In the format provided by the authors and unedited.

Structure of complete Pol II-DSIF-PAF-SPT6 transcription complex reveals RTF1 allosteric activation

Seychelle M. Vos^{1,4}, Lucas Farnung¹, Andreas Linden^{2,3}, Henning Urlaub^{2,3} and Patrick Cramer¹

¹Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany. ²Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, Göttingen, Germany. ³University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics Group, Göttingen, Germany. ⁴Present address: Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA. ^{See}-mail: patrick.cramer@mpibpc.mpg.de

Supplementary Material

Supplementary Note 1 | Cryo-EM data collection and processing and Model building

Supplementary Table 1 | Complete EC* BS3 crosslinking statistics and measured distances.

- A. Summary of intra and inter complex crosslinks in complete EC*.
- B. Crosslinks mapped to complete EC* and their distances as determined in Xlink analyzer⁷⁸.

Supplementary Table 3 | Modelling of PAF and RTF1 subunits and the SPT5 CTR.

Description of how regions of PAF and RTF1 were modelled in the complete EC*.

Supplementary Table 4 | RTF1 sequence alignment.

RTF1 sequences from the indicated organisms were aligned in MAFFT⁷⁶ and visualized in Jalview⁷⁷. Secondary structure elements observed in human or *S. cerevisiae* RTF1 are demarcated above the sequence alignment or as predicted by Psipred⁸⁰. Residues colored by percentage identity. Darker shades of blue indicate higher conservation.

Supplementary Note 1 | Cryo-EM data collection and processing and Model building

Cryo-EM data collection and processing

Three independent cryo-EM datasets were collected and merged. Cryo-EM data was collected on a FEI Titan Krios II transmission electron microscope operated at 300 keV. A K2 summit direct detector (Gatan) with a GIF quantum energy filter (Gatan) was operated with a slit width of 20 eV. Automated data acquisition was performed with FEI EPU software at a nominal magnification of 130,000x, corresponding to a pixel size of 1.049 Å/pixel. Image stacks of 40 frames were collected over 10 s in counting mode. The dose rate was 3.4-4.7 e⁻ per Å² per s for a total dose of 34-47 e⁻/Å². A total of 13,679 image stacks were collected (Dataset 1: 5557, Dataset 2: 5135, Dataset 3: 2987).

Frames were stacked, processed for motion correction, and CTF corrected with Warp¹. Particles were picked using a BoxNet2 algorithm as implemented in Warp. Particles from the three data sets were extracted with a box size of 360² pixels and merged, yielding a total of 611,983 particles. The combined particles were subjected to 3D-refinement in RELION 3.0² using a map of EC^{*3} that was low pass filtered to 30 Å resulting in a reconstruction with a resolution of 3.37 Å. IWS1, an SPT6 associating factor that is required for transcription through chromatin, was included during complex formation, however, we did not observe density for it in our maps. IWS1 does not have an effect on Pol II elongation activity in our RNA extension assays (data not shown). Successive rounds of 2D classification without image alignment were performed to remove non-aligning particles and contamination. The resulting 446,195 particles were CTF refined as implemented in RELION 3.0² fitting per particle defocus and astigmatism. CTF refined particles were subjected to global 3D refinement resulting in a reconstruction at 3.1 Å using the gold standard FSC 0.143 criterion (Map 1)⁴.

To improve densities for specific domains, we performed 3D classification without image alignment with applied soft masks around the region of interest. Masks were generated in Chimera⁵ and RELION 3.0² around the RTF1 Plus3 and helices that associate with the Pol II surface (Maps 2 and 3), CTR9 N-terminus (Map 6), CTR9 C-terminus (Maps 4 and 5), SPT6 core (Maps 9 and 10), and PAF1-LEO1 dimer (Maps 7 and 8). Our classification approach showed that CTR9, SPT6, and the PAF1-LEO1 dimer adopt at least two different conformations on the Pol II surface. The CTR9 and SPT6 conformations are similarly occupied and our model can be flexibly fit into either set of maps. Only one of the PAF1-LEO1 dimer conformations (Map 7) allows for unambiguous modelling of the dimerization domain. The other conformation appears to more heavily clash with the positioning of TFIIF, however, its

lower resolution makes docking of the crystal structure unreliable. A composite map was generated for model refinement in Phenix⁶. Maps 1, 2, 3, 4, 6, 7, and 10 were combined using the Combine Focused Maps tool as implemented in Phenix⁶.

Model building

The structure of the complete EC* was determined by first placing the structure of EC* into Map A in Chimera (PDB ID: 6GMH)³ and locally adjusting it in Coot⁷. Clear additional density for RTF1 was observed adjacent to Pol II subunit RPB12. The crystal structure of the RTF1 Plus3 bound to a phosphorylated SPT5 CTR peptide was placed into the corresponding density in Map 2⁸ (PDB ID 4L1U) and flexibly fit with NAMDinator⁹. Four additional helices that anchor RTF1 to Pol II were modelled *de novo* using secondary sequence predictions from PSIPRED¹⁰ and a 2-residue extension to the previously determined RTF1 Plus3 structure. The register of the helices was confirmed by densities of bulky side chains of residues such as arginine and tyrosine. The SPT5 CTR is highly repetitive and a portion of the second and third repeat were used in the previously determined crystal structure ⁸. Distances were better satisfied in our structure when we used the first and second repeat. Thus, the side chains of the SPT5 CTR were mutated to reflect the sequence of the first and second CTR.

