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Abstract

A large group of biopharmaceuticals is produced in cell lines. The yield of such products can

be increased by genetic engineering of the corresponding cell lines. The prediction of prom-

ising genetic modifications by mathematical modeling is a valuable tool to facilitate experi-

mental screening. Besides information on the intracellular kinetics and genetic modifications

the mathematical model has to account for ubiquitous cell-to-cell variability. In this contribu-

tion, we establish a novel model-based methodology for influenza vaccine production in cell

lines with overexpressed genes. The manipulation of the expression level of genes coding

for host cell factors relevant for virus replication is achieved by lentiviral transduction. Since

lentiviral transduction causes increased cell-to-cell variability due to different copy numbers

and integration sites of the gene constructs we use a population balance modeling approach

to account for this heterogeneity in terms of intracellular viral components and distributed

kinetic parameters. The latter are estimated from experimental data of intracellular viral

RNA levels and virus titers of infection experiments using cells overexpressing a single host

cell gene. For experiments with cells overexpressing multiple host cell genes, only final virus

titers were measured and thus, no direct estimation of the parameter distributions was pos-

sible. Instead, we evaluate four different computational strategies to infer these from single

gene parameter sets. Finally, the best computational strategy is used to predict the most

promising candidates for future modifications that show the highest potential for an

increased virus yield in a combinatorial study. As expected, there is a trend to higher yields

the more modifications are included.
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Author summary

In the present work, we use a sophisticated simulation-based methodology to account for

the impact of genetic modifications in producer cell lines on the yield of biomanufactur-

ing processes. Furthermore, our approach opens the possibility to predict the most prom-

ising genetic modifications instead of identifying them in costly and time-consuming

screening experiments. As an example, we apply our methodology to cell culture-based

influenza vaccine production, a process that is of tremendous importance for the mainte-

nance of public health. Here, we consider cell lines in which genes coding for one or more

cellular factors are up-regulated by genetic engineering to increase the virus yield. How-

ever, the gene editing procedure increases the heterogeneity in the producer cell popula-

tion because genetic modifications do not occur equally in each cell. This cell-to-cell

variability is taken into account in a population balance modeling framework, thus pro-

viding a more accurate prediction of the virus yield in the heterogeneous population.

Finally, we use our approach and a concise experimental data set from cell lines with one

gene modification to predict the virus yield of cell lines with multiple genetic modifica-

tions. Thereby, we facilitate the experimental screening of potential candidates. We sug-

gest that this methodology is transferable to a wide range of biomanufacturing processes

and constitutes a valuable contribution to experimental design.

Introduction

Today, a wide range of biopharmaceutical products, e.g. recombinant proteins and viral bio-

pharmaceuticals are produced in cell lines [1]. While for recombinant protein production,

process yield is mainly limited by the transcriptional and translational capacity of the cell, the

manufacturing of viruses can provide additional burden to the producer cell. In particular,

virus-induced changes, related to cell death or to anti-viral signalling, further hamper the pro-

cess yield. To overcome this limitation, one option is to manipulate the expression level of host

cell factors (HCFs) relevant for virus replication in order to enhance virus yield. However, to

identify promising HCF candidates costly and time-consuming experimental screening and

validation studies are required, as shown recently for poliovirus [2, 3]. This motivates the

development of suitable computational tools to predict the impact of genetic modifications in

face of the inevitable cellular heterogeneity on the overall product yield. Thereby, promising

candidates can be chosen from computational studies decreasing the number of screening

experiments which results in a faster and less costly process development. In this study we

apply such a methodology to overcome bottlenecks in cell culture-based influenza vaccine pro-

duction by using genetically modified cell lines.

The influenza virus is responsible for triggering severe pandemics as the Spanish Flu in

1918 which caused a large number of deaths worldwide [4]. Today, the best measure to limit

the spread of the virus and thus, avoid epidemic and pandemic outbreaks is vaccination

against seasonal strains. These strains are predicted by the World Health Organization every

year. In particular, in case of a pandemic outbreak a fast adaption of the vaccine production

process becomes necessary to guarantee full protection against influenza. Besides the conven-

tional egg-based production processes, cell culture-based processes are a promising option to

produce virus particles in a flexible and reliable manner. Therein, the virus utilizes the tran-

scription and translation machinery of the host cells to replicate itself.

So far, in the literature a series of experimental studies can be found, which focus on HCFs

affecting the viral replication cycle in a positive or negative way resulting in an increased or
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decreased virus yield [5–9]. Based on this knowledge, engineering of novel producer cell lines

by overexpressing the genes of selected HCFs is a promising option to improve the production

process. One method to overexpress specific genes is lentiviral transduction [11]. In addition

to cell lines with single gene overexpression (SGOs), cell lines with multiple gene overexpres-

sions (MGOs) can be generated with this technique, which hold the promise of achieving even

higher virus yields. However, in advance it is not immediately evident which combination will

provide the desired output and a large number of MGO candidates would have to be screened

in time-consuming and expensive experiments. Hence, computational tools are required to

help predicting the most promising MGO candidates and thereby support future experimental

design and guide MGO generation by lentiviral transduction.

