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In Brief
Protein subcellular localization is
highly regulated and critical for
protein function. Spatial pro-
teomics aims at capturing the
localization dynamics of all pro-
teins expressed in a given cell
type. Among different ap-
proaches, organellar mapping
through proteomic profiling
stands out as the only method
capable of determining the sub-
cellular localizations of thou-
sands of proteins in a single ex-
periment. Importantly, it can also
detect movements of proteins
between subcellular compart-
ments, providing an unbiased
systems analysis tool for investi-
gating physiological and patho-
logical cellular processes.

Graphical Abstract

Highlights

• Organelle profiling maps capture localizations of 1000s of proteins in one experiment.

• Comparing maps �/� perturbation reveals disease mechanisms & cellular responses.

• A conceptual guide to planning and interpreting organellar profiling experiments.

• A cross-study consensus set of human organellar marker proteins.
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Organellar Maps Through Proteomic Profiling –
A Conceptual Guide
Georg H. H. Borner*x

Protein subcellular localization is an essential and highly
regulated determinant of protein function. Major ad-
vances in mass spectrometry and imaging have allowed
the development of powerful spatial proteomics ap-
proaches for determining protein localization at the whole
cell scale. Here, a brief overview of current methods is
presented, followed by a detailed discussion of organellar
mapping through proteomic profiling. This relatively sim-
ple yet flexible approach is rapidly gaining popularity,
because of its ability to capture the localizations of thou-
sands of proteins in a single experiment. It can be used to
generate high-resolution cell maps, and as a tool for mon-
itoring protein localization dynamics. This review high-
lights the strengths and limitations of the approach and
provides guidance to designing and interpreting profiling
experiments.

Proteins must be precisely targeted to one or more subcel-
lular localizations, to enable them to interact with other pro-
teins, encounter substrates, become activated or inactivated,
modified, degraded, secreted, or sequestered. This spatial
dimension of the proteome is carefully regulated, highly dy-
namic, and allows much faster responses to perturbations
than alteration of gene expression. Many, perhaps most, cell
biological processes involve proteins transitioning between
cellular locations; evidence suggests that spatial regulation of
the proteome is as important and extensive as regulation of
protein abundance (1). Supporting this notion, an increasing
number of diseases are associated with disturbances in pro-
tein localization (2–4). The ability to capture protein localiza-
tion dynamics experimentally is hence key to understanding
cellular physiology, and numerous methods for spatial pro-
teomics are available. In this review, I will briefly summarize
the state of the field, before discussing in depth the concepts,
strengths, and limitations of proteomic profiling, which is ar-
guably the simplest and fastest option for generating global
organellar maps of the cell.

Current Approaches in Spatial Proteomics—There are three
families of experimental approaches for spatial proteomics:
imaging, interaction networks, and organellar profiling (see (5)

for a detailed review). Imaging-based spatial proteomics re-
quires a proteome-wide library of affinity reagents (6), or a
comprehensive collection of cell lines expressing tagged pro-
teins (7), as well as a set up for high-throughput microscopy.
The reward is the direct visualization of each protein’s local-
ization(s) in situ. For spatial proteomics through interaction
networks, binding partners of proteins are identified by co-
immunoprecipitation (8) or the increasingly popular proximity
ligation by BioID or APEX (9–11), in combination with mass
spectrometry. Targeting individual compartments with multi-
ple baits yields very comprehensive organellar inventories,
which eventually connect to form a whole cell map. Again,
affinity reagents or tagged cell lines are required for this
approach, but not for every protein, because with enough
baits the network connections begin to saturate. Organellar
profiling is based on partial separation of organelles by frac-
tionation of cell lysates (Fig. 1; (5)). The distribution of proteins
across the fractions is quantified by mass spectrometry; pro-
teins associated with the same organelle have similar abun-
dance distribution profiles, as revealed through cluster anal-
ysis. This approach does not require any specific reagents or
cell lines, is comparatively rapid and simple, and very well
suited to the detection of protein translocations.

