (st)"*) = ).
Here, m(s,t) = oo means there is no relation between s and ¢. We call (W, S) a Coxeter system.

We adopt the convention that (W, Q) is the trivial group.

REMARK 2.3. Note that the condition m(s,s) =1 on the Coxeter matrix implies that the
generators of the group are involutions, that is, s? = e for all s in S.

DEFINITION 2.4. Define the length function on a Coxeter system (W, S)
(:W =N
to be the function which maps w in W to the minimum word length required to express w in

terms of the generators.

DEFINITION 2.5. Define m(a,b;k) to be the word of length k, given by the alternating
product of a and b, that is,

length k

—
m(a,b; k) = abab. ...

REMARK 2.6. The relations (st)™(*%) = ¢ can be rewritten as
(s, t;m(s,t)) = w(t, s;m(s, t))
when m(s,t) # co. Therefore, the presentation of a Coxeter group W can also be given as

(s)2=¢e seS>_

W= <S (s, t;m(s,t)) = w(t,s;m(s,t)) s,te€S

DEFINITION 2.7. Given a Coxeter matrix corresponding to a Coxeter system (W, .S), there
is an associated graph called the Coxeter diagram, denoted Dyy. It is the graph with vertices
indexed by the elements of the generating set S. Edges are drawn between the vertices
corresponding to s and ¢ in S when m(s,t) > 3 and labelled with m(s,t) when m(s,t) > 4, as
shown below:

m(s,t)

° o ——e ———o
s t s t s t

m(s,t) =2 m(s,t) =3 m(s,t) > 4 or oo.
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When the diagram Dy is connected, W is called an irreducible Coxeter group. The disjoint
union of two diagrams gives the product of their corresponding Coxeter groups.

THEOREM 2.8 (Classification of finite Coxeter groups [7]). A Coxeter group is finite if and
only if it is a (direct) product of finitely many finite irreducible Coxeter groups.

The following is a complete list of the diagrams corresponding to finite irreducible Coxeter
groups.

Infinite families Exceptional groups
4
An *—1—=0 - *—a0 F4 *———o—0o—0
B 4 H 0
n *—1—=0 - *—e 3 *——=e—o
D, :>—~ e H, oio—o—o
p
I>(p) *——o Es b—o—I—o—~
E; ’—o—I—o—.—q
Es o—o—I—o—o—o—c

DEFINITION 2.9. We say that a finite irreducible Coxeter group W is of type D if its
corresponding diagram is given by D, and we denote this Coxeter group W (D).

REMARK 2.10. The Coxeter group W (A,,) is isomorphic to S,,41, the symmetric group,
which is the reflection group of the regular (n + 1)-simplex.

DEFINITION 2.11. Let (W,S) be a Coxeter system. For each T'C S, T generates a
subgroup Wr such that (Wr,T) is a Coxeter system in its own right. We call subgroups that
arise in this way parabolic subgroups. If the subgroup is finite, we call it a spherical subgroup.

2.2. Artin groups

This section follows Charney [6, Section 1] and notes by Paris [19].
Given a Coxeter system (W, S), the corresponding Artin group is given by forgetting the
involution relations, that is, setting m(s, s) = oo.

DEFINITION 2.12. For every Coxeter system (W,S), there is a corresponding Artin
system (A, X) comprising an Artin group Ay with generating set

Y := {0, for s € S}



HOMOLOGICAL STABILITY FOR ARTIN MONOIDS 543

and presentation

Aw = (X |s,t € S,m(os,01;m(s,t)) = 7(ot,05;m(s,t))).

We note that the Coxeter diagram Dy, contains all the information about the Artin group
presentation.

EXAMPLE 2.13. The Artin group Ay corresponding to the Coxeter group W = .S, is the
braid group BB,,. The corresponding diagram Dyy is

-0 -

- o
01 02 03 Op—2 Op-—1

where we relabel o, to o, for ease of notation. The presentation is therefore given by

0i0; = 0404 |Z—]|>2>
)

Bn:<ai for s, € S | )
0i0i410; = 0,410:0;41 1 <i< (n—2)

the standard presentation for the braid group on n strands.

EXAMPLE 2.14. When all possible edges in the Coxeter diagram Dyy are present and labelled
with oo the corresponding Artin group is the free group on |S| generators. The group has
presentation

Aw = (o, for s € 5).

EXAMPLE 2.15. When there are no edges in the Coxeter diagram Dyy, the corresponding
Artin group is the free abelian group on |S| generators. The group has presentation

Aw = (o5 for s € S|os0y =010s8 £t € S).

EXAMPLE 2.16. When all of the edges in the Coxeter diagram are labelled with oo, but
not necessarily all possible edges are present (some m(s,t) may be equal to 2), then the
corresponding Artin group is called a right-angled Artin group, or RAAG.

DEFINITION 2.17. When the Coxeter group W is finite, that is, when its diagram Dy is
a disjoint union of diagrams from Proposition 2.8, then the corresponding Artin group Ay is
called a finite-type Artin group, or a spherical Artin group.

Much of the known theory of Artin groups is concentrated around RAAGs and finite-type
Artin groups, though we do not restrict ourselves to either of these families in our results.
In general, little is known about Artin groups. For instance, the following properties hold for
finite-type Artin groups [6].

There exists a finite model for the classifying space K (A, 1).
Ayy is torsion free.

The centre of Ay is Z, for A irreducible.

Aw has solvable word and conjugacy problem.

To date these properties are not known for general Artin groups. In the next section, we
consider the first point in detail.

3. The K(m,1) conjecture

This section introduces the K(m,1) conjecture, following [19].
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In general, one can associate a hyperplane arrangement A and associated complement M (.A)
to each Coxeter group W, such that there is a free action of W on M (A). When we consider
this hyperplane complement modulo this W action, the corresponding quotient M (.A)/W has
as its fundamental group the Artin group Ay . In some cases, this quotient space is known to
be a K(Aw,1), in particular we recall Deligne’s theorem for finite-type Artin groups.

THEOREM 3.1 (Deligne’s theorem [9]). For W a finite Coxeter group and Ay the associated
Artin group, M(A)/W is aspherical with fundamental group Aw, that is, M(A)/W is
a K(Aw, 1)

For arbitrary Artin groups, the K(m,1) conjecture was formulated by Arnol’d, Brieskorn,
Pham and Thom, and states than an analogue of Deligne’s theorem holds for all Artin groups.
The analogue of the hyperplane complement was formulated by Vinberg. For a more detailed
description, see Davis [8], notes by Paris [19] and the introduction to a paper on RAAGs by
Charney [6].

REMARK 3.2. It is worth noting here a reformulation of the conjecture in terms of a finite-
dimensional CW-complex called the Salvetti complex, denoted by Sal(A) and introduced by
Salvetti in [22], for a hyperplane arrangement A in a finite-dimensional real vector space V.
The Salvetti complex is defined in terms of cosets of finite subgroups of the Coxeter group [23].
Paris extended this definition to any infinite hyperplane arrangement in a non-empty convex
cone I [19] and proved that Sal(A) and M(A) have the same homotopy type. The K(m, 1)
conjecture can therefore be restated as a conjecture about the Salvetti complex.

The K(m,1) conjecture has been proven for large classes of Artin groups [19]. However,
the conjecture has not been proven for general Artin groups. We will apply a reformulation of
the K (, 1) conjecture to our results, involving the Artin monoid A" and discussed in Section 4.

4. Artin monoids

The start of this section follows Jean Michel’s A note on words in braid monoids [16] and
Brieskorn and Saito’s Artin-Gruppen und Coxeter-Gruppen [4]. Much of the material in
Section 4.3 is new.

4.1. Definition and examples

DEFINITION 4.1. The Artin monoid system (A, %) associated to a Coxeter system (W, S)
is given by the generating set ¥ for the corresponding Artin system (A, 3), and the monoid
with the same presentation as the Artin group Ay :

A?/{, = (X |7w(os,00m(s,t)) = m(or, 05;m(s, 1)) 7.

Words in A?,'V are therefore strings of letters for which the alphabet consists of o4 in X.
REMARK 4.2. The group completion of A% is Aw.

EXAMPLE 4.3. The braid monoid B, is the monoid associated to the Coxeter group S, the
symmetric group, with group completion the braid group B,,. Given the standard generating
set for the symmetric group, the braid monoid consists of words in the braid group made
from the positive generators o;. In terms of the braid diagrams these can be viewed as braids
consisting of only positive twists.
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DEFINITION 4.4. We call a submonoid M ™ of an Artin monoid A" a parabolic submonoid if
the monoid M ™ is generated by the set M+ N 3. We call this generating set for the monoid ¥,
giving a system (M™T,%,).

In this paper, by convention every submonoid of an Artin monoid considered will be a
parabolic submonoid.

4.2. Divisors in Artin monoids

DEFINITION 4.5. Define the length function on an Artin monoid A" with system (AT, X)
0: AT - N

to be the function which maps an element o in A™ to the unique word length required to
express « in terms of the generators in .

REMARK 4.6. Note here that since there are no inverses in Artin monoids, multiplication
corresponds to addition of lengths, that is, £(ab) = £(a) + £(b) (£ is a monoid homomorphism).

DEFINITION 4.7. For elements o and 8 in an Artin monoid A™ with system (AT,Y), we
say that a < § if for some v in AT we have 8 = va, that is a word representing o appears
on the right of some word representing g, in terms of the generating set 3. We say that 3 is
right-divisible by «, or alternatively that « right-divides .

PROPOSITION 4.8 (Michel [16, Proposition 2.4]). Artin monoids satisfy left and right
cancellation, that is, for a, b and c in AT,

ab=ac=b=c

ba =ca=b=c.

We now consider work by Brieskorn and Saito in their 1972 paper Artin-Gruppen und
Coxeter-Gruppen [4]. They consider notions of least common multiples and greatest common
divisors of sets of elements in the Artin monoid. We are interested in the notion of least common
multiple.

DEFINITION 4.9. Given a set of elements {g;};cs in an Artin monoid A" with sys-
tem (Aw,X), a common multiple  is an element in A" which is right-divisible by all g;.
That is g; <g B for all j in J. A least common multiple of {g;} is a common multiple that
right-divides all other common multiples. Let E be a set of elements in the Artin monoid AT,
Denote the least common multiple (if it exists) of £ by A(E). For o and 8 two elements in A™
denote the least common multiple of « and 3 (if it exists) by A(a, §).

REMARK 4.10. Should a least common multiple exist, it will be unique.

PROPOSITION 4.11 (Brieskorn and Saito [4, 4.1]). A finite set of elements in an Artin
monoid either has a least common multiple or no common multiple at all.

REMARK 4.12. Since the relations in an Artin monoid have the same letters appearing on
each side, the set of letters present in any word representing an element of an Artin monoid is
fixed. Therefore, the notion of ‘letters appearing in an element’ is well defined.
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LEMMA 4.13 (Brieskorn and Saito [4]). For a fixed generating set, the letters arising in a
least common multiple of a set of elements in an Artin monoid are only those letters which
appear in the elements themselves.

DEFINITION 4.14. Consider a submonoid M™ of an Artin monoid AT, with sys-
tem (M™,%,/). Given an element o in AT we define two end sets

EndGenys(a) = {os | s € Zpr,05 < a}

EndMon (o) = {8 € M" | B <r a}.

REMARK 4.15. EndGenj/(«) is exactly the letters o in ¥j; that a word representing a can
end with, and EndMon,,(«) is exactly the elements in M that a word representing « can
end with. Note that EndGen,; (o) is a subset of EndMon (), consisting of words of length 1
and EndMon (o) = @ if and only if « has no right-divisors in M.

4.3. Required theory

Much of the proof of Theorem A is concerned with algebraic manipulation of words in the
Artin monoid. Here we introduce some technical definitions and lemmas used in the proof. We
build up a theory of cosets in the case of Artin monoids, which is new unless cited.

LEMMA 4.16. Given « in At, and M™ a submonoid of A", the set EndMony(a) has a
least common multiple A(EndMon(«)) = 8 which lies in the submonoid M. That is, there
exists 8 in M and v in AT such that o = v/ for some words representing «, 3,, and if 5’
in AT and +' in AT satisfy o = «'/3, it follows that 8 <r [’

Proof. From Proposition 4.11 if a common multiple exists, then A(EndMonjs (o)) exists.
We have that « itself is a common multiple of all elements in EndMon, (), by definition
of EndMon (o). Furthermore, Lemma 4.13 notes that only letters appearing in EndMon ()
will appear in A(EndMon (). By definition, these are letters in M+ and so A(EndMon ;s ()
lies in M. O

REMARK 4.17. For n element « in A1 let A(EndMon;(«)) = 3. We write & with respect
to M+ for the element @ in AT such that o = @B. It will always be clear in the text with
respect to which submonoid M T we are taking the reduction.

DEFINITION 4.18. For AT an Artin monoid and M™ a submonoid, let AT(M) be the
following set

AT (M) = {@ with respect to M | a € AT}.

That is, AT (M) is the set of elements in A* which are not right-divisible by any element of M.

LEMMA 4.19. For all « in At and all 8 in M, @ = af8 where the reduction is taken with
respect to M.