Since lentiviral transduction is a non-targeted technique, copy numbers and integration

sites of gene constructs vary between individual cells [12]. Consequently, the cell population

becomes highly heterogeneous with respect to the cell-specific gene overexpression and

thereby also with respect to cell-specific virus yield. The significance of such heterogeneities

for the overall production process has been highlighted in prior computational studies [13,

14]. An established method to capture cell-to-cell variability in terms of distributed states and

parameters is population balance modeling [14, 15]. Here, the dynamics of intracellular viral

components are described by a kinetic model of the viral life cycle [16]. The resulting mathe-

matical model represents a high-dimensional partial-integro-differential equation system for

which analytic solutions are not available. However, the complex model equations can be effi-

ciently solved with our recently developed approximate moment method [14].

A direct consideration of the gene variability is a challenging problem and requires a

mathematical description of cellular transcription and translation for the corresponding

HCFs. Furthermore, interactions of HCFs with the viral life cycle, which itself is still subject

of current research [5–9], would have to be taken into account for such detailed description.

Alternatively, variability introduced by the gene editing method can be captured by the vari-

ance of kinetic parameters. The corresponding parameter distributions are based on boot-

strap parameter estimates and are used to account for the aforementioned cellular

heterogeneity. Bootstrap parameter estimates were determined on the basis of experimental

data sets for SGOs and used to simulate the population balance model of the viral replication

process. In a former study, the virus yields of MGOs were analyzed using a random combi-

nation of median SGO parameter values in a single cell model [6]. In our contribution, we

present a more sophisticated approach, where the random selection of median values is no

longer required. To this end, we evaluated four different strategies to generate distributed

parameter sets for MGOs based on parameter sets which were estimated from experimental

data of their corresponding infected SGOs [6, 17]. In the following, the most suitable strategy

was used to generate new parameter distributions for potential MGOs to predict the virus

yield in model simulations. Our MGO simulations successfully reproduced the maximum

virus titer which is the key characteristic of a vaccine production process. Finally, this combi-

natorial simulation study allows to predict beneficial gene combinations with respect to the

overall virus yield.

In the present paper, cellular heterogeneities were used as additional information in a popu-

lation balance framework without increasing the model complexity with respect to the number

of ordinary differential equations of the internal model for the viral life cycle. Our novel

approach allows to generate parameter distributions of MGOs, that were not investigated

experimentally, based on data for the associated SGOs. Using these distributions in conjunc-

tion with the approximate moment method, it is possible to simulate the virus dynamics of cell

lines with new combinations of gene modifications and furthermore predict their efficiency

regarding the virus yield in a vaccine production process. Our paper shows one of the few
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examples in systems biology where high-dimensional population balance models were effi-

ciently solved and used as prediction tool to reduce experimental effort.

Results and discussion

Population balance model simulations can capture the trend of the

experimental virus yield using different SGOs

In a first step, experimental data from a previous study on optimization of influenza vaccine

production [6] were used to perform a bootstrap parameter estimation with an intracellular

deterministic model [16] and an adjusted viral fusion rate (see Materials and methods). The

full set of intracellular data [6] comprises flow cytometric measurements of nuclear vRNP

import dynamics and the intracellular concentration of viral RNA (mRNA, cRNA, vRNA) of

the viral genome segment 5. Furthermore, cell-specific virus yields were measured in the early

phase of virus release upon infection of A549 cells at MOI of 1. One exemplary data set for the

parental A549 cell line (control) can be found in Fig A in S1 Text. Based on this set of experi-

mental data, parameter distributions were obtained for the synthesis rates of viral mRNA

(kSynM ), vRNA (kSynV ), cRNA (kSynC ), the binding rate of M1 to vRNPs (kBindM1
), the release (kRel) and

import rate of the virus (kImp). The resulting distributions for each SGO of the cRNA synthe-

sis rate kSynC are shown in Fig 1. The other parameter distributions are illustrated in Fig B–F in

S1 Text. As a proof of concept, the population balance model is challenged with the obtained

distributions and simulated with 7 � 105 initial target cells and an MOI of 1 (Fig 2). The usage

of the parameter distribution in the population balance framework shows good agreement

to the virus titers in the early phase of infection. Though cell age, i.e., the intracellular

time span passed since infection, is not directly modeled, an age-like structure, where not

all cells are initially infected but some get infected at later stages, emerges from the applied

population balance modeling framework. This fact can also be obtained in Fig J in S1 Text.

Here, the dynamics of the overall number of uninfected target cells and infected cells is

depicted.

The shift strategy constitutes a suitable approach to construct MGO

parameter distributions

The observation of the non-significant yield increase for the SGOs in comparison to their con-

trol (see Fig 2) further motivated us to investigate MGOs in order to obtain a significant yield

increase. For this computational investigation, we generated parameter distributions for

MGOs. To validate the strategies for constructing MGO distributions from SGO experiments,

the generated parameter distributions (Fig 3) were used to simulate the virus dynamics for the

MGOs that were investigated experimentally. Based on the comparison of simulation results

with the measured virus concentration and the calculation of the RMS values (Fig 4 and Fig G

in S1 Text), the shift strategy shows the best performance for construction of the unknown

parameter distributions (see Fig 5 and Fig H in S1 Text). For some of the kinetic parameters,

the parameter distributions constructed by the shift strategy follow a gamma-distribution