Major Databases with Subcellular Localization Informa-
tion—All three of the above fields have greatly progressed in
recent years, and numerous databases with subcellular local-
ization predictions generated with different approaches are
available. High throughput imaging is now relatively fast and
feasible, and there is an ever-expanding repertoire of quality-
controlled antibodies and GFP cell lines (6, 13). Importantly,
image analysis, a previous bottleneck, is improving rapidly
through automation by sophisticated machine learning algo-
rithms (14). The Human Cell Atlas (15; https://www.proteinatlas.
org/) offers an unprecedented community resource for imaging
data and reagents. Proximity labeling is gradually replacing
conventional affinity isolation approaches for protein interaction
network analysis; the first global organellar map based on BioID
data is now available (16; https://cell-map.org/) and will serve as
an important framework for integrating future BioID experi-
ments. Finally, several laboratories have applied organelle pro-
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filing to provide localization maps from diverse cell types, rang-
ing from mammalian primary cells (17), tissues (18, 19) and cell
lines (12, 20, 21) to plant cells (22) and unicellular organisms (23,
24). All these spatial proteomes are freely available, many in the
form of interactive databases (Table I). In addition, several online
databases collate subcellular localization information, including
for example UniProt (https://www.uniprot.org), and Compart-
ments (https://compartments.jensenlab.org/Search)).

Choosing the Best Spatial Proteomics Approach—Different
spatial proteomics approaches have pronounced strengths
and drawbacks; the choice should therefore be guided by the
research question, but necessarily also depends on available
resources. Global approaches have intuitive appeal, but fo-
cused methods are often more appropriate, particularly if the
research question only concerns a subset of the proteome,
such as a single cellular compartment. Table II provides an
experiment-centric overview to guide this choice; please also
refer to (5).

Among the global mapping methods, organellar profiling is
rapidly gaining popularity, for several reasons. Beyond access
to mass spectrometry, it requires no special resources, and
avoids the costs and potential artifacts associated with pro-
tein tagging and affinity reagents. The time commitments for
a pilot study are relatively modest, and even a single experi-
ment can reveal the localizations of thousands of proteins.
Profiling also intrinsically provides protein co-fractionation
data, akin to protein interaction data, allowing the detection of
protein complexes (see Microclustering and Protein Complex

Prediction). In addition, the approach can capture induced
protein translocations, and thus provides an unbiased discov-
ery tool to study cell biological or pharmacological processes
(see Recent Applications of Comparative Organellar Profiling).
Detailed protocols for mapping (28, 29) and free software for
data analysis (30, 31) are also available. Organellar profiling is
hence the method of choice for any lab venturing into global
spatial proteomics for the first time. The remainder of this
review will focus on conceptual aspects of organellar map-
ping by profiling, and considerations for designing and eval-
uating profiling experiments.

Evolution and Current Performance of Organellar Profiling
Approaches—The origins of organellar profiling date back to
the seminal work of Christian De Duve in the 1950s (reviewed
in (32)). De Duve quantified enzyme activities across subcel-
lular fractions of cell lysates obtained by ultracentrifugation,
thus revealing the presence of compartments with distinct
physical properties and protein compositions. In 2003, the
Mann lab implemented this approach with mass spectrometry
as ‘Protein Correlation Profiling’ (PCP), initially to characterize
the composition of a single compartment, the centrosome
(33). This was soon followed by the development of two
related methods for profiling whole cell lysates, by the Lilley
lab (LOPIT, “Localization of organelle proteins by isotope
tagging”; (34, 35)), and the Mann lab (PCP; (36)). These land-
mark studies provided the first proteomic organellar cell maps
(from Arabidopsis callus and mouse liver cells, respectively),
albeit with relatively modest coverage (�1500 proteins). To

FIG. 1. Generic workflow for generating organellar maps through proteomic profiling. Cells are lysed, and released organelles are
partially separated by differential centrifugation (top) or density/velocity gradient centrifugation (bottom). Differential pellets or gradient fractions
are analyzed by quantitative mass spectrometry. For each protein, an abundance distribution profile across the fractions is obtained.
Organelles have overlapping but distinct profiles, and proteins predominantly associated with the same organelle have similar profiles.
Dimensionality reduction tools (such as PCA) reveal groups of proteins with similar subcellular localization. By overlaying organellar marker
proteins (color coded), the identity of clusters is revealed. Machine learning can be used to assign proteins to the nearest cluster. (Organellar
map reproduced from (12)).

Organellar Profiling
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date, at least six independent laboratories have developed or
adapted global organellar profiling approaches (Table I). Not-
withstanding individual strengths and technical differences of
the methods (see Choosing the Best Design for Organellar
Profiling Experiments), several general trends have emerged.
Owing to improved MS instrumentation and quantification
strategies, current implementations achieve coverage of
�5000 proteins, in some cases with sub-compartment reso-
lution (12, 20), and allow comparative applications (12, 18, 26,
37–39; see Recent Applications of Comparative Organellar
Profiling). The number of resolved membranous compart-
ments is around 6–10 (Table III). Good resolution is typically
achieved for mitochondria, lysosomes, ER, plasma mem-
brane, cytosol, and nucleus; depending on cell type and
method, endosomes, Golgi, and peroxisomes may also be
resolved. In addition, some workflows include predictions
for lipid droplets, or non-organellar compartments, such as
large protein complexes (e.g. the ribosome) and the actin
cytoskeleton.

