
Expanding the Perseus Software for
Omics Data Analysis With Custom
Plugins
Sung-Huan Yu,1,5 Daniela Ferretti,1,5 Julia P. Schessner,2,5

Jan Daniel Rudolph,1,3 Georg H. H. Borner,2 and Jürgen Cox1,4,6

1Computational Systems Biochemistry Research Group, Max-Planck Institute of
Biochemistry, Martinsried, Germany

2Systems Biology of Membrane Trafficking Research Group, Max-Planck Institute of
Biochemistry, Martinsried, Germany

3Bosch Center for Artificial Intelligence, Robert-Bosch-Campus 1, Renningen, Germany
4Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
5These authors contributed equally to this work.
6Corresponding author: cox@biochem.mpg.de

The Perseus software provides a comprehensive framework for the statistical
analysis of large-scale quantitative proteomics data, also in combination with
other omics dimensions. Rapid developments in proteomics technology and
the ever-growing diversity of biological studies increasingly require the flex-
ibility to incorporate computational methods designed by the user. Here, we
present the new functionality of Perseus to integrate self-made plugins writ-
ten in C#, R, or Python. The user-written codes will be fully integrated into the
Perseus data analysis workflow as custom activities. This also makes language-
specific R and Python libraries from CRAN (cran.r-project.org), Bioconductor
(bioconductor.org), PyPI (pypi.org), and Anaconda (anaconda.org) accessible
in Perseus. The different available approaches are explained in detail in this ar-
ticle. To facilitate the distribution of user-developed plugins among users, we
have created a plugin repository for community sharing and filled it with the
examples provided in this article and a collection of already existing and more
extensive plugins. © 2020 The Authors.

Basic Protocol 1: Basic steps for R plugins
Support Protocol 1: R plugins with additional arguments
Basic Protocol 2: Basic steps for python plugins
Support Protocol 2: Python plugins with additional arguments
Basic Protocol 3: Basic steps and construction of C# plugins
Basic Protocol 4: Basic steps of construction and connection for R plugins
with C# interface
Support Protocol 4: Advanced example of R Plugin with C# interface: UMAP
Basic Protocol 5: Basic steps of construction and connection for python plug-
ins with C# interface
Support Protocol 5: Advanced example of python plugin with C# interface:
UMAP
Support Protocol 6: A basic workflow for the analysis of label-free quantifi-
cation proteomics data using perseus

Keywords: MaxQuant � omics data analysis � Perseus � plugin development
� quantitative proteomics

Current Protocols in Bioinformatics e105, Volume 71
Published in Wiley Online Library (wileyonlinelibrary.com).
doi: 10.1002/cpbi.105
© 2020 The Authors. This is an open access article under the terms
of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original
work is properly cited.

Yu et al.

1 of 29

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpbi.105&domain=pdf&date_stamp=2020-09-15

How to cite this article:
Yu, S.-H., Ferretti, D., Schessner, J. P., Rudolph, J. D., Borner, G.
H. H., & Cox, J. (2020). Expanding the perseus software for omics

data analysis with custom plugins. Current Protocols in
Bioinformatics, 71, e105. doi: 10.1002/cpbi.105

INTRODUCTION

The complex downstream analysis of proteomic data requires the integration of bioinfor-
matics, statistics, network analysis, and, frequently, machine learning. This has led to the
development of the Perseus software (Tyanova et al., 2016) as a comprehensive multi-
purpose tool and framework for such analyses. The user-friendly interface facilitates a
variety of data transformations and visualizations and provides gapless documentation,
a storable analysis workspace, and a visual representation of the analysis workflow. The
options for multidimensional omics data analysis include normalization, pattern recogni-
tion, time-series analysis, cross-omics comparisons, and controlled multiple-hypothesis
testing.

The core data structure is a matrix, containing one row per entry in the dataset, usually
a protein or protein group. The columns can contain variable information of different
data types. Perseus distinguishes between “Numerical” columns containing single num-
ber values, “Multi-numerical” columns that can contain more than one value in one cell
(split by semi-colons), “Categorical” columns that can contain binary flags, grouping in-
formation, or biological annotation of individual entries (which can be added through
Perseus), and, finally “Text” columns for anything that is neither a number nor a cate-
gory. Perseus additionally distinguishes the columns containing the “Main” data for each
entry, e.g., the quantitative expression values of each protein group in different samples.
These types can be specified on data import and changed throughout the analysis. In
addition to the annotation columns, annotation rows can be defined to specify column
grouping parameters such as biological conditions and technical replicates. This struc-
ture makes Perseus very flexible, allowing statistical analysis for a considerable variety
of experimental designs and thereby facilitating hypothesis generation (Rudolph & Cox,
2019).

