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1 Introduction

Black holes are perhaps the most fascinating and amazing astrophysical objects that have
ever emerged as the solutions of gravitational theories. These wonderful and enrich struc-
tures provide a powerful background for exploring different branches of physics includ-
ing quantum gravity, thermodynamics, superconducting phase transition, paramagnetism-
ferromagnetism phase transition, superfluids, condensed matter physics, spectroscopy, in-
formation theory, holographic hypothesis, etc. This powerfully is mainly due to the dis-
covery of the well established correspondence between gravity in d-dimensional anti-de
Sitter (AdS) spacetime and the conformal field theory (CFT) living on the boundary of
(d − 1)-dimensional spacetime, known as AdSd/CFTd−1 correspondence or gauge/gravity
duality. Recently, black holes have also received a renewed attention after some significant
steps toward understanding the puzzle of information paradox [1] as well as the shadow
of the supermassive black holes as the first results of M87 Event Horizon Telescope [2].
It was shown that there exist soft hairs, including soft gravitons and/or soft photons, on
the black hole horizon and the complete information about their quantum state is stored
on a holographic plate at the future boundary of the horizon [1]. Black hole entropy and
microscopic structure near the horizon can be understood through these soft hairs [3–6].

One of the most significant achievements in black hole physics has been the discov-
ery of three dimensional solutions of general relativity in AdS spacetime known as BTZ
(Banados-Teitelboim-Zanelli) black holes [7]. In fact, the (2 + 1)-dimensional solution of
Einstein gravity provides a simplified model to investigate and find some conceptual issues
such as black hole thermodynamics, quantum gravity, string and gauge/gravity duality,
holographic superconductors in the context of the AdS3/CFT2 [8–12]. It has been shown
that the quasinormal modes in this spacetime coincide with the poles of the correlation
function in the dual CFT. This gives quantitative evidence for AdS3/CFT2 [13]. Further-
more, BTZ black holes play a crucial role for improving our perception of gravitational
interaction in low dimensional spacetimes [14]. In particular, it might shed some light on
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the quantum gravity in three dimensions. Geometry of the spinning (2 + 1)-dimensional
black holes has been explored in [15]. It was shown that the surface r = 0 is not a cur-
vature singularity but, rather, a singularity in the causal structure which is everywhere
constant and continuing beyond it would produce closed timelike curves [15]. The exten-
sion to include an electric charge in addition to the mass and angular momentum have
been performed [16, 17]. The (2 + 1)-dimensional black holes also provide a powerful back-
ground to explore one-dimensional holographic superconductors [18–22]. The studies on
(2 + 1)-dimensional solutions of gravitational field equations have been extensively carried
out in the literatures (see e.g. [8, 23–33]).

In this paper, we introduce the (2 + 1)-dimensional black hole solutions in the context
of mimetic gravity. The theory of mimetic gravity was proposed a few years ago, as an
alternative description for the dark matter puzzle [34]. It was argued that the mimetic field
can encodes an extra longitudinal degree of freedom to the gravitational field. Thus, the
gravitational field achieves, in addition to two transverse degrees of freedom, a dynamical
longitudinal degree of freedom which can play the role of mimetic dark matter. Latter,
it was shown that a modified version of mimetic gravity can resolve the cosmological sin-
gularities [35] as well as the singularity in the center of a black hole [36]. Besides, it has
been confirmed that the original setting of the mimetic theory predicts that gravitational
wave (GW) propagates at the speed of light, ensuring agreement with the results of the
event GW170817 and its optical counterpart [37, 38]. It has also been shown that this
theory can explain the flat rotation curves of spiral galaxies [39, 40]. Mimetic theory of
gravity has arisen a lot of enthusiasm in the past few years both from the cosmological
viewpoint [41–56] as well as black holes physics [57–72].