Proof. Let @a=+, so a=+n for some n in MT, and EndMony,(y) =0, that is, v
has no right-divisors in M7T. Then of =~n83 and since  and S are both in MT, it
follows that n8 € EndMony;(afB). If B is the least common multiple of EndMon,(af3),
then a8 =+ =@ so we are done. Suppose for a contradiction that 73 is not the least
common multiple of EndMony(af), and note that 78 is a right-divisor of the least
common multiple. Then there exists some ¢ in M™* of length at least 1 such that ¢(ng3
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is the least common multiple of EndMonys(af3). It follows that there exists a o = af3
with EndMony,(7') =0 and af =+'(nB. But af =+ nB and it follows from cancellation
that v = +'C. Since ¢ is in Mt with length at least 1 it follows that ¢ € EndMon () which
contradicts EndMon () = 0. Therefore, nj3 is the least common multiple of EndMon ;(a3)
and it follows that aff = v = @. O

DEFINITION 4.20. Consider the relation ~ on A™ given by
a1 ~ s <= a1 = asf for some fq and By in M,

where M™T is a submonoid of AT. When we use this relation it will be made clear which
submonoid M ™ is being considered. The relation ~ is symmetric and reflexive. Let ~ be the
transitive closure of ~. That is, a; =~ « if there is a chain of elements in A*:

QI ~ Ty~ Ty~ T~ Qo

for some k. Denote the equivalence class of a in AT under the relation ~ with respect to the
submonoid M ™ as [a]-

DEFINITION 4.21. Let ¢ : AT (M) — AT/ ~ be the quotient map, taken with respect to the
equivalence relation =.

LEMMA 4.22. The map q of Definition 4.21 is a bijection. That is for all ; and ag in A™:
1]y = [oo]y = a1 =
Proof. (<) If &y = a3 = 7y with respect to M ™, then oy ~ v ~ az so it follows a1 ~ as.
(=) We want to show that if oy = ap, then @7 = a3. Since ay & s, there is a chain
Qp ~ T YT~ e YT~ Q2
so if we show that 77 = ¢ whenever 1 ~ ¢ for  and ¢ in A% it will follow that
G =T1=Ty= =7} = 0o,
Since n ~ ( it follows that for some 81 and 82 in M+, nB; = (B2. Applying Lemma 4.19 gives
7 =np1=Ch =,

as required. O

PROPOSITION 4.23. For M a submonoid of A*, AT = AT (M) x M™ as sets, via the
bijection
p: AT — AT (M) x M
a— (a,f), where a =ap,

where 8 = A(EndMon (). This decomposition respects the right action of M on A", that
is, M+ acts trivially on the first factor and as right multiplication on the second.

Proof. To show p is surjective: consider (v,8) € A*(M)x M™*. Due to Lemma 4.19
for € AT and any € M we have af =a. Therefore, v4 satisfies p(v8) = (v, 5)
since v ==+ (we have v € AT (M) so EndMon,(y) =0). To show injectivity, sup-

pose p(a1) = p(az), that is (at, f1) = (az, 82). This translates to
ay = a1 = ozl = ag,

therefore p is injective. Under this decomposition, the action of m in M™T
satisfies p(« - m) = (@, § - m), where o = @f, again due to Lemma 4.19. O
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PROPOSITION 4.24 [16, 1.5]. If generators s and t in Sy; are in EndGeny () for some o
in AT, then A(s,t) lies in EndMon (o).

LEMMA 4.25. Consider a subset F of EndMony;(«) for some submonoid M™* of AT and
some « in AT. Then A(F) is in EndMon ().

Proof. Since F' is a subset of EndMonjs(«), which has a least common multiple, F' has a
common multiple so A(F') exists by Proposition 4.11. Since A(EndMonj,(«)) is a common
multiple for EndMonj(«), it is a common multiple for F. The element A(F) right-divides
all other common multiples of F' by definition. Therefore, A(F) <r A(EndMony,(«)) and it
follows that A(F') is in EndMon; («). O

DEFINITION 4.26. Recall from Remark 4.12 that the set of letters present in an element of an
Artin monoid is well defined. We say elements o and § in an Artin monoid with system (A™, )
letterwise commute if:

e the set of letters in ¥ that a contains is disjoint from the set of letters that 8 contains,
and
e cach letter of ¥ that o contains commutes with each letter of X that 8 contains.

LEMMA 4.27. If 8 and ~ are in EndMony,(«) and 8 and « letterwise commute, it follows
that:

o A(B,7) = Py =1B;
o A(B,7) € EndMon ().

Proof. Since § and -~ letterwise commute, they contain distinct generators. From
Remark 4.12 every word representative for 5 and  contains the same set of letters. It follows
each of these letters must appear in A(3, ). If both § and « have length 1, say 8 = c and vy =7
for generators o and 7, then since the words letterwise commute it follows that ¢ commutes
with 7. Therefore, since o7 = 7o and both generators must appear in A(S,~) it follows that

A(B,y) =0T =70 = By =1p,

as required. Similarly, if § = o1 ...0k has length k, and v = 7 has length 1, then since the
words contain distinct generators (which all must appear in the lowest common multiple)
and 7o; = o;7 Vi it follows that

AB, 1) =A(01...0k,7) = (01...05)T =7(01...0%) = BT = T0.

Suppose now that S =o0;7...0, has length k¥ and v=7;...7 has length [. It is true
that 8 <p By and v <g B7.

CrAM. Ifz in A" is a common multiple of 8 and vy, then B~y = ~f is in EndMon ().

Proof of claim. We proceed by induction on lg(y). The base case lg(y) = 1 is covered above.
As our inductive hypothesis, we suppose if lg(y’) <1 and 4" letterwise commutes with 3,
then A(y/, 8) = +' = 84/, hence the claim holds. We prove the claim for

B=o01...0p,and y=7y...7].
Since x is a common multiple of 3 and -y, there exist y and z in A" such that

r=yBandx=z2y=2z27...7].
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In particular, 8 and v/ = 75...7; are in EndMony, (z), so
A(Y,8) =48 = By € EndMony ()
by the inductive hypothesis. Therefore, there exists w € AT such that
r=zy=2z7...71and z = why = whT2... T

which by cancellation of 75 ...7; gives 27 = wf. By the base case, since 71 and § are both
in EndMonyy(z71) so is A(7y, 3) = 718 = B71. Therefore, there exists v € AT such that

211 = vPT

and so by cancellation of 71, it follows that z = v. Reinserting this in the previous equation
gives

T =zy=uvpy
and so By = ~f is in EndMon,,(x) as required. O

LEMMA 4.28. If words «, a and b in A" are such that b <r aa and a and b letterwise
commute, then it follows that b <g a.

Proof. An equivalent way of writing m <z n for m, n in A™ is m € EndMon 4(n) where the
end set is taken with respect to the full monoid A™. Since a and b are both in EndMon 4 (ca)
it follows that A(a,b) is in EndMong(wa), from Lemma 4.25. Since a and b letterwise
commute, A(a,b) =ab=ba from Lemma 4.27. Therefore, ba is in EndMony4(aa) and, by
cancellation of a, b is in EndMon 4 («) as required. O

4.4. Relation to the K(m,1) conjecture

In 2002, Dobrinskaya published a paper relating the classifying space of the Artin monoid BA;,
to the K (m, 1) conjecture. This was later translated into English as Configuration Spaces of
Labelled Particles and Finite Eilenberg - MacLane Complexes [10]. The main result of the
paper was the following.

THEOREM 4.29 (Dobrinskaya [10, Theorem 6.3]). Given an Artin group Aw and its
associated monoid A;‘r/, the K (m, 1) conjecture holds if and only if the natural map between
their classifying spaces, BA;‘F/ — BAyy is a homotopy equivalence.

This theorem has been reproved using a different Morse-theoretic approach by Ozornova [17]
and her result has in turn been strengthened by Paolini [18].

5. Semi-simplicial constructions with monoids

This section is split into three subsections. The first introduces background semi-simplicial
theory before the second introduces theory for generic monoids and submonoids, including
some new results. The third subsection focuses on Artin monoids and contains results required
later in the proof.

5.1. Semi-simplicial objects

This subsection consists of the required background and follows Ebert and Randal-
Williams [12].
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DEFINITION 5.1 [12, 1.1]. Let A denote the category which has as objects the non-empty
finite ordered sets [n] = {0,1,...,n}, and as morphisms monotone increasing functions. These
functions are generated by the basic functions which act on the ordered sets as follows:

D':[n] = [n+1for0<i<n

-~

{0,1,...,n} —»{0,1,...,4,...,n+ 1}
S :in+1] = [n]for 0<i<n
{0,1,...,n+ 1} — {0,1,...,4,4,...n}.

The opposite category A°P is known as the simplicial category. We denote the opposite of the
maps D’ by 9; and the opposite of the maps S* by s;. We call these the face maps and the
degeneracy maps, respectively.

Let Asnj C A be the subcategory of A which has the same objects but only the injective
monotone maps as morphisms, generated by the D;. The opposite category A?ﬁj is known as
the semi-simplicial category and its morphisms are therefore generated by the face maps 0;.

DEFINITION 5.2 [12, 1.1]. A simplicial object in a category C is a covariant
functor X, : A% — C. A semi-simplicial object is a functor X, : A7}, — C. We denote X,([n])
by X,. A (semi-)simplicial map f: X, — Y, is a natural transformation of functors, and in
particular has components f, : X,, — Y,,. Simplicial objects in C form a category denoted sC,
and semi-simplicial objects a category denoted ssC. When C equals Set a (semi-)simplicial
object is called a (semi-)simplicial set and when C equals Top it is called a (semi-)simplicial
space.

REMARK 5.3. A semi-simplicial object in a category C is equivalent to the following data.

(a) An object X, in C, for p > 0.
(b) Morphisms in C 87 : X, = X,_1 for 0<i<p and all p >0 called face maps, which
satisfy the following simplicial identities
oror = o ol if i < j.
DEFINITION 5.4 [12, 1.3]. An augmented semi-simplicial object in C is a triple (Xo, X_1, €)
such that X, is a semi-simplicial object in C, X_; is an object of C and €, is a family of
morphisms such that €, : X;, = X_; and ¢y_100; =¢, forallp>1and 0 <i < p.

EXAMPLE 5.5 [12, 1.2]. The standard n-simplex has two equivalent manifestations: as a
simplicial object in Set and as an object in Top. When viewed as a simplicial set the standard n-
simplex is denoted A7 and is defined via the functor A?, = AY([m]) = homa ([m], [n]) for all [m]
in A°?. When viewed as an object in Top the standard n-simplex is denoted |A™| and defined
to be

n
|A"| = {(to,...,tn) ER™ Y ti=landt; > ow}.
i=0
One can associate to a morphism ¢ : [n] — [m] in A a continuous map
Gu 1 [A"] = AT

(to,---stn) — (S0,--.,Sm), where s; = Z t;.
$(i)=j
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That is, morphisms send the jth vertex of the simplex |A™| to the ¢(j)th vertex of |A™| and
extend linearly. Under this viewpoint the map D sends |A"| to the ith face of |[A"T!| and the
map S¢ collapses together the ith and (i + 1)st vertices of |A"*!| to give a map to |A".

A tuple (811-71_1, 852_2, . ﬁf;k) denotes the application of several face maps in a row,
where 851_1 is the first face map to be applied, followed by 85’2 _2, etc. For ease of notation
we dispense with superscripts, writing the tuple as (9;,, 9; 0;,) and assuming the domain
and targets are such that the composite map is defined.

29

LEMMA 5.6. With the above notation, the tuple of face maps can be written such
that ij+1 2 ij for aH]

Proof. Suppose ij41 <4; in the tuple (0;,,0;,,...,0; ). The simplicial identities
show 0;,,,0;; = 0;,10;,,, since ;1 < i;. Therefore,

41
(04, 0i ...,3,;j,5'- ooy 0i) = (03, 0y ...,3,;j+1,37;j_1,...,87;k).

1j+19
Since ij+1 < ij, it follows that ij —1> ij+1. Relabelling ij = ij+1 and 7:]'4_1 = ij -1
gives (04,04, ..., 04;,0; .,0;,) such that ¢4 >4;. This procedure reduces the

g1
sum Z?:l ij by one, and therefore upon iteration must terminate. Applying this process enough
times gives i;4; > 4; for all j. O

DEFINITION 5.7 [12, 1.2]. The geometric realisation of a semi-simplicial set or space is the
topological space denoted by || X,| and defined to be

1 Xell =TT Xn > 14"/ ~,
n=0

where ~ is generated by (z,t) ~ (y,u), whenever 9;(z) = y and D*(u) = t.
The geometric realisation is an example of a coequaliser or colimit (see Dugger [11]).

DEFINITION 5.8. Given a semi-simplicial map fo: Xe — Y, there is an induced
map || fell : [[Xe|| = ||Ye|| which we call the geometric realisation of the semi-simplicial map fo.

DEeFINITION 5.9 [12, 1.4]. A bi-semi-simplicial object in a category C is a
functor Xee : (A X A4ypj)? — C. We write X, ; = Xeo([p], [q]). We write the image of the
standard face maps in each simplicial direction (9; x id) and (id x0;), as 9;  and J, ;. We note
that

(0 x 0j) = (01,00 0aj) = (0s,j 0 Dise) : Xpg = X(p-1),(4-1)
and we denote this map 0; ;. When C is equal to Top the bi-semi-simplicial object is called a

bi-semi-simplicial space.

