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Frequency-doubling of continuous laser light in
the Laguerre–Gaussian modes LG0,0 and LG3,3
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For future generations of gravitational wave detectors, it is
proposed to use the helical Laguerre–Gaussian LG3,3 mode
to reduce thermal noise, which limits the detector sensitivity.
At the same time, this requires the efficient generation of
squeezed vacuum states in the LG3,3 mode for quantum
noise reduction. Since this technique includes the process
of second harmonic generation (SHG), we experimentally
compare the conversion efficiency and harmonic output
field of the LG0,0 and LG3,3 modes in a cavity-enhanced
SHG using the same 7% doped MgO:LiNbO3 crystal.
Conversion efficiencies of 96% and 45% are achieved,
respectively. The influence of mode mismatches and
astigmatism is analyzed to estimate the ratio of the pump
mode-dependent effective nonlinearities to be d0,0/d3,3 ∼ 5.
Furthermore, we show that absorption loss in the crystal is
more relevant for the LG3,3 mode. © 2020 Optical Society of
America

https://doi.org/10.1364/OL.402371

One of the fundamental noise sources in second generation
gravitational wave detectors such as Advanced LIGO and
Advanced Virgo, besides, e.g., quantum and seismic noise, is
coating Browning thermal noise, which limits the sensitivity
of these detectors in the highly interesting frequency range
around 100 Hz [1,2]. Instead of the currently used fundamental
Gaussian mode, higher-order Laguerre–Gauss (LG) modes
have been proposed as one method to reduce the coupling of
this thermal noise to the sensitivity of future detector gener-
ations [3]. Several experiments have already demonstrated
the high-purity generation of the helical LG3,3 mode and its
general compatibility with the design of gravitational-wave
detectors [4–8]. However, challenges with respect to mode
degeneracy have also been reported [9,10]. One remaining
question is whether squeezed vacuum states, injected into
the detectors to reduce quantum noise [11], can be efficiently
generated in the LG3,3 mode. The most mature approach
to produce continuous-wave squeezed vacuum states in the
fundamental LG0,0 mode uses second harmonic generation
(SHG) and subsequent parametric down-conversion [12,13].
To gain first insights into the transferability of this method to
the LG3,3 mode, we analyze its conversion efficiency, harmonic
output field, and absorption losses in a continuously pumped,
cavity-enhanced SHG in comparison to the LG0,0 mode.

In general, the intensity of higher-order modes is distributed
more uniformly over a larger transverse area compared to the
fundamental mode of the same beam radius. This implies lower
peak intensities, which reduces the interaction with a nonlinear
crystal. Assuming identical Gaussian beam parameters (waist
size and waist position), a beam in the LG3,3 mode (mode order
σ = 9) thus requires more power to achieve the same conversion
efficiency as a beam in the LG0,0 mode (mode order σ = 0).
We present an experimental investigation of this fundamental
difference and quantify it via a pump mode-dependent effective
nonlinearity d p,l of the nonlinear medium [14]. Mode mis-
matches and astigmatism at the SHG cavity, however, reduce
the resonant power such that the measured efficiency is lower
than the theoretical limit. Hence, three types of efficiencies are
presented: the external conversion efficiency ηext = Pout/P ext

in
refers to the ratio of the harmonic output power Pout to the
fundamental input power P ext

in , which is sent to the SHG cav-
ity. The corrected conversion efficiency ηcor = Pout/P mat

in with
P mat

in = P ext
in |κ|

2 takes a non-ideal mode matching of the input
beam to the SHG cavity and effects due to astigmatism via the
power coupling coefficient |κ|2 into account. The experimental
data is then compared to simulation results computed with
the nonlinear cavity simulator (NLCS) [15]. This comparison
allows us to estimate the effective nonlinearity d p,l of the used
medium and the medium-independent ratio d0,0/d3,3 for the
used beam focusing parameter. Finally, the effective conversion
efficiency ηeff = P eff

out/P ext
in includes the output mode purity

µout, where P eff
out = Poutµout is the fraction of the harmonic

output power, which is in a pure spatial mode.
Cavity-enhanced nonlinear processes are prone to non-

cylindrically symmetric abberations like astigmatism due to
imperfect cavity mirrors and inhomogeneities in the nonlinear
crystal. Here, we use a simplified model of an astigmatic cavity
to illustrate how this influences the SHG. Additional distortion
of the resonant modes or scattering into other modes (see, e.g.,
[16,17]) are neglected. The model considers a linear cavity with
a plane mirror (radius of curvature Rc 1 =∞) and a mirror that
features two different radii of curvature Rc 2,x and Rc 2,y on the
x and y axis, respectively (z defines the optical axis in this case).
This astigmatism breaks the cylindrical symmetry and the cavity
now favors the rectangularly symmetric Hermite–Gaussian
(HG) modes over the cylindrically symmetric LG modes. The
LG3,3 mode will thus be decomposed as [5]
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LG3,3 =