Till now, black hole solutions of mimetic gravity in (2 + 1)-dimensions have not been
explored. Our purpose here is to construct static and stationary analytical black hole
solutions of mimetic gravity in three dimensional spacetime and investigate their properties.
These new solutions provide a set up, for future investigations, to examine mimetic theory
of gravity and its physical consequences in lower spacetime dimensions and examine the
viability of this theory. In particular, it may be useful for investigating one-dimensional
holographic superconductors in the context of mimetic gravity. We shall consider several
cases including whether or not there is a coupling to the Maxwell field or whether or not
there is an angular momentum associated with the spacetime. We study the effects of the
mimetic field on the casual structure and physical properties of the solutions and disclose
that, in contrast to the three dimensional solution of general relativity, in mimetic gravity a
curvature singularity emerges at r = 0 even in the absence of Maxwell field. This essential
singularity might be due to the extra longitudinal degree of freedom of the gravitational
field encoded by the mimetic field. Surprisingly, the curvature singularity disappears by
adding an angular momentum to the spacetime.

This paper is organized as follows. Section 2 is devoted to introducing the basic field
equations of mimetic gravity in (2 + 1)-dimensions. For simplicity we first ignore the
coupling to the Maxwell field in this section and construct three dimensional black hole
solutions. In section 3, we take into account the Maxwell field and explore charged mimetic
black holes in three dimensions. In section 4, we add an angular momentum to the back
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hole and investigate rotating (2+1)-dimensional solution of mimetic gravity. We summarize
our results in section 5.

2 Field equations and solutions

We start with the following action

S =
∫
d3x
√
−g

(
R+ λ(gµν∂µφ∂νφ− ε) + 2

l2
− FµνFµν

)
, (2.1)

where R is the Ricci scalar, λ is the Lagrange multiplier, and l is related to the cosmological
constant by −Λ = l−2. Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor and Aµ is
the gauge potential. In the above action, ε = ±1, in which the positive and negative sign
refer to, respectively, spacelike and timelike nature of vector ∂µφ. We adopt (−,+,+) as
our signature and set 8πGN = 1 throughout this work. The equations of motion can be
derived from varying action (2.1), yielding

Gµν = λ∂µφ∂νφ+ gµν
l2

+ Tµν (2.2)
1√
−g

∂κ(λ
√
−g∂κφ) = ∇κ(λ∂κφ) = 0, (2.3)

∂µ
(√
−gFµν

)
= 0. (2.4)

gµν∂µφ∂νφ = ε. (2.5)

where
Tµν = 2FµγF γ

ν −
1
2gµνFαβF

αβ , (2.6)

being the Maxwell energy-momentum tensor. Equation (2.5) restricts the evolution of the
mimetic field φ and indicates that the scalar field is not dynamical by itself, nevertheless it
makes the longitudinal degree of freedom of the gravitational field dynamical [34]. It was
argued [34] that if one assume gµν = gµν(φ, g̃µν), in such a way that gµν = ε(g̃αβ∂αφ∂βφ)g̃µν ,
then one recovers (2.5) immediately (see also [54, 57]). Tracing eq. (2.2), combining with
eq. (2.5), yields λ = ε

(
G− T − 3/l2

)
, where G and T are, the trace of the Einstein tensor

and energy momentum tensor, respectively. Substituting λ in the field equations (2.2)
and (2.3), they transform to

Gµν = ε

(
G− T − 3

l2

)
∂µφ∂νφ+ gµν

l2
+ Tµν , (2.7)

∂κ

[√
−g

(
G− T − 3

l2

)
∂κφ

]
= 0, (2.8)

Our aim here is to derive static (2 + 1)-dimensional black hole solutions of the above field
equations. We assume the metric of spacetime as

ds2 = −f(r)g2(r)dt2 + dr2

f(r) + r2dϕ2, (2.9)

where an additional degree of freedom is incorporated in the line element through the
metric function g(r) which is expected to reflect an extra degree of freedom of gravitation
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encoded by the mimetic field φ. With metric (2.9), the constraint eq. (2.5) transforms to
f(r)φ′2 = ε, which has solution of the form

