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Homological stability for Artin monoids

Rachael Boyd

Abstract

We prove that certain sequences of Artin monoids containing the braid monoid as a submonoid
satisfy homological stability. When the K(π, 1) conjecture holds for the associated family of
Artin groups, this establishes homological stability for these groups. In particular, this recovers
and extends Arnol’d’s proof of stability for the Artin groups of type A, B and D.

1. Introduction

A sequence of groups or monoids with maps between them

G1 → G2 → · · · → Gn → · · ·
is said to satisfy homological stability if the induced maps on homology

Hi(Gn) → Hi(Gn+1)

are isomorphisms for n sufficiently large compared to i.
This paper concerns homological stability for sequences of Artin monoids and groups, and in

this paper the associated maps will always be inclusions. In particular, we consider sequences
of Artin groups that have the braid group as a subgroup, and the corresponding sequences
of monoids.

We recall the definition of Artin groups. Given a finite set Σ, to every unordered
pair {σs, σt} ∈ Σ × Σ associate either a natural number greater than 2 or the symbol ∞, and
denote this by m(s, t). An Artin group A with generating set Σ has the following presentation

A = 〈Σ |π(σs, σt;m(s, t)) = π(σt, σs;m(s, t))〉,
where π(σs, σt;m(s, t)) is the alternating product of σs and σt starting with σs and of
length m(s, t). The braid group with its standard presentation is the archetypal example of an
Artin group, with presentation

Bn =
〈
σi for 1 � i � n− 1 | σiσj = σjσi |i− j| � 2

σiσi+1σi = σi+1σiσi+1 1 � i � n− 2

〉
.

Every Artin group has an associated Coxeter group (discussed in Section 2), and in fact
Artin groups were first introduced by Brieskorn [2] as the fundamental groups of hyperplane
complements built from Coxeter groups. The information of the presentation can be packaged
into a Coxeter diagram. This diagram has vertex set Σ and edges corresponding to m(s, t) for
each pair of vertices: no edge when m(s, t) = 2, an unlabelled edge when m(s, t) = 3 and an
edge labelled with m(s, t) otherwise. For example, the braid group Bn has diagram
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which is known as the Coxeter diagram of type A and has corresponding Coxeter group the
symmetric group Sn.

The sequences of Artin groups studied in this paper correspond to the following sequence of
diagrams:

where the grey box indicates that the sequence begins with an arbitrary diagram: an arbitrary
Artin group with finite generating set. The type A subdiagram corresponds to a subgroup
of An being the braid group Bn+1, with an increasing number of generators as n increases.
This gives rise to a sequence of groups and inclusions

A1 ↪→ A2 ↪→ · · · ↪→ An ↪→ · · ·
and the goal of this paper is to discuss stability for sequences of Artin groups of this form. This
was motivated by work of Hepworth [13], who proved homological stability for the associated
sequence of Coxeter groups.

While the argument used for the proof of homological stability is similar to that used by
several authors, the novel part of this paper comes from dealing with Artin groups and monoids.
Very little is known for Artin groups in general, for instance, the centre of a generic Artin group
is unknown and it is not known whether all Artin groups are torsion free. In particular, there
are no tools to date for working with Artin cosets (for example, there is no canonical way to
choose a coset representative), something that is usually desirable when proving homological
stability for a family of groups. Therefore, the results of this paper are stated and proved for the
corresponding Artin monoids, for which a technical ‘coset’ theory is developed in Section 4 (the
notion of coset of a submonoid is not defined in general). Key properties of Artin monoids, such
as the existence of a well-defined length function and the existence of lowest common multiples
under certain conditions, allow us to define a canonical choice of ‘coset representative’ for these
monoids. From the monoid result, we then deduce homological stability for Artin groups that
satisfy the K(π, 1) conjecture (discussed in more detail below).

We denote the Artin monoid corresponding to An by A+
n . The inclusion map between the

monoids is denoted s and called the stabilisation map. The main result of this paper is the
following, which to my knowledge is the first instance where homological stability is proved for
monoids.

Theorem A. The sequence of Artin monoids

A+
1 ↪→ A+

2 ↪→ · · · ↪→ A+
n ↪→ · · ·

satisfies homological stability. More precisely, the induced map on homology

H∗(BA+
n−1)

s∗−→ H∗(BA+
n )

is an isomorphism when ∗ < n
2 and a surjection when ∗ = n

2 . Here, homology is taken with
arbitrary constant coefficients, that is, coefficients in an abelian group.

The classifying space of an Artin monoid BA+ is homotopy equivalent to some interesting
spaces that arise naturally in mathematics. One manifestation of this is that in the study of
Artin groups, there is a well-known conjecture by Arnol’d, Brieskorn, Pham and Thom called
the K(π, 1) conjecture (discussed in Section 3). For this introduction, it suffices to know the
following fact due to Dobrinskaya.
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Theorem [10, Theorem 6.3]. Given an Artin group A and its associated monoid A+,
the K(π, 1) conjecture holds if and only if the induced map between their classifying
spaces BA+ → BA is a homotopy equivalence.

Thus, if the K(π, 1) conjecture holds for a family of Artin groups, Theorem A establishes
homological stability as below.

Corollary B. When the K(π, 1) conjecture holds for all An, the sequence of Artin groups

A1 ↪→ A2 ↪→ · · · ↪→ An ↪→ · · ·
satisfies homological stability. More precisely, the induced map on homology

H∗(BAn−1) → H∗(BAn)

is an isomorphism when ∗ < n
2 and a surjection when ∗ = n

2 . Here, homology is taken with
arbitrary constant coefficients, that is, coefficients in an abelian group.

The K(π, 1) conjecture has been proven for large classes of Artin groups [19]: the conjecture
holds for Artin groups for which the corresponding Coxeter groups are finite (this is Deligne’s
theorem [9], Theorem 3.1), of large type, of dimension two and of FC type. Proving the K(π, 1)
conjecture for families of Artin groups continues to be an active area of research to this day.

Corollary C. Homological stability holds for the sequences of Artin groups (An) for
which the corresponding Coxeter groups are either finite, of large type, of dimension two or of
FC type.

Remark 1.1. In the case of finite Coxeter groups, Corollary C therefore recovers the few
known cases of stability for families of Artin groups of the form studied in this paper, that is,
homological stability holds for the sequences of Artin groups {An}n�1 of type A, B and D,
given by the following diagrams:

These three sequences consist of Artin groups which relate to finite Coxeter groups. Hence, by
Corollary C, the sequences of Artin groups satisfy homological stability.

The three examples in Remark 1.1 were proved by Arnol’d, who computed the full
(co)homology of the groups in question, using the associated hyperplane complement. The
results and proofs are in Brieskorn’s Bourbaki seminar [3]. Despite the theorem in this paper
generalising these results, the method of proof is not a straightforward generalisation of the
proof of stability for the braid group.

Remark 1.2. Krannich [14] introduced a framework to study homological stability
phenomena in the context of E2-algebras. This generalised a categorical framework of Randal-
Williams and Wahl [21], which ‘automated’ parts of the homological stability proof for
sequences of discrete groups. The sequence of monoids studied in this paper does not fit into
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the categorical set up of [21], however, the classifying spaces of the sequence can be shown to
assemble into an E1-module over an E2 algebra, as in [14]. Combining the results of [14] with
the high connectivity results established in this paper, our homological stability result with
constant coefficients (Theorem A) can most likely be enhanced to one with abelian coefficients
and coefficient systems of finite degree in the sense of [14, Section 4].

1.1. Outline of proof

The proof follows the outline of a standard homological stability argument, which we describe
below for the benefit of the reader. We indicate where the new ingredients are used.

The proof of Theorem A requires the introduction of a semi-simplicial space An
• for each

monoid in the sequence A+
n such that:

(1) there exist homotopy equivalences An
p � BA+

n−p−1 for every p � 0; and
(2) there is a highly connected map from the geometric realisation of An

• to the classifying
space BA+

n , which we denote ‖φ•‖
‖An

•‖
‖φ•‖−→ BA+

n ,

that is, ‖φ•‖ induces an isomorphism on a large range of homotopy groups.

The skeletal filtration of ‖An
•‖ gives rise to a spectral sequence

E1
p,q = Hq(An

p ) ⇒ Hp+q(‖An
•‖).

From Point (1), it follows

E1
p,q = Hq(An

p ) = Hq(BA+
n−p−1).

We prove that on the E1 page under the above equality the differentials are given by either the
zero map or the stabilisation map s∗ : Hq(BA+

n−p−1) → Hq(BA+
n−p). Following this, applying

the inductive hypotheses that previous monoids in the sequence satisfy stability gives that in
a range (when q is small compared to n) the spectral sequence converges to Hq(BA+

n−1):

E1
p,q = Hq(BA+

n−p−1) ⇒ Hp+q(‖An
•‖) = Hq(BA+

n−1) in a range.

The highly connected map of Point (2) above now gives that in a range the spectral sequence
also converges to the homology of BA+

n , which completes the proof.
For sequences of discrete groups, a usual candidate for An

• would be built out of cosets of
previous groups in the sequence. However, the fact that no tools exist for manipulating Artin
cosets means that this approach cannot be taken. The coset theory developed in this paper
for the corresponding sequence of Artin monoids is used to build An

• . The main obstacle in
the proof is the high connectivity argument for Point 2 which follows a ‘union of chambers’
argument inspired by, but more involved than, work of Paris [19] and Davis [8].

1.2. Organisation of the paper

Sections 2 and 3 provide background on Coxeter groups and Artin groups, and the K(π, 1)
conjecture, respectively. Section 4 then introduces Artin monoids and develops a novel theory of
‘cosets’ and corresponding technical results. Following this, Section 5 details the required semi-
simplicial background and particular monoid constructions used in the proof, some of which
are new. Section 6 applies the theory of Section 4, and introduces notation used throughout the
proof. Section 7 introduces the semi-simplicial space An

• and the map ‖φ•‖ described above.
High connectivity of ‖φ•‖ is then the topic of Section 8, in which the general method of proof
for the high connectivity argument is introduced, before the proof is split into several cases,
due to the complexity of using Artin monoids. Finally, the spectral sequence argument and
homological stability result are given in Section 9.
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2. Coxeter groups and Artin groups

2.1. Coxeter groups

This section follows The Geometry and Topology of Coxeter Groups by Davis [8].

Definition 2.1. A Coxeter matrix on a finite set of generators S is a symmetric matrix M
indexed by elements of S, that is, with entries m(s, t) in N ∪∞ for {s, t} in S × S. This matrix
must satisfy:

• m(s, s) = 1 for all s in S;
• m(s, t) = m(t, s) must be either greater than 1, or ∞, when s �= t.

Definition 2.2. A Coxeter matrix M with generating set S has an associated Coxeter
group W , with presentation

W = 〈S | (st)m(s,t) = e〉.
Here, m(s, t) = ∞ means there is no relation between s and t. We call (W,S) a Coxeter system.
We adopt the convention that (W, ∅) is the trivial group.

Remark 2.3. Note that the condition m(s, s) = 1 on the Coxeter matrix implies that the
generators of the group are involutions, that is, s2 = e for all s in S.

Definition 2.4. Define the length function on a Coxeter system (W,S)

� : W → N

to be the function which maps w in W to the minimum word length required to express w in
terms of the generators.

Definition 2.5. Define π(a, b; k) to be the word of length k, given by the alternating
product of a and b, that is,

π(a, b; k) =

length k︷ ︸︸ ︷
abab . . . .

Remark 2.6. The relations (st)m(s,t) = e can be rewritten as

π(s, t;m(s, t)) = π(t, s;m(s, t))

when m(s, t) �= ∞. Therefore, the presentation of a Coxeter group W can also be given as

W =
〈
S

∣∣∣∣ (s)2 = e s ∈ S

π(s, t;m(s, t)) = π(t, s;m(s, t)) s, t ∈ S

〉
.

Definition 2.7. Given a Coxeter matrix corresponding to a Coxeter system (W,S), there
is an associated graph called the Coxeter diagram, denoted DW . It is the graph with vertices
indexed by the elements of the generating set S. Edges are drawn between the vertices
corresponding to s and t in S when m(s, t) � 3 and labelled with m(s, t) when m(s, t) � 4, as
shown below:
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When the diagram DW is connected, W is called an irreducible Coxeter group. The disjoint
union of two diagrams gives the product of their corresponding Coxeter groups.

Theorem 2.8 (Classification of finite Coxeter groups [7]). A Coxeter group is finite if and
only if it is a (direct) product of finitely many finite irreducible Coxeter groups.

The following is a complete list of the diagrams corresponding to finite irreducible Coxeter
groups.

Definition 2.9. We say that a finite irreducible Coxeter group W is of type D if its
corresponding diagram is given by D, and we denote this Coxeter group W (D).

Remark 2.10. The Coxeter group W (An) is isomorphic to Sn+1, the symmetric group,
which is the reflection group of the regular (n + 1)-simplex.

Definition 2.11. Let (W,S) be a Coxeter system. For each T ⊆ S, T generates a
subgroup WT such that (WT , T ) is a Coxeter system in its own right. We call subgroups that
arise in this way parabolic subgroups. If the subgroup is finite, we call it a spherical subgroup.

2.2. Artin groups

This section follows Charney [6, Section 1] and notes by Paris [19].
Given a Coxeter system (W,S), the corresponding Artin group is given by forgetting the

involution relations, that is, setting m(s, s) = ∞.

Definition 2.12. For every Coxeter system (W,S), there is a corresponding Artin
system (AW ,Σ) comprising an Artin group AW with generating set

Σ := {σs for s ∈ S}
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and presentation

AW = 〈Σ | s, t ∈ S, π(σs, σt;m(s, t)) = π(σt, σs;m(s, t))〉.

We note that the Coxeter diagram DW contains all the information about the Artin group
presentation.

Example 2.13. The Artin group AW corresponding to the Coxeter group W ∼= Sn is the
braid group Bn. The corresponding diagram DW is

where we relabel σsi to σi for ease of notation. The presentation is therefore given by

Bn =
〈
σi for si ∈ S | σiσj = σjσi |i− j| � 2

σiσi+1σi = σi+1σiσi+1 1 � i � (n− 2)

〉
,

the standard presentation for the braid group on n strands.

Example 2.14. When all possible edges in the Coxeter diagram DW are present and labelled
with ∞ the corresponding Artin group is the free group on |S| generators. The group has
presentation

AW = 〈σs for s ∈ S〉.

Example 2.15. When there are no edges in the Coxeter diagram DW , the corresponding
Artin group is the free abelian group on |S| generators. The group has presentation

AW = 〈σs for s ∈ S |σsσt = σtσs s �= t ∈ S〉.

Example 2.16. When all of the edges in the Coxeter diagram are labelled with ∞, but
not necessarily all possible edges are present (some m(s, t) may be equal to 2), then the
corresponding Artin group is called a right-angled Artin group, or RAAG.

Definition 2.17. When the Coxeter group W is finite, that is, when its diagram DW is
a disjoint union of diagrams from Proposition 2.8, then the corresponding Artin group AW is
called a finite-type Artin group, or a spherical Artin group.

Much of the known theory of Artin groups is concentrated around RAAGs and finite-type
Artin groups, though we do not restrict ourselves to either of these families in our results.
In general, little is known about Artin groups. For instance, the following properties hold for
finite-type Artin groups [6].

• There exists a finite model for the classifying space K(AW , 1).
• AW is torsion free.
• The centre of AW is Z, for A irreducible.
• AW has solvable word and conjugacy problem.

To date these properties are not known for general Artin groups. In the next section, we
consider the first point in detail.