Recent Applications of Comparative Organellar Profiling—
Beyond providing detailed static cellular maps, a strength of
organellar profiling is the ability to capture induced protein
translocations (12). Comparison of maps made before and
after treatment or perturbation enables the identification of
proteins with altered subcellular localizations, linking them to
the investigated cellular process. Several recent studies high-
light the power of this approach (Table IV); examples include
uncovering the molecular mechanisms of a genetic disorder
(37) and obesity induced liver disease (18), capturing cellular
responses during EGF signaling (12, 17, 21), the functional

analysis of vesicle tethering factors (38), and the character-
ization of drug action (26).

Choosing the Best Design for Organellar Profiling
Experiments—

Several workflows for organellar profiling experiments have
been established and well documented (12, 18–21, 27). Al-
though based on the same basic principle, they differ in key
experimental steps, including cell lysis, organellar separation
technique, mass spectrometric quantification approach, and
data analysis. Rather than comparing individual methods di-
rectly (5), the conceptual choices open to the experimenter
are discussed here. Importantly, all available methods can
provide informative organellar maps, but usually offer a
tradeoff: resolution and spatial information versus robustness
and experimental simplicity. Linked to this is their suitability
for static versus comparative applications.

Cell Lysis—Organellar profiling requires the lysis of cells
and release of ideally intact organelles. Too little lysis results
in low organelle yields, whereas too much results in ruptured
organelles with lumenal leakage, and potentially altered frac-
tionation properties. Thus, lysis conditions affect both the
resolution and reproducibility of a profiling experiment. Ad-
herent culture cells (e.g. HeLa) tend to yield to Dounce (glass-
on-glass) homogenization, which may be aided by prior gentle
osmotic swelling of cells on ice (12). Alternatively, a ball-
bearing homogenizer (a “cell cracker”; (20)) may be used;
owing to the adjustable clearance, such a device can also
cope with small suspension cells. Tissues may require
tougher treatment, such as Potter-Elvehjem (teflon-on-glass)

TABLE III
Compartments resolved by different implementations of organellar profiling

Refs Profiling method Cell type Organelles Other compartments

(20) HyperLOPIT Mouse ES cells Endo; ER/Golgi; Lys; Mito;
Nuc; Pex; PM

Cyt; ribosome; proteasome; actin
cytoskeleton; extracellular
matrix

(12) Dynamic Organellar
Maps

HeLa (human) Endo; ER; ERGIC; ER_HC;
Golgi; Lys; Mito; Nuc; Pex;
PM

Cyt; large protein complexes;
actin binding proteins

(25) LOPIT variant Fibroblasts (human) ER; Golgi; Lys; Mito; Pex; PM Cyt
(19) Prolocate Rat liver cells ER; Golgi; Lys; Mito; Nuc;

Pex; PM
Cyt

(18) PCP Mouse liver cells Endo; ER; Golgi; Lys; Mito;
Nuc; Pex; PM

Cyt; lipid droplets

(27) LOPIT-DC U2OS (human) ER; Golgi; Lys; Mito; Nuc;
Pex; PM

Cyt; ribosome; proteasome

(21)* SubCellBarCode A431, U251, MCF7, NCIH322,
HCC827 (human)

Secretory 1 (Golgi, Endo/Lys);
Secretory 2 (ER, Pex);
Secretory 3 (ER, Mito);
Secretory 4 (PM); Nuc;
Mito

Cyt/cytoskeleton

Only one recent representative study is shown per laboratory and method.
Abbreviations: Endo, endosome; ER, endoplasmic reticulum; ERGIC, ER-Golgi intermediate compartment; ER_HC, ER High curvature; Golgi,

Golgi apparatus; Lys, lysosome; Mito, Mitochondria; Nuc, Nucleus; Pex, peroxisome; PM, plasma membrane.
*(21) predominantly used mixed compartment classifiers.
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homogenization. A useful strategy during optimization is to
monitor the breakage of cells with a live stain (such as trypan
blue) and find the gentlest conditions that still ensure lysis of
most (�90%) cells. For plant and yeast cells, enzymatic re-
moval of cell walls prior to lysis may be helpful (22, 24).
Although the addition of non-ionic detergents can render the
lysis very efficient (21), it should be noted that organelles are
also permeabilized. As a result, lumenal proteins become
mixed with the cytosolic fraction, and organelles lose their
characteristic sizes and densities.