Despite this broad applicability there will always be a specific case study or new tech-
nology that requires additional functionalities so far not provided by Perseus. To ex-
pand Perseus’ functionality with plugins is neither difficult nor complex: the core data
structure is propagated to external plugins and back to the Perseus framework through
well-defined interfaces. Newly implemented functionalities can be directly incorporated
into the Perseus interface, making them indistinguishable from the core functions. This
had already been possible for plugins written in C#, since it is Perseus’s native lan-
guage, but it is now also possible for plugins written in other languages including R
and Python. This facilitates the interoperability of Perseus with external scripting lan-
guages, and allows developers to use a language they are already comfortable with. The
backend providing this new functionality is called PluginInterop: it runs the external plu-
gin with a specified executable and facilitates passing additional arguments to the plugin
(Rudolph & Cox, 2019). Since R and Python are widely used in data science, two com-
panion libraries are provided for these two languages to be used alongside PluginInterop:
PerseusR and perseuspy. They provide the other half of the interface for seamless trans-
fer of matrices and annotations from Perseus to R/Python data frame objects and vice
versa.

Yu et al.

2 of 29

Current Protocols in Bioinformatics

https://doi.org/10.1002/cpbi.105

In this article, we provide extensive explanations for all the steps and details of cre-
ating custom plugins for Perseus in all three languages—starting from the basic in-
stallation steps and the use of the different interfaces and proceeding all the way to
advanced analysis plugins. Together with the protocols, we provide a GitHub reposi-
tory (https://github.com/JurgenCox/perseus-plugin-programming) where the given ex-
amples are available for download, as well as a list of already existing plugins of varying
complexity and where to find them online (Table 1).

STRATEGIC PLANNING

Before starting to develop a new Perseus plugin, a few things need to be considered, for
instance, which language should be employed, who is going to use the plugin, and how
many additional arguments are needed for the plugin to work. These are relevant ques-
tions, since there are two ways of integrating non-C# plugins into Perseus. They can be
incorporated with a command line interface or with a C# wrapper for R/Python plugins.
The command line interface lets you select the plugin script file and provides a single
input line for arguments to be passed to the script. On the other hand, the C# wrapper
generates a small graphical user interface to ask for parameter values and adds a separate
entry to a selectable interface menu in Perseus, thereby avoiding the manual selection of
the script file before every run (see Figs. 1-4). Thus, a C# wrapper for R/Python plugins is
not required if the plugin is meant to be used only by the developer or users comfortable
with the command line interface. Conversely, the use of a C# wrapper is highly recom-
mended if a broad user base is expected or a larger number of arguments needs to be
supplied to the plugin. A third alternative is to write the plugin entirely in C#, in which
case the integration is direct, and no wrapping code is necessary. For all these variants,
detailed protocols are provided. If an R or Python plugin is being developed, it is always
possible to initially use the command line interface, and then add a C# wrapper before
it is released to other users, as long as some conventions are followed. All the software
development tools required for Perseus plugin development are freely available.

BASIC
PROTOCOL 1

BASIC STEPS FOR R PLUGINS

R is one of the most widely used programming languages for bioinformatics. Numerous
packages for statistical data analysis and visualization have been created by R develop-
ers. In order to make Perseus more powerful by making these functions available from
within the software, a package for integrating R scripts into Perseus was developed—
PerseusR (Rudolph & Cox, 2019). With this, all custom tools originally scripted in R
can now be used within Perseus. In this basic protocol, a simple example of an R-only
plugin, extracting the head (top rows) of a matrix, will be presented to illustrate how
the data transfer between Perseus and R functions. This example will be run through the
command line style interface. The code of this example is available at: https://github.
com/JurgenCox/perseus-plugin-programming/blob/master/scripts/head.R.

Necessary Resources

Hardware

A computer running Windows 8 (64 bit) or higher, or Windows Server 2008 or
higher

4 GB RAM minimum
At least a quad core processor is recommended

Software

Perseus 1.6.13 or higher:–can be downloaded from https://maxquant.org/perseus
R: Please use a version ≥ 3.5.0. The Rscript executable has to be listed in the

PATH environment variable of the operating system. Please refer to the Yu et al.