To model CTR9, CDC73, and the N-terminal region of PAF1, we used a recent crystal structure of the *M. thermophila* complex (PDB ID 6AFO)¹¹ and threaded the human sequences through the *M. thermophila* structure in Phyre2¹² (CTR9: *M. thermophila* 30-964 corresponds to human 1-801; CDC73 *M. thermophila* 164-205 corresponds to human 217-256; PAF1 *M. thermophila* 13-119 corresponds to human 25-114). We then placed the threaded crystal structure into a locally refined map of particles selected for density corresponding to the N-terminus of CTR9 (Map 6). The crystal structure was then divided into three pieces. The first piece included CTR9 residues 446-801, CDC73 and PAF1 residues 25-49. This piece was merged with the trestle helix (CTR9 residues 807-892) and WDR61 from EC* (PDB 6GMH)³. The second piece included CTR9 residues 52-113. Each piece was separately refined and flexibly fitted using NAMDinator⁹ with standard settings (resolution cutoffs of 5 Å for the first piece, 8 Å for the second piece, and 10 Å for the final piece). The pieces were connected in Coot and a final round of NAMDinator⁹ was used to flexibly fit the ensemble into the density with a resolution setting of 8 Å followed by two rounds of Phenix real space refinement¹³.

Our cryo-EM densities show clear density for the triple barrel dimerization domain of the PAF1-LEO1. We were previously³ not able to fit a crystal structure of the domain into our densities (PDB ID: 4M6T)¹⁴. We thus carefully examined the crystal structure (PDB ID: 4M6T) and compared it to the crystal structure of human TFIIF triple barrel domain (1F3U)¹⁵. The LEO1 portion of the PAF1-LEO1 crystal structure aligned well with one of the TFIIF barrels. We used this alignment to trim away parts of the structure that followed the path of the triple barrel, resulting in a construct corresponding to residues 370-461 of LEO1 and residues 170-208 of PAF1. To model the remaining regions of LEO1 and PAF1, we compared the predicted secondary structure of PAF1 and LEO1 to the triple barrel structure of TFIIF. We took the corresponding structured regions of TFIIF and threaded the sequence of PAF1 or LEO1 through these sequences in Phyre2¹². Residues 462-497 of LEO1 correspond to residues 86-119 of RAP30. Residues 217-335 of PAF1 correspond to RAP74 residues 25-149. The threaded regions were aligned to the TFIIF crystal structure in Pymol¹⁶, fitted to the appropriate density using the fitting function in Chimera⁵, renumbered in Coot⁷, and flexibly fitted into the appropriate density in a locally refined version of Map 7. Because we are not confident of side chain placements for the threaded model, the residues in this region are marked as unknown. Cross-linking data confirm the placement of the dimerization model. The N-terminus of PAF1 exits from the CTR9 solenoid and passes over the Pol II surface to the dimerization domain (residues 120-142). This region of PAF1 was modelled using crosslinking data and density for bulky side chains in Map 3. Additional modelling information for PAF, RTF1, and the SPT5 CTR can be found in Table 4.

The final model was refined against a composite map generated with Phenix using Maps 1, 2, 5, 7, 8, and 10. Five rounds of phenix.real space refine were performed with geometry minimization, adp, local grid search refinement, and secondary structure restraints were applied for nucleic acids and protein¹³. Local resolution maps were generated using the built-in local resolution tool in RELION 3.0. Figures were prepared with Pymol (version 2.3.2), Chimera (version 1.13.1)⁵, and ChimeraX (version 0.91)¹⁷.

Supplementary Note References

1. Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. *Nat Methods* **16**, 1146–1152 (2019).

2. Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure determination in RELION-3. *Elife* **7**, (2018).

3. Vos, S. M. *et al.* Structure of activated transcription complex Pol II–DSIF–PAF–SPT6. *Nature* **560**, 607–612 (2018).

4. Rosenthal, P. B. & Henderson, R. Optimal Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryomicroscopy. *J Mol Biol* **333**, 721–745 (2003).

5. Pettersen, E. F. *et al.* UCSF Chimera–a visualization system for exploratory research and analysis. *Journal of computational chemistry* **25**, 1605–1612 (2004).

6. Liebschner, D. *et al.* Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. *Acta Cryst D* **75**, 861–877 (2019).

7. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. *Acta crystallographica. Section D, Biological crystallography* **66**, 486–501 (2010).

8. Wier, A. D., Mayekar, M. K., Héroux, A., Arndt, K. M. & VanDemark, A. P. Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. *PNAS* **110**, 17290–17295 (2013).

9. Kidmose, R. T. *et al.* Namdinator – automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps. *IUCrJ* **6**, 526–531 (2019).

10. Buchan, D. W. A. & Jones, D. T. The PSIPRED Protein Analysis Workbench: 20 years on. *Nucleic Acids Research* **47**, W402–W407 (2019).

11. Deng, P. *et al.* Transcriptional elongation factor Paf1 core complex adopts a spirally wrapped solenoidal topology. *PNAS* **115**, 9998–10003 (2018).

12. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. *Nature Protocols* **10**, 845 (2015).

13. Afonine, P. V. *et al.* Towards automated crystallographic structure refinement with phenix.refine. *Acta crystallographica. Section D, Biological crystallography* **68**, 352–367 (2012).

14. Chu, X. *et al.* Structural insights into Paf1 complex assembly and histone binding. *Nucleic Acids Res* **41**, 10619–10629 (2013).

15. Gaiser, F., Tan, S. & Richmond, T. J. Novel dimerization fold of RAP30/RAP74 in human TFIIF at 1.7 Å resolution. *Journal of Molecular Biology* **302**, 1119–1127 (2000).

PyMOL. The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC.
 Goddard, T. D. *et al.* UCSF ChimeraX: Meeting modern challenges in visualization and analysis. *Protein Sci.* 27, 14–25 (2018).

Supplementary Table 1: I Complete EC* BS3 crosslinking statistics and measured distances.

Α

в

	Complete EC* components		Total numbe unique cross	r of links	Number unique crosslinks mappable to EC*+RTF1 structure		
	Total crosslinks	6	549		212		
	<i>Inter-complex o</i> Total	crosslinks	211		55		
	Pol II-Pol II		7		7		
	Pol II-DSIF		12		8		
	Pol II-SPT6		2		2		
	Pol II-PAF		18		3		
	DSIF-SPT6		9		3		
	DSIF-DSIF		ა 5		2		
	PAF-PAF		111		- 23		
	PAF-DSIF		2		0		
	Pol II-RTF1		17		4		
	DSIF-RTF1		2		0		
	PAF-RTF1		23		2		
	SPT6-RTF1		0		0		
	Intra-protein cr	osslinks					
	l otal Pol II		338		157 46		
	DSIF		22		-10 10		
	SPT6		45		27		
	PAF		180		53		
3	RTF1		39	D ¹ · ·	21		
Protein1	Protein2	AbsPos1	AbsPos2	Distance (Å))		
Rpb11	Rpb11	2	6 62	18.2701	177		
CTR9	CTR9	88	4 873	15.8310	185		
CTR9	CTR9	39	3 357	12.7578	154		
Rpb1	Rpb1	64	3 778	15.8741	372		
CTR9	CTR9	77	0 833	16.5989	864		
SUPT6H	SUPT6H	84	4 838	11.7155	653		
Rpb1	Rpb1	69	7 751	14.9866	868		
CTR9	CTR9	39	3 369	15.6775	724		
LEO1	LEO1	37	7 488	13.9384	334		
SUPT6H	SUPT6H	57	1 538	12.7927	821		
PAF1	PAF1	10	6 133	36.9260	448		
SUPT5H	SUPT5H	21	3 231	11.4994	867		
CDC73	CTR9	24	7 637	11.7826	059		
CTR9	CTR9	36	6 393	14.6879	644		

SUPT6H	SUPT6H	1229	1274	12.2702171
Rpb1	Rpb1	778	758	11.1438899
RTF1	Rpb3	504	155	20.2341138
CTR9	WDR61	798	140	20.8304766
RTF1	RTF1	380	486	16.865309
Rpb1	Rpb1	203	213	9.81079823
RTF1	RTF1	413	504	15.2439092
WDR61	WDR61	100	139	11.5615403
Rpb1	Rpb1	643	976	18.429499
WDR61	WDR61	29	97	17.3806937
Rpb2	Rpb2	264	327	10.4917664
Rpb1	Rpb1	778	751	12.5133107
PAF1	PAF1	126	133	12.1374015
Rpb1	Rpb1	697	758	11.7801122
SUPT6H	SUPT6H	1430	1454	18.2145837
RTF1	RTF1	413	555	37.9708956
Rpb2	Rpb2	821	815	18.3770435
SUPT5H	SUPT5H	306	276	9.55506039
Rpb1	Rpb1	285	331	15.6655533
CTR9	CTR9	844	833	16.9779451
Rpb1	Rpb1	778	767	8.27848307
SUPT5H	SUPT6H	344	1005	23.304636
Rpb2	Rpb2	413	458	17.2588393
SUPT6H	SUPT6H	1512	1430	14.5588075
CTR9	CTR9	773	833	10.4564323
SUPT5H	Rpb2	236	327	18.4509122
WDR61	WDR61	129	140	11.8117634
Rpb1	Rpb1	796	1135	19.9510937
CTR9	CTR9	695	729	11.4213953
CTR9	CTR9	868	873	8.54917125
Rpb2	Rpb2	327	337	11.2785632
Rpb1	Rpb1	910	976	11.6075266
Rpb2	Rpb2	427	421	10.4063816
CTR9	PAF1	444	62	20.0545422
SUPT6H	SUPT6H	626	622	7.70116108
SUPT5H	SUPT5H	597	627	14.1867435
Rpb2	Rpb2	134	427	13.3762301
Rpb1	Rpb1	910	918	13.7626781
CTR9	CTR9	777	770	15.458826
SUPT6H	SUPT6H	1452	1449	5.70046542