There is intrinsic variability in the propensity of different
organelles to be released from lysed cells. Small round or-
ganelles such as peroxisomes and lysosomes are more read-
ily released than the ER, which is partly wrapped around the
nucleus. This also means that the ER will always rupture
partially during cell lysis. It is recommended to control organ-
ellar integrity by quantifying leakage of lumenal contents into
the cytosolic fraction (12).

Separation of Organelles and Fractionation Schemes—
Once cells have been lysed, organelles can be separated
based on their physical properties, such as size and/or den-
sity. The most widely used methods include density equilib-
rium centrifugation (20, 29), sucrose gradient velocity centri-
fugation (18), differential centrifugation/pelleting (12, 21, 27,
28), or combinations thereof (19). Gradient based separation
typically achieves high resolution of organelles. The downside
is that it requires optimization of the gradient, relatively long
centrifugation times, and substantial amounts of starting ma-
terial. Furthermore, generation and harvesting of gradients is
technically challenging, and introduces experimental variabil-
ity, thus complicating comparative investigations (40). In con-
trast, differential centrifugation tends to yield somewhat lower
resolution of organelles, but is technically simple, rapid, re-
quires little starting material, and is highly reproducible.

Related to the separation method is the number of collected
fractions. Typical gradient fractionations generate around
10–20 fractions, whereas differential centrifugation ap-
proaches yield only 5 to 10. More fractions tend to enhance
the resolution, and long profiles may even reveal multi-organ-
ellar associations (18, 19; see Multiorganelle associations—
The Bane of Profiling Based Organellar Maps). On the other
hand, more samples need to be analyzed, which increases

mass spectrometry measurement time, exacerbates the miss-
ing value problem, and lowers profile reproducibility. If the aim
of the experiment is to establish a high resolution organellar
map, a gradient based method may be best. Indeed, experi-
mental variability between gradients of replicates may even
enhance the overall resolution of the maps when data are
combined (20). However, for mapping induced translocation
events, robustness is more important than resolution, and
differential centrifugation-based mapping thus provides a bet-
ter starting point. Of note, since the introduction of the Dy-
namic Organellar Maps approach in 2016 (12), two other labs
have independently converged on using differential centrifu-
gation for comparative applications (21, 38), and this was
indeed the favored separation technique in six out of eight
recent comparative profiling studies (12, 21, 26, 37–39;
Table IV).

Arguably, the simplest form of a spatial proteomics exper-
iment is to separate cell lysates by differential centrifugation
into a crude nuclear fraction, a membrane fraction, and the
cytosol. Quantifying the distribution of proteins across the
three fractions provides a wealth of spatial information, espe-
cially in a comparative context. Pioneered by the Lamond lab
(41), several groups have now integrated this deceptively
simple yet powerful workflow into their organellar profiling
designs (12, 42).

MS Analysis and Quantification Strategy—Organellar profil-
ing experiments are highly demanding with respect to mass
spectrometry. Even for a single map, multiple fractions with
quite different compositions need to be analyzed, and ideally,
each identified protein should be quantified across most frac-
tions. Furthermore, organelles tend to have overlapping pro-
files, which can be deconvolved only if the quantification is
sufficiently accurate to resolve relatively subtle differences.
The smaller the degree of organellar separation, the more
accurate the quantification needs to be. For comparisons of
organellar maps, profiles must be reproducible, requiring high
precision of quantification. Fortunately, thanks to recent ad-
vances in instrumentation, data analysis and labeling based
multiplexing strategies, there are several options to achieve
this.

The simplest approach is to use label free quantification (e.g.
using the MaxLFQ (43) algorithm; (17, 18)). This provides good

TABLE IV
Applications of comparative global organellar profiling

Method Research Question/Application Reference

Dynamic Organellar Maps EGF signaling (12,17)
Disease mechanism of AP-4 deficiency syndrome (37)
AP-5 mediated protein transport (39)
Characterization of drug action to enhance cross presentation in dendritic cells (26)