3 of 29

Current Protocols in Bioinformatics

https://github.com/JurgenCox/perseus-plugin-programming
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/scripts/head.R
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/scripts/head.R
https://maxquant.org/perseus

Table 1 Examples of Perseus Plugins

Plugins Usage Languages Reference/link

DualQualityFilter Dual-quality matrix filter;
intended to be used for filtering
SILAC data based on MS/MS
count and variability.

R https://github.com/JuliaS92/
PerseusR-DualQualityFilter

ProfileCorrelation For each row, calculates pairwise
correlations between profiles
defined by categorical
annotation rows

Python https://github.com/JuliaS92/
PerseusPy-ReplicateCorrelation

DE analysis Differential expression analysis
for Omics data. The algorithms
include DESeq2 (Love, Huber,
& Anders, 2014), EdgeR
(Robinson, McCarthy, & Smyth,
2010) and Limma (Ritchie et al.,
2015).

R + C# DESeq2, EdgeR, and Limma

Clustering Dimensionality-reduction
methods. The newly added
algorithms are UMAP (Becht
et al., 2019; McInnes et al.,
2018) and tSNE (Maaten, van
der, van der Maaten, & Hinton,
2008).

R/Python
+ C#

UMAP and tSNE

imputeLCMD The collection of imputation
methods for proteomics data.
The software of imputeLCMD
(Johnson, Li, & Rabinovic,
2007) is from sva (Leek,
Johnson, Parker, Jaffe, & Storey,
2012).

R + C# sva

Quantile
normalization

Making the distributions
identical in statistical properties.
The software is from Limma
(Ritchie et al., 2015).

R + C# Limma

Remove batch
effect
(proteinGroup)

Remove the batch effect in
protein group level. The
algorithms contain Limma
(Ritchie et al., 2015) and
ComBat (Johnson et al., 2007).

R + C# Limma and ComBat

PHOTON Elucidation of Signaling
Pathways from Large-Scale
Phosphoproteomic Data Using
Protein Interaction Networks
(Rudolph & Cox, 2019)

Python
+ C#

https://github.com/ jdrudolph/
photon

WGCNA Weighted correlation coefficient
network analysis (Langfelder &
Horvath, 2008)

R + C# WGCNA

Proteomics ruler Proteomics normalization
without spike-in standard
(Wiśniewski, Hein, Cox, &
Mann, 2014).

C# https://maxquant.org/perseus_
plugins

4 of 29

Current Protocols in Bioinformatics

https://github.com/JuliaS92/PerseusR-DualQualityFilter
https://github.com/JuliaS92/PerseusR-DualQualityFilter
https://github.com/JuliaS92/PerseusPy-ReplicateCorrelation
https://github.com/JuliaS92/PerseusPy-ReplicateCorrelation
https://github.com/jdrudolph/photon
https://github.com/jdrudolph/photon
https://maxquant.org/perseus_plugins
https://maxquant.org/perseus_plugins

Figure 1 C# + R plugin in Perseus. (A) Highlights the menu item for running C# + R plugin. The pop-up
window containing the parameters of the plugin is shown in (B).

Figure 2 C# + R plugin for running UMAP analysis. (A) Menu item for running UMAP plugin. The pop-up
window with the arguments of the plugin is presented in (B). (C) Shows the results of UMAP analysis in a
scatter plot in Perseus.

Figure 3 C# + Python plugin in Perseus. (A) Menu item for running C# + Python plugin. The pop-up window
containing the parameters of the plugin is shown in (B).

5 of 29

Current Protocols in Bioinformatics

Figure 4 C# + Python plugin for running UMAP analysis. (A) Highlights the menu item for running the UMAP
plugin. The pop-up window including the arguments of the plugin is presented in (B). (C) Shows the results of
UMAP analysis in a scatter plot.

“Troubleshooting” if Perseus cannot find your R installation, which is indicated
in the command line style interface.

PerseusR: available at https://github.com/cox-labs/PerseusR, where installation
instructions are provided

install.packages(“devtools”)
library(devtools)
install_github(“cox-labs/PerseusR”)
R-supported editor like Visual Studio, RStudio or Notepad++

Input files

This protocol requires no extra input files. The outlined plugin works with a
randomly generated matrix, which can be done using the dice button in Perseus.

1. Parse command line arguments from Perseus.

The communication between Perseus and R works through temporary files containing the
data, their location being specified by fixed index command line arguments. Therefore,
these command line arguments sent from Perseus need to be parsed first.

args = commandArgs(trailingOnly=TRUE)
if (length(args) != 2) {
stop("Do not provide additional arguments!",
call.=FALSE)

}
inFile <- args[1]
outFile <- args[2]

Since the arguments from Perseus are input file and output file, the length of arguments
should be 2. The order of the arguments is fixed: the first in this case is for input file and
the last one is for the output file.