3. The K(π, 1) conjecture

This section introduces the K(π, 1) conjecture, following [19].
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In general, one can associate a hyperplane arrangement A and associated complement M(A)
to each Coxeter group W , such that there is a free action of W on M(A). When we consider
this hyperplane complement modulo this W action, the corresponding quotient M(A)/W has
as its fundamental group the Artin group AW . In some cases, this quotient space is known to
be a K(AW , 1), in particular we recall Deligne’s theorem for finite-type Artin groups.

Theorem 3.1 (Deligne’s theorem [9]). For W a finite Coxeter group and AW the associated
Artin group, M(A)/W is aspherical with fundamental group AW , that is, M(A)/W is
a K(AW , 1).

For arbitrary Artin groups, the K(π, 1) conjecture was formulated by Arnol’d, Brieskorn,
Pham and Thom, and states than an analogue of Deligne’s theorem holds for all Artin groups.
The analogue of the hyperplane complement was formulated by Vinberg. For a more detailed
description, see Davis [8], notes by Paris [19] and the introduction to a paper on RAAGs by
Charney [6].

Remark 3.2. It is worth noting here a reformulation of the conjecture in terms of a finite-
dimensional CW-complex called the Salvetti complex, denoted by Sal(A) and introduced by
Salvetti in [22], for a hyperplane arrangement A in a finite-dimensional real vector space V .
The Salvetti complex is defined in terms of cosets of finite subgroups of the Coxeter group [23].
Paris extended this definition to any infinite hyperplane arrangement in a non-empty convex
cone I [19] and proved that Sal(A) and M(A) have the same homotopy type. The K(π, 1)
conjecture can therefore be restated as a conjecture about the Salvetti complex.

The K(π, 1) conjecture has been proven for large classes of Artin groups [19]. However,
the conjecture has not been proven for general Artin groups. We will apply a reformulation of
the K(π, 1) conjecture to our results, involving the Artin monoid A+ and discussed in Section 4.

4. Artin monoids

The start of this section follows Jean Michel’s A note on words in braid monoids [16] and
Brieskorn and Saito’s Artin-Gruppen und Coxeter-Gruppen [4]. Much of the material in
Section 4.3 is new.

4.1. Definition and examples

Definition 4.1. The Artin monoid system (A+
W ,Σ) associated to a Coxeter system (W,S)

is given by the generating set Σ for the corresponding Artin system (AW ,Σ), and the monoid
with the same presentation as the Artin group AW :

A+
W = 〈Σ |π(σs, σt;m(s, t)) = π(σt, σs;m(s, t))〉+.

Words in A+
W are therefore strings of letters for which the alphabet consists of σs in Σ.

Remark 4.2. The group completion of A+
W is AW .

Example 4.3. The braid monoid B+
n is the monoid associated to the Coxeter group Sn, the

symmetric group, with group completion the braid group Bn. Given the standard generating
set for the symmetric group, the braid monoid consists of words in the braid group made
from the positive generators σi. In terms of the braid diagrams these can be viewed as braids
consisting of only positive twists.
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Definition 4.4. We call a submonoid M+ of an Artin monoid A+ a parabolic submonoid if
the monoid M+ is generated by the set M+ ∩ Σ. We call this generating set for the monoid ΣM ,
giving a system (M+,ΣM ).

In this paper, by convention every submonoid of an Artin monoid considered will be a
parabolic submonoid.

4.2. Divisors in Artin monoids

Definition 4.5. Define the length function on an Artin monoid A+ with system (A+,Σ)

� : A+ → N

to be the function which maps an element α in A+ to the unique word length required to
express α in terms of the generators in Σ.

Remark 4.6. Note here that since there are no inverses in Artin monoids, multiplication
corresponds to addition of lengths, that is, �(ab) = �(a) + �(b) (� is a monoid homomorphism).

Definition 4.7. For elements α and β in an Artin monoid A+ with system (A+,Σ), we
say that α �R β if for some γ in A+ we have β = γα, that is a word representing α appears
on the right of some word representing β, in terms of the generating set Σ. We say that β is
right-divisible by α, or alternatively that α right-divides β.

Proposition 4.8 (Michel [16, Proposition 2.4]). Artin monoids satisfy left and right
cancellation, that is, for a, b and c in A+,

ab = ac ⇒ b = c

ba = ca ⇒ b = c.

We now consider work by Brieskorn and Saito in their 1972 paper Artin-Gruppen und
Coxeter-Gruppen [4]. They consider notions of least common multiples and greatest common
divisors of sets of elements in the Artin monoid. We are interested in the notion of least common
multiple.

Definition 4.9. Given a set of elements {gj}j∈J in an Artin monoid A+ with sys-
tem (AW ,Σ), a common multiple β is an element in A+ which is right-divisible by all gj .
That is gj �R β for all j in J . A least common multiple of {gj} is a common multiple that
right-divides all other common multiples. Let E be a set of elements in the Artin monoid A+.
Denote the least common multiple (if it exists) of E by Δ(E). For α and β two elements in A+

denote the least common multiple of α and β (if it exists) by Δ(α, β).

Remark 4.10. Should a least common multiple exist, it will be unique.

Proposition 4.11 (Brieskorn and Saito [4, 4.1]). A finite set of elements in an Artin
monoid either has a least common multiple or no common multiple at all.

Remark 4.12. Since the relations in an Artin monoid have the same letters appearing on
each side, the set of letters present in any word representing an element of an Artin monoid is
fixed. Therefore, the notion of ‘letters appearing in an element’ is well defined.
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Lemma 4.13 (Brieskorn and Saito [4]). For a fixed generating set, the letters arising in a
least common multiple of a set of elements in an Artin monoid are only those letters which
appear in the elements themselves.

Definition 4.14. Consider a submonoid M+ of an Artin monoid A+, with sys-
tem (M+,ΣM ). Given an element α in A+ we define two end sets

EndGenM (α) = {σs | s ∈ ΣM , σs �R α}
EndMonM (α) = {β ∈ M+ | β �R α}.

Remark 4.15. EndGenM (α) is exactly the letters σs in ΣM that a word representing α can
end with, and EndMonM (α) is exactly the elements in M+ that a word representing α can
end with. Note that EndGenM (α) is a subset of EndMonM (α), consisting of words of length 1
and EndMonM (α) = ∅ if and only if α has no right-divisors in M+.

4.3. Required theory

Much of the proof of Theorem A is concerned with algebraic manipulation of words in the
Artin monoid. Here we introduce some technical definitions and lemmas used in the proof. We
build up a theory of cosets in the case of Artin monoids, which is new unless cited.

Lemma 4.16. Given α in A+, and M+ a submonoid of A+, the set EndMonM (α) has a
least common multiple Δ(EndMonM (α)) = β which lies in the submonoid M+. That is, there
exists β in M+ and γ in A+ such that α = γβ for some words representing α, β, γ, and if β′

in A+ and γ′ in A+ satisfy α = γ′β′, it follows that β �R β′.

Proof. From Proposition 4.11 if a common multiple exists, then Δ(EndMonM (α)) exists.
We have that α itself is a common multiple of all elements in EndMonM (α), by definition
of EndMonM (α). Furthermore, Lemma 4.13 notes that only letters appearing in EndMonM (α)
will appear in Δ(EndMonM (α)). By definition, these are letters in M+ and so Δ(EndMonM (α))
lies in M+. �

Remark 4.17. For n element α in A+ let Δ(EndMonM (α)) = β. We write α with respect
to M+ for the element α in A+ such that α = αβ. It will always be clear in the text with
respect to which submonoid M+ we are taking the reduction.

Definition 4.18. For A+ an Artin monoid and M+ a submonoid, let A+(M) be the
following set

A+(M) = {α with respect to M+ | α ∈ A+}.
That is, A+(M) is the set of elements in A+ which are not right-divisible by any element of M .

Lemma 4.19. For all α in A+ and all β in M+, α = αβ where the reduction is taken with
respect to M+.

Proof. Let α = γ, so α = γη for some η in M+, and EndMonM (γ) = ∅, that is, γ
has no right-divisors in M+. Then αβ = γηβ and since η and β are both in M+, it
follows that ηβ ∈ EndMonM (αβ). If ηβ is the least common multiple of EndMonM (αβ),
then αβ = γ = α so we are done. Suppose for a contradiction that ηβ is not the least
common multiple of EndMonM (αβ), and note that ηβ is a right-divisor of the least
common multiple. Then there exists some ζ in M+ of length at least 1 such that ζηβ
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is the least common multiple of EndMonM (αβ). It follows that there exists a γ′ = αβ
with EndMonM (γ′) = ∅ and αβ = γ′ζηβ. But αβ = γηβ and it follows from cancellation
that γ = γ′ζ. Since ζ is in M+ with length at least 1 it follows that ζ ∈ EndMonM (γ) which
contradicts EndMonM (γ) = ∅. Therefore, ηβ is the least common multiple of EndMonM (αβ)
and it follows that αβ = γ = α. �

Definition 4.20. Consider the relation ∼ on A+ given by

α1 ∼ α2 ⇐⇒ α1β1 = α2β2 for some β1 and β2 in M+,

where M+ is a submonoid of A+. When we use this relation it will be made clear which
submonoid M+ is being considered. The relation ∼ is symmetric and reflexive. Let ≈ be the
transitive closure of ∼. That is, α1 ≈ α2 if there is a chain of elements in A+:

α1 ∼ τ1 ∼ τ2 ∼ · · · ∼ τk ∼ α2

for some k. Denote the equivalence class of α in A+ under the relation ≈ with respect to the
submonoid M+ as [α]M .

Definition 4.21. Let q : A+(M) → A+/ ≈ be the quotient map, taken with respect to the
equivalence relation ≈.

Lemma 4.22. The map q of Definition 4.21 is a bijection. That is for all α1 and α2 in A+:

[α1]M = [α2]M ⇐⇒ α1 = α2

Proof. (⇐) If α1 = α2 = γ with respect to M+, then α1 ∼ γ ∼ α2 so it follows α1 ≈ α2.
(⇒) We want to show that if α1 ≈ α2, then α1 = α2. Since α1 ≈ α2, there is a chain

α1 ∼ τ1 ∼ τ2 ∼ · · · ∼ τk ∼ α2

so if we show that η = ζ whenever η ∼ ζ for η and ζ in A+ it will follow that

α1 = τ1 = τ2 = · · · = τk = α2.

Since η ∼ ζ it follows that for some β1 and β2 in M+, ηβ1 = ζβ2. Applying Lemma 4.19 gives

η = ηβ1 = ζβ2 = ζ,

as required. �

Proposition 4.23. For M+ a submonoid of A+, A+ ∼= A+(M) ×M+ as sets, via the
bijection

p : A+ → A+(M) ×M+

α �→ (α, β), where α = αβ,

where β = Δ(EndMonM (α)). This decomposition respects the right action of M+ on A+, that
is, M+ acts trivially on the first factor and as right multiplication on the second.

Proof. To show p is surjective: consider (γ, β) ∈ A+(M) ×M+. Due to Lemma 4.19
for α ∈ A+ and any β ∈ M+ we have αβ = α. Therefore, γβ satisfies p(γβ) = (γ, β)
since γβ = γ = γ (we have γ ∈ A+(M) so EndMonp(γ) = ∅). To show injectivity, sup-
pose p(α1) = p(α2), that is (α1, β1) = (α2, β2). This translates to

α1 = α1β1 = α2β2 = α2,

therefore p is injective. Under this decomposition, the action of m in M+

satisfies p(α ·m) = (α, β ·m), where α = αβ, again due to Lemma 4.19. �



548 RACHAEL BOYD

Proposition 4.24 [16, 1.5]. If generators s and t in SM are in EndGenM (α) for some α
in A+, then Δ(s, t) lies in EndMonM (α).

Lemma 4.25. Consider a subset F of EndMonM (α) for some submonoid M+ of A+ and
some α in A+. Then Δ(F ) is in EndMonM (α).

Proof. Since F is a subset of EndMonM (α), which has a least common multiple, F has a
common multiple so Δ(F ) exists by Proposition 4.11. Since Δ(EndMonM (α)) is a common
multiple for EndMonM (α), it is a common multiple for F . The element Δ(F ) right-divides
all other common multiples of F by definition. Therefore, Δ(F ) �R Δ(EndMonM (α)) and it
follows that Δ(F ) is in EndMonM (α). �

Definition 4.26. Recall from Remark 4.12 that the set of letters present in an element of an
Artin monoid is well defined. We say elements α and β in an Artin monoid with system (A+,Σ)
letterwise commute if:

• the set of letters in Σ that α contains is disjoint from the set of letters that β contains,
and

• each letter of Σ that α contains commutes with each letter of Σ that β contains.

Lemma 4.27. If β and γ are in EndMonM (α) and β and γ letterwise commute, it follows
that:

• Δ(β, γ) = βγ = γβ;
• Δ(β, γ) ∈ EndMonM (α).

Proof. Since β and γ letterwise commute, they contain distinct generators. From
Remark 4.12 every word representative for β and γ contains the same set of letters. It follows
each of these letters must appear in Δ(β, γ). If both β and γ have length 1, say β = σ and γ = τ
for generators σ and τ , then since the words letterwise commute it follows that σ commutes
with τ . Therefore, since στ = τσ and both generators must appear in Δ(β, γ) it follows that

Δ(β, γ) = στ = τσ = βγ = γβ,

as required. Similarly, if β = σ1 . . . σk has length k, and γ = τ has length 1, then since the
words contain distinct generators (which all must appear in the lowest common multiple)
and τσi = σiτ ∀ i it follows that

Δ(β, τ) = Δ(σ1 . . . σk, τ) = (σ1 . . . σk)τ = τ(σ1 . . . σk) = βτ = τβ.

Suppose now that β = σ1 . . . σk has length k and γ = τ1 . . . τl has length l. It is true
that β �R βγ and γ �R βγ.

Claim. If x in A+ is a common multiple of β and γ, then βγ = γβ is in EndMonM (x).

Proof of claim. We proceed by induction on lg(γ). The base case lg(γ) = 1 is covered above.
As our inductive hypothesis, we suppose if lg(γ′) < l and γ′ letterwise commutes with β,
then Δ(γ′, β) = γ′β = βγ′, hence the claim holds. We prove the claim for

β = σ1 . . . σk and γ = τ1 . . . τl.

Since x is a common multiple of β and γ, there exist y and z in A+ such that

x = yβ and x = zγ = zτ1 . . . τl.
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In particular, β and γ′ = τ2 . . . τl are in EndMonM (x), so

Δ(γ′, β) = γ′β = βγ′ ∈ EndMonM (x)

by the inductive hypothesis. Therefore, there exists w ∈ A+ such that

x = zγ = zτ1 . . . τl and x = wβγ′ = wβτ2 . . . τl

which by cancellation of τ2 . . . τl gives zτ1 = wβ. By the base case, since τ1 and β are both
in EndMonM (zτ1) so is Δ(τ1, β) = τ1β = βτ1. Therefore, there exists v ∈ A+ such that

zτ1 = vβτ1

and so by cancellation of τ1, it follows that z = vβ. Reinserting this in the previous equation
gives

x = zγ = vβγ

and so βγ = γβ is in EndMonM (x) as required. �

Lemma 4.28. If words α, a and b in A+ are such that b �R αa and a and b letterwise
commute, then it follows that b �R α.

Proof. An equivalent way of writing m �R n for m, n in A+ is m ∈ EndMonA(n) where the
end set is taken with respect to the full monoid A+. Since a and b are both in EndMonA(αa)
it follows that Δ(a, b) is in EndMonA(αa), from Lemma 4.25. Since a and b letterwise
commute, Δ(a, b) = ab = ba from Lemma 4.27. Therefore, ba is in EndMonA(αa) and, by
cancellation of a, b is in EndMonA(α) as required. �

4.4. Relation to the K(π, 1) conjecture

In 2002, Dobrinskaya published a paper relating the classifying space of the Artin monoid BA+
W

to the K(π, 1) conjecture. This was later translated into English as Configuration Spaces of
Labelled Particles and Finite Eilenberg - MacLane Complexes [10]. The main result of the
paper was the following.