LOPIT variant HCMV infection (25)
LOPIT-DC Tethering complexes of the Golgi (38)
PCP Non-alcoholic fatty liver disease in mice (18)
SubCellBarCode EGF signaling (21)
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sequencing depth, but the quantification is performed across
multiple samples, and is intrinsically noisier than with labeling
approaches. In contrast, SILAC based metabolic labeling quan-
tification (44) offers excellent precision and accuracy for profil-
ing, but at the cost of reduced sequencing depth per run time
(17); the application of SILAC is also largely restricted to cell
culture cells. Alternatively, proteins may be labeled with isobaric
tags, such as TMT10/11-plex (17, 19–21, 45) and EASI-tag
6-plex (46), and thus one or even two maps may be fit into a
single sample. This reduces missing values in the data but relies
on consistent and efficient labeling. In addition, TMT-based
quantification performed at MS2 suffers from severe ratio com-
pression, which compromises its accuracy. Quantification at
MS3 alleviates this problem (20, 47), but requires special instru-
mentation, and drastically slows down the sequencing speed.
Thus, the advantage of multiplexing is somewhat offset by a
need for extensive pre-fractionation at peptide level. Optimized
acquisition modes can improve the performance of TMT (48),
and a TMT 16-plex has just been released. Of note, the recently
developed EASI-tag (46) allows near ratio-compression free
quantification at MS2 level.

Profiling experiments are also excellent tools to evaluate
the performance of MS quantification strategies (17). Proteins
that are part of a stable complex should have nearly identical
profiles within the same map; any observed deviations thus
largely reflect measurement noise. It is particularly informative
to compare profiles from the same fractionation experiment
obtained with different MS quantification methods (Fig. 2).

Data Analysis

Visualization of Organellar Maps—Profiling experiments
typically produce high-dimensional data for thousands of pro-
teins, which are difficult to represent in diagrammatic form.
Dimensionality reduction methods compress the data down
to two or three dimensions that still capture most of the
information. An interpretable visual representation can be ob-
tained by plotting the data in the reduced data space, with
every protein typically displayed as a single scatter point.
Proteins with similar profiles will cluster in the data map,
allowing rapid discernment of resolved organelles. Software
for standard visualization methods is freely available (30, 50).

There are two families of tools for dimensionality reduction -
those based on linear data transformation, such as PCA (Prin-
cipal component analysis), and NMF (non-negative matrix
factorization; (51)); and those based on non-linear data trans-
formation, such as t-SNE (t-distributed stochastic neighbor
embedding; (52)) and UMAP (Uniform Manifold Approximation
and Projection for Dimension Reduction; (53)). Linear data
transformation, most notably PCA, generates similar plots for
maps with similar data structure. This is important for the
evaluation of replicates, or maps before/after perturbation.
Also, with PCA, the position of proteins in the map can be
interpreted through the loadings of the principal components.

In contrast, non-linear transformation approaches (particularly
the currently popular t-SNE) allow local stretching and com-
pression of the data and tend to produce visually appealing
maps with seemingly better resolved clusters. It should be
noted though that the shape of the map depends strongly on
the tuning parameters, can vary greatly between similar da-
tasets, and may even produce clustering artifacts (54). This
makes such maps difficult to compare across conditions and
replicates.

Any visualization is a simplification that reduces the infor-
mation content of the original dataset and should not be used
for compartment assignment of proteins. The main purpose of
a visual map is to show the overall data structure. In particular,
it may help to evaluate marker proteins, gauge the shape,
resolution and tightness of clusters, understand why a given
protein has good or poor cluster assignment (e.g. positioning
between two clusters), and perhaps guide the interpretation of
protein translocations. Importantly, an organellar map is not
an ‘image’ of the cell, but reflects the resolution and underly-
ing principles of the chosen profiling approach. Organelles
that appear close in the map have similar physical properties
during separation, but this does not necessarily imply that
these organelles are functionally similar, or physically close in
the cell. Conversely, although the map shows which organ-
elles are separated by the method, this does not preclude that
these organelles are in physical contact within the cell. In fact,
most organelles make contacts with other organelles (55), yet
this information is largely lost during profiling.