REMARK 5.10. A bi-semi-simplicial space can be viewed as a semi-simplicial object in ssTop
in two ways:

(1) Xeg:[p]— (Xo:[q) — Xp,q) with face maps 0; o;
(2) Xpe:lgl— (Xe:[p] = Xp,q) with face maps 0, ;.

DEFINITION 5.11 [12, 1.2]. Given a bi-semi-simplicial space X, o we define its geometric
realisation to be

IXeoll = TT KXo x 1A7] % |AY)/ ~,

p,q=20
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where ~ is generated by (z,t1,t2) ~ (y,u1,u2) whenever (9;;)(z) =y, D'(w) =1t
and D (uy) = to. This is equivalent to taking the geometric realisation of the semi-simplicial
space first in the p direction, followed by the ¢ direction, or in the ¢ direction followed by the p
direction. This is due to the following homeomorphisms [12, 1.9 and 1.10] :

[Xee

| = ([ Xeq : [p] = [ Xe = [g] = Xpgllll = [[Xpe = [g] = [ Xe = [p] = Xpp gll]-

5.2. Semi-simplicial constructions using monoids and submonoids

The following description of the geometric bar construction and related definitions loosely
follows Chapter 7 of May’s Classifying spaces and fibrations [15]. In this section, we view
monoids and groups as discrete spaces.

DEFINITION 5.12. Let M be a monoid and let X and Y be spaces with a left and right action
of M, respectively. Then the bar construction denoted B(Y, M, X) is the geometric realisation
of the semi-simplicial space Be (Y, M, X) given by

B.(Y,M,X)=Y x M" x X.

Elements in B,(Y,M,X) are written as y[g1,...,gnJz for y€Y, g;e M for 1<i<n
and x € X. Face maps are given by

ygilg2, -, gnlz ifi =0
al(y[gl’“g”]x): y[glavglgv—i-lvagn]z 1f1§2<n—1
y[gla cee 7977.*1]9711' le =nN.

DEFINITION 5.13. Counsider the bar construction B(x, M,Y’) for Y a space with an action
of the monoid M on the left and * a point on which M acts trivially. Define this to be the
homotopy quotient of Y over M (or M under Y) and denote it B(x, M,Y) =: M \\ Y. This is
the geometric realisation of the semi-simplicial space B, (%, M,Y") given by

Bj(x,M,Y) =% x M’ x Y.

Elements are written as [m,...,m;ly for m; in M for 1 <i < j and y in Y. Face maps are
given by
[ma,...,m;ly ifi=0
6¢([m1,...,m]‘]y): [ml,...,mimi+1,...,mj]y 1f1<l<]—1
[ml,...,mj_l]mjy if ¢ :]

In the situation of a monoid M acting on a space Y on the right we define the homotopy
quotient to be B(Y,M,*) =Y J M.

ExAMPLE 5.14. Counsider the bar construction B(x, N, M), for N a submonoid of M acting
on M on the left, by left multiplication, and * a point, on which N necessarily acts trivially.
Then the homotopy quotient of M over N is

B(x,N,M) =N\ M.
This is the geometric realisation of the semi-simplicial space B, (*, N, M) given by

Bj(*,N,M) =% x N7 x M.
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Elements are written as [nq,...,n;|lm for n; in N for 1 <4 < j and m in M. Face maps are
given by
[no,...,njlm ifi=0
8i([n1,...,nj]m): [nl,...7nmi+17...7nj]m 1f1<2<]—1
[nl,...,nj,l]njm if 4 :j

We can build a similar homotopy quotient for a submonoid N acting on M on the
right by right multiplication. Then the associated homotopy quotient is the geometric
realisation B(M, N,*) =M J/ N.

LEMMA 5.15. The homotopy quotient of a group G or monoid M under a point * is
a model for the classifying space of the group or monoid, that is, BG~G\ x~x /G
and BM ~ M \\ x ~x J/ M.

Proof. Writing down the simplices and face maps for the homotopy quotients G\ *
and G /|  gives exactly the simplices and face maps for the standard resolution or bar resolution
of G, which is a model for BG (see, for example, [5]). This holds similarly for the monoid M
(see, for example, [15, p. 31]). O

LEMMA 5.16. For a monoid M, M \ M ~ x.
Proof. This is a consequence of [12, Lemma 1.12] using the augmentation to a point. O

LEMMA 5.17. Let N be a monoid and S be a space with right N action. Suppose S can be
decomposed as S =2 X x Y and, under this decomposition, the action of N restricts to a right
action on the Y component and trivial action on the X component. Then the map given by
the geometric realisation of the levelwise map on the bar construction

Bp((X xY),N,%) = X x B,(Y, N, %)

(x,y)[n1, ... np] = (x,y[n1, ..., np))

forx € X,y € Y andn; € N for all i is a homotopy equivalence. That is, the homotopy quotient
satisfies

SJN=(XxY)/N=~Xx(Y|N),

where the homotopy equivalence is given by the geometric realisation of the levelwise map on
the bar construction

B,((X x Y),N,%) = X x B,(Y, N, x)

(xay)[nlw"?np} = (mvy[nla"'anp])

forxe X, ye€Y andn; € N for all i.

Proof. The homotopy quotient S/ N is the geometric realisation of the simplicial
space Be (S, N, *) with j-simplices given by
Bj(S,N,*) =S x N’

and face maps given by Definition 5.13, the first face map 0; encoding the right action of N
on S. Under the decomposition S = X x Y the j-simplices are given by

Bj(S,N,*) = (X xY) x NV 2 X x (Y x N7),



554 RACHAEL BOYD

where the second isomorphism highlights that the action of N on S can be restricted to a right
action on Y, since the action is trivial on the X component. Note that the second factor is
precisely the j-simplices in B;(Y, N, %), and since the face maps act trivially on the X factor, the
face maps in B;(S, N, %) induce face maps in B;(Y, N, *) under the decomposition. The proof
is concluded by taking the geometric realisation of Be(S, N, *) and the geometric realisation
of X X Be(Y, N, %), noting that || X x Be(Y, N,*)|| ~ X x ||Be(Y, N, *)||. O

5.3. Semi-simplicial constructions for Artin monoids

Given an Artin monoid A" and a parabolic submonoid M, recall from Section 4 that AT (M)
is the set of elements in AT which do not end in elements in Mt and there is a decomposition
as sets (Proposition 4.23), AT =2 AT (M) x M. This decomposition maps « in A™ to (@, 3),
where @ = @ (as defined in Remark 4.17) and the right action of M* on A" descends to a
trivial action on A*(M) and a right action on M.

In this section, we view monoids and sets as discrete spaces.

ProrosITION 5.18. The map
AT M — AT(M)
defined levelwise on the bar construction Be(A™, M™ %) by
By(AT, M7 %) — AT (M)
afmy,...,my] — @
is a homotopy equivalence.
Proof. From Proposition 4.23, AT = AT (M) x M+ as sets, hence as discrete spaces, and
this decomposition respects the right action of M+ on A*. Then
AT Mt = (AT (M) x M) J M
~ AT (M) x (Mt J M)
~ AT (M) x *
— At(M),

where the first homotopy equivalence uses Lemma 5.17 and the second homotopy equivalence
uses Lemma 5.16. The levelwise map given by the composition of the maps in these two lemmas
is precisely the map in the statement. ([l

PROPOSITION 5.19. Let AT be a monoid and M™ be a submonoid. Consider two maps f
and g: AT\ AT — AT\ A" which are both equivariant with respect to the action of M on
the right of AT \\ AT. Then there exists an M equivariant homotopy between the two maps.

Proof. Denote the set of k-cells in AT\ AT as (AT \ AT),. Let the k-cell of AT\ AT
corresponding to geometric realisation of the k-simplex [p1,...,pxla of By(x, AT, AT) (as in
Definition 5.13) be denoted by the tuple (p1,...,px,a), with p; and a in AT. There is a right
action of AT on the k-cells given by

(plv"'apkﬂa) CH= (p17~~'7pkaaﬂ)~

Define the set of elementary k-cells to be those with tuple (p1,...,pk,e), where e
is the identity element in the monoid, and denote this cell D(p1,...,pr). Then
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every k-cell is uniquely determined by an elementary k-cell and an element a in AT,
since (p1,...,pk,a) = D(p1,...,pk)-a. The isomorphism of Proposition 4.23 shows
that AT = AT(M) x M+ and we let a = am under this decomposition. Then we get the
following description for k-cells:
("4*%\\"4+)kg U D(pla"'apk)><‘4+g U D(pla"'apk)X(A+(M)XM+)
(P1s--5PK) (P1s--5PK)

(p1,- - Dk, a) —>= (D(p1,y ..., pk),a) —————— (D(p1, ..., pk), (@, m)).

Let fr be the restriction of the map f to the k-cells of AT\ AT and similarly
for gr. We first define an equivariant homotopy between f; and g¢o. Under the above
decomposition, (A1 \ AT)y = (AT (M) x M™T). Consider fo(@) and go(@) in AT\ AT for @
in A*(M). Then since A™\\ AT ~ % by Lemma 5.16 it follows that there exists a path
between fo(@) and go(@): call this ho(@, t) for ¢t € [0, 1]. Extend this homotopy to all O-cells by
setting ho(am,t) = ho(@,t) - m for all m in M. Then, since fy and gg are M+ equivariant,

ho(@m,0) = ho(@,0) - m = fo(@) - m = fo(am)
and similarly
ho(@m, 1) = ho(@,1) - m = go(@) - m = go(@m).
The homotopy ho(z,t) is M+ equivariant, since ho(z,t) - p = ho(zp,t) for pin M.

Now assume that we have built an equivariant homotopy hi_i(z,t) on
the (k — 1)-skeleton and we show how to extend it to the k-cells. The homotopy hy_1(x,t)
satisfies hy_1(2,0) = fr_1(z) and hy_i(z,1) = gr_1(x). For some @ in AT (M), consider
the k-cell D(p1,...,pr) - @. Then its boundary consists of (k — 1)-cells and it follows that hg_;
defines a homotopy

(O(D(p1,...,pk)) @) x I — AT \\A+
and the maps fi and g also define maps
fk : ((D(pla cee 7pk)) a) X {O} — A+ \\A+

9k : ((D(pla s 7pk)) a) X {1} — AT \\ AT
The union of these three maps defines a map from 9((D(p1,...,px) - @) x I) to AT\ AT, but
this boundary is a (k — 1)-sphere and so, since AT\ AT is contractible the (k — 1)-sphere
bounds a (k)-disk. We can compatibly extend the map over this disk to create the required
homotopy

hy : (D(plavpk)a) XI*}A+\\A+
which agrees on the boundary with the three maps above. Now define h; on
any k-cell D(p1,...,pr) - @m by the following: for = in D(p1,...,px) - @ we set
hi(z - m,t) = hg(x,t) - m.

Then by construction hy, is M+ equivariant and, since both f;, and g, are M+ equivariant, hy,
satisfies hy(z,0) = fi and hi(z,1) = gx. O

DEFINITION 5.20. Given a monoid M and two submonoids N7 and Ny we can define the
double homotopy quotient N1\ M /| N3 to be the geometric realisation of the bi-semi-simplicial
space (recall Definition 5.9) defined by taking the two simplicial directions arising from the bar
constructions B (%, N1, M) and Be(M, Na, x). The p, ¢ level of the associated bi-semi-simplicial
space Xeo has simplices

Xpq=Nx M x N

and face maps inherited from B, (%, N1, M) in the p direction (9p..) and Be(M, No, *) in the ¢
direction (s ;). Then [n1,...,np]m[n}, ..., n;] represents an element in the p, q level, where n;
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in N7 and n; in No for1 <i<pand1l < j < q. Wenote that the face maps on the left and right
commute, since the only maps which act on the same coordinates are 9, in the p direction
and 0, o in the ¢ direction and these commute:

a%‘(a’,()([nlv s 7np]m[n/17 s 7n/q])) = 8}%'([77’11 v 7np]m’n‘/1 [n/Qa s 7n;])
= [n1,...,npa|nymny[ny, ..., ng]
= 06.0(pe([n1,...,nplm[ny,...,ny])).

6. Preliminaries concerning the sequence of Artin monoids

This section introduces notation used throughout the remainder of the proof.
We consider the sequence of Artin monoids and inclusions

A 5 AT 5 A — - = AT — .. (1)

with Artin monoid systems (4,7,3,) given by the following diagrams. Here, the Artin

Monoid A; corresponds to the Coxeter group W;, as defined in [13], and so we denote the
corresponding Coxeter diagrams Dy, .

G G C .. /7 N\ . — o .
01 01 01 02 01 02 Op—-10n
Ay A,

Ao

DEFINITION 6.1. Let (Ap,Xo) be the Artin system corresponding to the Coxeter dia-
gram Dy, , but with the vertex o; and all edges which have vertex o; at one end removed. We
depict the diagram as above. Note that Ag < Aj;.

REMARK 6.2. With the generating sets corresponding to the above sequence of diagrams, for
all p every generator and hence every word in the monoid A; commutes with o; for j > p + 2.