φ(r) =
∫

dr√
|εf(r)|

, (2.10)

where we have chosen the positive sign and set the integration constant equal to zero,
without loss of generality. Equation (2.10) shows the explicit dependence of the mimetic
field on the metric function and reveals that it is not an independent dynamical variable.
Let us first consider the uncharged solution. In this case the field equations (2.7) and (2.8),
have the following solutions

f(r) = −M + r2

l2
, (2.11)

g(r) = 1 + b r√
|r2 −Ml2|

, (2.12)

where b is the constant of integration which incorporates the impact of the mimetic field
into the solutions. In general b could be either positive or negative. For b = 0, our solutions
reduce to the (2 + 1)-dimensional BTZ black holes of Einstein gravity [7]. The horizon is
located at r+ = l

√
M where f(r+) = 0, while g(r+) diverges. However, r = r+ is a

coordinate singularity and both Kretschmann and Ricci scalars have finite values at r+.
The sign of |r2 − Ml2| depends on whether one considers interior solution (r < r+) or
exterior solution (r > r+). Expanding g(r) for large r leads to

g(r) ≈ 1 + b+ bMl2

2r2 +O

( 1
r4

)
. (2.13)

Therefore as r →∞, we have g(r) ≈ 1 + b, which implies that the remnant of the mimetic
field φ contributes to the metric function g(r) through constant b. Nevertheless the asymp-
totic behavior of the solutions is still AdS since the constant 1 + b can be absorbed by
redefinition of the time at the asymptotic region.

The (tt) component of the metric is given by

−gtt(r) = f(r)g2(r) = 1
l2

[√
|r2 −Ml2|+ b r

]2
, (2.14)

where its expansion for large r is given by

−gtt(r) ≈ −(1 + b)M + (1 + b)2 r
2

l2
− bM2l2

4r2 +O

( 1
r4

)
. (2.15)

This confirms that in large r limit, we have −gtt 6= grr. On the other hand when r → 0,
we have g(r) = 1 and −gtt = grr = f(r). The infinite redshift surface can be obtained by
setting gtt(r) = 0, which yields

rsi = r+√
1± b2

, (2.16)

where i = 1, 2 and − for rs1 > r+ and + for rs2 < r+. This means that we have 2 infinite
redshift surfaces and the black hole horizon is located between them, rs2 < r+ < rs1 .
Besides, rs1 exists provided b2 < 1.
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We now calculate the scalar curvatures of the spacetime. It is a matter of calculations
to show that the Ricci scalar and the Kretschmann invariant are given by

R=
2
[
b(Ml2−3r2)−3r

√
|r2−Ml2|

]
rl2
(√
|r2−Ml2|+br

) , (2.17)

RµνρσR
µνρσ =

4
{

3r2(r2−Ml2)+2br(3r2−Ml2)
√
|r2−Ml2|+b2(3r4−2Ml2r2+M2l4)

}
r2l4

(√
|r2−Ml2|+br

)2 ,

(2.18)

Thus, as r → 0, both Ricci and Kretschmann invariants diverge, they are finite at r 6= 0
and go to R = −6/l2 and RµνρσRµνρσ = 12/l4 as r →∞. Therefore, the spacetime has an
essential singularity at r = 0. This is in contrast to the (2 + 1)-dimensional black holes of
Einstein gravity where r = 0 is not a curvature singularity but, rather, a singularity in the
causal structure [15]. Indeed, for Einstein gravity where b = 0, the curvature invariants
have constant values anywhere, namely R = −6/l2 and RµνρσR

µνρσ = 12/l4, and the
curvature singularity disappears.

In the next section, we shall consider the (2 + 1)-dimensional charged black hole of
mimetic gravity.