(Fig 3). For instance, the gamma distribution of kSynV and kRel results in a cell population in

which the majority of cells replicate virus with both a low synthesis of viral RNA and slow viral

release dynamics. Only a small proportion of cells propagate virus with high kSynV and kRel,

which may lead to the marginal increase in the virus concentration for the MGOs 1–4 in com-

parison to SGOs.
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Screening all possible MGO combinations with a model-based approach

reduces the experimental effort

In this section, application of the established shift strategy within a model-based procedure for

prediction of promising MGO candidates as alternative to an expensive brute force experi-

mental cell line screening is demonstrated. In total, 320 theoretically possible gene combina-

tions were constructed on the basis of the five known SGOs. Using the resulting parameter

distributions, the virus yield at 72 h.p.i. was simulated using the population balance model (Fig

6 and Fig I in S1 Text). In contrast to the evaluation of the shift strategy in the previous section,

we focus on the determination of the number and order of gene modifications. In our study

the order is important, because the lentiviral transduction, we used here, is a non-targeted

gene editing method, but still, it is not a completely random process [33, 34]. While lentiviral

gene integration favors loci with a high transcriptional activity, the cellular genome exhibits

only a finite number of integration sites [35]. Hence, the more genes are transduced the fewer

suitable integration sites are available, i.e., the later a gene construct is transduced during

Fig 1. Parameter distributions for the kinetic parameter log10ðk
Syn
C Þ after a bootstrap parameter estimation with n = 1000.

https://doi.org/10.1371/journal.pcbi.1007810.g001
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MGO generation, the less likely it is integrated at an active site. Consequentely, an overall

decrease in expression level of gene constructs is anticipated during a sequence of multiple

transductions applied for MGO engineering. Furthermore, the success of lentiviral transduc-

tion also depends on cellular factors, e.g. the nuclear core complex which is responsible for the

transportation and perforation of the envelope comprising the gene construct [33]. These

effects were considered in our shift strategy by weighting the SGO parameter distributions

with the relative fold overexpression according to Eq 20 in the Materials and Methods section.

With respect to the order of integrated gene constructs, this means that the production pheno-

type of a cell line is rather influenced by genes transduced earlier than by those transduced

later during MGO engineering. In contrast to the MGOs being investigated experimentally,

the selection of only one distribution for the shift of the base parameter distribution is not nec-

essary, because each gene modification is assumed to be included with a separate lentiviral

transduction.

Analysis of the three best combinations indicates that the overexpression of NXF1 seems to

be a good starting modification for the generation of MGOs (Fig 6). A study from 2014 showed

the impact of NXF1 by analyzing influenza intron-less mRNAs after inhibition of NXF1 in

A549 cells [9]. The inhibition leads to less hemagglutinin (HA), neuraminidase (NA) and

nucleoprotein (NP) mRNAs in the cytoplasm. On the other hand an overexpression of NXF1

could cause an increase of such viral mRNAs. Assuming a robust translation, more viral

Fig 2. Virus release dynamics for an infection of 7 � 105 cells at MOI 1. Experimental data are shown as circles with error bars while the simulated values are

illustrated as solid lines for five SGOs and the transduction control.

https://doi.org/10.1371/journal.pcbi.1007810.g002
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mRNAs in the cytoplasm result in an increased amount of the viral proteins HA and NA

which are the major components of the virus envelope. The increased amount of these viral

surface proteins could be a key mechanism for an increased production of virus particles.

Besides the enhanced production of HA and NA, NP could be also increased after overexpres-

sion of NXF1. NP is part of the vRNP that contains the viral genome. More vRNPs and virus

envelope proteins provide improved conditions to overcome the limitation of the virus release,

which was determined as kinetic bottleneck by a model-based study of Laske and co-workers

[6].

Furthermore, the overexpression of XAB2 in an MGO combination appears to be beneficial

for the resulting virus yield (Fig 6). XAB2 is known as an important factor involved in pre-

mRNA splicing, cellular transcription and transcription-coupled repair [10]. The nuclear tran-

scription machinery is used by the influenza A virus (IAV), e.g. in case of the 5’-cap snatching

from cellular pre-mRNAs. Therefore, it is beneficial for the virus to release the viral genome in

a nucleus with an efficient cellular transcription.

An overexpression of XAB2 could enhance these processes. Furthermore, splicing is one of

the cellular features that is used to process the mRNAs coding for the ion channel M2 (spliced

transcript of the segment 7) or the nuclear export protein (NEP; spliced transcript of the seg-

ment 8) [36]. The virus alone is unable to transcribe all necessary proteins without interaction

with the cellular splicosome. An up-regulated XAB2 involved in the splicing process might

affect the amount of viral transcripts in a positive way and more progeny virus can be released.

The majority of less productive MGOs carried CEACAM6 as base gene modification

(Fig 6). This finding is contradictory to the literature [7]: Beside its important role for the

release of progeny virus particles, the viral protein NA interacts with CEACAM6 in A549 cells

which may promote cell survival during the infection process. Thus, an overexpression of

CEACAM6 genes might be a good way to avoid cell death. The effect of an overexpression

Fig 3. Parameter distributions for MGOs, that were investigated experimentally.

https://doi.org/10.1371/journal.pcbi.1007810.g003
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could, however, be neglected by the fact that an IAV infection elevates the CEACAM6 mRNA

and protein level even in unmodified A549 cells [7].