We now apply the theory developed in Section 4.3 to the specific case of a monoid A in the
sequence of monoids and inclusions (1) and the submonoid of A}, given by a previous monoid

mn?

in the sequence A; , where p < n. We adopt the following notation for the remainder of this
paper. The generating set of A will always be given by ¥,,, the generating set specified by

the diagram Dy, .

e Let EndMony,(a) = EndMony, () and EndGen, (o) = EndGenyg, (o) for o in A}, as in
Definition 4.14. Then

EndGen,(a) = {os | s € SA;’)US =ra}

EndMony, (o) = {8 € A} | B Zr .

o Let A*(n;p) be the set AT (M) for AT = A and M = A} as in Definition 4.18 (this is
the set of elements in A} that do not end in a non-trivial element in A}).

e Let the equivalence class of « in A" under the relation &~ with respect to the submonoid A;
(Definition 4.20) be denoted [, as opposed to [a]4,. Then [a], is the equivalence class of a
under =, the transitive closure of the relation ~ on A} given by

) ~ ay <= a1 = asfB; for some (1 and 5y in A;.

Then we have from Lemma 4.22 that the equivalence classes under =~ with respect to the
submonoid A} are in one to one correspondence with the set A™ (n;p). Recall from Remark 4.17
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that if 3 is the least common multiple of EndMon,,(«), then we define @ in A}’ to be the element
such that o = @B. Then AT (n;p) is the set of all such @ and for all «; and g in A}:

[ai]p = o], <= a1 =
We also have from Proposition 4.23 the decomposition

Al = AT (n;p) x A for all p < n.

7. The semi-simplicial space A7}
We now build the semi-simplicial space A} as promised in Section 1.1.
DEFINITION 7.1. Define a semi-simplicial space Cg' by, for 0 < p < (n — 1), setting levels C))
to be the discrete space of equivalence classes A"/ ~ where the equivalence relation is taken

with respect to the submonoid Aj’l*})*l’ that is, =~ is the transitive closure of the relation ~
on A given by

+
n—p—1-

a1~ ay <= a181 = asfBs for some 31 and B in A
Face maps are given by
o :C)p —C)  for0<k<p

O [a)n—p-1 = [(On—ptkTn—pih—1--On—pt1)|n—p-

For example, 9 acts on the equivalence class representative by right multiplication by e,
and 07 acts by right multiplication by o, ...0,—,—1. The motivation for this choice of face
maps follows Hepworth, as discussed in [13, Example 35].

LEMMA 7.2. The face maps of Definition 7.1 are well defined.

Proof.  We want that if [a],—p_1 =[nn—p-1, then O ([a]n_p_1)= 0L ([Nn—p-1).

If [a]n—p—1 = [N]n—p—1, then @ = 7] where the bar is taken with respect to A . Set @ =~

(recall the definition of @ from Remark 4.17). It follows that there exist a and bin A, | such

that @« = ya and n = ~b. Then since a and b only contain letters in Aifpfl and all of these
letters commute with (0y,_p4kOn—ptrk—1--.0n_p+1) it follows that a and b letterwise commute
with the face map. Taking equivalence classes with respect to A,‘Lp therefore gives

[a(0n—p+kOn—pik—1 - On—pi1)]n—p
= [(VCL)(Un—p+k0n—p+k—1 ce 0’n—p+1)]n—p
= [Y(On—p+kOn—pik—1---On—pt1)aln—p
= [W(Un—p+k0n—p+k—1 N Un—p+1)]n—p
and similarly
N(On—ptkOn—pik—1--On—pt1)ln—p
= [Y(On—p+kOn—ptk—1---On—pt1)ln—p

and so the face maps are well defined. O
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LEMMA 7.3. The face maps {0} } on C] defined in Definition 7.1 satisfy the simplicial
identities, that is, for 0 < ¢ < j < p:
-1 —1 ’
oY 6;’ = 6;’_1811-] :Cy = Cs.
Proof. For ease of notation in the proof, we denote (n — p) as r. Then the left-hand side
acts as follows

or or—1t
n n * n
cr cr e,

p

o7 ot
[r 1 [a(0ryj .. Or 1)) = [0y oo v 1) (Orgin - Orp2) )i

In comparison, the right-hand side acts as follows

i n i~ n
p—1 Cp*2
o” o=}

J

[a]r—1 > [a(0rsi - Orp1)]r [0y - .. Ur+1)(0r+j e Orga)lri1

Let x = (UrJrj e O'T+1)(O'r+7;+1 e O'»,‘+2) and Yy = (O'TJFZ' e JT+1)(UT+j . JT+2). Note that
for 0 < k < j we have

(Ortjee Ort1)0rskt1 = Orige(Orpj oo Org1)

from manipulation of the words using the braiding relations in the monoid. Reiterating this
gives us the first equality in the following:

= (0p4j...Org1)(Orgit1 ... Org2)

(Orgive 0p)(Orgj ... Org1)0ria
(Ortive 0 ) (O Ori3)(Or 4200 410742)

= (Orti- 00 )(Ortj - 0r43) (074107 420741)
(Orgive 0p)0rg1(Ortj ... Ory3)Or 20,41
(Orgi- 0r0r11)(Ortj ... Ory30,42)0r41

= YOr41-

The result follows since we are taking the equivalence relation with respect to the sub-
monoid A . O

LEMMA 7.4. Recall the notation A" (n;n —p—1), as defined in Section 6. Then the
realisation of the map defined levelwise on the bar construction by

BP(Ava:—p—h*) — A+(n,n —D— 1)
afma,...,myl — @,

where o € AT, m,; € Aiqu for alliand o =af fora € AT (n;n—p—1) and 8 € A;Lpfl is
a homotopy equivalence. That is the pth level of C}' satisfies

At ) AT ~At(nin—p—1)=C}.

n—p—1

Proof. This is a direct application of Propositions 4.23 and 5.18 which gives the
decomposition A} = AT (n;n—p—1)x A7 . O
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DErFINITION 7.5. Let A7 be the semi-simplicial space with pth level the homotopy
quotient A} = A\ C, where the action of A, on A (n;n —p— 1) is given by
a-[ap—p-1=lac]y,—p_1 for a,a € A}
The face maps are denoted by 9% for 0 < k <p
op Ay — Ay
oAl \ ¢, — Af \Cp s
and 0}, acts as the face map 9, from Definition 7.1 on the C, factor of each simplex in the

homotopy quotient, and as the identity on the other factors.
Diagrammatically, AZ can be drawn as:

ApNer, "
SARA.
Apver, "
SARA.
A\ n s
my
Ai\ep A
2
AL\ Cp A

LEMMA 7.6. The factorwise definition of the face maps 9}, in Definition 7.5 gives well-defined
maps on the homotopy quotients at each level of AY.

Proof. The set of j-simplices in A} \\ ! is identified with (A;})7 x C;' and a generic element
in this set is given by [a1,...,a;][a],—p—1, where the a; and « are in A;}. Then the map &y
acts on this simplex as

o ([ar, .., ajll]n—p-1) = a1, .., a5][(On—pskOn—pir—1- On—pi1)ln—p

and since the multiplication by (0 —p+k0n—ptk—1---On_pt1) is on the right it follows that 0}
commutes with all face maps of the bar construction B, (x, A;},C}') for each k. Therefore, the
definition of 9} on the simplicial level induces a map on the homotopy quotient At \ Cj. O

LEMMA 7.7. The face maps 0; on A} defined in Definition 7.5 satisfy the simplicial
identities, that is for 0 < i < j < p:

-1 -1
orlor = orlor.

Proof. This follows directly from the fact that the simplicial identities are satisfied for C}'
(Lemma 7.3), since the face maps for A7 are defined via the maps for C'. O

+

We now show that there exist homotopy equivalences A} ~ BAn7p71 for every p > 0, as

promised in Section 1.1.
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LeEMMA 7.8, Consider the levelwise maps on (j, k)-simplices of AT\ A} [ Ay, ;-
(A+ \\A+ //ArL —p— 1)(j,k) — (ATJ'L_ \\C;L)J
la,...,a;]ald), ... a) — [a1,...,q;]a

and the projection

(A+\\A+//Anp1)(k (//Anpl)

la1,...,a;]ald), ... a4 — *[a],. .., a],
where o and a; € A, al € A} o1, and a =af for a € AT (n;n—p—1) and § € A:{,p,l

Then these maps are homotopy equivalences
\\ A+ // An p—1 — An
and
AT\ AL ) AR ~ BA'

n—p—1 — n—p—1»
respectively. That is, the pth level of the space A7 satisfies
Ap ~ AT\ A ) A e 1~ BAS

n—p—1-

Proof. From Lemma 7.4, C) = AT (n;n—p—1) ~ A [ A
Ay = A+\\C"NA+\\A+//A

n—p—1, and this induces

n—p—1

with the homotopy equivalence given by the required map. We then have the following
AZZAJF\\AjL//An p— 1*(A7J7r\\A77)//An p— 1N*//An p— 1:BA71 p—1-

The central equality is due to the fact that the double homotopy quotient is the geometric

realisation of a bi-simplicial-set and therefore we can take the realisation in either direction

first. The second map in the previous equation is a homotopy equivalence by Lemma 5.16. [

We now define the map from the geometric realisation of A7 to the classifying space BA,
promised in Section 1.1:

Az 2 pag.

In Section 8, we will show that ||¢e]|| is highly connected.
LEMMA 7.9. The geometric realisation ||AZ| satisfies ||AZ|| = A} \ ||CY]|-

Proof. The face maps in the bar construction B, (x, Aj,C;}) for the homotopy quotient
in A7 = A\ C;' commute with the face maps in C;' (see the proof of Lemma 7.6) and therefore
with the face maps of A]. Therefore, the two simplicial directions create a bi-semi-simplicial
space and one can realise in either direction first, as in Definition 5.11. Realising by taking the
homotopy quotients A = A} \\ CJ' before realising in the A} direction first (which has face
maps induced by those of C¥') gives the left-hand side. Realising in the CJ' direction before

taking the homotopy quotient A \\ ||CZ|| gives the right-hand side. O

Recall that A \\ * is a model for BA;}}. We therefore define ||¢e|| as a map from A} \ ||CZ|]
to AL\ *.
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DEFINITION 7.10. Define ¢ to be the semi-simplicial map from the bar construc-
tion Be(x, A}, ||C2||) to the bar construction B,(x, A}, ), obtained by collapsing ||CY| to a
point:

Gp : Bp(, AL CE) = By(x, A, %)
[a1,...,apla — [a1,. .., ap)*,

where a; is in A} for all 4, and a is in ||CZ||. Then the geometric realisation ||@e| maps the
homotopy quotient 4,7\ [|CZ|| to the homotopy quotient A\ x ~ BA}.

PROPOSITION 7.11. If ||C?| is (k — 1)-connected, then the map ||¢e|| is k-connected.

Proof. From [12, Lemma 2.4], a semi-simplicial map f, : Xo — Y, satisfies that ||fe| is k-
connected if f, : X, =Y, is (k — p) connected for all p > 0. The map ||¢.|| is defined levelwise
as the projection

Gp (A7) x [ICa — (A7)

Therefore, since ||C}]| is (k — 1)-connected it follows that ¢, is k-connected and in particular
it is (k — p)-connected for all p > 0. Thus, the geometric realisation ||@e|| is k-connected. [

8. High connectivity

This section is concerned with the proof of the following theorem.

THEOREM 8.1. The geometric realisation ||C}| of the semi-simplicial space C] is (n — 2)-
connected for all n, that is, m;(J|C||) =0 for 0 < i < n — 2.

Combining this theorem with Proposition 7.11, it follows that the map ||¢e| is (n — 1)-
connected as promised in Sectionl.l. For the remainder of this paper, we will refer to the
geometric realisation of the semi-simplicial space as a complex (the geometric realisation is, by
definition, a cell complex: note that it is not necessarily a simplicial complex).

8.1. Union of chambers argument

There is a specific argument, called a union of chambers argument that is often used to prove
high connectivity of a complex. It is closely related to the notion of shellability.

In [8], Davis used a union of chambers argument to prove that the Davis complex Xy
associated to a Coxeter group is contractible. He did this by showing that the Davis complex is
an example of a so-called basic construction. Hepworth’s high-connectivity results relating to
homological stability for Coxeter groups [13] also used such an argument. In [19], Paris used
a union of chambers argument to show that the universal cover of an analogue of the Salvetti
complex for certain Artin monoids is contractible, proving the K(7,1) conjecture for finite-
type Artin groups. In this chapter, we use a similar union of chambers argument to prove high
connectivity. Loosely, the argument consists of breaking the complex up into high-dimensional
chambers and considering how connectivity changes as they are glued together to create the
complex. While applying the argument in the case of Artin monoids and the complex we have
constructed, numerous technical challenges arise, leading to the proof being split into many
separate cases.

To prove high connectivity in our setup, we use a union of chambers argument applied to the
complex ||C7]|. Recall that ||CY| has dimension n — 1. We filter the top dimensional simplices
by the natural numbers as follows.
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DEFINITION 8.2. For k in N we define C"(k) as follows:

c'(k)y= U lalo,
acAl,
o)<k

where [a] is the (n — 1) simplex in ||C]'|| represented by [a]o in C!_;.

REMARK 8.3. Note that every simplex in ||CY|| arises as a face of some [a]o, since smaller
simplices are represented by some [7]; for k > 0 and this is a face of [7]o. Then ||C}|| is given
by colimg_,o C™ (k).

The union of chambers argument relies on the following two steps.