SUPT6H	SUPT6H	402	738	18.1947132
SUPT6H	SUPT6H	951	738	9.74593187
SUPT6H	SUPT6H	1243	1251	12.4442672
CTR9	CTR9	518	471	15.4846328
RTF1	RTF1	480	368	11.1956999
Rpb1	Rpb1	707	751	12.6311862
CTR9	CTR9	844	855	17.1138175
CTR9	CTR9	884	868	23.7933827
WDR61	CTR9	97	777	21.0289563
SUPT6H	SUPT6H	777	844	14.3226501
SUPT5H	Rpb2	439	1143	20.6347336
RTF1	RTF1	413	497	18.7352163
SUPT6H	SUPT6H	1512	1454	19.2114
Rpb4	Rpb4	137	90	17.118111
CTR9	CTR9	863	873	15.355936
RTF1	RTF1	413	368	21.0477934
RTF1	RTF1	413	518	27.8779423
Rpb1	Rpb1	910	919	12.5569339
LEO1	Rpb2	488	630	26.2414346
SUPT6H	SUPT6H	727	738	16.2980807
Rpb1	Rpb1	127	134	11.4131363
CTR9	CTR9	555	586	17.6551826
Rpb2	Rpb2	264	458	24.6715799
LEO1	PAF1	488	133	47.7876637
WDR61	WDR61	29	48	12.698096
CTR9	CDC73	645	247	10.546639
CDC73	Rpb8	247	146	18.9692735
Rpb1	Rpb3	697	199	17.1430967
RTF1	RTF1	454	397	16.1223204
CTR9	CTR9	282	252	15.4397472
CDC73	CTR9	257	637	12.7429389
CTR9	CTR9	187	213	13.9315388
Rpb3	Rpb3	225	2	17.084157
RTF1	RTF1	486	368	16.6115098
CTR9	CTR9	868	863	8.69519827
Rpb1	Rpb1	796	1133	26.2707536
CTR9	CTR9	660	637	16.5114528
SUPT5H	SUPT4H	274	116	13.9925943
Rpb2	Rpb2	192	815	18.8014873
CTR9	CTR9	216	187	12.0641331

SUPT6H	SUPT6H	1243	1269	12.7431808
Rpb1	Rpb1	32	226	18.4422321
Rpb2	Rpb2	340	332	12.6371317
Rpb11	Rpb11	37	70	5.4955805
RTF1	RTF1	531	518	9.2359934
Rpb7	Rpb7	123	153	34.7514714
RTF1	RTF1	518	368	36.1608577
Rpb3	Rpb11	225	47	15.9933716
RTF1	RTF1	413	424	8.26913605
CTR9	CTR9	403	187	45.7514495
SUPT4H	SUPT4H	109	102	11.0598696
CTR9	CTR9	863	855	12.4900681
Rpb3	RTF1	152	555	9.33903352
SUPT6H	SUPT6H	743	351	21.6503689
Rpb2	SUPT5H	264	236	28.7702123
SUPT5H	SUPT5H	597	578	17.8021609
Rpb2	PAF1	1010	126	13.8002299
SUPT6H	SUPT6H	1100	1135	22.2746827
Rpb1	Rpb1	1135	1125	11.1474495
Rpb1	Rpb1	1133	1125	11.9535016
CTR9	CTR9	784	770	15.6199666
Rpb2	Rpb2	210	494	17.9222026
Rpb6	SUPT6H	101	1327	42.7502083
Rpb1	Rpb1	1155	1219	15.3708025
PAF1	CTR9	106	216	8.08509511
Rpb2	Rpb2	942	934	6.83482304
Rpb2	Rpb2	264	457	27.4670717
CTR9	PAF1	246	68	6.57160992
Rpb1	Rpb1	619	1155	49.7560521
SUPT6H	SUPT6H	646	615	9.01789055
PAF1	CTR9	62	283	13.1880228
SUPT6H	SUPT6H	844	843	3.7983736
RTF1	RTF1	555	504	26.7173949
Rpb1	Rpb1	151	125	15.1210029
SUPT5H	SUPT6H	306	1005	42.0281042
RTF1	RTF1	499	555	33.116774
LEO1	PAF1	377	133	41.3958205
SUPT6H	Rpb6	1341	101	29.9738198
SUPT6H	SUPT6H	1454	1449	9.62992394
CTR9	PAF1	252	68	15.4210536