Marker Proteins and Compartment Assignments—There are
two main strategies for converting profiling data into lists of
organellar proteins - supervised and unsupervised clustering.
For the former, a list of ‘bona fide’ organellar marker proteins
is used to outline areas of the profile space that correspond to
individual organelles or subcellular structures. Next, machine
learning algorithms (such as support vector machines (12, 20),
Gaussian mixture models (56), neural networks and random
forests (25)) are trained on the markers. The obtained models
are then used to predict the association of the remaining
proteins with one or more clusters. The most difficult step in
this workflow is the choice of the marker set. There is currently
no universally accepted panel of organellar markers; past
studies have defined their own sets, usually based on “expert
knowledge.” Many proteins are only expressed in certain cell
types, and protein localization can also vary between cell
types, so some experiment-specific curation is warranted.
Further complicating matters, many if not most proteins have
multiple subcellular localizations (see Multiorganelle Associa-
tions—The Bane of Profiling Based Organellar Maps). To de-
fine the profile space of an organelle optimally, proteins ex-
clusively associated with this organelle are required. For most
proteins, this information is not available a priori. Neverthe-
less, there are a number of proteins with fairly invariant ma-
jority steady state localization to a single organelle (e.g. Cal-
nexin as an ER marker; ATP synthase as a mitochondrial
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FIG. 2. Organellar profiling of the core proteasome performed with different MS quantification strategies. HeLa cell lysates were
fractionated into five pellets by differential centrifugation (Dynamic Organellar Maps approach (17)). The relative abundances of the 14
proteasomal core subunits (PSMA1 to PSMB7) were quantified across the fractions (normalized to sum 1). Because the core proteasome is
a stable complex, the profiles are expected to be identical, and deviations largely reflect quantification error. Quantification was achieved by
four different approaches (all based on data-dependent acquisition): label-free quantification using the MaxLFQ (43) algorithm; quantification
against an invariant SILAC (44) heavy reference; labeling with TMT10-plex and MS3 quantification (SPS method; (47)); and labeling with
EASI-tag 6-plex (46) and MS2 quantification. A, Relative abundance profiles; subunits in light gray, means in dashed black. SILAC quantifi-
cation produces a tight profile cluster with finely nuanced resolution of small differences in the low abundance fractions (1–3). The LFQ profiles
show substantially more scatter. TMT profiles are tighter than the LFQ profiles, but have a flatter shape in the first three fractions. The EASI-tag
profile has the largest dynamic range. B, Profile scatter, i.e. distribution of (Manhattan) distances of the 14 profiles in A) to the average profile.
Boxes show mean (line) and 1st to 3rd quartile, whiskers 5th-95th percentile; data points outside this range are not shown. SILAC quantification
has the lowest scatter (smallest mean and tightest distribution), whereas LFQ has the highest scatter. TMT10 and EASI-tag 6 show similar
intermediate levels. C, PCA plot of the 14 core proteasome subunit profiles shown in A). PCA was jointly applied to all 4 � 14 � 56 profiles,
but each plot only shows the profiles obtained with the indicated quantification method; all plots have the same scale, center, and PC loadings.
PSMA and PSMB subunits are color coded. SILAC quantification shows the tightest cluster, and largely resolves the A/B subcomplexes. TMT
and EASI-tag show partial resolution and intermediate cluster tightness. SILAC, LFQ and TMT data were published previously (17); EASI-tag
profiles were also generated in house (our unpublished data). All raw files were processed with MaxQuant (49). Importantly, the same sample
set was used for LFQ, SILAC and EASI-tag quantification; for technical reasons, a very similar replicate of this set was used for TMT
quantification. The LFQ profiles were obtained by reprocessing the SILAC raw files with detection of light peptides only (heavy reference
channel ignored). The total MS analysis time was similar for all samples (32–40 h per map), as was the quality of instrumentation (LFQ/SILAC:
Orbitrap HF; EASI-tag: Orbitrap HFX; TMT: Orbitrap Lumos).
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marker), and an analysis of organellar metadata confirmed
this notion (57). Furthermore, three independent laboratories
have published organellar profiling maps from human culture
cells ((12), HeLa; (25), fibroblasts; (27), U2OS), allowing the
assembly of a cross-study consensus set. Predictions for
seven subcellular localizations were made in all three studies
(endoplasmic reticulum, Golgi, lysosomes, mitochondria, per-
oxisomes, plasma membrane, and cytosol). Considering only
high confidence predictions (as judged by the authors), 581
proteins had consistent localization assignments across all
three maps (supplemental Table S1). I propose that this set
may serve as a standard core reference for future organellar
mapping experiments, either as an independent test set to
assess the performance of classification models, or as a
useful starting point for building marker sets.

Manual curation of the marker set can be avoided using
unsupervised clustering methods, allowing the profiling data
first to define its own clusters, and then assigning compart-
ments based on available external subcellular localization infor-
mation of the cluster members (21). This approach is tailored to
the data generated within the experiment, can be applied to
cellular systems where no marker proteins have been defined,
and has the potential to define novel clusters/localizations. The
downside is that the definition of cluster boundaries and cluster
number is arbitrary, and the resulting clusters may not corre-
spond to actual single organelles or subcellular structures.

The observed prediction accuracy of organellar profiling, as
judged by recall and precision of marker predictions, is largely
determined by the choice of markers, even with cross-valida-
tion. It should be regarded as an estimate of the confidence of
predictions purely within the cluster boundaries defined by the
given marker set, but not as an absolute measure of organellar
resolution. Comparing prediction performances across studies
is hence of limited value (unless estimates are based on the
same independent validation set of marker proteins, which must
not have been used for training). However, F1 scores (the har-
monic mean of recall and precision) and the corresponding
“confusion matrix” of wrongly assigned marker proteins are very
useful experiment-internal metrics, particularly for map optimi-
zation and interpretation, as they highlight which organellar
mis-assignments are likely to occur.