(A) Ifl() = k + 1, then [a]g NC™(k) is a non-empty union of top dimensional faces of [a]o.
(B) If {(a) =4(B8) =k +1 and a # 3, then [a]o N [B]o C C™(k).

PROPOSITION 8.4. If (A) and (B) hold, then ||C}| is homotopy equivalent to a wedge
of (n — 1) spheres, and in particular is (n — 2) connected.

Proof. We build up ||C}|| by increasing k in C™(k). We start at C"(0) = [e]o, which is
contractible. At each step we build up from C"(k) to C™(k + 1) by adding the set of simplices
represented by words in A} of length (k + 1):

U [efo

acAl

t(a)=k11
Then point (A) says that when [«]o is added to C"(k), the intersection is a non-empty union of
facets of [a]o. Therefore, either the homotopy type doesn’t change upon adding the simplex (if
not all facets are in the intersection), or the homotopy changes and this change is described by
the possible addition of an (n — 1) sphere (if all facets are in the intersection). Point (B) then
says that adding the entirety of the above union to C"(k) at the same time only changes the
homotopy type in the sense that the individual simplices change it, since each two simplices
intersect within C"(k). Therefore, at each stage we change the homotopy type by at most the
addition of several (n — 1) spheres and it follows that ||C7|| is (n — 2) connected. O

REMARK 8.5. The length function gives a partial order on the top dimensional simplices
of |C}]|- By (B), any linear extension of this partial order to a total order will still satisfy (A).
In this case, the ordering is called a shelling (see [1]), which we know to be highly connected:
giving an alternative proof to the previous proposition.

The remainder of this section is therefore devoted to the proof of point (A) and point (B).
The proof of point (A) is split into several subsections.

8.2. Proof of point (A): facets of [a]o

Recall that the top dimensional faces of a simplex are called facets. We start the proof of point
(A) with a discussion of the facets of a simplex [a]o. Consider the face maps

optiCr = Cly
" oo = [aogiioq. . 02

for 0 < ¢ <n — 1. The map 9§ ' is right multiplication by the identity.
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Under these face maps the facets of [a]o are given by

[[Oé]]l, [[060'2]]1, IIaO—30-2]]17 [[060'40'30'2]]1, R} [[Oéo-no—nfl R 0302]]1
PROPOSITION 8.6. If {(a) = k + 1, at least one of the facets of [a]o lies in C" (k).

Proof. We must show that at least one facet of [ is also a facet of some simplex [/,
where £(a’) < k.

Consider EndGen; (). If this is non-empty, then there exists  with length at least 1 in A
such that o = o/n. It follows that [a]; = [&/n]1 = [&/]1. Therefore, the facet [a]; is also a
facet of [a']o. Since £(n) > 1, then £(a’) < £(a) = k + 1, so [&/]o is in C™ (k).

Alternatively if EndGen;(a) =0, then /¢(a)>1 implies that EndGen,(a)#@. It
follows from these two observations that {o2,...0,}NEndGen,(«)# 0, that is, for
some 2 < j < n, o = &/0;. Applying the face map 075 gives

9775 ([efo) = [aoj—1...02]1
= [[O/O’jO'j_l ce 0'2]]1
=077 ([oTo)

and as before ¢(a’) < k. This shows that the facet a;fgl([[a]]o) is also a facet of [o/]o and is
therefore in C" (k). O

To complete the proof of point (A) we must show that if a lower dimensional face of [a]o is
contained in C"™(k), then it is contained in a facet of [a]o, which is itself contained in C™(k).
We first describe a general form for faces of [a]o.

8.3. Proof of point (A): low-dimensional faces of [a]o

DEFINITION 8.7. A face of [a]o is obtained by applying a series of face maps to [a]o.
We denote the series of face maps applied by a tuple (6Z_1,8Z_2,...,83_T+1), and we
let aj := 0, _14;...0;. That is, the (j — 1)st map in the tuple corresponds to right multipli-
cation by a;. We note here that a; has length ¢; and ends with the generator o;, unless i; = 0
in which case a; = e.

n—j+1 . An n
8%, 1Ch_j G

afj—2 = o1y .. 051
= [oa;];-1-

From now on we assume that the first map in a tuple maps from C;'_; to C,'_,, the second
map from C'_, to C;'_5 and so on. We therefore dispense of the superscripts in the 0 notation
for the face maps when we write these tuples.

With the above notation, an (n —p —1) subsimplex of [a]y occurs when a tuple of
face maps (0;,,0;,,...,0;,,,) is applied to [a]o. The image of these maps is then the
subsimplex [aas . ..ap11], with a; defined as in Definition 8.7 above.

LeEMMA 8.8. With the above notation, the tuple of face maps (0;, )g’izl can be written such
that i;41 > i, for all j, which translates to ¢(a;+1) > {(a;).

Proof. This is a direct consequence of Lemma 5.6. (]
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LEmMA 8.9. The (n —p — 1) subsimplex of [a]o given by (9;,,0;,,...,0;,,,), or alterna-
tively [oas ... api1]p, is a subsimplex of the following facets of [a]o.

i, ([a]o) = [avaz]s.
9is+1([edo) = [easos]s.
di,+2([afo) = [easozoa]:.

3ip+1+p71([[a]]0) = [[Ozapﬂap ...o9]1.

In general these facets are given by the face map

Oi,4(j—2) * [a]o = [aajoj1...02]1.

Proof. It is enough to show that 0; ;2 can act as the first face map
in the tuple (0i,,0:,,...,0;,,) for all j. Recall from Lemma 8.8 that in the
tuple ij41 = 4; for all j. Using the simplicial identities, the tuple is equivalent to the

tuple (6,,;j+(j_2), 81-2, 32'3, PN ,61-_7,, ey &-Hl). O

For the remainder of this section, let a in A} with (o) =k+1. The aim of this
section is to show that if the (n —p — 1) subsimplex of [a]o given by (9;,,0;,,...,0;,,,) or
alternatively [aas...apt1]p is in C™(k), then it follows that one of the facets of [a]¢ from
Lemma 8.9 is also in C™ (k). The proof of point (A) will follow.

DEFINITION 8.10. If [aas ... aps1], is in C™(k), then it is also a (n — p — 1) subsimplex of
a simplex [3]o for some § in A, such that ¢(8) < k. The subsimplex is therefore obtained
from [B]o by applying a tuple of face maps, denote these (0y,,d,,...,0,,.,) and order
as in Lemma 8.8 such that [;41 > 1I; for all j. Define b; := 0y, _14;...0; and when [; =0
let b; = e. Then (9;,, 0, - - -, 9y, ,,) applied to [B] gives the (n — p — 1) simplex [Bb ... byi1],.
By construction [Bbs ...bp11]p = [@as ... api1],. We recall here that £(a;) = ¢; and £(b;) = I;.

LEMMA 8.11. Choose 8 and b; as defined above, such that Zii; I, is minimal, corresponding
to by ...by11 being of minimal length. This choice of by ...by,y1 then corresponds to either:

[las . ..aps1]p = [B], that is, [; =0V j

or

Proof. Suppose that 8 and b; are chosen such that Zii; [ is minimal, and furthermore

suppose that £(5) < £(a)) — 1 and Zii; I, > 0. Then some [ # 0: set j to be minimal such
that [; # 0. Then b; = 07, 14 ...0; # e and

[[/BbQ e bp+1]]p = ﬂﬁbj e bp+1]]p = [[50-1_7*1+j e O’jbj+1 e bp+1]]p~
But this is the tuple of face maps (0;,-1,0),,,,...,0,,,,) applied to [Bor,_14;]o.
Since £(f) < £(a) — 1 it follows that £(foy, _14;) < L(a) —1 and so [Boy, —14;]o is in C™(k).
However, the tuple for B3o;,_14; has the sum of its corresponding /; less than the original
tuple for . This is a contradiction, as [ was chosen to have minimal EZ;; l;;. Therefore,
either Y7711, = 0, or £(8) = £(e) — 1. O

For the remainder of this paper, assume 8 and b; are chosen such that Zii; I is minimal,
so we have

1852 .-bpialy = [oaz. . apl,
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for either Eii; Iy =0or £(8) =¢(a) — 1 = k. We use the following notation throughout the
remainder of this paper.

DEFINITION 8.12. Let a:=ay...apy1 and b:=by...b,y;. Note that Zii; l, = 0 corre-

sponds to b = e. So, we have

([aal, = B8],

where either b = e, or £(3) = {(a) — 1. We recall that this is equivalent to @a = b in AT (n;p).
Let v := @a = fb, and define u and v in A} such that

aa = yu and Bb = ~yv.

Recall point A: if £(a) = k + 1, then [a]o N C™(k) is a non-empty union of top dimensional
faces of [a]o. Recall that we have fixed a face [aa], of [a]y, and we wish to prove this is
contained in a facet of [a]¢ (from Lemma 8.9) which is contained in C™(k). We complete the
proof of this by splitting into three cases:

(i) £(8b) < (aa),
(i) £(80) = t(aa),
(iii) £(Bb) > L(aa),

and since multiplication in the Artin monoid corresponds to adding lengths the conditions of
these cases correspond to analogous conditions on the lengths of v and v.

REMARK 8.13. Note that if Zfi; I, =0, then b = e, and since ¢(§) < ¢(«) it follows we are
therefore in case (i): £(8b) < ¢(aa).

We prove the three cases one by one in the following subsections. This involves some technical
lemmas, and in particular computation of least common multiples of strings of words. We
therefore include these technical lemmas in a separate section and refer to them as required.

8.4. Proof of point (A): preliminary lemmas

Recall from Definition 8.7 that a face of [a]o is obtained by applying a series of face maps
to [afo. We denote the series of face maps by a tuple (82_1,82_2,...,3;1_”1), and we
let aj =0;, 14;...0; and when i; =0 let a; = e. That is, the (j — 1)st map in the tuple
corresponds to right multiplication by a;. We let a = as ...ap 1. Recall also that if [aa], is
in C™(k), then the subsimplex is also obtained from some [5]o for ¢(8) < k, by applying a
tuple of face maps (9,,0;,,...,01,,,). Recall bj :=0y,_1,;...0; and when [; =0 let b; = e.
Let b= by...byy1. By construction [5b], = [aa],. Recall from Definition 4.9 that for a and 3
two words in A1, we denote the least common multiple of o and 3 (if it exists) by A(«, 3).

LEMMA 8.14. For all k > j, the generators o; satisfy
(O’k N 0j+1)0j(0k N O'j+1) = (O-kflo—k-)(o'k72a-k71) N (Uj+10j+2)(0j0j+10j)~

Proof. We proceed by induction on k£ — j. For the base case let k — j = 1, that is, k = j + 1.
Then the left-hand side of the above equation evaluates to 0410041 and the right-hand side
evaluates to 0;0;4+10;. These are equal by the Artin relations. For the inductive hypothesis,
we assume the Lemma is true for k — j < r, and we prove for k — j = r, that is, k = j +r. We
manipulate the left-hand side of the equation, and show equality to the right-hand side:
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(ok...0j41)05(0k ...0j41)
(Cjtr - 0j41)05(Cjir .. Ojg1)
= (0j4r0j4r—10j4r ... 0j41)05(Cjir_1...0j41)
= (0470411047 )(Cjsr_2...0j41)0(Cjtr—1...0j41)
= (0j4r-10420j47-1)(Cjtr—2 ... 0j41)0;(Cjsr_1...0j41)
= (0j4r-1042)(Oj4r—10j4r—2 ... 0j41)0;(Cjsr_1...0j41)
= (0j4r-1054r)(0j4r—20j4r-1) - - (0j410542)(0;054105),
where the final equality applies the inductive hypothesis. (]

LEmMMA  8.15. With  notation as  above, A(aji1,0;) =a;1105a;41  (and
simjlarly A(bj_,_l, O'j) = j+10.jb.j+1)'

Proof. The proof is the same for both the a; and b; case, so we prove it for the a; case. We
must show:

(a) aj1 jR 410541 and 0 jR Aj4105A5415
(b) if z in A is a common multiple of a;41 and o;, then a;110ja41 =g .

Recall a1 := 04, ,+j-..0j+1. Without loss of generality, we relabel j = 1 and i1 + j = k.
Then a;11 =0y ...02 and o; = 0y.
To prove (a) note that aj41 <g a;410ja;41 by observation, and also

aj4100541 = (O’k . ..Ug)al(a'k .. .0'2)

= (Gk—lo’kUk—2Uk—1 ces 020’3)(010’201)

by Lemma 8.14, so0 01 = 0 =R 44100 +1.
To prove (b) we show by induction on #(a;ii) that any common multiple  must
satisfy aji105a41 =r @ When {(a;11) =1, aj41 = o2 and we have

A(O‘Q,O‘l) = 020102 = 0j4+100;j41-

For {(aj+1)=r—1 when r >2, assume that A(ajt+1,0;) =aj+10;a41 and prove
for f(aj11) =r. Assume =z satisfies a;11 gz and o; <gx. Since f(ajy1) =T,
Gj41 =0p41...02 and so 0,41...09 *r 2 which in particular gives o,...02 g 2. By
the inductive hypothesis it follows that

Aoy ...09,01) = (0, ...02)01(0,...02).

and this is in EndMon,(x) by Lemma 4.25. Let = =2'(0,...02)01(0...02). Then
since 0,41 ...02 g x, by cancellation of g, ...09 it follows that

o1 3R 2 (0 .. .00)0y = 0. (001 ...0201).