PAF1	CTR9	71	252	17.1252089
CTR9	CTR9	695	398	51.7317046
SUPT5H	Rpb1	439	32	21.295703
CTR9	CTR9	868	858	15.2798523
WDR61	WDR61	28	48	13.5374778
SUPT6H	SUPT5H	1229	274	94.7344045
RTF1	Rpb2	486	820	21.462501
Rpb11	Rpb11	62	23	17.0377161
Rpb1	Rpb2	1125	494	14.9694193
Rpb3	Rpb8	199	20	16.8477226
SUPT5H	SUPT5H	601	627	14.4685867
CTR9	CTR9	849	855	9.91867295
SUPT6H	SUPT6H	1005	898	18.494001
Rpb1	Rpb1	910	619	24.7952855
CDC73	CTR9	243	398	21.4612055
SUPT5H	Rpb11	213	26	121.776718
CTR9	CTR9	555	729	52.1491925
SUPT6H	SUPT6H	643	615	4.55319086
RTF1	RTF1	555	424	41.1924984
RTF1	RTF1	499	424	12.7187123
CTR9	PAF1	282	68	13.5274289
Rpb2	Rpb2	409	458	15.996939
PAF1	CTR9	68	283	15.3539993
LEO1	LEO1	488	514	63.0118094
SUPT5H	Rpb1	395	105	59.5513033
Rpb11	SUPT5H	62	274	111.319659
CTR9	CTR9	472	729	54.7780593
Rpb11	Rpb11	37	23	21.1147562
Rpb2	Rpb2	332	337	8.81617253
SUPT6H	SUPT6H	452	727	24.4580164
SUPT6H	SUPT6H	738	748	15.2648927
CTR9	PAF1	366	133	60.5313513
SUPT4H	SUPT4H	116	102	26.4194123
SUPT6H	WDR61	897	100	172.211489
WDR61	CTR9	254	742	17.0401322
Rpb1	Rpb1	125	132	10.6149207
RTF1	RTF1	497	424	15.3628103
LEO1	PAF1	461	196	18.7927394
Rpb4	Rpb7	94	155	27.0366276
CTR9	PAF1	713	34	20.7913357

LEO1	Rpb2	488	340	60.538748
CTR9	CTR9	849	833	24.8665136
PAF1	PAF1	71	106	24.6067471
RTF1	RTF1	413	512	29.2584873
LEO1	LEO1	488	517	67.4746692
CTR9	CTR9	872	855	25.8014951
SUPT6H	SUPT6H	1341	1327	25.1565166
CTR9	CTR9	660	587	27.6913987
CTR9	CTR9	713	742	11.5916551
Rpb2	Rpb2	436	421	14.2160376
RTF1	RTF1	555	513	25.1867331
CTR9	CDC73	660	257	11.110593
CTR9	WDR61	578	149	18.7442244
RTF1	LEO1	518	517	27.5102837
Rpb2	RTF1	151	518	23.5051885
Rpb5	Rpb1	41	1350	17.7068874
SUPT6H	SUPT6H	626	623	5.61212313
SUPT5H	SUPT5H	185	578	62.9741184
CTR9	CTR9	357	770	87.2037232
PAF1	PAF1	133	196	24.3226795
RTF1	RTF1	555	497	36.1249831
CTR9	CTR9	858	872	21.1219991
SUPT5H	SUPT5H	395	579	47.0743089
CTR9	CTR9	593	187	81.8687519
PAF1	PAF1	106	126	29.9129505
SUPT6H	SUPT6H	777	1135	16.5774192
CTR9	CTR9	544	521	18.382612
CTR9	CTR9	482	518	19.0723308
PAF1	CTR9	106	213	12.1862751
LEO1	RTF1	488	533	47.6947806
Rpb1	SUPT5H	445	627	28.4358126
RTF1	RTF1	504	518	14.9826527
SUPT6H	SUPT6H	419	646	44.0158656
CTR9	CTR9	586	872	117.355101
CTR9	CTR9	472	626	56.7268029
SUPT5H	SUPT5H	512	344	37.9343052
CTR9	CTR9	80	872	174.800028
SUPT5H	SUPT4H	268	116	5.42300701

Supplementary Table 3 | Modelling of PAF and RTF1 subunits and the SPT5 CTR.

Subunit/ Chain ID	Domain/ region	Residue range	Initial model	PDB template for initial model/ Chain	Modelling algorithm	Changes to initial model	Modelling confidence	Maps used	Map resolution for region (Å)
RTF1/R	N-terminus		Not modelled						
RTF1/R	Plus3	349-483	Crystal structure	4L1U/C		NAMDinator, manual correction, phenix. real_space _ refine	Atomic model	Maps 2, 3	3.5-7
RTF1/R	Pol II binding	484-600	Ab initio			manual correction, phenix. real_space _ refine	Atomic model 484- 504; 557- 590 Backbone trace 505- 556; 591- 600	Maps 2, 3	~4-6
CTR9/Q	TPRs	3-750	Homology	6AF0/A	Phyre2	NAMDinator, manual correction, phenix. real_space _ refine	Atomic model	Maps 4, 5, 6	~3.5-12
CTR9/Q	Vertex	751-806	Homology	6AF0/A	Phyre2	NAMDinator, manual correction, phenix. real_space refine	Atomic model	Maps 4, 5	~3.5-8
CTR9/Q	Trestle	807-892	Cryo-EM structure	6GMH/Q		manual correction, phenix. real_space _ refine	Atomic model	Maps 4, 5	~3.5-8
PAF1/V	N-terminus	1-24	Not modelled						
PAF1/V	CTR9 interacting region	25-113	Homology	6AF0/P	Phyre2	NAMDinator, manual correction, phenix. real_space _ refine	Atomic model	Map 7	~3.5-10
PAF1/V	Linker	120-142	Ab initio			manual correction, phenix. real_space _ refine	Atomic model	Map 2, 3	~3.5