2. Use PerseusR to read the data matrix written by Perseus.

library(PerseusR)
mdata <- read.perseus(inFile)

Yu et al.

6 of 29

Current Protocols in Bioinformatics

https://github.com/cox-labs/PerseusR

Figure 5 R plugin in Perseus. (A) The labeled menu item is for running an R plugin from an external script.
(B) Popup window for specifying the path of the script and additional parameters of the plugin.

PerseusR is the package that bridges between Perseus and R. It needs to be imported
first. Afterwards, the matrix from Perseus can be read into a special matrixData object
by read.perseus.

3. Get the main matrix of Perseus for data processing.

The matrix in Perseus is composed of annotation rows/columns and the main data columns.
In order to extract the main matrix for analysis, the function −main() needs to be used.

counts <- main(mdata)

4. Execute the main custom code for data analysis or modification.

After obtaining the main matrix, the custom analysis steps and modifications can be done.
In this protocol, the head of the matrix is extracted (“15 rows” is assigned).

mdata2 <- head(counts, n=15)
Since the number of rows is reduced for the main matrix, the annotation columns need
to be shortened for the output matrix as well. To get the annotation columns, use
annotCols().

aCols <- head(annotCols(mdata), n=15)
5. Export the output matrix to Perseus with correct format.

After finishing all data-processing steps, the data needs to be converted back to the Perseus
txt format and written to the predefined temporary output file. For generating the final
output, a new matrixData object consisting of main matrix (main), annotation columns
(annotCols). and annotation rows (annotRows) needs to be created. Similar to
annotCols(), the function annotRows() extracts the content of Perseus annotation
rows. Since the annotation rows are not changed by the plugin, they are reused from the
original matrix.

mdata2 <- matrixData(main=mdata2, annotCols=aCols,
annotRows=annotRows(mdata))

To generate the temporary file, write.perseus() is used with the matrixData object
and the outputfile location, which was read in the first step of this protocol.

print(paste('writing to', outFile))
write.perseus(mdata2, outFile)

These are all the basic elements of an R-only Perseus plugin. If no further arguments are
required, the developers only have to put their custom code in step 4.

Yu et al.

7 of 29

Current Protocols in Bioinformatics

6. Apply the plugin in Perseus.

a. Open Perseus and import the matrix/load a session file.

A random matrix is used for testing the plugin in this tutorial.

b. Execute the plugin.

In the “Processing” block, click “External” –> “Matrix –> R”. If the button “select”
is green, it means that Perseus recognized your R installation and PerseusR (Figure 5A),
otherwise navigate to your Rscript.exe or add it to your systems PATH variable. Af-
terwards, specify the R script that you want to execute and click OK (Fig. 5B).

SUPPORT
PROTOCOL 1

R PLUGINS WITH ADDITIONAL ARGUMENTS

In order to make a script more flexible and useful, additional parameters are usually re-
quired. With the above example of extracting the head of a matrix (Basic Protocol 1),
it will be much more convenient if the number of rows can be defined by the users.
The following steps will provide the details of how to add parameters to the plug-
ins. The script, including all steps, can also be found at https://github.com/JurgenCox/
perseus-plugin-programming/blob/master/scripts/head_add_argument.R.

Necessary Resources

Same as Basic Protocol 1

1. Install the argparser library (https://cran.r-project.org/web/packages/argparser/)
with install_packages("argparser") and parse command line arguments
from Perseus.

argv <- commandArgs(trailingOnly=TRUE)
library("argparser")
p <- arg_parser(description = "Head processing")
p <- add_argument(p, 'input', help="path of the
input file")

p <- add_argument(p, 'output', help="path of the
output file")

p <- add_argument(p, '--nrow', type="numeric",
default=15, help="the number of row")

argp <- parse_args(p, argv)

The first two arguments "input" and "output" are required arguments for storing
the input and output files, respectively. An additional optional argument for the number
of rows "--nrow" is added. Its default value is set to 15. Please refer to the argparser
manual for more details.

2. Use PerseusR to read the data in Perseus.

In the same was as for the scripts without parameters, PerseusR needs to be imported, and
read.perseus is used for converting the matrix from Perseus to R format.

library(PerseusR)
mdata <- read.perseus(inFile)

3. Get the main matrix of Perseus for the data processing.

Use main() to obtain the main matrix that is needed for the following data processing.

counts <- main(mdata)

4. Execute the main part for data analysis or modification.

The information from the additional parameter was already parsed and stored. The ex-
traction of the head of the matrix can be performed based on the number of rows that the
user assigned.Yu et al.