Since 0,11 letterwise commutes with (o,._1 ...0201), from Lemma 4.28 we have 0,1 <g 2'0;.
From Lemma 4.25; it follows A(o,41,0.) = 040,110, =g @'0,. By cancellation of o, this
gives 2’ = 2"0,.0,41, SO

x = (2")(o,...00)01(0,...09)
= (2"0,0011)(0y...02)01(0p ... 02)

=2"(0,0,110.)(0r_1...02)01(0,...02)
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=12"(or11000011)(0r_1...02)01(0F...02)
=2"(0/41040, 1101 ...02)01(0y ... 02)
=12"(0r410400_1...02)01(0r 110, ... 02)

1
=T ;41054541

as required. O

LEMMA 8.16. Recall from Lemma 8.15 that A(aji1,0;) = aji10;a541. Then when j > 2
this expression satisfies

Aj410Q541 = QjG;G;410,
where a; = 0y, ,4+j-1...0;4; and letterwise commutes with az ...a;_1.
When j = 1, the expression satisfies
(20102 = 01010207,

that is, the same equality holds, setting a; := o1. The analogous statements hold for the b;.

Proof. Recall i1 = O—’L"7+1+j YRS and a; = Jij—1+j ... 0y Without loss of
generality, relabel j =1, ij.1 +j =k, and ¢; —1+j=1. Then a;11 =o0...00 , 0j =01,
and aj; =o0;...01. Note that since 4,41 >14;, then k>[I We wish to show
that aji10ja;41 = Gjaja;4105, where a; = op—1...0141. We proceed by induction on
the length of a;4. For the base case, when ¢(a;11) = 1 this implies that a;11 = 02. Then we
have

Aj410G541 = 020102 = 010207.
Since 0 < 4; < ij41 = 1 there are now two options. In the case ¢; = 1, the right-hand side
is ajaj410; and a; = e. In the case i; = 0, then a; = e and the right-hand side is aa;i10;
with &j =01 = Uij+j~

For the inductive hypothesis we assume true for {(aj41) <r—1 and prove
for ¢(a;j41) =r — 1, that is, k = r. Recall from Lemma 8.14 that

Aj4+10Q541 = (Jk...O'g)Ul(O'k ...0'2)

= (0,...02)01(0...09)
= (Urflo—r)(ar720—r71) cee (0203)(010201)

= (Urfla'r)((frfz e alﬂ)aj(ar,l e UQ)O'j,
where the final equality applies the inductive hypothesis. Then o, commutes
with (o,—2...0141)a; since £(a;) < £(a;+1). This gives the following:

Aj4+100541 = (Urflo'r)(O—T72 N O’l+1)aj(UT,1 e O'Q)Jj
= (0r—10r—2...0141)a;(0,0p_1...02)0;
= &jajajﬂaj.

Since 4; > 4;—1 it follows that [ — 1 is the maximal index of a generator appearing in a;_; and
hence in the string as...aj_;. Therefore, a; letterwise commutes with as...a;_1 since the
indices of the generators in each word pairwise differ by at least two.

Since the b; have the same form as the a;, with difference only in word length, the analogous
statements hold for the b;. O

Recall the definition of a; and b; for 2 < j < p + 1, from Definitions 8.7 and 8.10, respectively.
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DEFINITION 8.17. For 2 < j < p + 1 define ¢; as follows
aj if £(az) > £(b;)
cj =
T by if L(ay) < £(b))
for 2<j<p+1. Definec:=cy...cpy1. Let
a/- _ € if K(aj) 2 f(bj)
Olj+j—1---0ij+j 1f€(aj) <1€(bj)
and similarly
yoo )€ if £(b;) = (a;)
Oij4j—1---Olj+j if g(bj> < f(a,)

I / A N /
Define @’ = a5 ...a, and V' =05 ... ).

LEMMA 8.18. With c,a’ and b’ as in Definition 8.17 and a and b as defined in Definition 8.12,
we have ¢ = A(a,b) and in particular ¢ = a’a = b'b.

Proof. We prove that:

(a) c=a'a="bb;

(b) if x in A is a common multiple of a and b, then ¢ < .

To prove (a), we show that ¢ = a’a: the proof that ¢ = b'b is symmetric. It follows from
the definitions that c; = aja;. The smallest generator index in a} is (i; +j) and the largest
generator index in as...a;_1 is (ij_1 + (j — 1) — 1). The elements a; and as ...a;j_1 letterwise
commute, since ¢; > ¢;_1 SO

[ +9) Gyt G= ) =D =1 G~ i) +2) (22
Let a’ = aj...a}, ;. Then we compute
C=0Co...Cpt1

= (aha2)(asa3) ... (ap, 1 api1)

= aha5a2a3 . .. (ap 1 Gpy1)

= ahay ...y, 10203 ... Api1

= (ayay...a, 1)(a2a3 ... apy1)

= a/a

which completes the proof of (a).
To prove (b), assume z is a common multiple of a and b.

Cram.  If cp...cpp1 2gax for some 2<k<p+1, then z=xycL...cp41 for
some z, in A. We claim that xy, satisfies as ...a,_1 =g o and by...by_1 =g Ty.

Given the claim, the proof of (b) will follow since a=(as...ap41) 2R
and b= (by...byt1) g x Iimplies that cp41 SR Z, SO & = Tpp1Cpr1. But then z,yq
satisfies ag...ap, Xgp Tpy1 and by...b, [pxp1 by the claim for k=p+1. In
particular, ¢, Xg xp+1 and it follows that x = x,cycpq1. Continuing in this manner, we
arrive at © = xa(cy ... cpr1) = Toc and so ¢ =g x. It therefore remains to prove the claim.

Since ¢y, ... cpr1 = (ayar) - .. (@ 11ap11) = (a), ... ap 1 )(ak ... api1) it follows that

x=2xp(Cr-. Cpt1)
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= xg(ay, ... apq)(ar ... api1)

= yr(ay ...apy1) for yp = xp(ay ... a,, ).

Since x is a common multiple of a and b, then we also have a = (as . ..ap+1) =g «, that is, for
some zj.

z=zk(az...apt1)
Therefore, by cancellation of (ay, ...ap4+1),
Y = Zk(ag N ak,l).

By Lemma 4.27, A((ay, ...a},.1),(az...ar-1)) =g yx- Since the two words letterwise com-
mute A((a), ... a,41),(az2...a-1)) = (az...ax—1)(ay ...a,, ) and so

yp = wi(ag...ap—1)(a) ... ay)
for some wy, in A, It follows
x=xp(cr-.. Cp+1)
= yr(ak - - apt1)
= wi(ag...ap—1)(ay...a, 1) (k... aps1)
= wi(ag...ap—1)((a)...a, . )(ar...api1))

:wk(ag...ak_l)(ck...cpH)
and by cancellation of cj...cp11 on the first and final lines of the above equa-

tion, (ag...ag—1) =g xp as required. The proof for (by...by_1) <g x) is identical. This
completes the proof of the Claim and thus of (b). O

Recall that we have fixed « in A;} with () = k + 1, and we have fixed a face [aas . .. ap41],
in C"(k). We want to show that one of the facets of [a]p from Lemma 8.9 is also in C"(k).
Recall since [aal], is in C"(k), there exists 3 in A} such that ¢(8) < k and

[lea]p = [eaz ... apialp = [Bb2 - .. bpia]p = [BY],
from Definition 8.12, where ¢(a;) = i; and ¢(b;) = l,. We have assumed § and b; are chosen
such that Ziié I is minimal, so we have either b = e, or £(3) = ¢(a) — 1. Recall v := @a = jb,
and that we defined u and v in A} such that
aa = ~yu and Bb = ~yv.

We prove in the next three Lemmas that in the case EndGen,(aa) # 0 we are done.
LEmMMA 8.19. If EndGeng(aa) # 0, then the facet [aas]y containing [aa], is in C" (k).

Proof. Consider 7 in EndGeng(ca). Then since the generators Sy of Aj com-
mute with o9,...,0, it follows that 7 letterwise commutes (Definition 4.26) with a,
because a = asy...ap+1 only contains generators in the set of {o9,...0,}. Since 7 and a are
both in EndMon, (aa) and they letterwise commute, it follows from Lemma 4.28 that 7 is
in EndMon,, («), that is, some o’ in A" with (o) < ¢(«) satisfies « = a/T .

The facet Jawas]y therefore satisfies

[[as]i = [/ Taz]i = [/ aa7]i = [ as]:-

Here, the final equality is due to a’asT™ = a’as where the reduction is taken with respect to Al+
(from Lemma 4.19). The penultimate equality is due to the fact 7 and ay letterwise commute.
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Since £(a) < £(a), [o/]o is in C™(k) and [o/az]; is a facet of [o']¢. Therefore, [aaz]; is in C™ (k)
and this completes the proof. O

The case where EndGen,(aa) # () but EndGeng(aa) = () requires the following technical
lemma.

LEMMA 8.20. Suppose a;j # e, then the words a; and aj;1 as in Definition 8.7 sat-
isfy aj110; = aja;, for some a; in A with £(a;) > 1. Furthermore, a; letterwise commutes
with as...aj_i. Regardless of whether or not a; =e, ajyi10; corresponds to the face

977 t1. The analogous results hold for the b;.

map 0; i 1-

Proof. If a; # e, then

Uij+1+j .. ~Jj+1)0j

(
(

aj+10j =
Tijtj—1-+-0j+1)T;

(

= (Uz',-+1+j s Oijtj
( Tij4j—1---0j+10;)
(

)
= (Gijsr4i - - Oiy+5)
)

= \Gijaty - Tij+j)

= a;a;,
SO Gj = 0y, 4j---Oi;4+j, and £(a;) = 1 since £(aj11) = £(a;) = 1. The generators appearing
in the word ay...a;j; are {02,...,0;_,1(j—1)-1} and so to prove that a; letterwise
commutes with az...a; 1 it is enough to show that the sets A= {0 1j,...,0i,, 45}
and B = {02,...,01»].71_%(]'_1)_1} pairwise commute. The largest index of a generator in B

is 4,14+ (j —1) — 1 and the smallest index of a generator in A is ¢; + j so it is enough to
show

| (G +37) = (-1 + (G —1) = 1) = (G —ij-1) +2 = 2.
This holds since ¢; > 7;_1, and so a; and as . ..a;_1 letterwise commute. Regardless of whether
or not a; = e, ajy10; = aja; = o;, ,+j...0; corresponds to the face map a{:fﬂ defined in
Definition 8.7. Since the b; have the same form as the a;, with difference only in word length,
the analogous statements hold for the b;. O

LEmMA 8.21. IfEndGen,(aa) # () but EndGeng(aa) = ), then some o; is in EndGeny,(aa)
for 1 < j < p. Then the facet [oajo;_1 ...02]1 containing [aal, is in C™ (k).

Proof. If EndGeng(aa) = 0 and EndGen,(aa) # 0 it follows that
{o1,02,...0,} NEndGen,(aa) # 0,

so some o; is in EndGenp(aa) for 1<j<p. Then o; and a=ay...apy1 are both
in EndMon,(aa). In particular, o; and ajia...ap41 are both in EndMon,(aa).
Since o¢; and aj42...ap41 letterwise commute we have from Lemma 4.28
that o¢; is in EndMon,(aas...aj41). Since ajy1 is also in EndMon,(aas...aj41),
from  Lemma 425 A(ajt1,05) is in  EndMon,(eas...a;q1). Also, from
Lemma 8.15, A(a;t1,0j) = aji105a;41. By cancellation of ajiq, it follows that a;yi0;
is in EndMon,, (aas . . . a;), so

aag...a; = O[/(aj+10j) (T)

for some o in A;.
Recall Lemma 8.20 and split into two cases: either

(a) aj #e, or
(b) az =--- = a; = e since £(a;) < £(ai41)Vi.
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For case (a) recall from Lemma 8.20 that a;110; = a;a; and a; letterwise commutes
with ay...a;_1. This gives

aas...a; = d'(a;j4+10;) from Equation ()
= o/(a;a;)
= Qay...q_1 = o/dj by cancellation of a;.

Now a(ag...a;—1) =d/a; and a; letterwise commutes with as...a;_1. By Lemma 4.28 it
follows that a@; is in EndMon,, (), that is there exists o’ in A;} such that a = a’a;.
Then the facet [aa;jo;_1...02]1 satisfies

[[CYCLJ‘O'J‘,1 N 0’2]]1
= [[oz”c’cjajaj,1 e 0’2]]1

— n—j+1 — : n—1
and by Lemma 8.20, a;a; is a face map 9; /1, 80 G;a;0;-1...02 Is also a face map 9; "'\ ;_;,

and therefore [aa;oj_1...05]; is also a facet of [a”]o. Since ¢(a;) > 1 by Lemma 8.20 it
follows £(a") < £(cr) and so [aajo;—1...02]1 € C*(k).

For case (b), ag =--- =a; = e implies a;110; is in EndMon, (), so a = &a;j410; for
some o in A with ¢(a’) < ¢(a). Then the facet [aajo;_1...02]; satisfies

[aajoj,l .. .0'2]]1
= [(dajir05)ajoj 1 .. .00
= [[a/(aj+10'j0'j,1 . O’Q)Hl since a; =€

and as before by Lemma 8.20, this is a face of [a/]o which is in C"(k) as required. O

PROPOSITION 8.22. IfEndGen,(aa) # () and [aa], is in C"(k), then a facet containing [cal,
is in C™ (k).