Multiorganelle Associations—The Bane of Profiling Based
Organellar Maps—Many, if not most, proteins have multiple
subcellular localizations, ranging from transient movements
during biosynthesis, to functional re-localizations, and genu-
ine multi-compartment functions or even moonlighting activ-
ities (5). Examples include proteins shuttling between nucleus
and cytosol, proteins with both membrane-bound and cyto-
solic pools, and proteins cycling within the endomembrane
system. However, profiling experiments capture only a major-
ity steady state snapshot of protein abundance distribution.
The profile of a protein that predominantly associates with a
single compartment will closely correspond to the theoretical
compartment profile. Thus, its association will be predicted

with high confidence. If the protein has a second or third
minor location, the profile will be peripheral to that of the main
cluster. In case of a genuine bimodal distribution, the profile
will lie between the two organellar clusters, resulting in a poor
prediction confidence for the protein. The intermediate loca-
tion is determined by the “geography” of the map, i.e. the
relative positions of the two organelles. In the worst case, a
third organelle lies in between the two clusters, and the pro-
tein is miss-assigned.

For these reasons, profiling maps tend to generate a relatively
large proportion of profiles that are not confidently assigned to
a single compartment (typically 30–50%). The very fact that a
protein is poorly assigned has been interpreted as evidence of
multiple localizations (20, 21). Some organellar profiling ap-
proaches include features to alleviate the multi-localization
problem. The Dynamic Organellar Maps approach for example
quantifies the cytosolic versus organellar pools of proteins in-
dependently from their compartment assignments, allowing
dual localization predictions for proteins that are partly organ-
ellar and partly cytosolic (12). Furthermore, profiles obtained
from long gradients with a large number of subfractions (e.g.
(18); 22 fractions) can to some extent resolve bimodal protein
distributions, indicating two major steady state localizations.
Multimodal distributions are generally more difficult to observe
with short gradients and few fractions (�10). Although it is
computationally possible to deconvolve an observed profile into
multiple underlying organellar profiles with different weights
(19), it should be noted that this is difficult to control. Firstly, the
“pure” profiles of the different compartments are not known,
and must be estimated from marker protein averages. Sec-
ondly, fitting two or more organelle profiles to account for a
presumed mixed profile is almost always superior to fitting a
single organelle profile, but the danger of overfitting is high.
Most importantly, there are almost no orthogonal quantitative
data available to calibrate or benchmark such deconvolution
attempts. If quantification of a sufficient number of marker pro-
teins by imaging was combined with a proteomic profiling study
of the same cells, accurate deconvolution of the underlying
“pure” compartment profiles may be possible; however, this has
not been reported to date.

The limited prediction of multiorganelle association is a
downside of profiling approaches. Nevertheless, any profile,
interpretable or not, provides spatial information. This is par-
ticularly relevant for comparative experiments (see below,
Detection of Protein Translocations); because profile shifts are
evaluated, all profiled proteins can be included, even those
lacking a confident cluster assignment.

Microclustering and Protein Complex Prediction—Proteins
that are part of a stable complex have tightly linked fraction-
ation profiles, resulting in visible “microcluster” formation
within organellar maps (12, 20, 21). Conversely, this can be
exploited to predict new protein complexes (12, 21; see (58)
for a detailed discussion). This works only “one-way” though.
If proteins are clearly co-fractionating, it suggests that they
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have a linked distribution in the cell, as typical of proteins
within a complex. If two proteins have dissimilar profiles, it
shows that they are not predominantly co-distributed, but
does not rule out a transient or partial interaction. Profiling is
hence a good way to identify stable protein complexes (58).
The ability of profiling to do so is governed by the accuracy
and precision of the quantification method (see MS Analysis
and Quantification Strategy, and Fig. 2C), and greatly im-
proves with multiple replicates.