3 Charged mimetic black holes in 3D

In the presence of coupling to the Maxwell field, the gauge potential and the non-vanishing
component of the electromagnetic tensor become

Aµ = h(r)δ0
µ, Ftr = h′(r), (3.1)

where prime indicates derivative with respect to r. Then it is easy to show that the Maxwell
equation (2.4) transforms to

rh′′(r)g(r)− rh′(r)g′(r) + h′(r)g(r) = 0, (3.2)

which has the following solution

Ftr = h′(r) = q

r
g(r), (3.3)

where q is an integration constant which is indeed the electric charge of the black hole.
Substituting metric (2.9), condition (2.10), and the electric field (3.3) into eq. (2.7), we find

l2rf ′ − 2r2 + 2q2l2 = 0, (3.4)
l2gf ′ + 3l2rf ′g′ + 2l2rfg′′ + l2rgf ′′ − 4rg = 0, (3.5)

3l2r2f ′g′ + 2l2r2fg′′ + l2r2gf ′′ − 2r2g − 2q2l2g = 0. (3.6)

These equations have the following solutions

f(r) = −M − 2q2 ln(r) + r2

l2
, (3.7)

g(r) = 1 + b1

∫
dr√

|r2 − 2q2 ln(r)−Ml2|3
, (3.8)
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Figure 1. The behavior of f(r) for charged mimetic black holes in 3D and different M . Here we
have taken l = 1 and q = 1.5.

where b1 is again an integration constant which reflects the imprint of the mimetic field on
the spacetime. Clearly for b1 = 0, one recovers the (2 + 1)-dimensional charged black holes
of general relativity [16]. One can easily check that these solutions also satisfy eq. (2.8) for
the mimetic scalar field. The horizons are given by the roots of f(rh) = 0. Depending on
the parameters this equation may have at most two real roots corresponding to inner and
outer horizon of the black hole. Of course, one may choose the parameters such that the
solutions also describe extremal black hole with one horizon, or a naked singularity (see
figure 1). The integrand in expression (3.8) also diverges at rh indicating that we encounter
singularity. However, r = rh is only a coordinate singularity and both Kretschmann and
Ricci scalars have finite values on the horizon. The integral in g(r) function cannot be an-
alytically performed for arbitrary values of r, however, it is instructive to study the large
r limit of g(r). In this case, one can write

g(r) ≈ 1 + b1

∫
dr

r3 ≈ 1− b1
2r2 , (3.9)

−gtt(r) ≈
(
−M − 2q2 ln(r) + r2

l2

)(
1− b1

2r2

)2
(3.10)

≈ −M − b1
l2
− 2q2 ln(r) + r2

l2
+ 2b1q

2ln(r)
r2 +

(
Mb1 + b2

1
4l2

)
1
r2 +O

( 1
r4

)
.

Therefore, as r →∞ we have −gtt 6= grr, and the remnant of the mimetic field contributes
to the metric function gtt through constant b1. It is also interesting to take a close look on
the roots of gtt = 0 which define the infinite redshift surfaces. Since there is no any phys-
ical reason to avoid negative b1, thus one can choose either b1 > 0 or b1 < 0. For b1 ≤ 0,
the infinite redshift surfaces rsi coincide with the horizons rh = r±, namely the roots of
f(rh) = 0. However, for b1 > 0, the function gtt admits an additional root rs3 =

√
b1/2

(see figure 2). Note that rs3 can be either larger, equal or smaller than r− depending on
the values of b1. It is easy to show that, for all values of b1, both Ricci and Kretschmann
scalars diverge at r = 0, they are finite at r 6= 0 and as r → ∞ they tend to constant
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Figure 2. The behavior of −gtt = f(r)g2(r) for charged mimetic black holes in 3D and different
b. Here we have taken M = 2, l = 1, q = 1.5.
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Figure 3. The behavior of the electric field Ftr = E(r) for 3D charged mimetic black holes with
q = 2.

values, R = −6/l2 and RµνρσR
µνρσ = 12/l4, similar to 3D solutions of Einstein gravity.