Proof. Putting together Lemmas 8.19 and 8.21 gives the required result. O

8.5. Proof of point (A): case (i): £(8b) < £(aa)
PROPOSITION 8.23. Under the hypotheses of case (i), EndGen,(aa) # 0.

Proof. Recall that for some u and v in A, aa = yu and b = yv. If £(b) < £(aa), then it
follows ¢(yv) < ¢(yu) and consequently ¢(v) < ¢(u), since multiplication in A, corresponds to
addition of lengths. Since the inequality is strict, it follows that £(u) # 0, that is, u # e. Then
since aa = yu, u € EndMony,(aa) so in particular EndGen,(aa) # 0. O

Applying Proposition 8.22 concludes the proof of case (i).

8.6. Proof of point (A): case (ii): £(5b) = ¢(ca)

Recall that for some u and v in A}, and v in A} with EndMon,(y) =0, that aa =~yu
and £8b = ~yv.
PROPOSITION 8.24. If we are in case (ii), then we only need to consider when aa = 8b = 7.

Proof. Case (ii) states that ¢(5b) = ¢(aa). This implies that £(yu) = ¢(yv), which in turn
implies ¢(u) = ¢(v) by cancellation. If u # e, then aa satisfies EndGen,(aa) # 0. Then, by
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Proposition 8.22 a facet containing [aa], lies in C" (k). Therefore, we can assume u = e, which
implies v = e since they have the same length. Therefore, aa = b = 7. O

Recall the definition of ¢; from Definition 8.17:

fa; ife(a;) > (b))
T\ i lay) < (b))

for 2<j<p+1. Recall c=cy...cpy1. Recall that since £4(8) < ¢(a), then in case
(ii): (ﬂb) = {(«aa) that it follows £(b) > ¢(a).

ProrosiTION 8.25. With the notation as above, there exists at least one j for
which c¢j =b; #a;. Consider the maximal j for which c¢; =0b;# a;. Then the
facet [aa;oj_1 ...02]1 of [o]o containing [aa], is in C" (k).

Proof. Recall ¢ = a'a = b'b, where a’ = aj,...a},  and ' =0, ...b} | as in Definition 8.17.
We fist prove the existence of j in the statement. Note since £(3) < {(a), it follows
that b # e and so from Lemma 8.11, it follows that ¢(8) = ¢(«) — 1 which gives ¢(b) = ¢(a) + 1
Since ¢ = a’a = b'b, this gives £(a’) = £(b’) + 1 and in particular £(a’) > 1. Tt follows that at
least one a # e, that is, ¢; = b; # a;.

Recall also that aa = b = v from Proposition 8.24. Therefore, a and b are in EndMon,, (aa)
and it follows from Lemma 4.25 that A(a, b) is in EndMon,, (aa). From Lemma 8.18 A(a,b) = ¢
so it follows that c is in EndMon,, (ca), that is, for some o’ in A} with ¢(a’) < ¢()

aa = d'(c) = d/(da).

By cancellation of a, we have a = o’a’.
Consider the maximal j for which c¢; =b; #a;. Then a},, =---=a,,, =e, that
is, a’ = ay ... a);. It follows that the facet [aajo;_1...02]1 satisfies

[(a)ajo;1...02]1 = [(o/a")ajo; 1 ...02]1

= [(/dy...a5)ajo5 1 ...02]1

= [d/a;.. . (aja;)o;-1 ... 02

= [a/ay...(¢;)o5-1...02]1

= [o'a;...a} 1 (bj)oj-1...02]1.
Recall £(b;) = I;, so post multiplication by bjoj_1...02 corresponds to the face
map 3l"+i o- Therefore, [aajoj—1...09]1 is a facet of [a'ah...a} ;Jo and we have
that ¢(a’ay...a}_;) < {(a) since a = a'ay...a} and l(a}) > 1. Therefore, [aa;o;_i...02]1
is in C”(k) O

8.7. Proof of point (A): case (iii): £(8b) > {(aa)

Recall that for some u and v in Af, and v in A} with EndMon,(y) =0, that aa =~u
and b = .

PROPOSITION 8.26. If we are in case (iii), then b # e. Furthermore, we only need to consider
the case when v = aa so b = yv = aav. In this case it follows EndGen,,(3b) # 0.

Proof. Case (iii) states that ¢(8b) > ¢(aa), and note that this can only happen
when b # e since ¢(3) < £(«). Recall this implies ¢(5) = ¢(a) — 1 from Lemma 8.11. If u # e,
then aa satisfies EndGen,(aa) # 0. Then by Proposition 8.22, a facet containing [aa], lies
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in C™(k). Therefore, we can assume u = e. Then aa = and it follows that Sb = yv = aawv.
Since £(8b) > ¢(aa) it follows ¢(v) > 1 and therefore EndGen,,(8b) # 0. O

We now prove a technical lemma required for the rest of this section.

LEMMA 8.27. If there exists 3’ € A}l such that £(3") = ¢(8) — 1 = {(a) — 2 and
(B8], = [5'0],

then this contradicts our choice of b.

Proof. Write b=o0't/, that is, ¢’ is the leftmost generator of the word b.
Then ¢(8'c") = £(a) — 1 and so

[(8'0"6'], = [50],,
where £(b) < £(b) and £(B'c") = £(B) = £(«) — 1. This contradicts our choice of b: we chose b
such that Ziié I was minimal, as in Lemma 8.11 and therefore no such b’ can exist. 0

PROPOSITION 8.28. EndGeng(8b) = 0.
Proof. Suppose EndGeng(8b) # () for a contraction. Let 7 in EndGeng(8b). Then since 7

letterwise commutes with by ...b,4+1 it follows that 7 is in EndGeng(53) from Lemma 4.28.
Then 3 = 8’7 for some 3’ in A} with £(8') = 4(8) — 1 = £(a) — 2. Tt follows

(1881, = [(8'7)bl,
— [8'rbl,
= [8brl,
— [84],

and by Lemma 8.27, this is a contradiction. O
PROPOSITION 8.29. The generator o1 is not in EndGen,,(3b).
Proof. Suppose o1 is in EndGen,,(8b) # () and work for a contradiction. Since o, letterwise
commutes with bs...b,y1 it follows that o; is in EndGen,(Sbs) by Lemma 4.28. From

Lemma 8.15, A(oy,b2) = beo1bs and by Lemma 4.27, this is in EndMon,, (8bs), giving by
cancellation of by that byoy is in EndMon,,(3). So 8 = B'byoy for some 3’ in A}. Then

(B ()], = [(B'b201)(D)],

= [(B'b201)(b2 - - - bps1)]p

and by Lemma 8.16, boo1by can be written as Blalbgal. So, we have

(BB = [(B'b201) (b2 - byps1)]
= [B'(b2012) (bs - byl
= [ (b101b201) (b - by,
= [8/(b101b)(bs - .. byi1)o1],

= [B'(b101) (babs . . . bpr1)o1],
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= ['bio1(b)ou],

= [B'bio1b],
with E(ﬁ’ba ) =4£(B) — 1, since 8 = 'byoy and by = Giy-..09 18 a subword of by = 04,41 ...02
satisfying ¢(b) = ¢(b) — 1. By Lemma 8.27, this is a contradiction. O

PROPOSITION 8.30. The generator o; is not in EndGen,(8b) for 2 < j < p.

Proof. Suppose o, is in EndGen,(8b) = EndGen,(8(bs ...by+1)) for some 2 < j < p and
work for a contradiction. Since o; letterwise commutes with bjyo...b,41 it follows from
Lemma 4.28 that o; is in EndGen,,(8bs ... b;11). From Lemma 8.15, A(0j,b;41) = bj1105bj41
and by Lemma 4.27 this is in EndMon,, (ﬁbg .bjt1), giving by cancellation of b, that bj110;

is in EndMon, (8bs...b;). We first handle the two cases, where b; = e, namely the case,
where b; 1 = e and the case, where b;; # e.
When bj,1 =e, it follows from the conditions on the I; that b; =bj_1 =---=by =,

so o; is in EndMon,(8), that is, there exists 3 € A} such that = pf'o; (in
particular, £(8') = £(8) — 1. In this case

[[56], =

B 0ibjta. . bpia]p
B bjta.. +107]]p

B'bjra. . byii]y

e
and by Lemma 8.27 this is a contradiction.

When b; = e but bj+1 # e, it follows that b;_1 = --- = by = e, so b 110, is in EndMon,,(5),
that is, there exists 3’ € A} such that 3 = 3'b; 110, and therefore

[[Bol, = [8 ( bj+105bj+1) - bpyalp

[
=1
=
=

= [8'(bjbjbj110j)bjt2 ... by1], by Lemma 8.16
= [8'0; ibj+1030j42 .. . bpia]p since b =e
=[p b; ibjt1bj12 - bpy10j]p
= Hﬂléjbﬂp'

We note that in this case, since b; = e, l;j =0y, 1+j-1---0; and this has the same length
as bji1 =0y, +j-..0j41. Therefore, 0(B'b;) = £(B'bj11) = £(B) — 1 and by Lemma 8.27 this
is again a contradiction. - -

Now assume b; # e. By Lemma 8 20, bj1105 = bjb; with £(b;) > 1, and so by cancellation
of bj, b; is in EndMonn(Bbg bj_1). From Lemma 4.28, since b; letterwise commutes

with by ...bj_; we have b; is in EndMonn(ﬂ) so 8= B'b; for some B in A;}. Then it follows
that

(b2 bj—1)bj(bjs1 .- bpi1)]p
(b2 bj—1)(Bib) Dy - - bps)]p
B'(b2- .. bj—1)(bj+105)(bj+1 - - - bp1)]p since bjb; = bjy10;
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= [8(b2. .. bj—1)(bj+105bj41) (bjt2 - - - bpt1)]p

= [[B/(bg ce bj—l)(l;jbjbj—i-lo'j)(bj—&-Q NN bp+1)]]p by Lemma 8.16

= [B'(b2 -0, 1)(b;)(bbj1)(0) (Bjya - - bp1)],

= [8'0;(b2 .. bj—1)(bjbj1)05(bja - byps1)]

= [[5/6]‘(1)2 e bj_lbjbj+1bj+2 e bp+1)0j]]p

= Hﬁlgy(b)ajﬂp

= [[Bllgjb]]p-
Since [Bb =3 l;jbaj, it follows from the additive property of the length function
that £(8'b;) = £(B) — 1 and so by Lemma 8.27 this is a contradiction. O

By Propositions 8.28, 8.29 and 8.30, it follows that EndGen,(5b) = (). This contradicts the
statement of Proposition 8.26 and therefore concludes the proof of case (iii) and hence the
proof of point (A).

8.8. Proof of point (B)
Recall point B: If (o) = ¢(8) = k+ 1 and a # B, then [a]o N [B]o C C™ (k).

PROPOSITION 8.31. Suppose a# (3 in Af. If {(a)=4(8)=k+1, then it follows
that [a]o N [B]o € C™ (k).

Proof. Suppose [a]o N [B]o # 0. Then for some 1 < p < n—1 there exists a and b as in
Definition 8.12 such that [aa], = [8b],. It follows that there exists v in A, and u,v in A}
such that

aa = yu and b = .

Suppose that u # e. Then by Proposition 8.22, it follows that a facet of [a], containing [aa],
is in C"(k). Hence, [aa], = [8b], itself is in C"™(k). Similarly, if v # e, then a facet of [S]o
containing [8b], = [aa], is in C"(k), and hence [Bb], = [aa], itself is in C™(k). So, we are
left with the case that u = v = e, giving

aa =~ =pb

and since {(a) = ¢(B) it follows that ¢(a) = £(b). Since a # (3 it follows a # b. Recall the
definition of ¢, a’ and b’ from Definition 8.17. From Lemma 8.18, ¢ = A(a,b) and ¢ = a’a = b'b.
Since £(a) = 4(b), then £(a’) = ¢(b'). Suppose a’ =e, then f(a’) = £(b') gives ' =e and
hence ¢ = a = b. But a # b so it follows that a’ # e and in particular ¢(a’) > 1.

From Lemma 4.27, since a and b are in EndMon, (aa) it follows that A(a,b) =c is
in EndMon,, (aa), so aa = o’c = o’(a’a) for some o’ in A} By cancellation of a we have o =

o/a’ and £(a/) < ¢(a). Then
[eal, = [(a’a)al,

= [[O/Cﬂp

and [o/c], is in C™(k) since ¢ represents a series of face maps originating at [a']o, with each
face map given by the map corresponding to right multiplication by c;, which is either the face
map corresponding to a; or b;. O
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This completes the proof of point (B), and hence by Proposition 8.4, it follows that ||CZ|]
is (n — 2) connected.

9. Proof of Theorem A

This section proves the required results on the differentials of the spectral sequence introduced
in Subsection 1.1, before putting together the results of the previous sections and running the
spectral sequence argument to complete the proof of Theorem A.