Theorem 4.29 (Dobrinskaya [10, Theorem 6.3]). Given an Artin group AW and its
associated monoid A+

W , the K(π, 1) conjecture holds if and only if the natural map between
their classifying spaces, BA+

W → BAW is a homotopy equivalence.

This theorem has been reproved using a different Morse-theoretic approach by Ozornova [17]
and her result has in turn been strengthened by Paolini [18].

5. Semi-simplicial constructions with monoids

This section is split into three subsections. The first introduces background semi-simplicial
theory before the second introduces theory for generic monoids and submonoids, including
some new results. The third subsection focuses on Artin monoids and contains results required
later in the proof.

5.1. Semi-simplicial objects

This subsection consists of the required background and follows Ebert and Randal-
Williams [12].



550 RACHAEL BOYD

Definition 5.1 [12, 1.1]. Let Δ denote the category which has as objects the non-empty
finite ordered sets [n] = {0, 1, . . . , n}, and as morphisms monotone increasing functions. These
functions are generated by the basic functions which act on the ordered sets as follows:

Di : [n] → [n + 1] for 0 � i � n

{0, 1, . . . , n} �→ {0, 1, . . . , î, . . . , n + 1}
Si : [n + 1] → [n] for 0 � i � n

{0, 1, . . . , n + 1} �→ {0, 1, . . . , i, i, . . . n}.
The opposite category Δop is known as the simplicial category. We denote the opposite of the
maps Di by ∂i and the opposite of the maps Si by si. We call these the face maps and the
degeneracy maps, respectively.

Let Δinj ⊂ Δ be the subcategory of Δ which has the same objects but only the injective
monotone maps as morphisms, generated by the Di. The opposite category Δop

inj is known as
the semi-simplicial category and its morphisms are therefore generated by the face maps ∂i.

Definition 5.2 [12, 1.1]. A simplicial object in a category C is a covariant
functor X• : Δop → C. A semi-simplicial object is a functor X• : Δop

inj → C. We denote X•([n])
by Xn. A (semi-)simplicial map f : X• → Y• is a natural transformation of functors, and in
particular has components fn : Xn → Yn. Simplicial objects in C form a category denoted sC,
and semi-simplicial objects a category denoted ssC. When C equals Set a (semi-)simplicial
object is called a (semi-)simplicial set and when C equals Top it is called a (semi-)simplicial
space.

Remark 5.3. A semi-simplicial object in a category C is equivalent to the following data.

(a) An object Xp in C, for p � 0.
(b) Morphisms in C ∂p

i : Xp → Xp−1 for 0 � i � p and all p � 0 called face maps, which
satisfy the following simplicial identities

∂p−1
i ∂p

j = ∂p−1
j−1∂

p
i if i < j.

Definition 5.4 [12, 1.3]. An augmented semi-simplicial object in C is a triple (X•, X−1, ε•)
such that X• is a semi-simplicial object in C, X−1 is an object of C and ε• is a family of
morphisms such that εp : Xp → X−1 and εp−1 ◦ ∂i = εp for all p � 1 and 0 � i � p.

Example 5.5 [12, 1.2]. The standard n-simplex has two equivalent manifestations: as a
simplicial object in Set and as an object in Top. When viewed as a simplicial set the standard n-
simplex is denoted Δn

• and is defined via the functor Δn
m = Δn

• ([m]) = homΔ([m], [n]) for all [m]
in Δop. When viewed as an object in Top the standard n-simplex is denoted |Δn| and defined
to be

|Δn| :=

{
(t0, . . . , tn) ∈ R

n+1 |
n∑

i=0

ti = 1 and ti � 0∀i
}
.

One can associate to a morphism φ : [n] → [m] in Δ a continuous map

φ∗ : |Δn| → |Δm|

(t0, . . . , tn) �→ (s0, . . . , sm), where sj =
∑

φ(i)=j

ti.
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That is, morphisms send the jth vertex of the simplex |Δn| to the φ(j)th vertex of |Δm| and
extend linearly. Under this viewpoint the map Di

∗ sends |Δn| to the ith face of |Δn+1| and the
map Si

∗ collapses together the ith and (i + 1)st vertices of |Δn+1| to give a map to |Δn|.

A tuple (∂p−1
i1

, ∂p−2
i2

, . . . , ∂p−k
ik

) denotes the application of several face maps in a row,
where ∂p−1

i1
is the first face map to be applied, followed by ∂p−2

i2
, etc. For ease of notation

we dispense with superscripts, writing the tuple as (∂i1 , ∂i2 , . . . , ∂ik) and assuming the domain
and targets are such that the composite map is defined.

Lemma 5.6. With the above notation, the tuple of face maps can be written such
that ij+1 � ij for all j.

Proof. Suppose ij+1 < ij in the tuple (∂i1 , ∂i2 , . . . , ∂ik). The simplicial identities
show ∂ij+1∂ij = ∂ij−1∂ij+1 since ij+1 < ij . Therefore,

(∂i1 , ∂i2 . . . , ∂ij , ∂ij+1 , . . . , ∂ik) = (∂i1 , ∂i2 . . . , ∂ij+1 , ∂ij−1, . . . , ∂ik).

Since ij+1 < ij , it follows that ij − 1 � ij+1. Relabelling ij := ij+1 and ij+1 := ij − 1
gives (∂i1 , ∂i2 . . . , ∂ij , ∂ij+1 , . . . , ∂ik) such that ij+1 � ij . This procedure reduces the
sum

∑k
j=1 ij by one, and therefore upon iteration must terminate. Applying this process enough

times gives ij+1 � ij for all j. �

Definition 5.7 [12, 1.2]. The geometric realisation of a semi-simplicial set or space is the
topological space denoted by ‖X•‖ and defined to be

‖X•‖ :=
∐
n�0

Xn × |Δn|/ ∼,

where ∼ is generated by (x, t) ∼ (y, u), whenever ∂i(x) = y and Di(u) = t.

The geometric realisation is an example of a coequaliser or colimit (see Dugger [11]).

Definition 5.8. Given a semi-simplicial map f• : X• → Y• there is an induced
map ‖f•‖ : ‖X•‖ → ‖Y•‖ which we call the geometric realisation of the semi-simplicial map f•.

Definition 5.9 [12, 1.4]. A bi-semi-simplicial object in a category C is a
functor X•• : (Δinj × Δinj)op → C. We write Xp,q = X••([p], [q]). We write the image of the
standard face maps in each simplicial direction (∂i × id) and (id×∂j), as ∂i,• and ∂•,j . We note
that

(∂i × ∂j) = (∂i,• ◦ ∂•,j) = (∂•,j ◦ ∂i,•) : Xp,q → X(p−1),(q−1)

and we denote this map ∂i,j . When C is equal to Top the bi-semi-simplicial object is called a
bi-semi-simplicial space.

Remark 5.10. A bi-semi-simplicial space can be viewed as a semi-simplicial object in ssTop
in two ways:

(1) X•,q : [p] �→ (X• : [q] �→ Xp,q) with face maps ∂i,•;
(2) Xp,• : [q] �→ (X• : [p] �→ Xp,q) with face maps ∂•,j .

Definition 5.11 [12, 1.2]. Given a bi-semi-simplicial space X•,• we define its geometric
realisation to be

‖X•,•‖ =
∐

p,q�0

Xp,q × |Δp| × |Δq|/ ∼,
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where ∼ is generated by (x, t1, t2) ∼ (y, u1, u2) whenever (∂i,j)(x) = y, Di(u1) = t1
and Dj(u2) = t2. This is equivalent to taking the geometric realisation of the semi-simplicial
space first in the p direction, followed by the q direction, or in the q direction followed by the p
direction. This is due to the following homeomorphisms [12, 1.9 and 1.10] :

‖X•,•‖ ∼= ‖X•,q : [p] �→ ‖X• : [q] �→ Xp,q‖‖ ∼= ‖Xp,• : [q] �→ ‖X• : [p] �→ Xp,q‖‖.

5.2. Semi-simplicial constructions using monoids and submonoids

The following description of the geometric bar construction and related definitions loosely
follows Chapter 7 of May’s Classifying spaces and fibrations [15]. In this section, we view
monoids and groups as discrete spaces.

Definition 5.12. Let M be a monoid and let X and Y be spaces with a left and right action
of M , respectively. Then the bar construction denoted B(Y,M,X) is the geometric realisation
of the semi-simplicial space B•(Y,M,X) given by

Bn(Y,M,X) = Y ×Mn ×X.

Elements in Bn(Y,M,X) are written as y[g1, . . . , gn]x for y ∈ Y , gi ∈ M for 1 � i � n
and x ∈ X. Face maps are given by

∂i(y[g1, . . . , gn]x) =

⎧⎪⎨⎪⎩
yg1[g2, . . . , gn]x if i = 0
y[g1, . . . , gigi+1, . . . , gn]x if 1 � i � n− 1
y[g1, . . . , gn−1]gnx if i = n.

Definition 5.13. Consider the bar construction B(∗,M, Y ) for Y a space with an action
of the monoid M on the left and ∗ a point on which M acts trivially. Define this to be the
homotopy quotient of Y over M (or M under Y ) and denote it B(∗,M, Y ) =: M \\ Y . This is
the geometric realisation of the semi-simplicial space B•(∗,M, Y ) given by

Bj(∗,M, Y ) = ∗ ×M j × Y.

Elements are written as [m1, . . . ,mj ]y for mi in M for 1 � i � j and y in Y . Face maps are
given by

∂i([m1, . . . ,mj ]y) =

⎧⎪⎨⎪⎩
[m2, . . . ,mj ]y if i = 0
[m1, . . . ,mimi+1, . . . ,mj ]y if 1 � i � j − 1
[m1, . . . ,mj−1]mjy if i = j.

In the situation of a monoid M acting on a space Y on the right we define the homotopy
quotient to be B(Y,M, ∗) =: Y //M .

Example 5.14. Consider the bar construction B(∗, N,M), for N a submonoid of M acting
on M on the left, by left multiplication, and ∗ a point, on which N necessarily acts trivially.
Then the homotopy quotient of M over N is

B(∗, N,M) = N \\M.

This is the geometric realisation of the semi-simplicial space B•(∗, N,M) given by

Bj(∗, N,M) = ∗ ×N j ×M.
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Elements are written as [n1, . . . , nj ]m for ni in N for 1 � i � j and m in M . Face maps are
given by

∂i([n1, . . . , nj ]m) =

⎧⎪⎨⎪⎩
[n2, . . . , nj ]m if i = 0
[n1, . . . , nini+1, . . . , nj ]m if 1 � i � j − 1
[n1, . . . , nj−1]njm if i = j.

We can build a similar homotopy quotient for a submonoid N acting on M on the
right by right multiplication. Then the associated homotopy quotient is the geometric
realisation B(M,N, ∗) = M // N .

Lemma 5.15. The homotopy quotient of a group G or monoid M under a point ∗ is
a model for the classifying space of the group or monoid, that is, BG � G \\ ∗ � ∗ // G
and BM � M \\ ∗ � ∗ // M .

Proof. Writing down the simplices and face maps for the homotopy quotients G \\ ∗
and G // ∗ gives exactly the simplices and face maps for the standard resolution or bar resolution
of G, which is a model for BG (see, for example, [5]). This holds similarly for the monoid M
(see, for example, [15, p. 31]). �

Lemma 5.16. For a monoid M , M \\M � ∗.

Proof. This is a consequence of [12, Lemma 1.12] using the augmentation to a point. �

Lemma 5.17. Let N be a monoid and S be a space with right N action. Suppose S can be
decomposed as S ∼= X × Y and, under this decomposition, the action of N restricts to a right
action on the Y component and trivial action on the X component. Then the map given by
the geometric realisation of the levelwise map on the bar construction

Bp((X × Y ), N, ∗) → X ×Bp(Y,N, ∗)
(x, y)[n1, . . . , np] �→ (x, y[n1, . . . , np])

for x ∈ X, y ∈ Y and ni ∈ N for all i is a homotopy equivalence. That is, the homotopy quotient
satisfies

S // N ∼= (X × Y ) // N � X × (Y // N),

where the homotopy equivalence is given by the geometric realisation of the levelwise map on
the bar construction

Bp((X × Y ), N, ∗) → X ×Bp(Y,N, ∗)
(x, y)[n1, . . . , np] �→ (x, y[n1, . . . , np])

for x ∈ X, y ∈ Y and ni ∈ N for all i.

Proof. The homotopy quotient S // N is the geometric realisation of the simplicial
space B•(S,N, ∗) with j-simplices given by

Bj(S,N, ∗) = S ×N j

and face maps given by Definition 5.13, the first face map ∂1 encoding the right action of N
on S. Under the decomposition S ∼= X × Y the j-simplices are given by

Bj(S,N, ∗) ∼= (X × Y ) ×N j ∼= X × (Y ×N j),
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where the second isomorphism highlights that the action of N on S can be restricted to a right
action on Y , since the action is trivial on the X component. Note that the second factor is
precisely the j-simplices in Bj(Y,N, ∗), and since the face maps act trivially on the X factor, the
face maps in Bj(S,N, ∗) induce face maps in Bj(Y,N, ∗) under the decomposition. The proof
is concluded by taking the geometric realisation of B•(S,N, ∗) and the geometric realisation
of X ×B•(Y,N, ∗), noting that ‖X ×B•(Y,N, ∗)‖ � X × ‖B•(Y,N, ∗)‖. �

5.3. Semi-simplicial constructions for Artin monoids

Given an Artin monoid A+ and a parabolic submonoid M+, recall from Section 4 that A+(M)
is the set of elements in A+ which do not end in elements in M+ and there is a decomposition
as sets (Proposition 4.23), A+ ∼= A+(M) ×M+. This decomposition maps α in A+ to (α, β),
where α = αβ (as defined in Remark 4.17) and the right action of M+ on A+ descends to a
trivial action on A+(M) and a right action on M+.

In this section, we view monoids and sets as discrete spaces.

Proposition 5.18. The map

A+ // M+ → A+(M)

defined levelwise on the bar construction B•(A+,M+, ∗) by

Bp(A+,M+, ∗) → A+(M)

α[m1, . . . ,mp] �→ α

is a homotopy equivalence.

Proof. From Proposition 4.23, A+ ∼= A+(M) ×M+ as sets, hence as discrete spaces, and
this decomposition respects the right action of M+ on A+. Then

A+ // M+ = (A+(M) ×M+) // M+

� A+(M) × (M+ // M+)

� A+(M) × ∗
= A+(M),

where the first homotopy equivalence uses Lemma 5.17 and the second homotopy equivalence
uses Lemma 5.16. The levelwise map given by the composition of the maps in these two lemmas
is precisely the map in the statement. �

Proposition 5.19. Let A+ be a monoid and M+ be a submonoid. Consider two maps f
and g : A+ \\A+ → A+ \\A+ which are both equivariant with respect to the action of M+ on
the right of A+ \\A+. Then there exists an M+ equivariant homotopy between the two maps.

Proof. Denote the set of k-cells in A+ \\A+ as (A+ \\A+)k. Let the k-cell of A+ \\A+

corresponding to geometric realisation of the k-simplex [p1, . . . , pk]a of Bk(∗, A+, A+) (as in
Definition 5.13) be denoted by the tuple (p1, . . . , pk, a), with pi and a in A+. There is a right
action of A+ on the k-cells given by

(p1, . . . , pk, a) · μ = (p1, . . . , pk, aμ).