PAF1/V	Triple barrel	170-208	Crystal structure	4M6T/A		NAMDinator, manual correction, phenix. real_space _ refine	Atomic model	Map 7	~4-10
PAF1/V	Triple barrel	217- 335	Homology	1F3U/B	Phyre2	NAMDinator, manual correction, phenix. real_space _ refine	Backbone trace with unknown register	Map 7	~4-10
PAF1/V	C-terminus	336- 531	Not modelled						
LEO1/U	N-terminus	1-369	Not modelled						
LEO1/U	Triple barrel	370- 461	Crystal structure	4M6T/A		NAMDinator, manual correction, phenix. real_space _ refine	Atomic model	Map 7	~4-10
LEO1/U	Triple barrel	462- 497	Homology	1F3U/A	Phyre2	NAMDinator, manual correction, phenix. real_space refine	Backbone trace with unknown register	Map 7	~4-10
LEO1/U	DNA loop/C/termi nal extension	505- 525	Ab initio			manual correction, phenix. real_space _ refine	Backbone trace with unknown register	Map 7	~4-10
LEO1/U	C-terminus	526- 666	Not modelled						
CDC73/X	N-terminal bundle and connector	1-111 and 112-217	Not modelled						
CDC73/X	Anchor helix	218-260	Homology	6AF0/C	Phyre2	NAMDinator, manual correction, phenix. real_space _ refine	Atomic model	Maps 4, 5	~4-8
CDC73/X	Linker and Ras-like domain	261-226 and 337-531	Not modelled						
SPT5/Z	CTR linker	755-767	Ab initio			manual correction, phenix. real_space _ refine	Backbone trace	Maps 2, 3	~5

SPT5/Z	CTR	780-790	Crystal	4L1U/H	manual	Atomic	Map 2	~5
		(mutate	structure		correction,	model	-	
		d to			phenix.			
		771-			real_space			
		781)			_ refine			