8 of 29

Current Protocols in Bioinformatics

https://github.com/JurgenCox/perseus-plugin-programming/blob/master/scripts/head_add_argument.R
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/scripts/head_add_argument.R
https://cran.r-project.org/web/packages/argparser/

mdata2 <- head(counts, n=num)
aCols <- head(annotCols(mdata), n=num)

5. Export the output matrix to Perseus with correct format.

This step is the same as last section. Generate matrixData() and write to Perseus by
using write.perseus().

mdata2 <- matrixData(main=mdata2, annotCols=aCols,
annotRows=annotRows(mdata))

print(paste('writing to', outFile))
write.perseus(mdata2, outFile)

6. Apply the plugin in Perseus.

Now the plugin is ready to be executed. The number of extracted rows can be assigned from
“Additional arguments” in the pop-up window (Fig. 5B). For instance, writing “--nrow
10” in “Additional arguments,” only the first 10 rows will remain in the output matrix in
Perseus.

BASIC
PROTOCOL 2

BASIC STEPS FOR PYTHON PLUGINS

In recent years, many useful Python packages have been developed for computational bi-
ology and data visualization. Moreover, an annual conference (SciPy) provides a platform
where up-to-date Python tools are released and presented. Perseuspy builds a bridge to
integrate Python libraries into Perseus as plugins (Rudolph & Cox, 2019). In this section,
we provide the basic steps for generating Python-only plugins through the command line
style interface. The code for this example is available at https://github.com/JurgenCox/
perseus-plugin-programming/blob/master/scripts/head.py.

Necessary Resources

Hardware

A computer running Windows 8 (64 bit) or higher or Windows Server 2008 or
higher

4 GB RAM minimum
At least a quad core processor is recommended

Software

Perseus 1.6.13 or higher: can be downloaded from https://maxquant.org/perseus.
Python: use version higher than 3.7.0. The Python executable has to be listed in the

PATH environment variable of the operating system. Please refer to
Troubleshooting if Perseus cannot find your Python installation, which is
indicated in the command line−style interface.

Perseuspy: available at https://github.com/cox-labs/perseuspy. An installation
guide and required dependencies can be found in the repository. Also available
on PyPI (https://pypi.org/project/perseuspy/).

Python supported editor like Visual Studio, PyCharm or Notepad++
Input files

This protocol requires no extra input files. The outlined plugin works with a
randomly generated matrix, which can be generated using the dice button in
Perseus.

1. Import the required packages.

import sys
from perseuspy import pd

Yu et al.

9 of 29

Current Protocols in Bioinformatics

https://github.com/JurgenCox/perseus-plugin-programming/blob/master/scripts/head.py
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/scripts/head.py
https://maxquant.org/perseus
https://github.com/cox-labs/perseuspy
https://pypi.org/project/perseuspy/

Figure 6 Python plugin in Perseus. (A) The labeled menu item is for running a Python plugin from an external
script. (B) Popup window for specifying the path of the script and additional parameters of the plugin.

Perseuspy builds on top of the widely-used pandas package to handle matrix process-
ing (Mckinney, 2010). The nested namespace pd contains this extended version of
pandas.

2. Parse command line arguments from Perseus.

The communication between Perseus and Python works through temporary files containing
the data, their location being specified by fixed index command line arguments. Therefore,
these command line arguments sent from Perseus need to be parsed first.

_, infile, outfile = sys.argv

By default, the name of the Python script occupies the first argument of sys.argv and the
input and output file are always the last two arguments. Thus, the order of the arguments
is: the name of Python script, input file, and output file.

3. Read the data from Perseus.

Using the new pandas function read_perseus the data matrix from Perseus can be
read from the input file directly into a pandas data frame object.

df = pd.read_perseus(infile)

4. The main custom code for data analysis or modification.

This part is for the custom desired data analysis. In this example, the code for extraction
of the head of the matrix is placed in this position.

df2 = df.head(15)

Based on the code, only the first 15 rows will be kept in the matrix.

5. Export the output matrix to Perseus with correct format.

When all the steps of the data processing are done, the final matrix needs to be exported to
Perseus in the correct format. For this, the second new function in pandas, to_perseus,
can be used.

df2.to_perseus(outfile)

6. Apply the plugin in Perseus.

a. Open Perseus and import the matrix or load a session.

A random matrix is used for testing the plugin in this tutorial.

b. Execute the plugin.