9∑
k=0

ck,9−kHGk,9−k with
9∑

k=0

∣∣ck,9−k

∣∣2 = 1, (1)

where ck,9−k are complex coefficients. Each of these HGm,n
modes is assumed to see an individual effective radius of
curvature Rc 2 at the curved mirror, defined as

Rc2(m, n) :=
m Rc2,x + nRc2,y

σ
, (2)

because the mode indices m and n quantify how the intensity of
HGm,n is distributed between the x and y axis. Since the round-
trip Gouy phase ξ rt in this cavity is given by [18]

ξ rt
m,n = 2 arccos(sign(g 1)×

√
g 1g 2(m, n)), (3)

where g 1 = 1− L/Rc 1 and g 2(m, n)= 1− L/Rc 2(m, n) with
the cavity length L , the HG modes are not resonant for the
same cavity length anymore and are separated in the normalized
resonance/transmission spectrum according to [19]

Pres(L)=
9∑

k=0

Pk,9−k

1+
(

2F
π

)2
sin2

(
−πL
λ
+ 5ξ rt

k,9−k

) , (4)

where Pk,9−k = |ck,9−k |
2, F is the finesse, and λ is the

wavelength (see Fig. 1).
In an experiment, the cavity length is typically stabilized

to the resonance condition of the mode of interest or, more
generally, to the maximum of Pres(L), which will be referred
to as “in lock.” In the case of astigmatism, the maximum of
Pres(L) does not coincide with the individual maxima of the
HG resonances anymore. In lock, each HG mode therefore
sees a different power buildup such that the circulating mode
composition deviates from a pure LG3,3 mode. This will affect
the output mode purity and cause mode mismatches between
the injected and resonating field in addition to deviating waist
sizes and positions. The latter effect reduces the effective mode
matching to the SHG cavity and, thereby, the circulating power.

Due to the astigmatism and additional mode distortion,
the cavity eigenfield in lock will not resemble a pure LG mode.
Furthermore, the injected field is typically not in a pure mode
either and may have slightly different Gaussian beam parameters
than the cavity eigenfield. Both effects lead to an imperfect over-
lap of the injected and eigenfield and to some input power being
reflected even off an impedance-matched cavity. The matched

Fig. 1. Simulated circulating power in an astigmatic cavity
for an injected LG3,3 mode using F = 300, Rc 2,x = 0.5000 m,
Rc 2,y = 0.5012 m, and L = 21 cm. FSR is the free spectral range, ideal
resonance assumes no astigmatism.

fraction of the input power can be quantified by the absolute
value squared of the overlap integral between the injected field
and eigenfield |κ|2 and called matched input power P mat

in .
For the LG0,0 mode, we could neglect astigmatism, as the

generated harmonic LG0,0 mode showed no measurable devi-
ation from the LG0,0 eigenmode of a subsequent triangular
reference cavity. The mode matching of the fundamental beam
to the SHG cavity was inferred from the higher-order mode
analysis of the transmission spectrum of the SHG cavity.

In the LG3,3 case, the transmission spectrum of the SHG
cavity could not be used to infer the effective mode matching.
Especially at higher levels of input power, the resonances, which
are ideally shaped like in Fig. 1, were deformed by astigmatism
such that the higher-order mode content could not be properly
analyzed. Instead, the reflected fundamental power, the trans-
mitted fundamental power, and the harmonic output power
were measured and inserted into the corresponding steady-state
equations of the SHG cavity. This set of three equations includes
|κ|2 as well as the single-pass power absorption coefficient l a

of the fundamental field and the single-pass power conversion
coefficient c as unknown parameters:

rrefl := Prefl/P ext
in = 1− γ |κ|2 = 1−

[
1−

∣∣arefl(l a , c )
∣∣2]|κ|2,

r trans := Ptrans/P ext
in = |atrans(l a , c )|2|κ|2,

ηext := Pout/P ext
in = |bout(l a , c )|2|κ|2,

(5)

with

arefl(l a , c)= ρa
1 −

(τ a
1 )

2(τ a
AR)

2ρa
2 (1− l a

− c)

1− ρa
1ρ

a
2 (τ

a
AR)

2(1− l a − c)
,

atrans(l a , c)=−
τ a

1 τ
a
2 τ

a
AR

√
1− l a − c

1− ρa
1ρ

a
2 (τ

a
AR)

2(1− l a − c)
,

bout(l a , c)=−
τ a

1 τ
a
ARτ

b
AR

√
c ((ρb

2 )
2 + (1− l a − c)(ρa

2 )
2)

1− ρa
1ρ

a
2 (τ

a
AR)