Chd1 interacting region SGSDENLDQ ELLSLAKRK SDSEEKEPPYSOPAASS 93 SGSDENLDQ ELLSLAKRK VDSDEGE EPVSOPAASS 98 SASDENLDQ ELLSLAKRK VDSDEGE EPVSOPAASS 98 SASDEETKRAPATS	A C C C C C C C C C C C C C C C C C C C	KLKTAKKKEKKE. KLKTAKKEKKE. KLKTAKKEKKE. KLKTAKKKEKKE. KLKTAKKKEKE KLKTAKKKEKE KLKTAKKKEKE KLKTAKKKEKE KLKTAKKSEK KLKTAKSSEK. SLLKTAKSSEK. KTPVSKETQPLPAS KLFTARKSKESEK. KTPVSKETQPLPAS KLFTARKSKESEK. KTPVSKETQPLPAS KLFTARKSKESEK. KTPVSKETQPLPAS KLFTARKSKESEK. KTPVSKETQPLPAS KLFTARKSKESEK. KTPVSKETQPLPAS KLFTARKSKESEK. KTPVSKETQPLPAS KLFTARKSKESEK. KLFTARKSKESEK. KTPVSKETQPLPAS KLFTARKSKESEK. KLF	 HNKERR SKRDEK HNKERR SKRDEK LDKK SQAMEELKAERE Z34 HNKERR SKRDEK LDKK SQAMEELKAERE Z35 HNKERR KRDEK LDKK SQAMEELKAERE Z35 HNKERR KRUVEANKT DDKR SNAMELLKAREG Z34 FHP SDI NR FHP SDI NR AK COMMALKANKR INA IN	SRT SSSDEEEEK EE IPK SQPVSLPEELNRVR LSRH 367 SRT SSSDEEEEK EE IPPK SQPVSLPEELNRVR LSRH 372 SRSSS DEEEEK EEAPR SQPVSLPELNRIR LSRH 353 SNSSS SSE SEDEEEK APORPVFITTREDLNKLR LSRH 353 SRESS SE SEDEEK APORPVFITTREDLNKLR LSR 442 SRESS PRVSEK VENTFEDVKEVTIRRS 275 DEGSNGGMLDSDDDRSDVPEISDFNKLRIRRS 275 DKREEVEWA	HGNDORV FRLEFVSNOEFTESEFMKWKEAMFSAG 463 HGNDORV FRLEFVSNOEFTESEFMKWKEAMFSAG 468 HGNDTRV FRLEFVSNOEFTESEFMKWKEAMFSAG 468 HGNDTRV FRLEFVSNOEFTESEFMKWKEAMFSAG 468 HGGSERP FRLEFVSNOEFTESEFMKWEVCQSH 538 NGGSERP FRWOFVSAADFEQIEFDEWLLACR+H 325 MGNETSAARWOMMISDGHPLEEEFRQMIREVERTN 375 QGKDRKW FQMNYFSDGLFAEEFYRQMIREVERTN 375	DODKAKO JODALNELEERAEALDRORTKNI SAISYI 563 DODKAKO JODALNELEERAEALDRORTKNI SAISYI 568 DGDKAKT LQDOLNELEERAEALDRORTKNI SAISYI 568 DT JODLGOD DELENRA SELDKRRTHNI SYI 639 DY DI AQDLGOD DELENRA SELDKRRSHTLNI SYI 638 DY DI RELEDI QTKI DELENRA SELDKRRSHTLNI SYI 638 DY DI RELEDI QTKI DELENRA SALAKA 471 471 NEKDI AKY SAQLRNFEKRMSVYEKHHENDOSDIKKL 451	LNAKYGSGVLPDAPKEMSKGGKDKDLNSK 64 LNAKYGSGVLPDAPKEMSKGGGKDKDLNSK 654 LNOKYGSGSGAGQDNSQQANKQLGGASQKDKDV-TK 640 LP	R SLNLEDYKKRRG. 710 R SLNLEDYKKRRG. L1 711 R SLNLEDYKKRRG. L1 715 R SLNLEDYKKRRG. L1 717 R SLNLEDYKKRRG. L1 717 R SLNLEDYKKRG. L1 701 R SLNLEDYKKRG. L1 701 R SLNLEDYKKRG. L1 701 R SLNLEDYKKRRG. L1 701 R SLNLEDYKKRRG. L1 701 R SLNLEDYKKRRG. L1 703 R SLNLEDYKRRRG. L1 703 K SDYKRRRG. L1 643 K SDYKRRRG. L1 643
lent. EGSPGGRRGSRGTM VKKRKGRVVIDSDT ED EGSPGGRRGSRGTM VKKRKGRVVIDSDT ED HTHRGRQLTM-NVKKRKGRVVIDSDS-ED ED ED ED ED ED ED ED ED ED ED ED ED E	KK GTMK KQANKTA S SGS SDK D S S	EDRARLEOMTEKEREQELFNRIEKREVLKRRFEIKK EDRARLEOMTEKEREQELFNRIEKREVLKRRFEIKK EDRARLEOMTEKEREQELFNRIEKREVLKRRFEIKO EDRARLEOMTEKEREGELFNRIEKREVLKRRFEIKO EDRARLEOMTEKERETEIYKRIEGREOLERENERENELEREN EDRARWKLITELEKEQEIFERMEARENAIAREEIAO EDRAKLAGMTEFOREILERENEARENAIAREEIAO EDRAKLAGMTEFORMILSERADKKGDI	ESQVT-SS-SS-SS-SS-SS-SS-SS-SS-SS-SS-SS-SS-SS	 PLKTSEVYSDDEEEEEDDKSSEKSDRS PLKTSEVYSDDEEEEDDDKSSEKSDRS PLKTSEVYSDDEEEEDDDKSSEKSDRS KSAV-KLKASEVYSDDSGSSDW.DEEEKPAGKRSRS STKRPLASSNLSSSSSSESESSSSSSSSSSSSSSSSSSSSSSSS	SKPVYRVAE T GVV ET AKVYOLGGT RT NKGLOLRI SKPVYRVAE T GVV ET AKVYOLGGT RT NKGLOLRI NKPVYRVAE I DVV ET AKI YOLGGT RT NKGLOLRI OKPVYRVAE I DVV ET AKI YOLGST RT NKGLOLRI SGSKT INKL VGV EE SNKVY EL EGKKT NKI I KCO SGP I YR LCWVKNVDAT DP DKT YKL ENKT THKYL NVVV SKT SYRMVR ERVF- LOKP MMGKFYT NOY FGVT	EIVEK ERFRK APPNYAMKTOLLK EKAMA EDLG EIVEK ERFRK APPNYAMKTOLLK EKAMA EDLG DIVK EKDRFRK APPNYAMKTOLLK EKAMA EFGG KILVE EKNERRA - RPTNYAMKTOLLK ERAMA EFGG MILG EKNERN - RPTNYAMKTOLLK ERAMA EGG MILG EK SASV NPNNAA EKDN ELE I AQ SKN OMLQ EK KSASV NPMNVAA EKDN RELE I AQ SKN EVVRHRNG INKKL SGTNAVLEKTVL REKLQYAKETN Latch	00- MDP F TROCKPT I V SN SRDP AVQAA I LAO 00- MDP F TROCKPT I V SN SRDP AVQAA I LAO 00- MDP F TROCKPT I V SN SRDP AVQAA I LAO 10- KI SDP F TROCKPT MG F KG AKK D E D D MOL LA 12- V DP F TR I T OP R MG F KG AKK D E D D MOL LA 12- V DP F T R W T SS NY Y NG K N K G K D G E E N E A A V A A SK- SDP F SN L TRY V Y Q E I Q K E E N A K K E	VP SS ESKALAIT SKAPPAKDGAPRI VP SS ESKALAIT SKAPPAKDGAPRI VP NAEAKALAIT SKAPPAKDGAPRI LP VNTNKSL SV SSNALPVKDGAPRI LP VNTN