Detection of Protein Translocations—A main application of
organellar mapping is to identify proteins with shifted subcellular
localization following a perturbation. An intuitive approach is to
focus on proteins with altered predicted compartment associ-
ation, but this is rarely advisable. First, it requires that both
compartment association predictions are correct, and hence
may produce false positives. Second, it can only detect near
complete organellar translocations; a partial (or even intra-or-
ganellar) shift is unlikely to alter the original compartment asso-
ciation prediction, resulting in false negatives. Evidence sug-
gests that many translocations are partial (see for example (38))
and would therefore escape detection. A much more sensitive
approach is to evaluate profile shifts, regardless of compart-
ment assignment. The profile is also quantitative, rather than
qualitative, and hence amenable to multivariate statistical
analysis. A straightforward approach is to subtract the profile
before and after perturbation for each protein (12). For pro-
teins not changing localization, these “delta” profiles should
reflect experimental noise. Significant outliers from this distri-
bution are likely candidate translocating proteins (12, 37, 38,
39). Further quality filters may be included, such as evaluating
reproducibility of the shift direction (12, 37, 38, 39). The nature of
the shift (from where to where) may subsequently be interpreted
considering compartment association predictions or visual maps.
Even in cases where this is not conclusive, the detection of the
translocation event itself is arguably more important, as it indi-
cates relevant proteins for orthogonal validation (see Interpretation
of Profile Shifts, Orthogonal Validation).

Of note, seven out of eight published comparative profiling
studies have analyzed profile shifts to detect translocations
(12, 18, 21, 26, 37–39; Table IV), so this is currently the
consensus approach. Only in cases where the perturbation
causes extreme morphological changes (and hence strongly
altered profiles of most organelles), it may be better to rely on
altered compartment association predictions (as in (25)), albeit
at the price of lower sensitivity and specificity.

Because comparative profiling experiments are intrinsically
noisy, FDR control for the detection of translocations is essen-
tial. A good way to calibrate the experimental system is to
perform a ‘mock’ comparative experiment, i.e. to compare two
sets of (untreated) replicate maps. At a given set of cut-offs, the
number of hits in the mock experiment is divided by the number
of hits in the perturbation experiment, yielding an FDR estimate
(12, 25). At least two replicates of control and perturbation maps

are typically required for useful FDR levels. With three or more
replicates, FDRs close to 0 have been achieved (12, 37).

Although it would be highly desirable to estimate the sen-
sitivity of comparative profiling experiments, this has not been
possible to date. Because such experiments typically aim to
uncover novel connections, the ‘ground truth’ is not known a
priori. If possible, positive controls that are expected to shift
strongly upon perturbation should be part of the experimental
design. These help to gauge the sensitivity and to adjust strin-
gency cut-offs.

Interpretation of Profile Shifts, Orthogonal Validation—Pro-
filing translocation analysis is a reductionist tool - its greatest
strength is to identify from thousands of profiled proteins a
relatively small set specifically responding to a perturbation.
The observed shifts may be directly interpretable regarding
spatial rearrangements, both by comparing organellar assign-
ments, shifts in visual maps, and across cytosolic, membrane
and nuclear fractions (12). However, partial movements are
often not directly interpretable. The elegant application of
organellar mapping to identify vesicle proteins rerouted onto
Golgi tethers anchored to mitochondria is a case in point (38).
Although substantial numbers of vesicles were captured on
mitochondria, as demonstrated by microscopy, the organellar
maps showed only moderate shifts of vesicle proteins. Without
additional information, these would not have been conclusive;
but in the context of the experimental design and orthogonal
data, they revealed a highly specific set of vesicle proteins
cognate to the tested Golgi tethers. Similarly, Davies et al. (37)
identified ATG9A as a cargo protein of AP-4 vesicles,
through profiling of AP4 knockout cells. The detected shifts
were suggestive of TGN retention of ATG9A, but only mi-
croscopy of AP-4 knockout and patient derived cells dem-
onstrated unambiguously that this is the case. These stud-
ies illustrate the power of comparative profiling to find the
proverbial needle in a haystack, but also highlight that the
most informative approach is to combine global profiling
with further targeted characterization of the detected
changes, especially through imaging.

Perspective—

Comparative organellar profiling promises to become a
widespread systems analysis tool, with countless potential
applications in cell biology, pharmacology and biomedical
research. Although high quality MS instrumentation is now
available to many labs, the considerable MS time require-
ments for profiling are still the biggest bottleneck; conse-
quently, most profiling based publications are restricted to
binary comparisons. A priority in the field should be the de-
velopment of streamlined workflows that allow fast pilot ex-
periments, more high-throughput mapping, and more com-
plex experimental designs.
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The rapidly increasing number of spatial proteomics studies
is exciting and shows the growing momentum of the field. A
potential concern is that the current databases of protein
subcellular localization cannot be easily cross-referenced.
There is no central repository, and no universal data format
that allows rapid comparisons of the predictions. Database
curators, or perhaps the proteomic community, should tackle
these issues soon, to maximize accessibility of current and
future spatial proteomics datasets.
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