2(1− l a − c)
,

(6)

where γ is the power reflection coefficient due to the impedance
condition, and the other parameters are allocated in Fig. 2;
ρ and τ are amplitude reflection and transmission coefficients,
respectively; 1, 2, and AR indicate the incoupling mirror, crystal
end face, and anti-reflection-coated face, respectively; a and b
indicate the fundamental and harmonic field, respectively. The
absorption of the harmonic field is neglected, and the absorp-
tion and conversion of the fundamental field are assumed to be
equal for both passes through the crystal during one roundtrip

Fig. 2. The hemilithic SHG cavity is formed by an incoupling
mirror and the curved crystal face. This figure allocates all relevant
fields and cavity properties used in Eq. (5).
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Fig. 3. Schematic of experimental setup. Not shown: FI right after
the laser and the PDH locking scheme of the MC.

because the fundamental field is nearly undepleted after the
first pass.

The uncertainty in the nominal ρa
2 had a very high impact

on the result for |κ|2; hence, the uncertainty in the corrected
conversion efficiency is in the order of ±10%.

We define the output mode purity of the LG3,3 SHG with
respect to the LG6,6 mode because it is expected to dominate
the harmonic output field in an undisturbed situation [14].
We measured this purity with a CCD beam analyzer as done in
Ref. [6].

The experimental setup (see Fig. 3) is designed for the usage
of both the LG0,0 and LG3,3 mode and features a 2 W non-
planar ring laser (NPRO) continuously emitting the LG0,0
mode at a wavelength of 1064 nm. For downstream applica-
tions, two removable mirrors allow us to switch between the
LG0,0 mode and the conversion into the LG3,3 mode performed
by a diffractive optical element (DOE) with an efficiency of
75± 5% [6]. A set of quarter- and half-wave plates ensures a
linear polarization in both beam paths. In transmission of the
mode cleaner cavity (MC, finesse about 300, linewidth about
2.3 MHz), the mode purity of the LG3,3 mode, measured with
a WinCam, is at 98.7± 0.3%. Its power transmission through
DOE and MC is at about 45% when the MC is locked via the
Pound–Drever–Hall (PDH) scheme. The subsequent combi-
nation of a half-wave plate and Faraday isolator (FI) allows for a
tunable SHG input power, while the FI also provides the correct
linear polarization (s-pol) for the SHG crystal and prevents any
optical cross-talk between MC and SHG. P ext

in is measured with
a portable powermeter in transmission of the electro-optical
modulator (EOM), which operates at a frequency of 120 MHz
(local oscillator, LO) for the SHG PDH lock. A beamsplitter
(BS) reflects 99% of the light towards the SHG cavity and trans-
mits 1% of the reflected light at 1064 nm towards the photo
diode PDrefl. This PD provides the PDH error signal as well as a
DC signal that is used to measure how much power is reflected
in lock (to a good approximation, this is given by the ratio of the
signal in lock to the maximum signal in the reflection spectrum
during the length scan multiplied by P ext

in ). The dichroic BS
(DBS) reflects all of the incoming light towards the SHG and
transmits the harmonic field at 532 nm towards the powermeter

Fig. 4. Measured external, corrected, and effective SHG conversion
efficiencies of the LG0,0 and LG3,3 modes, including the NLCS simula-
tions for the corrected curves. The x axis refers to the full input power
for the external and effective efficiencies and to the estimated matched
input power for the corrected and simulated efficiencies. Bottom right:
CCD picture of the harmonic output field at P ext

in = 664 mW for the
LG3,3 mode. A distorted LG6,6 intensity pattern can be identified.

PDout. An additional PD in transmission of the SHG cavity
measures the transmitted power/spectrum at 1064 nm (the
transmitted harmonic power is negligibly small).

The SHG cavity (see Fig. 2) contains a 7% doped
MgO:LiNbO3 crystal, which measures 2.0× 2.5× 6.5 mm
in the x , y and z (propagation) directions. Its curved end face
serves as a highly reflective end mirror: R1064 nm > 99.96% and
R532 nm = 99.9%. The nominal reflectivities of the incoupling
mirror are R1064 nm = 98.2% and R532 nm < 0.2%. The radii
of curvature are Rc ,in = 25 mm and Rc ,end = 12 mm, setting
the waist of the fundamental field to about 30µm in radius near
the crystal center. This corresponds to a focusing parameter
of ξ ≈ 0.5 [14]. The plane crystal face has an anti-reflective
coating, and the SHG crystal temperature can be electroni-
cally stabilized via a control loop using a Peltier element as the
actuator.