Conclusion

In this paper, we proposed a new methodology to predict the impact of genetic modifications

in face of ubiquitous cellular heterogeneity on the overall yield in biopharmaceutical produc-

tion processes. Thereby, promising candidates can be determined from computational studies

decreasing the number of screening experiments.

Application was demonstrated for influenza vaccine production with cell lines overexpres-

sing certain genes. Here, the overexpression was achieved by lentiviral transduction, a gene

editing method for stable integration of gene constructs into the cellular genome. Since lenti-

viral transduction is a non-targeted method and the number of gene integrations vary within

the cell population the cell line becomes highly heterogeneous. Cell-to-cell variability is taken

into account in view of intracellular viral components and kinetic parameters affected by the

lentiviral transduction within a population balance modeling framework [14, 15].

The parameter distributions for SGOs were determined by bootstrap estimates using exper-

imental data and applied to simulate the virus dynamics for each SGO using population bal-

ance modeling. Furthermore, our approach is able to predict the virus dynamics of MGOs on

the basis of a few SGO data sets. For this, we evaluated four different strategies to combine

SGO parameter distributions in order to obtain the parameter distributions of MGOs. We

found that the shift strategy is the most convenient method for this application. We used this

strategy together with the population balance model for an in silico screening study of possible

MGOs that have not yet been investigated experimentally before, and have determined the

Fig 4. Lumped RMS values for all strategies after comparison of MGO simulations to the experimental data (Fig 5

and Fig H in S1 Text).

https://doi.org/10.1371/journal.pcbi.1007810.g004
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most promising candidates. The results can be used to support planning of experiments by

preselection of gene constructs for combination of genetic modifications to enhance virus

yield.

Here, we presented a proof of concept based on data sets from a study that aimed to

improve influenza vaccine production. However, in that study the gene candidates showed

only a non-significant impact on final virus yield. Nevertheless, as soon as experimental

data from more promising SGOs become available, we could readily apply our method to

make predictions on MGOs. The general procedure is summarized in Fig 7. Since we proved

our approach to the more complex case of a cytopathic production process further studies

could elucidate the impact of our methodology for production processes with non-cyto-

pathic biopharmaceuticals. Thereby, it would be easier to isolate and expand high

Fig 5. Virus release dynamics for an infection of 7 � 105 cells at MOI 10−4 for the additive and the shift strategy and all MGOs, that were

investigated experimentally. Experimental data are shown as circles with error bars while the simulated values are illustrated as green dashed and

blue dotted lines.

https://doi.org/10.1371/journal.pcbi.1007810.g005
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producer cell lines which might lead to a smaller heterogeneity regarding the gene modifica-

tion. But even for improved genetic engineering through the control of integration sites, e.g.

by the use of the CRISPR/Cas9 [37] or recombinase-mediated cassette exchange method

[38], the heterogeneity of cells caused by transduction cannot be completely neglected [39].

In general, natural heterogeneity of the cells leads to different levels of translational and

transcriptional activity, which also plays a role in targeted, stable gene integrations. The

effect of this natural heterogeneity was shown by Heldt and co-workers, who revealed

that the productivity of IAV-infected single cells spans approximately three orders of mag-

nitude [40].

In summary, using suitable and sufficiently complex mathematical models, the influence of

heterogeneity on the transcription and translation of gene constructs with multiple gene modi-

fications can be described and, thus, provides a prediction of appropriate combinations for a

broad range of biopharmaceutical processes.

Materials and methods

Experimental methods and setups as well as mathematical modeling and numerical solution

techniques are summarized briefly in the following subsections. For further technical details

on cell culture maintenance, infection protocols as well as assaying procedures and data analy-

sis the reader is referred to the Methods section in Laske et al. (2019) [6]. Further information

on population balance modeling of the process and the numerical techniques is found in Dürr

et al. (2017) [14].

Fig 6. Virus yields after 72 hours of the best three and the least promising combinations using the constructed MGO parameter

distributions consisting of two to five SGOs. The coloring of the bars classifies the number of genes modified in the engineered cell lines.

The darker the color of the bars the more gene modifications were considered. The order of the gene modifications on the y-axis from left

to right corresponds to the order of the stepwise lentiviral transductions made to generate the MGOs. The parental cell line A549 and the

best SGO (gene modification in NXF1) were illustrated as dashed blue and solid yellow vertical lines, respectively.

https://doi.org/10.1371/journal.pcbi.1007810.g006
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Lentiviral transduction

Lentiviral transduction was applied to generate A549 cell populations that overexpress host

cell genes relevant for IAV replication. We selected CEACAM6, FANCG, NXF1, PLD2 and

Fig 7. General workflow for the application of the presented methodology on a broad range of biopharmaceutical

manufacturing processes.

https://doi.org/10.1371/journal.pcbi.1007810.g007
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XAB2 based on RNAi screening [5, 18–20] and various experimental studies [7–9, 21]. The

human cDNA sequences of the candidate genes were cloned into the bicistronic lentiviral vec-

tor pLV-X-GFPneo, which allowed selection of successfully transduced cells by neomycin

resistance. Furthermore, transduced cell populations were subjected to fluorescence activated

cell sorting (FACS) to enrich cells that express the transduced gene based on eGFP, which is

the co-expressed reporter gene. We used lentiviral transduction without control of the integra-

tion site and assumed that cells, for which insertion of the lentiviral constructs was beneficial,

will propagate well in culture. MGOs were derived from SGOs by transducing cells with two

cocktails containing two to three different lentiviral stocks each on two consecutive days. The

resulting MGOs expressed different combinations of the candidate genes at various levels

(Table 1). For further details on generation and production of lentiviral vectors, and the trans-

duction procedure the reader is referred to the Methods section of Laske et al. (2019) [6].