Define the set of elementary k-cells to be those with tuple (p1, . . . , pk, e), where e
is the identity element in the monoid, and denote this cell D(p1, . . . , pk). Then
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every k-cell is uniquely determined by an elementary k-cell and an element a in A+,
since (p1, . . . , pk, a) = D(p1, . . . , pk) · a. The isomorphism of Proposition 4.23 shows
that A+ = A+(M) ×M+ and we let a = ām under this decomposition. Then we get the
following description for k-cells:

Let fk be the restriction of the map f to the k-cells of A+ \\A+ and similarly
for gk. We first define an equivariant homotopy between f0 and g0. Under the above
decomposition, (A+ \\A+)0 ∼= (A+(M) ×M+). Consider f0(α) and g0(α) in A+ \\A+ for α
in A+(M). Then since A+ \\A+ � ∗ by Lemma 5.16 it follows that there exists a path
between f0(α) and g0(α): call this h0(α, t) for t ∈ [0, 1]. Extend this homotopy to all 0-cells by
setting h0(αm, t) = h0(α, t) ·m for all m in M+. Then, since f0 and g0 are M+ equivariant,

h0(αm, 0) = h0(α, 0) ·m = f0(α) ·m = f0(αm)
and similarly

h0(αm, 1) = h0(α, 1) ·m = g0(α) ·m = g0(αm).
The homotopy h0(x, t) is M+ equivariant, since h0(x, t) · μ = h0(xμ, t) for μ in M+.

Now assume that we have built an equivariant homotopy hk−1(x, t) on
the (k − 1)-skeleton and we show how to extend it to the k-cells. The homotopy hk−1(x, t)
satisfies hk−1(x, 0) = fk−1(x) and hk−1(x, 1) = gk−1(x). For some α in A+(M), consider
the k-cell D(p1, . . . , pk) · α. Then its boundary consists of (k − 1)-cells and it follows that hk−1

defines a homotopy
(∂(D(p1, . . . , pk)) · α) × I → A+ \\A+

and the maps fk and gk also define maps
fk : ((D(p1, . . . , pk)) · α) × {0} → A+ \\A+

gk : ((D(p1, . . . , pk)) · α) × {1} → A+ \\A+.

The union of these three maps defines a map from ∂((D(p1, . . . , pk) · α) × I) to A+ \\A+, but
this boundary is a (k − 1)-sphere and so, since A+ \\A+ is contractible the (k − 1)-sphere
bounds a (k)-disk. We can compatibly extend the map over this disk to create the required
homotopy

hk : (D(p1, . . . , pk) · α) × I → A+ \\A+

which agrees on the boundary with the three maps above. Now define hk on
any k-cell D(p1, . . . , pk) · αm by the following: for x in D(p1, . . . , pk) · α we set

hk(x ·m, t) = hk(x, t) ·m.

Then by construction hk is M+ equivariant and, since both fk and gk are M+ equivariant, hk

satisfies hk(x, 0) = fk and hk(x, 1) = gk. �

Definition 5.20. Given a monoid M and two submonoids N1 and N2 we can define the
double homotopy quotient N1 \\M // N2 to be the geometric realisation of the bi-semi-simplicial
space (recall Definition 5.9) defined by taking the two simplicial directions arising from the bar
constructions B•(∗, N1,M) and B•(M,N2, ∗). The p, q level of the associated bi-semi-simplicial
space X•• has simplices

Xp,q = Np
1 ×M ×Nq

2

and face maps inherited from B•(∗, N1,M) in the p direction (∂p,•) and B•(M,N2, ∗) in the q
direction (∂•,q). Then [n1, . . . , np]m[n′

1, . . . , n
′
q] represents an element in the p, q level, where ni
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in N1 and n′
j in N2 for 1 � i � p and 1 � j � q. We note that the face maps on the left and right

commute, since the only maps which act on the same coordinates are ∂p,• in the p direction
and ∂•,0 in the q direction and these commute:

∂p,•(∂•,0([n1, . . . , np]m[n′
1, . . . , n

′
q])) = ∂p,•([n1, . . . , np]mn′

1[n
′
2, . . . , n

′
q])

= [n1, . . . , np−1]npmn′
1[n

′
2, . . . , n

′
q]

= ∂•,0(∂p,•([n1, . . . , np]m[n′
1, . . . , n

′
q])).

6. Preliminaries concerning the sequence of Artin monoids

This section introduces notation used throughout the remainder of the proof.
We consider the sequence of Artin monoids and inclusions

A+
0 ↪→ A+

1 ↪→ A+
2 ↪→ · · · ↪→ A+

n ↪→ · · · (1)

with Artin monoid systems (A+
n ,Σn) given by the following diagrams. Here, the Artin

Monoid Ai corresponds to the Coxeter group Wi, as defined in [13], and so we denote the
corresponding Coxeter diagrams DWi

.

Definition 6.1. Let (A0,Σ0) be the Artin system corresponding to the Coxeter dia-
gram DW1 , but with the vertex σ1 and all edges which have vertex σ1 at one end removed. We
depict the diagram as above. Note that A0 ↪→ A1.

Remark 6.2. With the generating sets corresponding to the above sequence of diagrams, for
all p every generator and hence every word in the monoid A+

p commutes with σj for j � p + 2.

We now apply the theory developed in Section 4.3 to the specific case of a monoid A+
n in the

sequence of monoids and inclusions (1) and the submonoid of A+
n , given by a previous monoid

in the sequence A+
p , where p < n. We adopt the following notation for the remainder of this

paper. The generating set of A+
n will always be given by Σn, the generating set specified by

the diagram DWn
.

• Let EndMonp(α) = EndMonAp
(α) and EndGenp(α) = EndGenAp

(α) for α in A+
n , as in

Definition 4.14. Then

EndGenp(α) = {σs | s ∈ SA+
p
, σs �R α}

EndMonp(α) = {β ∈ A+
p | β �R α}.

• Let A+(n; p) be the set A+(M) for A+ = A+
n and M = A+

p as in Definition 4.18 (this is
the set of elements in A+

n that do not end in a non-trivial element in A+
p ).

• Let the equivalence class of α in A+
n under the relation ≈ with respect to the submonoid A+

p

(Definition 4.20) be denoted [α]p as opposed to [α]Ap
. Then [α]p is the equivalence class of α

under ≈, the transitive closure of the relation ∼ on A+
n given by

α1 ∼ α2 ⇐⇒ α1β1 = α2β2 for some β1 and β2 in A+
p .

Then we have from Lemma 4.22 that the equivalence classes under ≈ with respect to the
submonoid A+

p are in one to one correspondence with the set A+(n; p). Recall from Remark 4.17
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that if β is the least common multiple of EndMonp(α), then we define α in A+
n to be the element

such that α = αβ. Then A+(n; p) is the set of all such α and for all α1 and α2 in A+
n :

[α1]p = [α2]p ⇐⇒ α1 = α2.

We also have from Proposition 4.23 the decomposition

A+
n
∼= A+(n; p) ×A+

p for all p < n.

7. The semi-simplicial space An
•

We now build the semi-simplicial space An
• as promised in Section 1.1.

Definition 7.1. Define a semi-simplicial space Cn
• by, for 0 � p � (n− 1), setting levels Cn

p

to be the discrete space of equivalence classes A+
n / ≈ where the equivalence relation is taken

with respect to the submonoid A+
n−p−1, that is, ≈ is the transitive closure of the relation ∼

on A+
n given by

α1 ∼ α2 ⇐⇒ α1β1 = α2β2 for some β1 and β2 in A+
n−p−1.

Face maps are given by

∂p
k : Cn

p → Cn
p−1 for 0 � k � p

∂p
k : [α]n−p−1 �→ [α(σn−p+kσn−p+k−1 . . . σn−p+1)]n−p.

For example, ∂p
0 acts on the equivalence class representative by right multiplication by e,

and ∂p
p acts by right multiplication by σn . . . σn−p−1. The motivation for this choice of face

maps follows Hepworth, as discussed in [13, Example 35].

Lemma 7.2. The face maps of Definition 7.1 are well defined.

Proof. We want that if [α]n−p−1 = [η]n−p−1, then ∂p
k([α]n−p−1) = ∂p

k([η]n−p−1).
If [α]n−p−1 = [η]n−p−1, then α = η̄ where the bar is taken with respect to A+

n−p−1. Set α = γ

(recall the definition of α from Remark 4.17). It follows that there exist a and b in A+
n−p−1 such

that α = γa and η = γb. Then since a and b only contain letters in A+
n−p−1 and all of these

letters commute with (σn−p+kσn−p+k−1 . . . σn−p+1) it follows that a and b letterwise commute
with the face map. Taking equivalence classes with respect to A+

n−p therefore gives

[α(σn−p+kσn−p+k−1 . . . σn−p+1)]n−p

= [(γa)(σn−p+kσn−p+k−1 . . . σn−p+1)]n−p

= [γ(σn−p+kσn−p+k−1 . . . σn−p+1)a]n−p

= [γ(σn−p+kσn−p+k−1 . . . σn−p+1)]n−p

and similarly

[η(σn−p+kσn−p+k−1 . . . σn−p+1)]n−p

= [γ(σn−p+kσn−p+k−1 . . . σn−p+1)]n−p

and so the face maps are well defined. �
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Lemma 7.3. The face maps {∂p
k} on Cn

• defined in Definition 7.1 satisfy the simplicial
identities, that is, for 0 � i < j � p:

∂p−1
i ∂p

j = ∂p−1
j−1∂

p
i : Cn

p → Cn
p−2.

Proof. For ease of notation in the proof, we denote (n− p) as r. Then the left-hand side
acts as follows

In comparison, the right-hand side acts as follows

Let x = (σr+j . . . σr+1)(σr+i+1 . . . σr+2) and y = (σr+i . . . σr+1)(σr+j . . . σr+2). Note that
for 0 � k < j we have

(σr+j . . . σr+1)σr+k+1 = σr+k(σr+j . . . σr+1)

from manipulation of the words using the braiding relations in the monoid. Reiterating this
gives us the first equality in the following:

x = (σr+j . . . σr+1)(σr+i+1 . . . σr+2)

= (σr+i . . . σr)(σr+j . . . σr+1)σr+2

= (σr+i . . . σr)(σr+j . . . σr+3)(σr+2σr+1σr+2)

= (σr+i . . . σr)(σr+j . . . σr+3)(σr+1σr+2σr+1)

= (σr+i . . . σr)σr+1(σr+j . . . σr+3)σr+2σr+1

= (σr+i . . . σrσr+1)(σr+j . . . σr+3σr+2)σr+1

= yσr+1.

The result follows since we are taking the equivalence relation with respect to the sub-
monoid A+

r+1. �

Lemma 7.4. Recall the notation A+(n;n− p− 1), as defined in Section 6. Then the
realisation of the map defined levelwise on the bar construction by

Bp(A+
n , A

+
n−p−1, ∗) → A+(n;n− p− 1)

α[m1, . . . ,mp] �→ α,

where α ∈ A+
n , mi ∈ A+

n−p−1 for all i and α = αβ for α ∈ A+(n;n− p− 1) and β ∈ A+
n−p−1 is

a homotopy equivalence. That is the pth level of Cn
• satisfies

A+
n // A+

n−p−1 � A+(n;n− p− 1) = Cn
p .

Proof. This is a direct application of Propositions 4.23 and 5.18 which gives the
decomposition A+

n
∼= A+(n;n− p− 1) ×A+

n−p−1. �
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Definition 7.5. Let An
• be the semi-simplicial space with pth level the homotopy

quotient An
p = A+

n \\ Cn
p , where the action of A+

n on A+(n;n− p− 1) is given by

a · [α]n−p−1 = [aα]n−p−1 for a, α ∈ A+
n .

The face maps are denoted by ∂p
k for 0 � k � p

∂p
k : An

p → An
p−1

∂p
k : A+

n \\ Cn
p → A+

n \\ Cn
p−1

and ∂p
k acts as the face map ∂p

k from Definition 7.1 on the Cn
p factor of each simplex in the

homotopy quotient, and as the identity on the other factors.
Diagrammatically, An

• can be drawn as:

Lemma 7.6. The factorwise definition of the face maps ∂p
k in Definition 7.5 gives well-defined

maps on the homotopy quotients at each level of An
• .

Proof. The set of j-simplices in A+
n \\ Cn

p is identified with (A+
n )j × Cn

p and a generic element
in this set is given by [a1, . . . , aj ][α]n−p−1, where the ai and α are in A+

n . Then the map ∂p
k

acts on this simplex as

∂p
k([a1, . . . , aj ][α]n−p−1) �→ [a1, . . . , aj ][α(σn−p+kσn−p+k−1 . . . σn−p+1)]n−p

and since the multiplication by (σn−p+kσn−p+k−1 . . . σn−p+1) is on the right it follows that ∂p
k

commutes with all face maps of the bar construction B•(∗, A+
n , Cn

p ) for each k. Therefore, the
definition of ∂p

k on the simplicial level induces a map on the homotopy quotient A+
n \\ Cn

p . �

Lemma 7.7. The face maps ∂p
k on An

• defined in Definition 7.5 satisfy the simplicial
identities, that is for 0 � i < j � p:

∂p−1
i ∂p

j = ∂p−1
j−1∂

p
i .

Proof. This follows directly from the fact that the simplicial identities are satisfied for Cn
•

(Lemma 7.3), since the face maps for An
• are defined via the maps for Cn

• . �

We now show that there exist homotopy equivalences An
p � BA+

n−p−1 for every p � 0, as
promised in Section 1.1.
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Lemma 7.8. Consider the levelwise maps on (j, k)-simplices of A+
n \\A+

n // A+
n−p−1:

(A+
n \\A+

n // A+
n−p−1)(j,k) → (A+

n \\ Cn
p )

j

[a1, . . . , aj ]α[a′1, . . . , a
′
k] �→ [a1, . . . , aj ]α

and the projection

(A+
n \\A+

n // A+
n−p−1)(j,k)

→ (∗ // A+
n−p−1)k

[a1, . . . , aj ]α[a′1, . . . , a
′
k] �→ ∗[a′1, . . . , a′k],

where α and ai ∈ A+
n , a′i ∈ A+

n−p−1, and α = αβ for α ∈ A+(n;n− p− 1) and β ∈ A+
n−p−1.

Then these maps are homotopy equivalences

A+
n \\A+

n // A+
n−p−1 � An

p

and

A+
n \\A+

n // A+
n−p−1 � BA+

n−p−1,

respectively. That is, the pth level of the space An
• satisfies

An
p � A+

n \\A+
n // A+

n−p−1 � BA+
n−p−1.

Proof. From Lemma 7.4, Cn
p = A+(n;n− p− 1) � A+

n // A+
n−p−1, and this induces

An
p = A+

n \\ Cn
p � A+

n \\A+
n // A+

n−p−1

with the homotopy equivalence given by the required map. We then have the following

An
p � A+

n \\A+
n // A+

n−p−1 = (A+
n \\A+

n ) // A+
n−p−1 � ∗ // A+

n−p−1 = BA+
n−p−1.

The central equality is due to the fact that the double homotopy quotient is the geometric
realisation of a bi-simplicial-set and therefore we can take the realisation in either direction
first. The second map in the previous equation is a homotopy equivalence by Lemma 5.16. �

We now define the map from the geometric realisation of An
• to the classifying space BA+

n

promised in Section 1.1:

‖An
•‖

‖φ•‖−→ BA+
n .

In Section 8, we will show that ‖φ•‖ is highly connected.