We measured the conversion efficiency of the LG0,0 mode for
an input power ranging from 2 mW to 370 mW. The external
conversion efficiency (see Fig. 4) first steeply increased up to a
maximum of 95.69± 0.11% at P ext

in ≈ 80 mW and then slowly
decreased. This decrease is caused by the still rising internal
conversion, which causes a transit of the impedance condition
from over- to under-coupled around the maximum of the
efficiency curve. Hence, the power buildup factor is reduced,
and less circulating fundamental power is available for the
SHG. The temperature setpoint of the crystal was adjusted
over the range from 62.5◦C to 62.1◦C for maximal harmonic
power at each data point. The mode matching was measured via
the transmission spectrum to be |κ|2 = 97.5± 1.5%, which
puts the maximum of the corrected conversion efficiency to
98.7± 1.5% at P mat

in ≈ 78 mW. Since the harmonic output
field showed no measurable deviation from a pure LG0,0 mode,
the output mode purity is set to µout = 1, and the effective
conversion efficiency is equal to the external one.

We measured the conversion efficiency of the LG3,3 mode
for an input power ranging from about 68 mW to 664 mW.
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The external conversion efficiency rose up to a maximum of
45.1± 0.2%, while the slope decreased. The optimum tem-
perature setpoint for each data point was adjusted over the
range from 62.1◦C to 61.7◦C. The flattening of the curve
indicates an increase in astigmatism, which correlates with a
decrasing |κ|2 value (range from lowest to highest input power:
0.71± 0.11− 0.63± 0.06) and could also be observed with a
CCD camera in the harmonic output field. Figure 4 shows the
intensity distribution of the harmonic output field at 664 mW
of input power with a harmonic power of about 300 mW. The
mode purity in terms of the LG6,6 mode was determined to be
µout = 64± 5%. The same analysis was performed at an input
power of about 131 mW; here, the mode purity was clearly
higher at µout = 71± 5%. The increasing astigmatism can be
explained by the increasing total absorption in the crystal, which
influences its astigmatic effect on the circulating field via heat-
ing. Assuming a linear decrease in the output mode purity, Fig. 4
shows the effective conversion efficiency for all measurement
points. It finally reaches 29± 2%. The corrected conversion
efficiency, derived with Eq. (5), reaches a maximum of 72± 7%
at a matched input power of P mat

in = 420± 40 mW.
The NLCS simulation tool was used to calculate the har-

monic power as a function of the matched input power with the
cavity parameters of our experiment. For both the LG0,0 and
LG3,3 case, the respective effective nonlinearity d p,l was used to
optimize the match between measurement data and simulation.
We derived d0,0 = 2.6 pm V−1 and d3,3 = 0.51 pm V−1. The
simulations agree well with the measurement results.

In the SHG crystal, two “loss” coeffcients [1/m] act on the
circulating fundamental power: the conversion and absorption
coeffcient. But, while a rather small absorption coeffcient of
the crystal can lead to a significant absorption loss due to the
power buildup inside the cavity, this is typically not noticable in
an LG0,0 SHG due to the high conversion efficiency. Since the
conversion efficiency of the LG3,3 mode was, however, much
lower in this experiment, the absorption loss was significant.
For the LG3,3 mode, the ratio of absorbed power to P ext

in started
at about 10% and decreased to a final value of about 2% with
increasing conversion efficiency. While this fractional loss was
unexpectedly high, this is in good agreement with Eq. (5) and
only requires a single-pass power loss coefficient l a in the order
of 10−4, which is very similar to the roundtrip power loss in 7%
doped MgO:LiNbO3 measured in Ref. [20].

In conclusion, we have realized a cavity-enhanced SHG con-
version efficiency of 95.7% in a 7% doped MgO : LiNbO3 crys-
tal for a fundamental input power of 80 mW in the LG0,0 mode
(cf., e.g., [21,22]). Furthermore, we could achieve a conversion
efficiency of 45.1% for a fundamental input power of 664 mW
in the LG3,3 mode, mainly into the harmonic LG6,6 mode. Such
a high conversion efficiency has not been demonstrated with any
higher-order mode before (cf. [23,24] for lower-order modes).

We showed that the LG3,3 SHG is fundamentally less effi-
cient than the LG0,0 SHG and highly susceptible to astigmatism
(see also [25]), which reduces both the conversion efficiency and
the output mode purity. The derived ratio of the effective non-
linearities d0,0/d3,3 ∼ 5 implies that the LG3,3 SHG requires
about 25 times the input power of the LG0,0 SHG for the same
conversion efficiency assuming the same waist, perfect mode
matching, equal absorption losses, and no astigmatism. With
significant absorption of the LG3,3 mode, it is rather in the order
of 30. When comparing our measured values for the external

and effective conversion efficiency, this factor is in the order of
100 and 700, respectively.

Since SHG and parametric down-conversion can be seen as
reversed processes, the observed harmonic output field suggests
that the generation of squeezed vacuum states in the LG3,3 mode
can only be efficiently pumped by the harmonic LG6,6 mode in
this focusing regime.
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