Infection experiments

Cell culture and virus infection. For the IAV infection, A549 cell lines were seeded into

multiple 12-well plates and incubated over night at 37˚C and 5% CO2 atmosphere. On the

next day, cells reached a cell number of approximately 7 � 105 cells per well and were infected

with the influenza virus strain A/Puerto Rico/8/34 (A/PR/8/34, H1N1). To synchronize infec-

tion and facilitate parameter inference for intracellular IAV replication and virus release, cells

were infected at multiplicity of infection (MOI) 50 and MOI 1, respectively (see Fig A in S1

Text). Multiple cycle progression of IAV infection was investigated in A549 cells infected at

MOI 10−4.

Imaging flow cytometry. For the flow cytometric measurement of nuclear vRNP (viral

ribonucleoprotein) import, A549 cells were treated with the translation inhibitor cyclohexi-

mide (CHX) prior and during infection at MOI 50. Infected cells were harvested at multiple

time points post infection, they were fixated and co-stained by DAPI, a nuclear dye, and the

mAb64A5 antibody [22] that preferentially binds oligomerized viral nucleoprotein (NP)

which is present predominantly in the IAV RNP complex. Using imaging flow cytometry

(ImageStream X Mark II, Amnis, EMD Millipore) the relative intensity of the vRNP signal

inside the nucleus was measured every 15 minutes for 2 hours post infection (h.p.i., see Fig A

in S1 Text).

Real-time RT-qPCR. The intracellular viral RNA copy numbers of segment 5 (encoding

viral NP) were quantified by real-time RT-qPCR from lysates of cells infected at MOI 50 (see

Fig A in S1 Text). In particular, the three viral RNA species (mRNA, cRNA, vRNA) were dis-

tinguished using polarity- and gene-specific tagged primers (as detailed in [23]).

The 2� DDCT method [24] was used to calculate the relative overexpression level of candidate

genes in SGOs compared to the parental A549 cell lines using the 18S rRNA as a calibrator.

Virus quantification. Virus titers were determined by hemagglutination assay (HA assay)

[25]. Based on the measurement result of the HA assay in log10HA units per test volume (log10

Table 1. Gene combinations in MGOs. The checks mark the candidate gene that was overexpressed first. Grey shading indicates further overexpressed genes in the corre-

sponding MGOs.

CEACAM6 XAB2 FANCG PLD2 NXF1

MGO 1
p

MGO 2
p

MGO 3
p

MGO 4
p

https://doi.org/10.1371/journal.pcbi.1007810.t001
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HAU/100μL) and the cell concentration of the erythrocyte suspension (2 � 107 cells/mL), the

total virus particle concentration can be calculated as follows:

cvirus ¼ 2 � 107 � 10ðlog10HAU=100mLÞ: ð1Þ

In the infection experiment with an MOI of 1 the HA assay was performed for samples col-

lected at 20, 24 and 28 h.p.i. (Fig 2 and Fig A in S1 Text).

Mathematical model

Population balance modeling [26] is an established framework to account for heterogeneity in

multicellular systems and can thus be applied to describe the observed cell-to-cell variability

with respect to the intracellular viral components and the kinetic parameters affected by the

genetic modifications. The resulting model describes the virus production process on multiple

scales which account for intra- and extracellular dynamics (see Fig 8): The intracellular level

accounts for the major steps of the viral life cycle with focus on RNA replication and regulation

(see [16] for detailed information on the intracellular viral replication kinetics) while the

Fig 8. Mathematical model with different scales based on [14, 16]. Production of virus particles in mammalian cells can be investigated in T-flask experiments

(A). The extracellular model is represented by the dashed box (B). Uninfected target cells can be infected by virus particles. Both infected and uninfected cells can

become apoptotic. The intracellular model describes the replication of the viral genome (C). The mathematical description of the intracellular model starts with the

virus in the endosome. Different intracellular stages can be influenced by several HCFs. After transcription and translation of the viral genome new virus particles

can be released to the surrounding medium. The rates affected by genetic modification (arrows in C) are marked with the yellow asterisks. As an example, the

distribution of the matrix protein M1 (PM1) and the parameter kBindM1
(red arrow in C) are shown for two different time points (D).

https://doi.org/10.1371/journal.pcbi.1007810.g008
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extracellular level characterizes interaction of cell and virus species. In the following, we will

summarize the resulting multiscale model formulation as presented in [13]:

We assume that cell-to-cell variability of infected cells can be considered by distributed

intracellular viral components and distributed kinetic parameters. These result in distributed

dynamics of the cell population, i.e., individual cells express different behaviors. In Fig 8D an

example for the temporal evolution of the number density of cells depending on the distrib-

uted intracellular state PM1 and the distributed kinetic parameter kBindM1
can be seen. The dynam-

ics of the heterogeneous cell population is characterized by the temporal evolution of the cell

number density distribution ic(t, x) which follows from the multidimensional population bal-

ance equation:

@ic

@t
þrx� h

� icð Þ ¼ � ðkApoT þ kApoI Þic þ rInf T IðxÞ : ð2Þ

Here, the extended single cell dynamics h� = [h, 0]T of the extended state vector x� = [x, k]T

describes the temporal evolution of the number density of cells depending on the different

intracellular states x (containing for instance mRNA species and viral proteins) and the kinetic

parameters k. The single cell dynamics are given correspondingly by h and described in more

detail in [14]. In this study, we assume, that cell-to-cell variability resulting from lentiviral

transduction translates directly to distributed kinetic parameters represented by the vector k

which vary within the population of infected cells and are time invariant. We further assume,

that only the rate of nuclear vRNP import, the synthesis rates of viral mRNA, cRNA, vRNA,

the binding rate of M1 to nuclear vRNPs, and the release rate of virus particles are affected,

thus

k ¼ ½ kImp; kSynM ; kSynC ; kSynV ; kBindM1
; kRel�: ð3Þ

The number of infected cells increases by infection of uninfected cells with rate rinf. Further-

more, the distribution IðxÞ represents the normalized initial cell-to-cell variability of newly

infected cells. The population of infected cells decreases due to apoptosis. Here, the apoptotic

rate is divided into an apoptotic rate caused by infection kApoI and a natural apoptosis rate kApoT .

The infected cell dynamics is coupled to the temporal evolution of apoptotic cells Ia

dIa

dt
¼

Z

X

kApoT þ kApoI

� �
ic dxþ rInf Ta � kLys Ia; ð4Þ

viable target cells T

dT
dt

¼ g T � rInf T � kApoT T; ð5Þ

and apoptotic target cells Ta

dTa

dt
¼ kApoT T � rInf Ta � kLys Ta; ð6Þ

and virus particles V as described below. In contrast to infected cells, these species are assumed

to be non-distributed, i.e., those species are concentrated. The growth rate g is defined as

g ¼
gmax
Tmax

Tmax � T �
Z

X

ic dx

0

@

1

A

2

4

3

5: ð7Þ

Virus particles were distinguished depending on their location. There are free active virus
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particles V located in the extracellular medium, virus particles attached to the surface of target

cells VAtt and virions located in endosomes of infected target cells VEn. Their dynamics read

as:

dV
dt

¼

Z

X

rRel ic dx � kDegV V þ
X

n

½kDisn VAtt
n � kAttc;n Bn V�; ð8Þ

dVAtt
n

dt
¼ kAttc;n Bn V � ðkDisn þ kEnÞ VAtt

n � ðr
Inf þ rLysÞ VAtt

n ; ð9Þ

dVEn

dt
¼ kEnðVAtt

hi þ VAtt
lo Þ � kFus VEn � ðrInf þ rLysÞ VEn; ð10Þ

with

Bn ¼ Btot
n T þ Tað Þ � VAtt

n kDisn ¼
kAttc;n

kEquc;n
n 2 flo; hig: ð11Þ

Two types of binding sites for the virus particles on the surface are considered: low affinity (lo)

and high affinity (hi). A detailed description of the involved kinetic processes can be found in

[27]. The infection and cell lysis rates are defined as:

rinf ¼
FinfkFusVEn

T þ Ta
; rlys ¼

kLysTa

T þ Ta
ð12Þ

The viral release rate depends on the amounts of viral components in the cells and is given by

rRelðxÞ ¼ kRel
VpcytM1

VpcytM1 þ 8 KVrel

Y

j

Pj

Pj þ Nj KVrel
;

j 2 fRdRp; PHA; PNP; PNA; PM1; PM2; PNEPg:

ð13Þ

All kinetic model parameters can be found in Table 2. Here, virus entry is considered on the

macroscopic scale and newly infected cells are initialized with a complete set of eight vRNP

segments.

Table 2. Kinetic model parameters for the extracellular model equations.

Parameter Value Unit Parameter Value Unit

Btot
hi 150 sites/cell kRel 586 virions/h

Btot
lo 1000 sites/cell kApoT 7.35�10−3 h−1

Finf 1 cells/virions kDegV 0.1 h−1

gmax 0.03 h−1 KVrel 300 virions

kAttc;hi 3.32�10−8 mL/(sites h) Tmax 7�105 cells/mL

kAttc;lo 1.85�10−10 mL/(sites h) NPHA
500 molecules/virion

kEquc;hi 4.48�10−9 mL/site NPNA
100 molecules/virion

kEquc;lo 3.32�10−11 mL/site NPNEP
165 molecules/virion

kEn 4.8 h−1 NPNP
1000 molecules/virion

kFus 3.21 h−1 NPM1
3000 molecules/virion

kApoI 3.28�10−2 h−1 NPM2
40 molecules/virion

kLys 6.39�10−2 h−1 NRdRp 45 molecules/virion

https://doi.org/10.1371/journal.pcbi.1007810.t002
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Estimation of distributed parameters from SGO infection experiments

To obtain parameter distributions for the affected kinetic parameters k of the population bal-

ance model, the parameter set of the intracellular model for IAV replication was re-calibrated

to experimental data obtained from infected engineered cell lines as recently published by

Laske et al. (2019) [6]. In contrast to [6], we used the intracellular model as published in [16]

with the single modification that the fusion rate of virions in late endosomes is kFus = 3.21 h−1.