In the “Processing” block, click “External” –> “Matrix –> Python”. If the button “se-
lect” is green, it means that Perseus recognized your Python installation and perseuspy

Yu et al.

10 of 29

Current Protocols in Bioinformatics

(Fig. 6A); otherwise, navigate to your python.exe or add it to your systems PATH
variable. Afterwards, specify the Python script that you want to execute and click OK
(Fig. 6B).

SUPPORT
PROTOCOL 2

PYTHON PLUGINS WITH ADDITIONAL ARGUMENTS

For a more elaborate analysis, Python plugins can also be passed additional arguments
just like R plugins. The following steps will demonstrate the steps needed for adding
parameters to plugins. The example the number of rows to obtain from the top of the ma-
trix can be specified by the user. The script is available at https://github.com/JurgenCox/
perseus-plugin-programming/blob/master/scripts/head_add_argument.py.

Necessary Resources

Same as Basic Protocol 2
Additionally, the package argparse needs to be installed in the Python environment

1. Import the required packages.

import argparse
from perseuspy import pd

2. Parse command line arguments from Perseus.

parser = argparse.ArgumentParser("Head processing")
parser.add_argument("input", help="path of the input
file")

parser.add_argument("output", help="path of the
output file")

parser.add_argument("--nrow", type=int, default=15,
help="the number of row")

arg = parser.parse_args()

This part is similar to “Parse command line arguments from Perseus” in Support
Protocol 1. The first two arguments "input" and "output" are positional arguments
for storing the input and output files, respectively. The third argument, "--nrow" is for
the number of rows.

3. Read the data from Perseus.

df = pd.read_perseus(arg.input)

4. Retrieve the user-define arguments (--nrow) to modify the matrix.

The number of rows stored in "--nrow", can now be used for the extraction.

df_head = df.head(arg.nrow)

5. Export the output matrix to Perseus with correct format.

df2.to_perseus(arg.output)

6. Apply the plugin in Perseus.

For using the newly added parameter as an input, the assignment needs to be written in
“Additional arguments” in the pop-up window (Fig. 6B). If “Additional arguments” is
filled in with “--nrow 10”, the output matrix will be the first 10 rows.

BASIC
PROTOCOL 3

BASIC STEPS AND CONSTRUCTION OF C# PLUGINS

Even better integrated plugins with an automatically generated graphical user inter-
face for the parameters can be generated when using C#, which is the original pro-
gramming language of Perseus. The architecture of Perseus plugins is systematic and

Yu et al.

11 of 29

Current Protocols in Bioinformatics

https://github.com/JurgenCox/perseus-plugin-programming/blob/master/scripts/head_add_argument.py
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/scripts/head_add_argument.py

well structured. Numerous C# plugins can be found at https://github.com/JurgenCox/
perseus-plugins. All the scripts can be recycled and modified by users. The same
basic example as in the previous sections will be used to explain how to generate a
C# plugin. The script of the example can be seen at https://github.com/JurgenCox/
perseus-plugin-programming/blob/master/PluginTutorial/Head_c_sharp.cs.

Necessary Resources

Hardware

A computer running Windows 8 (64 bit) or higher, or Windows Server 2008 or
higher

4 GB RAM minimum
At least a quad core processor is recommended

Software

Perseus 1.6.13 or higher: can be downloaded from https://maxquant.org/perseus
For editing C# code, Visual Studio Community Edition is recommended

(https://www.visualstudio.com/downloads/). Please select the “.Net Desktop
Development workflow” in the installer to install everything required. To ensure
version compatibility, please use .NET Framework <= 4.7.2 or .NET Core <=
2.1.

.NET packages BaseLibS and PerseusAPI: Both of these can be installed by using
“Manage NuGet Packages” in Visual Studio, which is explained in step 2 of the
protocol

1. Create a C# project.

Due to the internal connection between the plugin and Perseus, the project name should use
“Plugin” as prefix and the type of project should be “Class Library (.NET framework).”
In this demonstration, the Project name was set as “PluginTutorial”.

2. Add the dependencies.

PerseusAPI and BaseLibS need to be installed for generating plugins. For installation of
these two packages, right-click on the “PluginTutorial” solution and choose “Manage
NuGet Packages….” Afterwards, search for PerseusApi in the “Browse” tab and install it
for “PluginTutorial”. The PerseusAPI and its dependency BaseLibS will be added.