Table 4RTF1 sequence alignm1MRGRLCVGRAAA1MRGRLCVGRAAAVAAAAAAAAVAPLAGGO1MRGRLCVGRAAAVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	94 DS E- TSDSDDEWTFGSNKNKKGKARK-IE 95 DS E- TSDSDDEWTFGSNKNKKGKFRK-VE 76 DS E- TSDSDDEWTFGSNKNKKGKPSKGPE 76 DS E- TSDSDDEWTFGGTKTKKGFSSSGFE 46 SSR-SDSDSDW	 IG3 SSSSSD SDSSSEDEEFHDGYGEDLMGDE IG8 SSSSSD SDSSSEDEEFHDGYGEDLMGDE IA6 SSSSSD SDSSSEDEVFBDGFDDLMGDE IA5 SSSSD SDSSSEDEVFBDGFDDLMGDE IA5 SSSSD SDSSSSSSSDSEFDDGFDDLMGDD II SDSSSSSSSDSEFDDGFDDLMGDD II SDQVDDDLMGD II	251 K LTQ I Q. 256 K LTQ I Q. 234 R EQQAP LPTQAST ST LLDV EP K P SN EV R SA 241 R EQQAP LPTQAST ST LLDV EP K P SN EV R SA 148 SDAG5PK	 291 - KRKNRTA ELLAKKQ	368 K L ERWCHMP F F AKT VT G C F V R I G I G N H N 373 K L ERWCHMP F F AKT VT G C F V R I G I G N H N 374 K L ERWCHMP F F AKT VT G C F Y I G I G N S S I 473 K M F F V N L P I F E S T V L N C F V R I S I G N N G 267 K L S L N I H A P F F D S T V V G V R L G G Q M - S G 266 K L AKWL M E P F E E L I V G C F V R V G I G R - S K I 253 F V AK F C F Y P G F E D A V K G V G V V V G I C K R T I	464 MOL PT LDE INKKELS I KEALNYKFNDQDIE 469 MOL PT LDE INKKELS I KEALNYKFNDQDIE 450 MOL PT LDE INKKOS I KEALNYFFNDQDIE 539 VOM PT IDLIAI KQNDIKKALNYFFKDEDVDI 336 GLPTVDIMDKKQDIEKALNYFFXDEVD 336 GRM PT KQDISEKKEALORTNSFVYAAETVK 350 MIK BSLHSLSNKTKEVMDFVNTPLTDKTTD	 564 NO	650 SASDLSEDLFKVHDFDVKIDLO 655 TASDLSEDLFKVHDFDVKIDLO 641 PTSDLSEDLFKVHDFDVKIDLO 718 STDSKDY SLYSHHDFDVKIDLO 718 STDSKDY SLYSLHDFDIDLO 718 API 00GA EHNQLHDFLIDLU 588 API 00GA EHNQLHDFLLDLU 588 API 00GA EHNQ
Supplementary sp(93541)RFT_HUMAN1-710 sp(93541)RFT_HUMAN1-710 sp(9354)RFT_MOUST-715 sp(9355)RFT_MOUST-715 sp(9355)NF5_AFT_1613 sp(95350)NF5_AFT_1613 sp(95360)NF5_AFT_1-613 sp(95360)NF5_AFT_1-613	sp(92541[RTF1_HUMAN1-710 splAzotjajRTF1_MOUSE1-715 tr(512X4[GIX2A_DMRE1-701 sp(950550]WF1_DROWE1-775 sp(55BF0]RTF1_CAEH71-613 sp(95056]WF5_ARATH1-643 sp(95056]WF5_ARATH1-643	sp(992541)RTF1 HUMAN1-710 sp)A24Q19)RTF1_MOUSE1-715 tr(61224)GL3024)ADANE71-701 sp(990261)RTF1_DR0ME1-775 sp(99026)MP5_ARATH/1-643 sp)P53064]RTF1_YEAST71-558	sp(392541)RTF1_HUMANU1-710 sp(A2AQ19)RTF1_MOUSE1-715 tr(51224)GLART_MOUSE1-715 sp(39025)RTF1_DAURE1-701 sp(3925)RTF1_DADME1-775 sp(39250)RP5_ARATH/1-643 sp(9535064)RTF1_YEASTV1-558	sp(092541)RTF1_HUMAN1-710 sp/2AQ19(RTF1_MOUSE1-715 tr(61224)GLINTE_DRONE1-775 sp(058050)NF2_RTE1_DRONE1-775 sp(058050)NF2_ARATH1_643 sp(05950)NF2_ARATH1_643 sp(95056)NF2_ARATH1_643	sp(992541)[RTF1_HUMAN1-710 sp)A24Q19[RTF1_MOUSF1-715 tr[61224]GL3241_DANBF1-701 sp(958E0][RTF1_DR0ME1-775 sp(558E0][RTF1_DR0ME1-775 sp)(953064][RTF1_CAEL1-613 sp)(953064][RTF1_YEA5771-558	sp(292541)RTF1_HUMAN1-710 sp(224)GIRTF1_MOUSF1-715 sp(29026)RTF1_DROUSF1-701 sp(29026)RTF1_DROUSF1-705 sp(2925)RTF1_DROUSF1-775 sp(29250)RF2_ARATH/1-643 sp(29250)RF2_ARATH/1-543	sp()292541]RTF1_HUMAN1-710 sp)A24019[RTF1_MOUSE1-715 tr[G1224]G1224[G1224]_715 sp[039026]RTF1_DR0ME1-775 sp]036867[RTF1_DR0ME1-775 sp]036867[RTF1_CBEL1-613 sp]035050[NF2_ARATH/1-643 sp]953064[RTF1_YEA5771-558	sp(292541)RTF1_HUMAN1-710 sp(2424)GIRTF_MOUSF1-715 tr[G1X24]GIRTF_MOUSF1-715 sp(292051)RTF1_D60ME1-775 sp(255B70)RTF_060ME1-775 sp(25550)MF5_ARATH1-643 sp[953064]RTF1_YEAST1-558