Given the available experimental data, we determined the parameter distributions of the

nuclear import rate of vRNPs kImp, the synthesis rates of the three viral RNA species

(kSynM ; kSynC ; kSynV ), the binding rate of the matrix protein 1 (M1) kBindM1
to nuclear vRNPs as well

as the release rate of progeny virions kRel, which were selected as distributed parameter vector,

see Eq 3.

Estimation of parameter distributions was performed in two consecutive steps. First,

nuclear vRNP import was assessed from infected cells treated with the translation inhibitor

CHX (see Fig A in S1 Text). Due to the inhibition of protein synthesis no viral proteins are

produced and therefore, viral genomes cannot replicate. Consequently, only the incoming

vRNPs are stained by the anti-vRNP antibody and their nuclear import rate is estimated by fit-

ting the simulated fraction of nuclear vRNPs fracnucRnp to the averaged relative fluorescence inten-

sity of the nucleus fracnucInt .

Rnpcyt ¼ 8 � VEn þ Vpcyt þ VpcytM1; ð14Þ

Rnpnuc ¼ Vpnuc þ VpnucM1
; ð15Þ

fracnucRnp ¼
Rnpnuc

Rnpnuc þ Rnpcyt

� �

� 100: ð16Þ

As can be seen in Eq 14 the vRNPs in the cytoplasm Rnpcyt are the sum of the eight vRNPs of

virions in early endosomes VEn, vRNPs in the cytoplasm Vpcyt and the M1-vRNP complexes in

the cytoplasm VpcytM1. Furthermore, the amount of nuclear vRNPs Rnpnuc is the sum of vRNPs

Vpnuc and M1-vRNP complexes VpnucM1
inside the nucleus (Eq 15).

To estimate the nuclear import rate of vRNPs kImp, the square error

J ¼
XT

k¼0

fracnucRnpðtkÞ � fracnucInt ðtkÞ

maxðfracnucInt Þ

� �2

; ð17Þ

is minimized. Therein, the distance between the relative fluorescence intensity of the nucleus

fracnucInt and the simulated fraction of nuclear vRNPs fracnucRnp is weighted by the maximal experi-

mental value maxðfracnucInt Þ.

In a second step, the optimized import rate is kept fixed while the remaining parameter dis-

tributions of the model parameter vector (see Eq 3) are estimated from experimental data

monitoring intracellular viral RNA transcription and replication by real-time RT-qPCR as

well as the release of progeny virions by HA assay over time (see Fig A in S1 Text). Parameter

inference was performed by minimizing the squared errors based on the common logarithm

of the simulated state values and experimental data as follows:

J log ¼
Xn

i¼1

XT

k¼0

log10ðpredictioniðtkÞÞ � log10ðdataiðtkÞÞ

maxðlog10ðdataiÞÞ

� �2

: ð18Þ
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The error of each i-th state n is weighted by the corresponding maximal logarithmic experi-

mental value max(log10(datai)).

Parameter distributions were determined by parametric bootstrapping (details see [28])

using the global stochastic optimization algorithm fSSm [29]. For this, multiple optimization

runs were performed to fit 1000 randomly resampled measurement points with respect to the

data’s mean and standard deviation. The number of resamples guarantes convergence of the

average and standard deviation of the bootstrapped parameter values. The obtained bootstrap

parameter distributions are used in the present population balance model to characterize the

heterogeneity of virus replication steps in the cell population.

Numerical solution of the population balance model

The population balance equation (Eq 2) is a multi-dimensional partial-integro-differential

equation which is coupled to a set of ordinary differential equations (Eqs 4–10). In general, the

dimension of the partial differential equation corresponds to the dimension of the extended

state vector x� which comprises the intracellular viral components (dim(x) = 27) and the dis-

tributed kinetic parameters (dim(k) = 6). Since standard numerical methods for full solution

suffer from an enormous numerical effort, we used our recently developed approximate

moment method for a numerical solution [14, 30]. This efficient technique combines the direct

quadrature method of moments [31] with an efficient choice of quadrature abscissas based on

monomial cubatures (see e.g. [32]). In contrast to classical discretization-based methods, the

technique relies on the solution of a relatively small number of ordinary differential equations

(ODEs) which are used to approximate integral quantities of the full cell number density distri-

bution like mean values and variances with respect to the intracellular states. Thereby, the

numerical effort can be reduced significantly: The approximate moment method scales poly-

nomially (at best even linearly) with dimension of the extended state vector x� in contrast to

discretization-based approaches, which scale exponentially. More details on the technique are

found in [14]. The numerical technique was coded in MATLAB 2016b and the routine ode15s
was used for solution of the resulting ODE systems.

Parameter distribution strategies for MGOs and selection criterion

To avoid extensive experimental screening, mathematical modeling can be used to predict

virus yields of MGOs. In a previous study by Laske and co-workers [6] median values of the

parameter distributions were combined randomly for the six parameters (see Eq 3) and the

new parameter sets were used to simulate the virus dynamics using a single cell model as pre-

sented in [27]. In contrast, we apply a more sophisticated approach, where MGO parameter

distributions are generated based on the entire parameter distributions of their underlying

SGOs. Finding a suitable strategy for the construction of MGO parameter distributions was

one goal of this investigation. The four strategies tested were programmed in MATLAB 2016b

and the resulting parameter distributions were used to simulate the virus dynamics using a

population balance modeling approach. The latter were validated against measured virus con-

centrations from selected MGOs (see Table 1).