Lemma 7.9. The geometric realisation ‖An
•‖ satisfies ‖An

•‖ ∼= A+
n \\ ‖Cn

• ‖.

Proof. The face maps in the bar construction B•(∗, A+
n , Cn

p ) for the homotopy quotient
in An

p = A+
n \\ Cn

p commute with the face maps in Cn
• (see the proof of Lemma 7.6) and therefore

with the face maps of An
• . Therefore, the two simplicial directions create a bi-semi-simplicial

space and one can realise in either direction first, as in Definition 5.11. Realising by taking the
homotopy quotients An

p = A+
n \\ Cn

p before realising in the An
• direction first (which has face

maps induced by those of Cn
• ) gives the left-hand side. Realising in the Cn

• direction before
taking the homotopy quotient A+

n \\ ‖Cn
• ‖ gives the right-hand side. �

Recall that A+
n \\ ∗ is a model for BA+

n . We therefore define ‖φ•‖ as a map from A+
n \\ ‖Cn

• ‖
to A+

n \\ ∗.
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Definition 7.10. Define φ• to be the semi-simplicial map from the bar construc-
tion B•(∗, A+

n , ‖Cn
• ‖) to the bar construction B•(∗, A+

n , ∗), obtained by collapsing ‖Cn
• ‖ to a

point:

φp : Bp(∗, A+
n , ‖Cn

• ‖) → Bp(∗, A+
n , ∗)

[a1, . . . , ap]a �→ [a1, . . . , ap]∗,
where ai is in A+

n for all i, and a is in ‖Cn
• ‖. Then the geometric realisation ‖φ•‖ maps the

homotopy quotient A+
n \\ ‖Cn

• ‖ to the homotopy quotient A+
n \\ ∗ � BA+

n .

Proposition 7.11. If ‖Cn
• ‖ is (k − 1)-connected, then the map ‖φ•‖ is k-connected.

Proof. From [12, Lemma 2.4], a semi-simplicial map f• : X• → Y• satisfies that ‖f•‖ is k-
connected if fp : Xp → Yp is (k − p) connected for all p � 0. The map ‖φ•‖ is defined levelwise
as the projection

φp : (A+
n )p × ‖Cn

• ‖ → (A+
n )p.

Therefore, since ‖Cn
• ‖ is (k − 1)-connected it follows that φp is k-connected and in particular

it is (k − p)-connected for all p � 0. Thus, the geometric realisation ‖φ•‖ is k-connected. �

8. High connectivity

This section is concerned with the proof of the following theorem.

Theorem 8.1. The geometric realisation ‖Cn
• ‖ of the semi-simplicial space Cn

• is (n− 2)-
connected for all n, that is, πi(‖Cn

• ‖) = 0 for 0 � i � n− 2.

Combining this theorem with Proposition 7.11, it follows that the map ‖φ•‖ is (n− 1)-
connected as promised in Section1.1. For the remainder of this paper, we will refer to the
geometric realisation of the semi-simplicial space as a complex (the geometric realisation is, by
definition, a cell complex: note that it is not necessarily a simplicial complex).

8.1. Union of chambers argument

There is a specific argument, called a union of chambers argument that is often used to prove
high connectivity of a complex. It is closely related to the notion of shellability.

In [8], Davis used a union of chambers argument to prove that the Davis complex ΣW

associated to a Coxeter group is contractible. He did this by showing that the Davis complex is
an example of a so-called basic construction. Hepworth’s high-connectivity results relating to
homological stability for Coxeter groups [13] also used such an argument. In [19], Paris used
a union of chambers argument to show that the universal cover of an analogue of the Salvetti
complex for certain Artin monoids is contractible, proving the K(π, 1) conjecture for finite-
type Artin groups. In this chapter, we use a similar union of chambers argument to prove high
connectivity. Loosely, the argument consists of breaking the complex up into high-dimensional
chambers and considering how connectivity changes as they are glued together to create the
complex. While applying the argument in the case of Artin monoids and the complex we have
constructed, numerous technical challenges arise, leading to the proof being split into many
separate cases.

To prove high connectivity in our setup, we use a union of chambers argument applied to the
complex ‖Cn

• ‖. Recall that ‖Cn
• ‖ has dimension n− 1. We filter the top dimensional simplices

by the natural numbers as follows.
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Definition 8.2. For k in N we define Cn(k) as follows:

Cn(k) =
⋃

α∈A+
n ,

�(α)�k

[[α]]0,

where [[α]]0 is the (n− 1) simplex in ‖Cn
• ‖ represented by [α]0 in Cn

n−1.

Remark 8.3. Note that every simplex in ‖Cn
• ‖ arises as a face of some [[α]]0, since smaller

simplices are represented by some [[τ ]]k for k > 0 and this is a face of [[τ ]]0. Then ‖Cn
• ‖ is given

by colimk→∞ Cn(k).

The union of chambers argument relies on the following two steps.

(A) If �(α) = k + 1, then [[α]]0 ∩ Cn(k) is a non-empty union of top dimensional faces of [[α]]0.
(B) If �(α) = �(β) = k + 1 and α �= β, then [[α]]0 ∩ [[β]]0 ⊆ Cn(k).

Proposition 8.4. If (A) and (B) hold, then ‖Cn
• ‖ is homotopy equivalent to a wedge

of (n− 1) spheres, and in particular is (n− 2) connected.

Proof. We build up ‖Cn
• ‖ by increasing k in Cn(k). We start at Cn(0) = [[e]]0, which is

contractible. At each step we build up from Cn(k) to Cn(k + 1) by adding the set of simplices
represented by words in A+

n of length (k + 1):⋃
α∈A+

n ,
�(α)=k+1

[[α]]0.

Then point (A) says that when [[α]]0 is added to Cn(k), the intersection is a non-empty union of
facets of [[α]]0. Therefore, either the homotopy type doesn’t change upon adding the simplex (if
not all facets are in the intersection), or the homotopy changes and this change is described by
the possible addition of an (n− 1) sphere (if all facets are in the intersection). Point (B) then
says that adding the entirety of the above union to Cn(k) at the same time only changes the
homotopy type in the sense that the individual simplices change it, since each two simplices
intersect within Cn(k). Therefore, at each stage we change the homotopy type by at most the
addition of several (n− 1) spheres and it follows that ‖Cn

• ‖ is (n− 2) connected. �

Remark 8.5. The length function gives a partial order on the top dimensional simplices
of ‖Cn

• ‖. By (B), any linear extension of this partial order to a total order will still satisfy (A).
In this case, the ordering is called a shelling (see [1]), which we know to be highly connected:
giving an alternative proof to the previous proposition.

The remainder of this section is therefore devoted to the proof of point (A) and point (B).
The proof of point (A) is split into several subsections.

8.2. Proof of point (A): facets of [[α]]0

Recall that the top dimensional faces of a simplex are called facets. We start the proof of point
(A) with a discussion of the facets of a simplex [[α]]0. Consider the face maps

∂n−1
q : Cn

n−1 → Cn
n−2

∂n−1
q : [[α]]0 �→ [[ασq+1σq . . . σ2]]1

for 0 � q � n− 1. The map ∂n−1
0 is right multiplication by the identity.
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Under these face maps the facets of [[α]]0 are given by

[[α]]1, [[ασ2]]1, [[ασ3σ2]]1, [[ασ4σ3σ2]]1, · · · , [[ασnσn−1 . . . σ3σ2]]1

Proposition 8.6. If �(α) = k + 1, at least one of the facets of [[α]]0 lies in Cn(k).

Proof. We must show that at least one facet of [[α]]0 is also a facet of some simplex [[α′]]0,
where �(α′) � k.

Consider EndGen1(α). If this is non-empty, then there exists η with length at least 1 in A+
1

such that α = α′η. It follows that [[α]]1 = [[α′η]]1 = [[α′]]1. Therefore, the facet [[α]]1 is also a
facet of [[α′]]0. Since �(η) � 1, then �(α′) < �(α) = k + 1, so [[α′]]0 is in Cn(k).

Alternatively if EndGen1(α) = ∅, then �(α) � 1 implies that EndGenn(α) �= ∅. It
follows from these two observations that {σ2, . . . σn} ∩ EndGenn(α) �= ∅, that is, for
some 2 � j � n, α = α′σj . Applying the face map ∂n

j−2 gives

∂n−1
j−2 ([[α]]0) = [[ασj−1 . . . σ2]]1

= [[α′σjσj−1 . . . σ2]]1

= ∂n−1
j−1 ([[α′]]0)

and as before �(α′) � k. This shows that the facet ∂n−1
j−2 ([[α]]0) is also a facet of [[α′]]0 and is

therefore in Cn(k). �

To complete the proof of point (A) we must show that if a lower dimensional face of [[α]]0 is
contained in Cn(k), then it is contained in a facet of [[α]]0, which is itself contained in Cn(k).
We first describe a general form for faces of [[α]]0.

8.3. Proof of point (A): low-dimensional faces of [[α]]0

Definition 8.7. A face of [[α]]0 is obtained by applying a series of face maps to [[α]]0.
We denote the series of face maps applied by a tuple (∂n−1

i2
, ∂n−2

i3
, . . . , ∂n−r+1

ir
), and we

let aj := σij−1+j . . . σj . That is, the (j − 1)st map in the tuple corresponds to right multipli-
cation by aj . We note here that aj has length ij and ends with the generator σj , unless ij = 0
in which case aj = e.

∂n−j+1
ij

: Cn
n−j+1 → Cn

n−j

: [[α]]j−2 �→ [[ασij−1+j . . . σj ]]j−1

= [[αaj ]]j−1.

From now on we assume that the first map in a tuple maps from Cn
n−1 to Cn

n−2, the second
map from Cn

n−2 to Cn
n−3 and so on. We therefore dispense of the superscripts in the ∂ notation

for the face maps when we write these tuples.
With the above notation, an (n− p− 1) subsimplex of [[α]]0 occurs when a tuple of

face maps (∂i2 , ∂i3 , . . . , ∂ip+1) is applied to [[α]]0. The image of these maps is then the
subsimplex [[αa2 . . . ap+1]]p with aj defined as in Definition 8.7 above.

Lemma 8.8. With the above notation, the tuple of face maps (∂ij )
p+1
j=2 can be written such

that ij+1 � ij for all j, which translates to �(aj+1) � �(aj).

Proof. This is a direct consequence of Lemma 5.6. �
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Lemma 8.9. The (n− p− 1) subsimplex of [[α]]0 given by (∂i2 , ∂i3 , . . . , ∂ip+1), or alterna-
tively [[αa2 . . . ap+1]]p, is a subsimplex of the following facets of [[α]]0.

• ∂i2([[α]]0) = [[αa2]]1.
• ∂i3+1([[α]]0) = [[αa3σ2]]1.
• ∂i4+2([[α]]0) = [[αa4σ3σ2]]1.
• · · · .
• ∂ip+1+p−1([[α]]0) = [[αap+1σp . . . σ2]]1.

In general these facets are given by the face map

∂ij+(j−2) : [[α]]0 �→ [[αajσj−1 . . . σ2]]1.

Proof. It is enough to show that ∂ij+(j−2) can act as the first face map
in the tuple (∂i2 , ∂i3 , . . . , ∂ip+1) for all j. Recall from Lemma 8.8 that in the
tuple ij+1 � ij for all j. Using the simplicial identities, the tuple is equivalent to the
tuple (∂ij+(j−2), ∂i2 , ∂i3 , . . . , ∂̂ij , . . . , ∂ip+1). �

For the remainder of this section, let α in A+
n with �(α) = k + 1. The aim of this

section is to show that if the (n− p− 1) subsimplex of [[α]]0 given by (∂i2 , ∂i3 , . . . , ∂ip+1) or
alternatively [[αa2 . . . ap+1]]p is in Cn(k), then it follows that one of the facets of [[α]]0 from
Lemma 8.9 is also in Cn(k). The proof of point (A) will follow.

Definition 8.10. If [[αa2 . . . ap+1]]p is in Cn(k), then it is also a (n− p− 1) subsimplex of
a simplex [[β]]0 for some β in A+

n such that �(β) � k. The subsimplex is therefore obtained
from [[β]]0 by applying a tuple of face maps, denote these (∂l2 , ∂l3 , . . . , ∂lp+1) and order
as in Lemma 8.8 such that lj+1 � lj for all j. Define bj := σlj−1+j . . . σj and when lj = 0
let bj = e. Then (∂l2 , ∂l3 , . . . , ∂lp+1) applied to [[β]]0 gives the (n− p− 1) simplex [[βb2 . . . bp+1]]p.
By construction [[βb2 . . . bp+1]]p = [[αa2 . . . ap+1]]p. We recall here that �(aj) = ij and �(bj) = lj .

Lemma 8.11. Choose β and bj as defined above, such that
∑p+1

k=2 lk is minimal, corresponding
to b2 . . . bp+1 being of minimal length. This choice of b2 . . . bp+1 then corresponds to either:

[[αa2 . . . ap+1]]p = [[β]]p that is, lj = 0∀ j
or

�(β) = �(α) − 1 = k.

Proof. Suppose that β and bj are chosen such that
∑p+1

k=2 lk is minimal, and furthermore
suppose that �(β) < �(α) − 1 and

∑p+1
k=2 lk > 0. Then some lk �= 0: set j to be minimal such

that lj �= 0. Then bj = σlj−1+j . . . σj �= e and

[[βb2 . . . bp+1]]p = [[βbj . . . bp+1]]p = [[βσlj−1+j . . . σjbj+1 . . . bp+1]]p.

But this is the tuple of face maps (∂lj−1, ∂lj+1 , . . . , ∂lp+1) applied to [[βσlj−1+j ]]0.
Since �(β) < �(α) − 1 it follows that �(βσlj−1+j) � �(α) − 1 and so [[βσlj−1+j ]]0 is in Cn(k).
However, the tuple for βσlj−1+j has the sum of its corresponding lj less than the original
tuple for β. This is a contradiction, as β was chosen to have minimal

∑p+1
k=2 lk. Therefore,

either
∑p+1

k=2 lk = 0, or �(β) = �(α) − 1. �

For the remainder of this paper, assume β and bj are chosen such that
∑p+1

k=2 lk is minimal,
so we have

[[βb2 . . . bp+1]]p = [[αa2 . . . ap+1]]p
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for either
∑p+1

k=2 lk = 0 or �(β) = �(α) − 1 = k. We use the following notation throughout the
remainder of this paper.

Definition 8.12. Let a := a2 . . . ap+1 and b := b2 . . . bp+1. Note that
∑p+1

k=2 lk = 0 corre-
sponds to b = e. So, we have

[[αa]]p = [[βb]]p,

where either b = e, or �(β) = �(α) − 1. We recall that this is equivalent to αa = βb in A+(n; p).
Let γ := αa = βb, and define u and v in A+

p such that

αa = γu and βb = γv.

Recall point A: if �(α) = k + 1, then [[α]]0 ∩ Cn(k) is a non-empty union of top dimensional
faces of [[α]]0. Recall that we have fixed a face [[αa]]p of [[α]]0, and we wish to prove this is
contained in a facet of [[α]]0 (from Lemma 8.9) which is contained in Cn(k). We complete the
proof of this by splitting into three cases:

(i) �(βb) < �(αa),
(ii) �(βb) = �(αa),
(iii) �(βb) > �(αa),

and since multiplication in the Artin monoid corresponds to adding lengths the conditions of
these cases correspond to analogous conditions on the lengths of u and v.

Remark 8.13. Note that if
∑p+1

k=2 lk = 0, then b = e, and since �(β) < �(α) it follows we are
therefore in case (i): �(βb) < �(αa).

We prove the three cases one by one in the following subsections. This involves some technical
lemmas, and in particular computation of least common multiples of strings of words. We
therefore include these technical lemmas in a separate section and refer to them as required.