3. Import packages and define namespace with a class.

In the Class1.cs file, remove all default packages and code generated by Visual Studio,
and instead import the packages as shown here:

using System.Linq;
using BaseLibS.Graph;
using BaseLibS.Param;
using PerseusApi.Document;
using PerseusApi.Generic;
using PerseusApi.Matrix;
namespace PluginTutorial
{
public class PluginHead : IMatrixProcessing
{
}

}

The project name (PluginTutorial) should be placed in namespace, and the user-
defined class (PluginHead) should inherit IMatrixProcessing, which is created
for processing the matrix from Perseus.

Yu et al.

12 of 29

Current Protocols in Bioinformatics

https://github.com/JurgenCox/perseus-plugins
https://github.com/JurgenCox/perseus-plugins
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Head_c_sharp.cs
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Head_c_sharp.cs
https://maxquant.org/perseus
https://www.visualstudio.com/downloads/

4. Generate basic structure of the C# plugin.

To make IMatrixProcessing work, a number of methods and variables need to be
implemented.

namespace PluginTutorial
{
public class PluginHead : IMatrixProcessing
{
public bool HasButton => false;
public string Description => "extract the header
of the matrix.";
public string HelpOutput => "extract the header of
the matrix.";
public string[] HelpSupplTables => new string[0];
public int NumSupplTables => 0;
public string Name => "Head CS only";
public string Heading => "Tutorial";
public float DisplayRank => 6;
public string[] HelpDocuments => new string[0];
public int NumDocuments => 0;
public string Url => null;
public Bitmap2 DisplayImage => null;
public bool IsActive => true;
public int GetMaxThreads(Parameters parameters)
{
return 1;

}
public void ProcessData(IMatrixData mdata,
Parameters param, ref
IMatrixData[] supplTables,
ref IDocumentData[] documents, ProcessInfo
processInfo)
{
}
public Parameters GetParameters(IMatrixData mdata,
ref string errorString)
{
}
}
}

To customize the plugin, the modification of several parameters and methods is required.
Name defines the name of the plugin as it will appear in Perseus (Fig. 7A). Heading
defines the name of the drop-down menu the plugin will be added to (Fig. 7A). If the
name of the menu does not yet exist, a new one will be created automatically without
requiring further changes in other places. Optional parameter changes are the following:
the Description of the plugin, which will be shown when hovering over the plugin in
Perseus (Fig. 7A); the Url of the plugin’s documentation, which can be opened by click-
ing the ghost icon besides the “OK” button (Fig. 7B); and DisplayImage, which is the
icon appearing next to the plugin name in the menu. If more threads need to be used for
the plugin, it can be changed in GetMaxThread. The code for actual data processing
should be placed inside ProcessData. The additional input parameters required are
defined in Parameters. The other parameters defined in the code above are not rel-
evant for custom-generated plugins, but need to be defined for the class to be compiled
successfully.

Yu et al.

13 of 29

Current Protocols in Bioinformatics

Figure 7 C# plugin in Perseus. (A) The labeled menu item is for running a C# plugin. The description specified
in the C# code is shown when the mouse hovers over it. (B) The popup window for specifying the values of
parameters. The explanation specified in the script is displayed when hovering with the mouse. For adding
plugins in Perseus, the selected files in (C) (the folder of $PROJECT_NAME/bin/Debug) need to be copied to
the folder in (D) (Perseus/bin).

5. Add parameters.

The method GetParameters returns a C# object (Parameters) containing all the
parameters that the user has to provide in the interface.

public Parameters GetParameters(IMatrixData mdata,
ref string errorString)

{
return new Parameters(new IntParam("Number of
rows", 15)
{
Help = "The number of rows for the header needs
to be kept."

});
}

In this example, an integer parameter was created (IntParam). The name of the pa-
rameter is "Number of rows," and the default is 15. A description of the parame-
ter can be added in Help. This description will appear when hovering over the pa-
rameter text (Fig. 7B). If multiple parameters need to be added, the user just needs
to add them one by one in Parameters, as shown below. A complete example
can be seen at https://github.com/JurgenCox/perseus-plugin-programming/blob/master/
PluginTutorial/Head_c_sharp_two_params.cs.

public Parameters GetParameters(IMatrixData mdata,
ref string errorString)

{
return new Parameters(new IntParam("Number of

rows", 15)
{Help = "The number of rows to retain."},Yu et al.