Low impact strategy. The first strategy is based on the assumption, that the first gene

overexpression has the strongest impact while further modifications have only a low impact on

the viral life cycle. Thus, the new parameter distributions are located between the median val-

ues of the first SGO (base) and the median values of the SGO with the smallest distance to the

base median value. The parameter distribution are generated by combining five logarithmic
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Gaussians in a weighted sum:

ki �
X5

l¼1

al ml eN ð0;slÞ: ð19Þ

A previous study discussed the impact of differently shaped parameter distributions [13]. The

shape of a parameter distribution can be influenced by the scaling parameter al. Here, we select

a broad final distribution as realistic scenario for a parameter distribution after lentiviral trans-

duction. The corresponding scaling factors are: [a1, a2, a3, a4, a5] = [0.05, 0.3, 0.3, 0.3, 0.05]. A

representative distribution for the parameter kM1
Bind is shown in Fig 9A.

High impact strategy. This method for generation of the parameter distributions is simi-

lar to the low impact strategy. In comparison to the previous method, we assume that further

gene modifications have an equally high impact. For that reason, parameters of the MGOs are

distributed between the median values of the base and the median values of the SGO which

cause the greatest change in the parameter distribution. Thus, the parameter distributions are

broader than in the low impact strategy (Fig 9B).

Additive strategy. For the additive strategy, parameter distributions estimated by boot-

strapping of experimental data obtained from SGOs are applied. The generation of 150 bins

between the minimum and maximum value for each parameter facilitates the comparison of

the base parameter distributions with the parameter distributions achieved after a second gene

modification. The second set of parameter distributions were selected as in the high impact

strategy regarding their maximum absolute distance to the median values of the base SGO.

The number of cells with the same parameter value as the corresponding bin was counted for

each of them and the resulting distributions were interpolated linearly by using the MATLAB

Fig 9. Distribution of the parameter kM1
Bind in MGO 3 (blue rectangles) for the low impact (A), high impact (B),

additive (C) and shift strategy (D). For the low and high impact strategy the distributions were assembled with five

Gaussians (red curves). The position of the Gaussians were obtained as described in the corresponding subsections.

For the additive and shift strategy, bootstrap parameter estimates (solid and dashed red curves) were used to generate

the distribution of the MGO (blue rectangles). Distributions are normalized with respect to the total number of

infected cells.

https://doi.org/10.1371/journal.pcbi.1007810.g009
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command interp1 (default setting). To obtain the MGO parameter distributions, an overlay of

the base SGO parameter distribution and the second SGO parameter distribution is conducted

to select the highest absolute frequency for the six parameters (Fig 9C).

Shift strategy. In the shift strategy, parameter distributions obtained by bootstrapping

were applied together with the fold overexpression level (FOE) measured by RT-qPCR (see

Table A in S1 Text) to generate MGO parameter distributions. In comparison to the previous

strategy, we determined mixed Gaussian distributions by using the logarithmic bootstrap

parameter estimates from each SGO and the MATLAB function fitgmdist. For the validation

with the measured virus concentrations of MGO 1-4 (Table 1, Fig 5) a selection of the second

parameter distribution is required to perform the shift. As before, the maximum absolute dis-

tance to the median values of the base SGO is the selection criterion for the second set of SGO

parameter distributions.

To correlate the FOEs, the relative frequency ELi,Rel for each SGO is calculated as follows:

ELi;Rel ¼
FOEiX

i

FOEi

;

with i ¼ fCEACAM6; XAB2; PLD2; NXF1; FANCGg:

ð20Þ

The new mixed Gaussian distributions for the MGOs were constructed by using the MATLAB

command gmdistribution. For that purpose, the relative distance Δi,Rel was calculated by multi-

plication of the relative expression level ELi,Rel and distance of the median value of the base

and the second SGO parameter distribution Δi:

Di;Rel ¼ ELi;Rel � Di ;

with i ¼ fCEACAM6; XAB2; PLD2; NXF1; FANCGg:
ð21Þ

To shift the parameter distributions of the base, a summation of the 1000 bootstrap estimates

of the base with the relative distance of the median values of the base and the second SGO was

done (Fig 9D). The covariance of each element of the new mixed Gaussian distribution is the

standard deviation of the second parameter distribution applied for the shift of the base

parameter distribution.

In the subsequent combinatorial study, MGOs were generated in silico by assuming that

each gene overexpression is achieved in an individual lentiviral transduction event. Therefore,

the shift of the distribution for each parameter was done stepwise considering the order of

gene modifications in the MGO.

Strategy selection. The root mean square (RMS) error

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1

ðlogðyiÞ � logð�yiÞÞ
2

s

ð22Þ

is used to evaluate the fit of each strategy and to compare them to each other. Therein, the dif-

ference between m experimental (yi) and simulated data (�yi) is calculated on a logarithmic

scale.
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Resources: Achim Kienle.

Software: Stefanie Duvigneau, Robert Dürr, Tanja Laske.
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Validation: Stefanie Duvigneau, Robert Dürr, Tanja Laske, Mandy Bachmann, Melanie

Dostert.

Visualization: Stefanie Duvigneau, Tanja Laske.

Writing – original draft: Stefanie Duvigneau.

Writing – review & editing: Stefanie Duvigneau, Robert Dürr, Tanja Laske, Achim Kienle.
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