8.4. Proof of point (A): preliminary lemmas

Recall from Definition 8.7 that a face of [[α]]0 is obtained by applying a series of face maps
to [[α]]0. We denote the series of face maps by a tuple (∂n−1

i2
, ∂n−2

i3
, . . . , ∂n−r+1

ir
), and we

let aj = σij−1+j . . . σj and when ij = 0 let aj = e. That is, the (j − 1)st map in the tuple
corresponds to right multiplication by aj . We let a = a2 . . . ap+1. Recall also that if [[αa]]p is
in Cn(k), then the subsimplex is also obtained from some [[β]]0 for �(β) � k, by applying a
tuple of face maps (∂l2 , ∂l3 , . . . , ∂lp+1). Recall bj := σlj−1+j . . . σj and when lj = 0 let bj = e.
Let b = b2 . . . bp+1. By construction [[βb]]p = [[αa]]p. Recall from Definition 4.9 that for α and β
two words in A+, we denote the least common multiple of α and β (if it exists) by Δ(α, β).

Lemma 8.14. For all k > j, the generators σi satisfy

(σk . . . σj+1)σj(σk . . . σj+1) = (σk−1σk)(σk−2σk−1) . . . (σj+1σj+2)(σjσj+1σj).

Proof. We proceed by induction on k − j. For the base case let k − j = 1, that is, k = j + 1.
Then the left-hand side of the above equation evaluates to σj+1σjσj+1 and the right-hand side
evaluates to σjσj+1σj . These are equal by the Artin relations. For the inductive hypothesis,
we assume the Lemma is true for k − j < r, and we prove for k − j = r, that is, k = j + r. We
manipulate the left-hand side of the equation, and show equality to the right-hand side:
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(σk . . . σj+1)σj(σk . . . σj+1)

= (σj+r . . . σj+1)σj(σj+r . . . σj+1)

= (σj+rσj+r−1σj+r . . . σj+1)σj(σj+r−1 . . . σj+1)

= (σj+rσj+r−1σj+r)(σj+r−2 . . . σj+1)σj(σj+r−1 . . . σj+1)

= (σj+r−1σj+rσj+r−1)(σj+r−2 . . . σj+1)σj(σj+r−1 . . . σj+1)

= (σj+r−1σj+r)(σj+r−1σj+r−2 . . . σj+1)σj(σj+r−1 . . . σj+1)

= (σj+r−1σj+r)(σj+r−2σj+r−1) . . . (σj+1σj+2)(σjσj+1σj),

where the final equality applies the inductive hypothesis. �

Lemma 8.15. With notation as above, Δ(aj+1, σj) = aj+1σjaj+1 (and
similarly Δ(bj+1, σj) = bj+1σjbj+1).

Proof. The proof is the same for both the aj and bj case, so we prove it for the aj case. We
must show:

(a) aj+1 �R aj+1σjaj+1 and σj �R aj+1σjaj+1;
(b) if x in A+

n is a common multiple of aj+1 and σj , then aj+1σjaj+1 �R x.

Recall aj+1 := σij+1+j . . . σj+1. Without loss of generality, we relabel j = 1 and ij+1 + j = k.
Then aj+1 = σk . . . σ2 and σj = σ1.

To prove (a) note that aj+1 �R aj+1σjaj+1 by observation, and also

aj+1σjaj+1 = (σk . . . σ2)σ1(σk . . . σ2)

= (σk−1σkσk−2σk−1 . . . σ2σ3)(σ1σ2σ1)

by Lemma 8.14, so σ1 = σj �R aj+1σjaj+1.
To prove (b) we show by induction on �(aj+1) that any common multiple x must

satisfy aj+1σjaj+1 �R x. When �(aj+1) = 1, aj+1 = σ2 and we have

Δ(σ2, σ1) = σ2σ1σ2 = aj+1σjaj+1.

For �(aj+1) = r − 1 when r � 2, assume that Δ(aj+1, σj) = aj+1σjaj+1 and prove
for �(aj+1) = r. Assume x satisfies aj+1 �R x and σj �R x. Since �(aj+1) = r,
aj+1 = σr+1 . . . σ2 and so σr+1 . . . σ2 �R x which in particular gives σr . . . σ2 �R x. By
the inductive hypothesis it follows that

Δ(σr . . . σ2, σ1) = (σr . . . σ2)σ1(σr . . . σ2).

and this is in EndMonn(x) by Lemma 4.25. Let x = x′(σr . . . σ2)σ1(σr . . . σ2). Then
since σr+1 . . . σ2 �R x, by cancellation of σr . . . σ2 it follows that

σr+1 �R x′(σr . . . σ2)σ1 = x′σr(σr−1 . . . σ2σ1).

Since σr+1 letterwise commutes with (σr−1 . . . σ2σ1), from Lemma 4.28 we have σr+1 �R x′σr.
From Lemma 4.25, it follows Δ(σr+1, σr) = σrσr+1σr �R x′σr. By cancellation of σr this
gives x′ = x′′σrσr+1, so

x = (x′)(σr . . . σ2)σ1(σr . . . σ2)

= (x′′σrσr+1)(σr . . . σ2)σ1(σr . . . σ2)

= x′′(σrσr+1σr)(σr−1 . . . σ2)σ1(σr . . . σ2)
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= x′′(σr+1σrσr+1)(σr−1 . . . σ2)σ1(σr . . . σ2)

= x′′(σr+1σrσr+1σr−1 . . . σ2)σ1(σr . . . σ2)

= x′′(σr+1σrσr−1 . . . σ2)σ1(σr+1σr . . . σ2)

= x′′aj+1σjaj+1,

as required. �

Lemma 8.16. Recall from Lemma 8.15 that Δ(aj+1, σj) = aj+1σjaj+1. Then when j � 2
this expression satisfies

aj+1σjaj+1 = âjajaj+1σj ,

where âj = σij+1+j−1 . . . σij+j and letterwise commutes with a2 . . . aj−1.
When j = 1, the expression satisfies

a2σ1a2 = â1σ1a2σ1,

that is, the same equality holds, setting a1 := σ1. The analogous statements hold for the bj .

Proof. Recall aj+1 = σij+1+j . . . σj+1 and aj = σij−1+j . . . σj . Without loss of
generality, relabel j = 1, ij+1 + j = k, and ij − 1 + j = l. Then aj+1 = σk . . . σ2 , σj = σ1,
and aj = σl . . . σ1. Note that since ij+1 � ij , then k > l. We wish to show
that aj+1σjaj+1 = âjajaj+1σj , where âj = σk−1 . . . σl+1. We proceed by induction on
the length of aj+1. For the base case, when �(aj+1) = 1 this implies that aj+1 = σ2. Then we
have

aj+1σjaj+1 = σ2σ1σ2 = σ1σ2σ1.

Since 0 � ij � ij+1 = 1 there are now two options. In the case ij = 1, the right-hand side
is ajaj+1σj and âj = e. In the case ij = 0, then aj = e and the right-hand side is âaj+1σj

with âj = σ1 = σij+j .
For the inductive hypothesis we assume true for �(aj+1) � r − 1 and prove

for �(aj+1) = r − 1, that is, k = r. Recall from Lemma 8.14 that
aj+1σjaj+1 = (σk . . . σ2)σ1(σk . . . σ2)

= (σr . . . σ2)σ1(σr . . . σ2)

= (σr−1σr)(σr−2σr−1) . . . (σ2σ3)(σ1σ2σ1)

= (σr−1σr)(σr−2 . . . σl+1)aj(σr−1 . . . σ2)σj ,

where the final equality applies the inductive hypothesis. Then σr commutes
with (σr−2 . . . σl+1)aj since �(aj) � �(aj+1). This gives the following:

aj+1σjaj+1 = (σr−1σr)(σr−2 . . . σl+1)aj(σr−1 . . . σ2)σj

= (σr−1σr−2 . . . σl+1)aj(σrσr−1 . . . σ2)σj

= âjajaj+1σj .

Since ij � ij−1 it follows that l − 1 is the maximal index of a generator appearing in aj−1 and
hence in the string a2 . . . aj−1. Therefore, âj letterwise commutes with a2 . . . aj−1 since the
indices of the generators in each word pairwise differ by at least two.

Since the bj have the same form as the aj , with difference only in word length, the analogous
statements hold for the bj . �

Recall the definition of aj and bj for 2 � j � p + 1, from Definitions 8.7 and 8.10, respectively.
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Definition 8.17. For 2 � j � p + 1 define cj as follows

cj =

{
aj if �(aj) � �(bj)
bj if �(aj) < �(bj)

for 2 � j � p + 1. Define c := c2 . . . cp+1. Let

a′j =

{
e if �(aj) � �(bj)
σlj+j−1 . . . σij+j if �(aj) < �(bj)

and similarly

b′j =

{
e if �(bj) � �(aj)
σij+j−1 . . . σlj+j if �(bj) < �(aj).

Define a′ = a′2 . . . a
′
p+1 and b′ = b′2 . . . b

′
p+1.

Lemma 8.18. With c, a′ and b′ as in Definition 8.17 and a and b as defined in Definition 8.12,
we have c = Δ(a, b) and in particular c = a′a = b′b.

Proof. We prove that:

(a) c = a′a = b′b;
(b) if x in A+

n is a common multiple of a and b, then c �R x.

To prove (a), we show that c = a′a: the proof that c = b′b is symmetric. It follows from
the definitions that cj = a′jaj . The smallest generator index in a′j is (ij + j) and the largest
generator index in a2 . . . aj−1 is (ij−1 + (j − 1) − 1). The elements a′j and a2 . . . aj−1 letterwise
commute, since ij � ij−1 so

| (ij + j) − (ij−1 + (j − 1) − 1) |=| (ij − ij−1) + 2) |� 2.

Let a′ = a′2 . . . a
′
p+1. Then we compute

c = c2 . . . cp+1

= (a′2a2)(a′3a3) . . . (a′p+1ap+1)

= a′2a
′
3a2a3 . . . (a′p+1ap+1)

= a′2a
′
3 . . . a

′
p+1a2a3 . . . ap+1

= (a′2a
′
3 . . . a

′
p+1)(a2a3 . . . ap+1)

= a′a

which completes the proof of (a).
To prove (b), assume x is a common multiple of a and b.

Claim. If ck . . . cp+1 �R x for some 2 � k � p + 1, then x = xkck . . . cp+1 for
some xk in A+

n . We claim that xk satisfies a2 . . . ak−1 �R xk and b2 . . . bk−1 �R xk.
Given the claim, the proof of (b) will follow since a = (a2 . . . ap+1) �R x

and b = (b2 . . . bp+1) �R x implies that cp+1 �R x, so x = xp+1cp+1. But then xp+1

satisfies a2 . . . ap �R xp+1 and b2 . . . bp �R xp+1 by the claim for k = p + 1. In
particular, cp �R xp+1 and it follows that x = xpcpcp+1. Continuing in this manner, we
arrive at x = x2(c2 . . . cp+1) = x2c and so c �R x. It therefore remains to prove the claim.

Since ck . . . cp+1 = (a′kak) . . . (a
′
p+1ap+1) = (a′k . . . a

′
p+1)(ak . . . ap+1) it follows that

x = xk(ck . . . cp+1)



HOMOLOGICAL STABILITY FOR ARTIN MONOIDS 569

= xk(a′k . . . a
′
p+1)(ak . . . ap+1)

= yk(ak . . . ap+1) for yk = xk(a′k . . . a
′
p+1).

Since x is a common multiple of a and b, then we also have a = (a2 . . . ap+1) �R x, that is, for
some zk.

x = zk(a2 . . . ap+1)

Therefore, by cancellation of (ak . . . ap+1),

yk = zk(a2 . . . ak−1).

By Lemma 4.27, Δ((a′k . . . a
′
p+1), (a2 . . . ak−1)) �R yk. Since the two words letterwise com-

mute Δ((a′k . . . a
′
p+1), (a2 . . . ak−1)) = (a2 . . . ak−1)(a′k . . . a

′
p+1) and so

yk = wk(a2 . . . ak−1)(a′k . . . a
′
p+1)

for some wk in A+
n . It follows

x = xk(ck . . . cp+1)

= yk(ak . . . ap+1)

= wk(a2 . . . ak−1)(a′k . . . a
′
p+1)(ak . . . ap+1)

= wk(a2 . . . ak−1)((a′k . . . a
′
p+1)(ak . . . ap+1))

= wk(a2 . . . ak−1)(ck . . . cp+1)

and by cancellation of ck . . . cp+1 on the first and final lines of the above equa-
tion, (a2 . . . ak−1) �R xk as required. The proof for (b2 . . . bk−1) �R xk is identical. This
completes the proof of the Claim and thus of (b). �

Recall that we have fixed α in A+
n with �(α) = k + 1, and we have fixed a face [[αa2 . . . ap+1]]p

in Cn(k). We want to show that one of the facets of [[α]]0 from Lemma 8.9 is also in Cn(k).
Recall since [[αa]]p is in Cn(k), there exists β in A+

n such that �(β) � k and

[[αa]]p = [[αa2 . . . ap+1]]p = [[βb2 . . . bp+1]]p = [[βb]]p

from Definition 8.12, where �(aj) = ij and �(bj) = lj . We have assumed β and bj are chosen
such that

∑p+1
k=2 lk is minimal, so we have either b = e, or �(β) = �(α) − 1. Recall γ := αa = βb,

and that we defined u and v in A+
p such that

αa = γu and βb = γv.

We prove in the next three Lemmas that in the case EndGenp(αa) �= ∅ we are done.

Lemma 8.19. If EndGen0(αa) �= ∅, then the facet [[αa2]]1 containing [[αa]]p is in Cn(k).

Proof. Consider τ in EndGen0(αa). Then since the generators S0 of A+
0 com-

mute with σ2, . . . , σn it follows that τ letterwise commutes (Definition 4.26) with a,
because a = a2 . . . ap+1 only contains generators in the set of {σ2, . . . σn}. Since τ and a are
both in EndMonn(αa) and they letterwise commute, it follows from Lemma 4.28 that τ is
in EndMonn(α), that is, some α′ in A+

n with �(α′) < �(α) satisfies α = α′τ .
The facet [[αa2]]1 therefore satisfies

[[αa2]]1 = [[α′τa2]]1 = [[α′a2τ ]]1 = [[α′a2]]1.

Here, the final equality is due to α′a2τ = α′a2 where the reduction is taken with respect to A+
1

(from Lemma 4.19). The penultimate equality is due to the fact τ and a2 letterwise commute.
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Since �(α′) < �(α), [[α′]]0 is in Cn(k) and [[α′a2]]1 is a facet of [[α′]]0. Therefore, [[αa2]]1 is in Cn(k)
and this completes the proof. �

The case where EndGenp(αa) �= ∅ but EndGen0(αa) = ∅ requires the following technical
lemma.

Lemma 8.20. Suppose aj �= e, then the words aj and aj+1 as in Definition 8.7 sat-
isfy aj+1σj = ājaj , for some āj in A+

n with �(āj) � 1. Furthermore, āj letterwise commutes
with a2 . . . aj−1. Regardless of whether or not aj = e, aj+1σj corresponds to the face

map ∂n−j+1
ij+1+1 . The analogous results hold for the bj .