This analysis confirms that there is a curvature singularity at r = 0, regardless of the value
of b1. The behaviour of the electric field for the large r is also given by

Ftr ≈
q

r

(
1− b1

2r2

)
. (3.11)

We have also plotted the behavior of the electric field Ftr in figure 3. This figure shows
that the electric field diverges for small r and goes to zero in large r limit. For b1 > 0, the
electric field has a maximum at finite r which can be easily seen from expression (3.11).
Expression (3.11) also shows that, compared to the case of Einstein gravity, the electric
field of three dimensional charged mimetic black hole get modified due to the presence of
mimetic field.
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4 Rotating mimetic black holes in 3D

Now we consider spinning solutions of mimetic gravity in (2 + 1)-dimensions. We take the
spinning metric as

ds2 = −f(r)g2(r)dt2 + dr2

f(r) + r2(JN(r)dt+ dϕ2)2, (4.1)

where functions f(r), g(r) and N(r) are determined by solving the field equations. Clearly,
in the limiting case where the mimetic gravity reduces to Einstein gravity, one expects to
have g(r) = 1 andN(r) = −1/2r2 [7]. The (tφ) component of the field equations (2.7) yields

rg(r)N ′′(r) + 3g(r)N ′(r)− rN ′(r)g′(r) = 0, (4.2)

which implies g(r) = r3N ′(r). Combining with (tt) component of the field equation we
arrive at

l2J2 + 2l2r3f ′(r)− 4r4 = 0, (4.3)

with the following solution

f(r) = −M + r2

l2
+ J2

4r2 . (4.4)

Finally, the (rr) component of the field equations (2.7) can be solved to give

N(r) = − 1
2r2 + b0

r2

√
|l2J2 − 4Ml2r2 + 4r4|, (4.5)

g(r) = r3N ′(r) = 1 +
2b0Ml2

(
2r2 − J2

M

)
√
|l2J2 − 4Ml2r2 + 4r4|

. (4.6)

One can easily show that these solutions fully satisfy the field equations (2.7) and (2.8).
In the limiting case where b0 = 0, the obtained solutions reduce to the (2 + 1)-dimensional
rotating black hole solutions of general relativity [7]. When J = 0, they restore the solu-
tions (2.11) and (2.12) provided we define b = 2b0Ml2. It is a matter of calculations to
check that f(r) vanishes for two values of r given by

r± = l

√√√√√M

2

1±

√
1− J2

M2l2

, (4.7)

where r+ is the black hole horizon. In order for the solution to describe a black hole, one
must have

M > 0, |J | ≤Ml. (4.8)

In the extremal case where |J |=Ml, the two roots coincide and we have r+ = r−= l
√
M/2.
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The surface of infinite redshift can be given by finding the positive real roots of the
following equation

gtt(r) = 4b2
0r

2(J2 −M2l2) +M − 2Mb0
√
l2J2 − 4Ml2r2 + 4r4 − r2

l2
= 0, (4.9)

with following solution

rs = l

√
M(1 + 2b0lJ)

1 + 4b0lJ + 4b2
0l

2(J2 −M2l2)
. (4.10)

Therefore, the solution admits a surface of infinite redshift, similar to the (2+1)-dimensional
rotating black hole of general relativity [15] which has an infinite redshift surface located
at rs = l

√
M . In the limiting case where b0 = 0 the infinite redshift surface coincides with

one of Einstein gravity, while for the extremal case (|J | = Ml) the infinite redshift surface
becomes

rext
s = l

√
M(1 + 2b0Ml2)

1 + 4b0Ml2
. (4.11)

In general the location of rext
s depends on the value of b0Ml2 and it is easy to check that

it is located out of horizon, namely rext
s > r+ where r+ = l

√
M/2 is the horizon radius of

extremal case.
Next we study the scalar invariants. It is easy to check that as r → 0, the Ricci and