9.1. Results on face and stabilisation maps
Recall the definition of the face maps of A} from Definition 7.5:
6£:AZ—>AZ;1 for0<k<p
and given by
o Ay — AJ
o AL \C) — AT\ 1>
where 9} is induced by the face maps of CJ, which we recall are a composite of right
multiplication of the representative for the equivalence class in C) = At(nyn—p—1)

by (0n—ptkOn—ptk—1---Tn_pt1), before the inclusion to the equivalence class in C_;.
Recall from Lemma 7.4 that for each 0 < p < n — 1 there is a homotopy equivalence

At ) AT ~ At (n;n—p— 1):C;,

n—p—1 —
given by the map defined levelwise on the bar construction by

Brp(Af AT %) = AT (mn—p—1)

n—p—17
almy,...,my| — @,
where v € Af, m; € AT foralliand a =afforae AT (nyn—p— 1)and fe AF .

DEFINITION 9.1. Define the map
df AT N\AT AL — AT\ AT )AL

n—p
as the composition of two maps ¢, o ciz. The first map

dp c Ap\ Ay AT, = AL\ AL AL

n—p—1
is given by right multiplication of the central term in the double homotopy quotient
by(Un—p+k0n—p+k—1---Gn—p+1)

The set of (jk)-simplices in AP\ Al /AY | is identified with the
product (A})7 x Af x (A} )" and a generic element is given by [a1,...,a;]ala], ..., a}],

+

where a; and a are in A} and af are in A} . The map dj, acts on this simplex as

d, (a1, ..., ajlald), ... a}]) = [a1,...,a;]a(Cn—pikOn—pib—1---On_pi1)lal,...,a}]
The second map ¢, is the map
i AT \NAL AT~ ATNAL AT,

+

4, Note that dfj is the identity map, and

induced by the inclusion A}~ < A
therefore dfj = ¢,,.
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LEMMA 9.2. The map JZ in Definition 9.1 gives a well-defined map on the double homotopy
quotient A\ Af JAS ).
Proof.  Since (0y—pyrOn—pik—1---On_pr1) letterwise commutes with every word
in Az_p_p it follows that dj commutes with all face maps of the bi-semi-simplicial

space A\ A/ Az_p_l. Therefore, the map on the central term of each simplex gives a
map on the whole bi-semi-simplicial space, and hence its geometric realisation: the double
homotopy quotient A\ Af / AF . O

LEMMA 9.3. The diagram

AT\AL AL, = ATNC
di 9%
ATN\AT AL, - AN\

commutes for all p > 0.

Proof. Recall from Lemma 7.8 that the horizontal homotopy equivalence is given by the
levelwise maps on (j, k)-simplices of A;f \ A}/ AF

(ATNAL S AT, ) = ATNC,
la,...,a;]ald), ... 4] — [a1,... a5,
where a and a; are in A, the a, are in A;”;_p_l, and o = @B for @ in AT (n;n —p—1) and B
in A;Lpfy Diagram chasing using the definition of d} in Definition 9.1 gives that levelwise

these maps commute, and so taking homotopy quotients and the corresponding maps induced
by these levelwise maps yields the required result. O

LEMMA 9.4. The face maps 9% of A} are all homotopic to the zeroth face map 0}

Proof. The map dj restricted to A\ A} is A}, -equivariant, and the same holds
for the identity map id FEAVES Applying Proposition 5.19 to these two maps therefore gives

+
an A7

and idAi\\AI//AI,p,l on AF\ A ) A:_p_l. Applying the inclusion ¢, to both maps and the
homotopy between them yields a homotopy hj from df to v,. However, ¢, is precisely the
map dfj, and thus hy is a homotopy from d to df for all k. Then the image of hj; under the
homotopy equivalence in Lemma 9.3 yields a homotopy from 9} to the zeroth face map ok, as

required.

-equivariant homotopy between them. It follows that they induce homotopic maps dJ,

ATNAL AT, = Az \ Gy
dg<~>dg 3££~> o
ATN\AT AL, — AT\ Cp oy
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LEMMA 9.5. The following diagram commutes up to homotopy.

BAn_p 1 ; ATNAL A, = A\ Cy
Sx dy Q:) db o Q:Q a8
BAnfp f’il AI \\ A'rt // A;t—p - AI \\ C;)L—l

that is, under the homotopy equivalence A} ~ BArffpf1 of Lemma 7.8, the zeroth face
map 9 : A7 — A7 | is homotopy equivalent to the map s. : BA;'{_p_l — BA}_, induced
by the stabilisation map s : Aiﬂ%l — Az_p

Proof. From the proof of Lemma 9.4, the right-hand square commutes up to homotopy.
From Lemma 7.8, the map from the centre to the left is given on the (j, k)-simplices of the
geometric realisation by

f(Jk) (A+\\A+//An —p— 1) ( //An —p— 1)

la,...,a;j]aldl, .. .,a;] = k[al, ..., al],

where a and a; are in A and af is in A} . The map df is the map

dp A+\\A+//A71 —p— 1—>A:\\A;L~_//Art—p

induced by the inclusion A"
homotopy quotient gives

(d )(J k) - (A+\\A+//An —p— 1)(j (A+\\A+//An p)( k)

la,...,ajlalal, ... a;] = [a1,...,qj]ald), ..., a;],

r—p1 < A} . Restricting this map to (j, k)-simplices of the double

where a and a; are in A;" and the a/ are in A} _p—1, hence a is in A:{_p. Applying this map
before the homotopy equlvalence to the classifying space gives

(AE\AL ) AT Do — 0 A\ AL S AT )

P
TG 0

() Ag_p 1)k (/) Ay )k

(BA:'L_ p—1

Y - (BAT_ )i

and on a (j, k) simplex this map is given by

(d5) (5,1
lai,...,a;]alal, ... a}] > [ay, .. Sajlalay, ..., ap]
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dt d!
3| H3(BA,_,) < H3(BA,_ ;) < H3(BA, )
d d*

2| Hao(BA!_ ) < Hy(BA' ,) <« Hy(BA'_,)

dl dl
1| Hy(BA! ) <« Hi(BA! ,) < Hi(BA!,)
d! d!
0| Ho(BA!_|) < Ho(BAS ,) <— Ho(BA} ;)
0 1 2

FIGURE 1. The E' page of the spectral sequence, with the groups identified.

We note that the dotted map is precisely the map which defines the natural inclu-
sion BA,_, | — BA;_ under the identification of  / A with BA[ for all . The natural

n—p
inclusion is in turn induced by the stabilisation map A < A, and so we denote it s,. This
gives that the left-hand square commutes up to homotopy. O

9.2. Spectral sequence argument

In this section, we run a first quadrant spectral sequence for filtration of ||AZ]], see, for
example, Randal-Williams [20, 2 (sSS)]. Recall the points we proved regarding ||.A%Z|:

(1) there exist homotopy equivalences A} =~ BAlepf1 for p > 0;
(2) there is an (n — 1) connected map ||¢e| from the geometric realisation of A7 to the
classifying space BA;:

Az =) Ay,
that is, ||¢e|| induces an isomorphism on homotopy groups =, for 0 < r < (n — 2), and
a surjection for r = (n — 1).
The first quadrant spectral sequence of the simplicial filtration of ||.A7| satisfies
By, = Hi(A}) = Hia(|ALD-
By point (1), the left-hand side is given by E} ; = H;(A}) = H(BA;_, ). The first page of
the spectral sequence is depicted in Figure 1. By point (2), ||¢e|| induces an isomorphism
Hyi i (J|A2)) & He i (BA) when (k+1) <n—1
and a surjection
Hy(||AZ])) = Hiri(BAS) when (k+1) =n — 1.

The differential d' is given by an alternating sum of face maps in A%?. By Corollary 9.4, the
face maps are all homotopic to each other and by Lemma 9.5 they are all homotopic to the
stabilisation map s., via A} ~ BA:{_p_l. Therefore, the alternating sum of face maps in the
differential d' will cancel out to give the zero map when there are an even number of terms,

and will give the stabilisation map when there are an odd number of terms, that is,
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3| Hy(BAS_)) < Hy(BAS;) < Ha(BASj) & -

2| Hy(BAY ) & Hy(BAY ) <& Hy(BAT ) &...

1| Hi(BAf,) & Hi(BAD,) & Hi(BA;,;) &

0| Ho(BAS ) & Ho(BA' ) & HoBA ) &
0 1 9

FIGURE 2. The E' page of the spectral sequence, with groups and d* differentials identified.

d': Eclvcn,l — E;dd’l odd number of terms, so equals the stabilisation map s,

d': By, — E! even number of terms, so equals the zero map 0.

even,l

This gives the E! page shown in Figure 2.

We proceed by induction on n, for the sequence of monoids A;', and assume that homological
stability holds for previous groups in the sequence. Inductive hypothesis: The map induced
on homology by the stabilisation map

H;(BA} ) == Hi(BA])

is an isomorphism for k£ > 2¢ and is a surjection for k = 2i whenever k < n.
Here, we note that Theorem A holds for the base case n =1, since we have to
check Hy(BA{) — Ho(BAT) is a surjection, which is true since BA;" is connected for all n.

LEMMA 9.6. Under the inductive hypothesis, the Ey, terms stabilise on the E' page
for 2l < n, that is,

Ej, = EgS when 21 < n.

In particular, the d' differential does not alter these groups, and all possible sources of
differentials mapping to Eq; for 21 < n are trivial from the E? page.

Proof. The d' differentials are given by either the zero map or the stabilisation map as
shown in Figure 2. The d' differentials

1. 1 1
d : El,l — Eo,l

are given by the zero map, and the Eiu terms are zero, since this is a first quadrant spectral
sequence. Therefore, the Eg‘l terms are equal to the E&l terms.

To show that the sources of all other differentials to Ey, for 2l < n are zero, we invoke
the inductive hypothesis. This implies that on the E' page in the interior of the triangle
of height [%] and base n, the stabilisation maps, or d' differentials satisfy the inductive
hypothesis. The resulting maps are shown in Figure 3, for the cases n odd and n even. Since
the d' differentials going from the odd to the even columns are zero it follows that many groups
in the interior of the triangle are zero on the E? page. This is shown in detail in Figure 4 for the
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0 Sx 0 Sx
| 2] o0 [ %] oot
n 0 = o0 Sx " 0 0 Sx
[2]|-1] e<oceicose |2]—1] e<o«keicose
" 0 = o0 = o Sx " 0o = o 0 Sx
L§J72 0{—0i-0i-0i-0if-0 [ L§J72 0{-0{-0{- 0L oi-0i-0
0o = o S« 0 Sx 0o = o 0 Sx 0
00— 0 ei—0i—0i-9 oi—0i—0— o000
0o = o = 0 Sx 0 0o = o = o0 0 0
1 LR R R o000 1 e R R {ei—eiei—ei(
0o = o0 = 0 = o0 0 = o0 = 0 = 0 o0
R e R o000 0 e e —eieieiei(
1 92 79T 1 92 T
: ... :
0 e & g 0 e & g
(a) n odd (b) n even

FIGURE 3. The E' page of the spectral sequence, with possible non-zero groups represented as
circles and the inductive hypothesis applied to the d* differentials.

L%J oo o L%J o o o
L%J_l ° L%J_l e |(0|e® e o
(]2 |- [2)-2 [+]0 0 0] = -
. e | 0 O Ofe
e |0 Ofe o o o 2 . 0 e o o o
1 e |0 0 e 0 1 . 0 0 e o (
|0 O - 0 0 0|0 0 |0 O -0 0 0O O|e O
(3 I B 2 I B
01 2 |§ ‘: |: S 01 2 |: |§ ‘: S
(a) n odd (b) n even

FIGURE 4 (colour online). The E? page of the spectral sequence, under the inductive hypothesis.
To the left of the red line, all groups are zero except at positions Egjl for 21 < n — these are
highlighted in blue.

cases n odd and n even. These groups include all the sources of differentials to Ey; for 21 < n,
hence Ef , = Eg5 for 21 < n. O

We are now in a position to prove Theorem A.
THEOREM 9.7. The sequence of monoids A satisfies homological stability, that is
H;(BA,_,) = H;(BAY)

when 2i < n, and the map H;(BA _|) — H;(BA}) is surjective when 2i = n.



582 RACHAEL BOYD

Proof. From Lemma 9.6, the spectral sequence satisfies
Eg = Ey; = Hi(BA, )
when 2¢ < n. From Proposition 7.11 and Theorem 8.1,
Hi(|AC]) = Hi(BAY)

when ¢ < n— 2, and the map H;(||AZ|) — H;(BA,) is onto when i =n — 1. The spectral
sequence abuts to Hy4([|Aq||) and from Figure 4 the only non-zero groups on the diagonal E7S
when k + 1 =1 and 2i < n are the groups Eg5;. Putting these results together yields

Hi(BA;_,) = B5G = Hivo(||AJ]]) = Hi(BAY)

when both ¢ < 5 and i < n — 2 are satisfied. When n > 2, 7+ < 5 implies i <n — 2 and the
case n = 1 was the base case of the inductive hypothesis. Therefore, an isomorphism is induced
when 2i < n.

Wheni<n—1and: < %, it follows that

Hi(BA_) = Eg; = Hiso(|lAV]]) — Hi(BA})

and for n > 2, ¢ < § implies ¢ < n — 1. Again the case n = 1 was the base case of the inductive
hypothesis. This gives the required range for the surjection, and hence completes the proof. [
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