Proof. If aj �= e, then

aj+1σj = (σij+1+j . . . σj+1)σj

= (σij+1+j . . . σij+j)(σij+j−1 . . . σj+1)σj

= (σij+1+j . . . σij+j)(σij+j−1 . . . σj+1σj)

= (σij+1+j . . . σij+j)aj

= ājaj ,

so āj = σij+1+j . . . σij+j , and �(āj) � 1 since �(aj+1) � �(aj) � 1. The generators appearing
in the word a2 . . . aj−1 are {σ2, . . . , σij−1+(j−1)−1} and so to prove that āj letterwise
commutes with a2 . . . aj−1 it is enough to show that the sets A = {σij+j , . . . , σij+1+j}
and B = {σ2, . . . , σij−1+(j−1)−1} pairwise commute. The largest index of a generator in B
is ij−1 + (j − 1) − 1 and the smallest index of a generator in A is ij + j so it is enough to
show

| (ij + j) − (ij−1 + (j − 1) − 1) |=| (ij − ij−1) + 2 |� 2.

This holds since ij � ij−1, and so āj and a2 . . . aj−1 letterwise commute. Regardless of whether
or not aj = e, aj+1σj = ājaj = σij+1+j . . . σj corresponds to the face map ∂n−j+1

ij+1+1 defined in
Definition 8.7. Since the bj have the same form as the aj , with difference only in word length,
the analogous statements hold for the bj . �

Lemma 8.21. If EndGenp(αa) �= ∅ but EndGen0(αa) = ∅, then some σj is in EndGenp(αa)
for 1 � j � p. Then the facet [[αajσj−1 . . . σ2]]1 containing [[αa]]p is in Cn(k).

Proof. If EndGen0(αa) = ∅ and EndGenp(αa) �= ∅ it follows that

{σ1, σ2, . . . σp} ∩ EndGenp(αa) �= ∅,
so some σj is in EndGenp(αa) for 1 � j � p. Then σj and a = a2 . . . ap+1 are both
in EndMonn(αa). In particular, σj and aj+2 . . . ap+1 are both in EndMonn(αa).
Since σj and aj+2 . . . ap+1 letterwise commute we have from Lemma 4.28
that σj is in EndMonn(αa2 . . . aj+1). Since aj+1 is also in EndMonn(αa2 . . . aj+1),
from Lemma 4.25 Δ(aj+1, σj) is in EndMonn(αa2 . . . aj+1). Also, from
Lemma 8.15, Δ(aj+1, σj) = aj+1σjaj+1. By cancellation of aj+1, it follows that aj+1σj

is in EndMonn(αa2 . . . aj), so

αa2 . . . aj = α′(aj+1σj) (†)
for some α′ in A+

n .
Recall Lemma 8.20 and split into two cases: either

(a) aj �= e, or
(b) a2 = · · · = aj = e since �(ai) � �(ai+1)∀i.
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For case (a) recall from Lemma 8.20 that aj+1σj = ājaj and āj letterwise commutes
with a2 . . . aj−1. This gives

αa2 . . . aj = α′(aj+1σj) from Equation (†)
= α′(ājaj)

⇒ αa2 . . . aj−1 = α′āj by cancellation of aj .

Now α(a2 . . . aj−1) = α′āj and āj letterwise commutes with a2 . . . aj−1. By Lemma 4.28 it
follows that āj is in EndMonn(α), that is there exists α′′ in A+

n such that α = α′′āj .
Then the facet [[αajσj−1 . . . σ2]]1 satisfies

[[αajσj−1 . . . σ2]]1

= [[α′′ājajσj−1 . . . σ2]]1

and by Lemma 8.20, ājaj is a face map ∂n−j+1
ij+1+1 , so ājajσj−1 . . . σ2 is also a face map ∂n−1

ij+1+j−1,
and therefore [[αajσj−1 . . . σ2]]1 is also a facet of [[α′′]]0. Since �(āj) � 1 by Lemma 8.20 it
follows �(α′′) < �(α) and so [[αajσj−1 . . . σ2]]1 ∈ Cn(k).

For case (b), a2 = · · · = aj = e implies aj+1σj is in EndMonn(α), so α = α′aj+1σj for
some α′ in A+

n with �(α′) < �(α). Then the facet [[αajσj−1 . . . σ2]]1 satisfies

[[αajσj−1 . . . σ2]]1

= [[(α′aj+1σj)ajσj−1 . . . σ2]]1

= [[α′(aj+1σjσj−1 . . . σ2)]]1 since aj = e

and as before by Lemma 8.20, this is a face of [[α′]]0 which is in Cn(k) as required. �

Proposition 8.22. If EndGenp(αa) �= ∅ and [[αa]]p is in Cn(k), then a facet containing [[αa]]p
is in Cn(k).

Proof. Putting together Lemmas 8.19 and 8.21 gives the required result. �

8.5. Proof of point (A): case (i): �(βb) < �(αa)

Proposition 8.23. Under the hypotheses of case (i), EndGenp(αa) �= ∅.

Proof. Recall that for some u and v in A+
p , αa = γu and βb = γv. If �(βb) < �(αa), then it

follows �(γv) < �(γu) and consequently �(v) < �(u), since multiplication in A+
n corresponds to

addition of lengths. Since the inequality is strict, it follows that �(u) �= 0, that is, u �= e. Then
since αa = γu, u ∈ EndMonp(αa) so in particular EndGenp(αa) �= ∅. �

Applying Proposition 8.22 concludes the proof of case (i).

8.6. Proof of point (A): case (ii): �(βb) = �(αa)

Recall that for some u and v in A+
p , and γ in A+

n with EndMonp(γ) = ∅, that αa = γu
and βb = γv.

Proposition 8.24. If we are in case (ii), then we only need to consider when αa = βb = γ.

Proof. Case (ii) states that �(βb) = �(αa). This implies that �(γu) = �(γv), which in turn
implies �(u) = �(v) by cancellation. If u �= e, then αa satisfies EndGenp(αa) �= ∅. Then, by
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Proposition 8.22 a facet containing [[αa]]p lies in Cn(k). Therefore, we can assume u = e, which
implies v = e since they have the same length. Therefore, αa = βb = γ. �

Recall the definition of cj from Definition 8.17:

cj =

{
aj if �(aj) � �(bj)
bj if �(aj) < �(bj)

for 2 � j � p + 1. Recall c = c2 . . . cp+1. Recall that since �(β) < �(α), then in case
(ii): �(βb) = �(αa) that it follows �(b) > �(a).

Proposition 8.25. With the notation as above, there exists at least one j for
which cj = bj �= aj . Consider the maximal j for which cj = bj �= aj . Then the
facet [[αajσj−1 . . . σ2]]1 of [[α]]0 containing [[αa]]p is in Cn(k).

Proof. Recall c = a′a = b′b, where a′ = a′2 . . . a
′
p+1 and b′ = b′2 . . . b

′
p+1 as in Definition 8.17.

We fist prove the existence of j in the statement. Note since �(β) < �(α), it follows
that b �= e and so from Lemma 8.11, it follows that �(β) = �(α) − 1 which gives �(b) = �(a) + 1.
Since c = a′a = b′b, this gives �(a′) = �(b′) + 1 and in particular �(a′) � 1. It follows that at
least one a′j �= e, that is, cj = bj �= aj .

Recall also that αa = βb = γ from Proposition 8.24. Therefore, a and b are in EndMonn(αa)
and it follows from Lemma 4.25 that Δ(a, b) is in EndMonn(αa). From Lemma 8.18 Δ(a, b) = c
so it follows that c is in EndMonn(αa), that is, for some α′ in A+

n with �(α′) < �(α)

αa = α′(c) = α′(a′a).

By cancellation of a, we have α = α′a′.
Consider the maximal j for which cj = bj �= aj . Then a′j+1 = · · · = a′p+1 = e, that

is, a′ = a′2 . . . a
′
j . It follows that the facet [[αajσj−1 . . . σ2]]1 satisfies

[[(α)ajσj−1 . . . σ2]]1 = [[(α′a′)ajσj−1 . . . σ2]]1

= [[(α′a′2 . . . a
′
j)ajσj−1 . . . σ2]]1

= [[α′a′2 . . . (a
′
jaj)σj−1 . . . σ2]]1

= [[α′a′2 . . . (cj)σj−1 . . . σ2]]1

= [[α′a′2 . . . a
′
j−1(bj)σj−1 . . . σ2]]1.

Recall �(bj) = lj , so post multiplication by bjσj−1 . . . σ2 corresponds to the face
map ∂n−1

lj+j−2. Therefore, [[αajσj−1 . . . σ2]]1 is a facet of [[α′a′2 . . . a
′
j−1]]0 and we have

that �(α′a′2 . . . a
′
j−1) < �(α) since α = α′a′2 . . . a

′
j and �(a′j) � 1. Therefore, [[αajσj−1 . . . σ2]]1

is in Cn(k). �

8.7. Proof of point (A): case (iii): �(βb) > �(αa)

Recall that for some u and v in A+
p , and γ in A+

n with EndMonp(γ) = ∅, that αa = γu
and βb = γv.

Proposition 8.26. If we are in case (iii), then b �= e. Furthermore, we only need to consider
the case when γ = αa so βb = γv = αav. In this case it follows EndGenp(βb) �= ∅.

Proof. Case (iii) states that �(βb) > �(αa), and note that this can only happen
when b �= e since �(β) < �(α). Recall this implies �(β) = �(α) − 1 from Lemma 8.11. If u �= e,
then αa satisfies EndGenp(αa) �= ∅. Then by Proposition 8.22, a facet containing [[αa]]p lies
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in Cn(k). Therefore, we can assume u = e. Then αa = γ and it follows that βb = γv = αav.
Since �(βb) > �(αa) it follows �(v) � 1 and therefore EndGenp(βb) �= ∅. �

We now prove a technical lemma required for the rest of this section.

Lemma 8.27. If there exists β′ ∈ A+
n such that �(β′) = �(β) − 1 = �(α) − 2 and

[[βb]]p = [[β′b]]p,

then this contradicts our choice of b.

Proof. Write b = σ′b′, that is, σ′ is the leftmost generator of the word b.
Then �(β′σ′) = �(α) − 1 and so

[[β′σ′b′]]p = [[βb]]p,

where �(b′) < �(b) and �(β′σ′) = �(β) = �(α) − 1. This contradicts our choice of b: we chose b

such that
∑p+1

k=2 lk was minimal, as in Lemma 8.11 and therefore no such b′ can exist. �

Proposition 8.28. EndGen0(βb) = ∅.

Proof. Suppose EndGen0(βb) �= ∅ for a contraction. Let τ in EndGen0(βb). Then since τ
letterwise commutes with b2 . . . bp+1 it follows that τ is in EndGen0(β) from Lemma 4.28.
Then β = β′τ for some β′ in A+

n with �(β′) = �(β) − 1 = �(α) − 2. It follows

[[βb]]p = [[(β′τ)b]]p

= [[β′τb]]p

= [[β′bτ ]]p

= [[β′b]]p
and by Lemma 8.27, this is a contradiction. �

Proposition 8.29. The generator σ1 is not in EndGenp(βb).

Proof. Suppose σ1 is in EndGenp(βb) �= ∅ and work for a contradiction. Since σ1 letterwise
commutes with b3 . . . bp+1 it follows that σ1 is in EndGenp(βb2) by Lemma 4.28. From
Lemma 8.15, Δ(σ1, b2) = b2σ1b2 and by Lemma 4.27, this is in EndMonn(βb2), giving by
cancellation of b2 that b2σ1 is in EndMonn(β). So β = β′b2σ1 for some β′ in A+

n . Then

[[(β)(b)]]p = [[(β′b2σ1)(b)]]p

= [[(β′b2σ1)(b2 . . . bp+1)]]p

and by Lemma 8.16, b2σ1b2 can be written as b̂1σ1b2σ1. So, we have

[[(β)(b)]]p = [[(β′b2σ1)(b2 . . . bp+1)]]p

= [[β′(b2σ1b2)(b3 . . . bp+1)]]p

= [[β′(b̂1σ1b2σ1)(b3 . . . bp+1)]]p

= [[β′(b̂1σ1b2)(b3 . . . bp+1)σ1]]p

= [[β′(b̂1σ1)(b2b3 . . . bp+1)σ1]]p
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= [[β′b̂1σ1(b)σ1]]p

= [[β′b̂1σ1b]]p
with �(β′b̂σ1) = �(β) − 1, since β = β′b2σ1 and b̂1 = σi2 . . . σ2 is a subword of b2 = σi2+1 . . . σ2

satisfying �(b̂) = �(b) − 1. By Lemma 8.27, this is a contradiction. �

Proposition 8.30. The generator σj is not in EndGenp(βb) for 2 � j � p.

Proof. Suppose σj is in EndGenp(βb) = EndGenp(β(b2 . . . bp+1)) for some 2 � j � p and
work for a contradiction. Since σj letterwise commutes with bj+2 . . . bp+1 it follows from
Lemma 4.28 that σj is in EndGenp(βb2 . . . bj+1). From Lemma 8.15, Δ(σj , bj+1) = bj+1σjbj+1

and by Lemma 4.27 this is in EndMonn(βb2 . . . bj+1), giving by cancellation of bj+1 that bj+1σj

is in EndMonn(βb2 . . . bj). We first handle the two cases, where bj = e, namely the case,
where bj+1 = e and the case, where bj+1 �= e.

When bj+1 = e, it follows from the conditions on the li that bj = bj−1 = · · · = b2 = e,
so σj is in EndMonn(β), that is, there exists β′ ∈ A+

n such that β = β′σj (in
particular, �(β′) = �(β) − 1. In this case

[[βb]]p = [[β′σjbj+2 . . . bp+1]]p

= [[β′bj+2 . . . bp+1σj ]]p

= [[β′bj+2 . . . bp+1]]p

= [[β′b]]p
and by Lemma 8.27 this is a contradiction.

When bj = e but bj+1 �= e, it follows that bj−1 = · · · = b2 = e, so bj+1σj is in EndMonn(β),
that is, there exists β′ ∈ A+

n such that β = β′bj+1σj and therefore
[[βb]]p = [[β′(bj+1σjbj+1) . . . bp+1]]p

= [[β′(b̂jbjbj+1σj)bj+2 . . . bp+1]]p by Lemma 8.16

= [[β′b̂jbj+1σjbj+2 . . . bp+1]]p since bj = e

= [[β′b̂jbj+1bj+2 . . . bp+1σj ]]p

= [[β′b̂jb]]p.

We note that in this case, since bj = e, b̂j = σlj+1+j−1 . . . σj and this has the same length
as bj+1 = σlj+1+j . . . σj+1. Therefore, �(β′b̂j) = �(β′bj+1) = �(β) − 1 and by Lemma 8.27 this
is again a contradiction.

Now assume bj �= e. By Lemma 8.20, bj+1σj = b̄jbj with �(b̄j) � 1, and so by cancellation
of bj , b̄j is in EndMonn(βb2 . . . bj−1). From Lemma 4.28, since b̄j letterwise commutes
with b2 . . . bj−1 we have b̄j is in EndMonn(β) so β = β′b̄j for some β′ in A+

n . Then it follows
that

[[(β)b]]p = [[(β′b̄j)(b)]]p

= [[(β′b̄j)(b2 . . . bp+1)]]p

= [[(β′b̄j)(b2 . . . bj−1)bj(bj+1 . . . bp+1)]]p

= [[(β′)(b2 . . . bj−1)(b̄jbj)(bj+1 . . . bp+1)]]p

= [[β′(b2 . . . bj−1)(bj+1σj)(bj+1 . . . bp+1)]]p since b̄jbj = bj+1σj
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= [[β′(b2 . . . bj−1)(bj+1σjbj+1)(bj+2 . . . bp+1)]]p

= [[β′(b2 . . . bj−1)(b̂jbjbj+1σj)(bj+2 . . . bp+1)]]p by Lemma 8.16

= [[β′(b2 . . . bj−1)(b̂j)(bjbj+1)(σj)(bj+2 . . . bp+1)]]p

= [[β′b̂j(b2 . . . bj−1)(bjbj+1)σj(bj+2 . . . bp+1)]]p

= [[β′b̂j(b2 . . . bj−1bjbj+1bj+2 . . . bp+1)σj ]]p

= [[β′b̂j(b)σj ]]p

= [[β′b̂jb]]p.