Kretschmann invariants behave as

lim
r→0

R = 2[2b0lJ
2 + 4b0l

3M2 − 3J ]
l2J(1− 2b0lJ) , (4.12)

lim
r→0

RµνρσR
µνρσ = 4

[
3J2(1 + 4b2

0l
2J2)− 16b2

0l
4M2(J2 −M2l2)− 4b0lJ(J2 + 2M2l2)

]
l4J2(1− 2b0lJ)2 ,

(4.13)

which have finite values unless for the static case (J = 0), where both of them diverge
at r = 0. This is a very interesting result which reveals that in (2 + 1)-dimensional
mimetic gravity, adding the angular momentum J to the spacetime removes the curvature
singularity at r = 0. Indeed for J = 0, the Ricci and Kretschmann invariants reduce
to (2.17) and (2.18) with replacement b = 2b0Ml2 and both of them diverge at r = 0.
On the other hand, in the asymptotic region where r → ∞ we have still R = −6/l2 and
RµνρσR

µνρσ = 12/l4 for rotating solutions (J 6= 0), which confirms that the solutions are
asymptotically AdS similar to (2 + 1)-dimensional rotating solutions of general relativity.

Let us remind that for b0 = 0 the curvature invariants have finite values at the origin
for both static and rotating solutions, namely R = −6/l2 and RµνρσR

µνρσ = 12/l4 [15].
In mimetic gravity, however, we observed that while for static solutions they diverge at
r = 0, but for rotating solution they have finite values at r = 0. In other words, imprint of
mimetic field to the spacetime structure in mimetic theory of gravity makes the spacetime
singular at the origin r = 0, while the combination of angular momentum J and mimetic
field remove the curvature singularity at the origin.
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Figure 4. The behavior of f(r) for rotating black hole in 3D with different M , where we have
taken l = 1 and J = 2.
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Figure 5. The behavior of g(r) for rotating black hole in 3D with different J , where we have taken
l = 1, b0 = 0.5 and M = 2.

The behavior of the metric functions f(r), g(r) and N(r) for rotating mimetic black
holes in three dimensions are plotted in figures 4–8. From figure 4, we see that depending
on the metric parameters, our solutions can represent black hole with one horizon, two
horizon or naked singularity. Figures 5 and 6 reveal that the metric function g(r) tends
to a constant value far from the black hole. The value of this constant depends on b0,
M and l but independent of J . The intersection of all curves in figure 6 is the point in
which g(r) = 1 which occurs at r = J/

√
2M independent of b0. We have also depicted the

behavior of N(r) in figures 7 and 8 where it can be seen that N(r) → ∞ as r → 0, while
for large values of r we have N(r)→ 2b0.
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Figure 6. The behavior of g(r) for rotating black hole in 3D with different b0, where we have taken
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Figure 8. The behavior of N(r) for rotating black hole in 3D with different b0, where we have
taken l = 1, J = 4 and M = 2.
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5 Summary

To sum up, using a scalar mimetic field for isolation the conformal degree of freedom of the
gravitational field in a covariant way, it has been demonstrated that the scalar field can
encode an extra dynamical longitudinal degree of freedom to the gravitation field which
can play the role of mimetic dark matter even in the absence of particle dark matter [34].
In this paper, we have focused on mimetic gravity in (2 + 1)-dimensional spacetime and
constructed various static and spinning black hole solutions of this theory. In contrast
to the three dimensional solutions of Einstein gravity which has only causal singularity
and scalar invariants are constant everywhere, in mimetic gravity the spacetime admits a
curvature singularity. We confirmed that both Ricci and Kretschmann curvatures of three
dimensional mimetic black holes diverge at r = 0 even in the absence of Maxwell field.
Interestingly, when the angular momentum is added to the spacetime, the singularity at
r = 0 disappears and the scalar invariants become constant.
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