Since βb = β′b̂jbσj , it follows from the additive property of the length function
that �(β′b̂j) = �(β) − 1 and so by Lemma 8.27 this is a contradiction. �

By Propositions 8.28, 8.29 and 8.30, it follows that EndGenp(βb) = ∅. This contradicts the
statement of Proposition 8.26 and therefore concludes the proof of case (iii) and hence the
proof of point (A).

8.8. Proof of point (B)

Recall point B: If �(α) = �(β) = k + 1 and α �= β, then [[α]]0 ∩ [[β]]0 ⊆ Cn(k).

Proposition 8.31. Suppose α �= β in A+
n . If �(α) = �(β) = k + 1, then it follows

that [[α]]0 ∩ [[β]]0 ⊆ Cn(k).

Proof. Suppose [[α]]0 ∩ [[β]]0 �= ∅. Then for some 1 � p � n− 1 there exists a and b as in
Definition 8.12 such that [[αa]]p = [[βb]]p. It follows that there exists γ in A+

n and u, v in A+
p

such that

αa = γu and βb = γv.

Suppose that u �= e. Then by Proposition 8.22, it follows that a facet of [[α]]0 containing [[αa]]p
is in Cn(k). Hence, [[αa]]p = [[βb]]p itself is in Cn(k). Similarly, if v �= e, then a facet of [[β]]0
containing [[βb]]p = [[αa]]p is in Cn(k), and hence [[βb]]p = [[αa]]p itself is in Cn(k). So, we are
left with the case that u = v = e, giving

αa = γ = βb

and since �(α) = �(β) it follows that �(a) = �(b). Since α �= β it follows a �= b. Recall the
definition of c, a′ and b′ from Definition 8.17. From Lemma 8.18, c = Δ(a, b) and c = a′a = b′b.
Since �(a) = �(b), then �(a′) = �(b′). Suppose a′ = e, then �(a′) = �(b′) gives b′ = e and
hence c = a = b. But a �= b so it follows that a′ �= e and in particular �(a′) � 1.

From Lemma 4.27, since a and b are in EndMonn(αa) it follows that Δ(a, b) = c is
in EndMonn(αa), so αa = α′c = α′(a′a) for some α′ in A+

n . By cancellation of a we have α =
α′a′ and �(α′) < �(α). Then

[[αa]]p = [[(α′a′)a]]p

= [[α′c]]p

and [[α′c]]p is in Cn(k) since c represents a series of face maps originating at [[α′]]0, with each
face map given by the map corresponding to right multiplication by cj , which is either the face
map corresponding to aj or bj . �
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This completes the proof of point (B), and hence by Proposition 8.4, it follows that ‖Cn
• ‖

is (n− 2) connected.

9. Proof of Theorem A

This section proves the required results on the differentials of the spectral sequence introduced
in Subsection 1.1, before putting together the results of the previous sections and running the
spectral sequence argument to complete the proof of Theorem A.

9.1. Results on face and stabilisation maps

Recall the definition of the face maps of An
• from Definition 7.5:

∂p
k : An

p → An
p−1 for 0 � k � p

and given by

∂p
k : An

p → An
p−1

∂p
k : A+

n \\ Cn
p → A+

n \\ Cn
p−1,

where ∂p
k is induced by the face maps of Cn

• , which we recall are a composite of right
multiplication of the representative for the equivalence class in Cn

p = A+(n;n− p− 1)
by (σn−p+kσn−p+k−1 . . . σn−p+1), before the inclusion to the equivalence class in Cn

p−1.
Recall from Lemma 7.4 that for each 0 � p � n− 1 there is a homotopy equivalence

A+
n // A+

n−p−1 � A+(n;n− p− 1) = Cn
p ,

given by the map defined levelwise on the bar construction by

Bk(A+
n , A

+
n−p−1, ∗) → A+(n;n− p− 1)

α[m1, . . . ,mk] �→ α,

where α ∈ A+
n , mi ∈ A+

n−p−1 for all i and α = αβ for α ∈ A+(n;n− p− 1) and β ∈ A+
n−p−1.

Definition 9.1. Define the map

dpk : A+
n \\A+

n // A+
n−p−1 → A+

n \\A+
n // A+

n−p

as the composition of two maps ιp ◦ d̄pk. The first map

d̄pk : A+
n \\A+

n // A+
n−p−1 → A+

n \\A+
n // A+

n−p−1

is given by right multiplication of the central term in the double homotopy quotient
by (σn−p+kσn−p+k−1 . . . σn−p+1).

The set of (j, k)-simplices in A+
n \\A+

n // A+
n−p−1 is identified with the

product (A+
n )j ×A+

n × (A+
n−p−1)

k and a generic element is given by [a1, . . . , aj ]a[a′1, . . . , a
′
k],

where ai and a are in A+
n and a′i are in A+

n−p−1. The map d̄pk acts on this simplex as

d̄pk([a1, . . . , aj ]a[a′1, . . . , a
′
k]) = [a1, . . . , aj ]a(σn−p+kσn−p+k−1 . . . σn−p+1)[a′1, . . . , a

′
k]

The second map ιp is the map

ιp : A+
n \\A+

n // A+
n−p−1 → A+

n \\A+
n // A+

n−p

induced by the inclusion A+
n−p−1 ↪→ A+

n−p. Note that d̄p0 is the identity map, and
therefore dp0 = ιp.
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Lemma 9.2. The map d̄pk in Definition 9.1 gives a well-defined map on the double homotopy
quotient A+

n \\A+
n // A+

n−p−1.

Proof. Since (σn−p+kσn−p+k−1 . . . σn−p+1) letterwise commutes with every word
in A+

n−p−1, it follows that d̄pk commutes with all face maps of the bi-semi-simplicial
space A+

n \\A+
n // A+

n−p−1. Therefore, the map on the central term of each simplex gives a
map on the whole bi-semi-simplicial space, and hence its geometric realisation: the double
homotopy quotient A+

n \\A+
n // A+

n−p−1. �

Lemma 9.3. The diagram

commutes for all p � 0.

Proof. Recall from Lemma 7.8 that the horizontal homotopy equivalence is given by the
levelwise maps on (j, k)-simplices of A+

n \\A+
n // A+

n−p−1:

(A+
n \\A+

n // A+
n−p−1)(j,k)

→ (A+
n \\ Cn

p )j

[a1, . . . , aj ]α[a′1, . . . , a
′
k] �→ [a1, . . . , aj ]α,

where α and ai are in A+
n , the a′i are in A+

n−p−1, and α = αβ for α in A+(n;n− p− 1) and β

in A+
n−p−1. Diagram chasing using the definition of dpk in Definition 9.1 gives that levelwise

these maps commute, and so taking homotopy quotients and the corresponding maps induced
by these levelwise maps yields the required result. �

Lemma 9.4. The face maps ∂p
k of An

• are all homotopic to the zeroth face map ∂p
0 .

Proof. The map d̄pk restricted to A+
n \\A+

n is A+
n−p−1-equivariant, and the same holds

for the identity map idA+
n \\A+

n
. Applying Proposition 5.19 to these two maps therefore gives

an A+
n−p−1-equivariant homotopy between them. It follows that they induce homotopic maps d̄pk

and idA+
n \\A+

n //A+
n−p−1

on A+
n \\A+

n // A+
n−p−1. Applying the inclusion ιp to both maps and the

homotopy between them yields a homotopy hk from dpk to ιp. However, ιp is precisely the
map dp0, and thus hk is a homotopy from dpk to dp0 for all k. Then the image of hk under the
homotopy equivalence in Lemma 9.3 yields a homotopy from ∂p

k to the zeroth face map ∂k
0 , as

required.

�
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Lemma 9.5. The following diagram commutes up to homotopy.

that is, under the homotopy equivalence An
p � BA+

n−p−1 of Lemma 7.8, the zeroth face

map ∂p
0 : An

p → An
p−1 is homotopy equivalent to the map s∗ : BA+

n−p−1 → BA+
n−p induced

by the stabilisation map s : A+
n−p−1 ↪→ A+

n−p.

Proof. From the proof of Lemma 9.4, the right-hand square commutes up to homotopy.
From Lemma 7.8, the map from the centre to the left is given on the (j, k)-simplices of the

geometric realisation by

fp
(j,k) : (A+

n \\A+
n // A+

n−p−1)(j,k)
→ (∗ // A+

n−p−1)k

[a1, . . . , aj ]a[a′1, . . . , a
′
k] �→ ∗[a′1, . . . , a′k],

where a and ai are in A+
n and a′i is in A+

n−p−1. The map dp0 is the map

dp0 : A+
n \\A+

n // A+
n−p−1 → A+

n \\A+
n // A+

n−p

induced by the inclusion A+
n−p−1 ↪→ A+

n−p. Restricting this map to (j, k)-simplices of the double
homotopy quotient gives

(dp0)(j,k) : (A+
n \\A+

n // A+
n−p−1)(j,k)

→ (A+
n \\A+

n // A+
n−p)(j,k)

[a1, . . . , aj ]a[a′1, . . . , a
′
k] �→ [a1, . . . , aj ]a[a′1, . . . , a

′
k],

where a and ai are in A+
n and the a′i are in A+

n−p−1, hence a′i is in A+
n−p. Applying this map

before the homotopy equivalence to the classifying space gives

and on a (j, k) simplex this map is given by
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Figure 1. The E1 page of the spectral sequence, with the groups identified.

We note that the dotted map is precisely the map which defines the natural inclu-
sion BA+

n−p−1 → BA+
n−p under the identification of ∗ // A+

r with BA+
r for all r. The natural

inclusion is in turn induced by the stabilisation map A+
r

s
↪→ A+

r+1 and so we denote it s∗. This
gives that the left-hand square commutes up to homotopy. �

9.2. Spectral sequence argument

In this section, we run a first quadrant spectral sequence for filtration of ‖An
•‖, see, for

example, Randal-Williams [20, 2 (sSS)]. Recall the points we proved regarding ‖An
•‖:

(1) there exist homotopy equivalences An
p � BA+

n−p−1 for p � 0;
(2) there is an (n− 1) connected map ‖φ•‖ from the geometric realisation of An

• to the
classifying space BA+

n :

‖An
•‖

‖φ•‖−→ BA+
n ,

that is, ‖φ•‖ induces an isomorphism on homotopy groups πr for 0 � r � (n− 2), and
a surjection for r = (n− 1).

The first quadrant spectral sequence of the simplicial filtration of ‖An
•‖ satisfies

E1
k,l = Hl(An

k ) ⇒ Hk+l(‖An
•‖).

By point (1), the left-hand side is given by E1
k,l = Hl(An

k ) = Hl(BA+
n−k−1). The first page of

the spectral sequence is depicted in Figure 1. By point (2), ‖φ•‖ induces an isomorphism

Hk+l(‖An
•‖) ∼= Hk+l(BA+

n ) when (k + l) < n− 1

and a surjection

Hk+l(‖An
•‖) � Hk+l(BA+

n ) when (k + l) = n− 1.

The differential d1 is given by an alternating sum of face maps in An
• . By Corollary 9.4, the

face maps are all homotopic to each other and by Lemma 9.5 they are all homotopic to the
stabilisation map s∗, via An

p � BA+
n−p−1. Therefore, the alternating sum of face maps in the

differential d1 will cancel out to give the zero map when there are an even number of terms,
and will give the stabilisation map when there are an odd number of terms, that is,



580 RACHAEL BOYD

Figure 2. The E1 page of the spectral sequence, with groups and d1 differentials identified.

d1 : E1
even,l → E1

odd,l odd number of terms, so equals the stabilisation map s∗,

d1 : E1
odd,l → E1

even,l even number of terms, so equals the zero map 0.

This gives the E1 page shown in Figure 2.
We proceed by induction on n, for the sequence of monoids A+

n , and assume that homological
stability holds for previous groups in the sequence. Inductive hypothesis: The map induced
on homology by the stabilisation map

Hi(BA+
k−1)

s∗−→ Hi(BA+
k )

is an isomorphism for k > 2i and is a surjection for k = 2i whenever k < n.
Here, we note that Theorem A holds for the base case n = 1, since we have to

check H0(BA+
0 ) → H0(BA+

1 ) is a surjection, which is true since BA+
n is connected for all n.

Lemma 9.6. Under the inductive hypothesis, the E0,l terms stabilise on the E1 page
for 2l < n, that is,

E1
0,l = E∞

0,l when 2l < n.

In particular, the d1 differential does not alter these groups, and all possible sources of
differentials mapping to E0,l for 2l < n are trivial from the E2 page.

Proof. The d1 differentials are given by either the zero map or the stabilisation map as
shown in Figure 2. The d1 differentials

d1 : E1
1,l → E1

0,l

are given by the zero map, and the E1
−1,l terms are zero, since this is a first quadrant spectral

sequence. Therefore, the E2
0,l terms are equal to the E1

0,l terms.
To show that the sources of all other differentials to E0,l for 2l < n are zero, we invoke

the inductive hypothesis. This implies that on the E1 page in the interior of the triangle
of height �n

2 � and base n, the stabilisation maps, or d1 differentials satisfy the inductive
hypothesis. The resulting maps are shown in Figure 3, for the cases n odd and n even. Since
the d1 differentials going from the odd to the even columns are zero it follows that many groups
in the interior of the triangle are zero on the E2 page. This is shown in detail in Figure 4 for the
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Figure 3. The E1 page of the spectral sequence, with possible non-zero groups represented as
circles and the inductive hypothesis applied to the d1 differentials.

Figure 4 (colour online). The E2 page of the spectral sequence, under the inductive hypothesis.
To the left of the red line, all groups are zero except at positions E2

0,l for 2l < n — these are
highlighted in blue.

cases n odd and n even. These groups include all the sources of differentials to E0,l for 2l < n,
hence E2

0,l = E∞
0,l for 2l < n. �

We are now in a position to prove Theorem A.

Theorem 9.7. The sequence of monoids A+
n satisfies homological stability, that is

Hi(BA+
n−1) ∼= Hi(BA+

n )

when 2i < n, and the map Hi(BA+
n−1) → Hi(BA+

n ) is surjective when 2i = n.
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Proof. From Lemma 9.6, the spectral sequence satisfies

E∞
0,i = E1

0,i = Hi(BA+
n−1)

when 2i < n. From Proposition 7.11 and Theorem 8.1,

Hi(‖An
•‖) ∼= Hi(BA+

n )

when i � n− 2, and the map Hi(‖An
•‖) → Hi(BA+

n ) is onto when i = n− 1. The spectral
sequence abuts to Hk+l(‖An

•‖) and from Figure 4 the only non-zero groups on the diagonal E∞
k,l

when k + l = i and 2i < n are the groups E∞
0,i. Putting these results together yields

Hi(BA+
n−1) = E∞

0,i = Hi+0(‖An
•‖) ∼= Hi(BA+

n )

when both i < n
2 and i � n− 2 are satisfied. When n � 2, i < n

2 implies i � n− 2 and the
case n = 1 was the base case of the inductive hypothesis. Therefore, an isomorphism is induced
when 2i < n.

When i � n− 1 and i < n
2 , it follows that

Hi(BA+
n−1) = E∞

0,i = Hi+0(‖An
•‖) � Hi(BA+

n )

and for n � 2, i < n
2 implies i � n− 1. Again the case n = 1 was the base case of the inductive

hypothesis. This gives the required range for the surjection, and hence completes the proof. �
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