14 of 29

Current Protocols in Bioinformatics

https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Head_c_sharp_two_params.cs
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Head_c_sharp_two_params.cs

new IntParam("Number of columns", 2)
{Help = "The number of columns to retain."}

);
}

6. Generate the code for data processing.

The main data processing is defined in ProcessData. In this example, the first n rows
of the matrix are extracted.

public void ProcessData(IMatrixData mdata,
Parameters param, ref IMatrixData[]
supplTables, ref IDocumentData[] documents,
ProcessInfo processInfo)

{
int lines = param.GetParam<int>("Number of

rows").Value;
int[] head = Enumerable.Range(0, lines).ToArray();
mdata.ExtractRows(head);

}

param.GetParam<int>("Number of rows").Valuewill get the value stored
in the integer parameter called "Number of rows", which was created in GetPa-
rameters before. The other lines use this number to extract the head of the matrix.
mdata is the object that stores all the information on the Perseus matrix and Extrac-
tRows can be used to extract the rows of the matrix based on the list of indices generated
from the user input.

7. Compile the plugin and copy the dll.

Since C# is a compiled language, the next step is to build the project, which will gener-
ate a .dll file. If the build was successful, PluginTutorial.dll will be saved in
the “bin/Debug” folder of the project directory, which you can open by right-clicking
the project in the Solution Explorer –> “Open Folder in File Explorer” (PluginTuto-
rial\bin\Debug, Fig. 7C). For adding the newly created plugin to Perseus, this dll
must be copied to the “bin” folder of Perseus (Perseus/bin, Fig. 7D). Afterwards,
the plugin can be used in Perseus after a re-start (Fig. 7A and 7B).

8. Apply the plugin in Perseus.

a. Open Perseus and import the matrix or open a session.

A random matrix is used for testing the plugin in this tutorial.

b. Execute the plugin.

Click “Tutorial” –> “Head CS only” in “Processing” block (Fig. 7A). Then, specify the
number of rows for extraction and click OK (Fig. 7B).

Resource for C# Plugins

For more examples and source codes of C# plugins, please check the repository:
https://github.com/JurgenCox/perseus-plugins.

BASIC
PROTOCOL 4

BASIC STEPS OF CONSTRUCTION AND CONNECTION FOR R PLUGINS
WITH C# INTERFACE

Although C# can generate a user-friendly interface for the plugins, R and Python
packages are still not able to be integrated into Perseus with the native C# interface.
To combine the flexibility of R and Python with the graphical user interface generated
by C#, the C# package PluginInterop was created (Rudolph & Cox, 2019). Here, the
basic methods of PluginInterop needed to create an R plugin with C# interface will be

Yu et al.

15 of 29

Current Protocols in Bioinformatics

https://github.com/JurgenCox/perseus-plugins

presented step by step. The R script can be found at https://github.com/JurgenCox/
perseus-plugin-programming/blob/master/PluginTutorial/Resources/head_c_sharpR.
R, and the C# script at https://github.com/JurgenCox/perseus-plugin-programming/
blob/master/PluginTutorial/Head_with_r.cs.

Necessary Resources

All requirements of Basic Protocols 1 and 3
Additionally, the C# package PluginInterop is required: this can also be installed

by using “Manage NuGet Packages” in a Visual Studio project as described in
step 2.

1. Create a C# project.

See step 1 of Basic Protocol 3.

2. Add the dependencies.

Besides PerseusAPI and BaseLibS, PluginInterop also needs to be installed. The steps are
the same as step 2 of Basic Protocol 3. Right-click on you project solution (PluginTutorial)
and choose “Manage NuGet Packages….”, then search for PluginInterop in the “Browse”
tab and install it to your project solution.

3. Import packages and define namespace with a class.

Since PluginInterop is the bridge between R and C#, it needs to be used in the wrap-
per. Additionally, the R script needs to be placed into the resource folder of the project (will
be descripted at step 6). Thus, PluginTutorial.Properties needs to be used as
well.

using BaseLibS.Param;
using PerseusApi.Matrix;
using System.IO;
using PluginInterop;
using System.Text;
using PluginTutorial.Properties;
namespace PluginTutorial
{
public class HeadR : PluginInterop.R.
MatrixProcessing
{
}

}

Here, the class HeadR inherits from PluginInterop.R.MatrixProcessing,
which is the method for managing the matrix and parameter transfer between C# and
the R script.

4. Override methods in the class.

PluginInterop.R.MatrixProcessing is a template for generating a C# plugin
that can connect to R. For applying it to a user-specific project, some methods and vari-
ables need to be overridden.

public class HeadR : PluginInterop.R.
MatrixProcessing

{
public override string Heading => "Tutorial";
public override string Name => "Head with R";
public override string Description => "extract the
header of the matrix";

Yu et al.

16 of 29

Current Protocols in Bioinformatics

https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Resources/head_c_sharpR.R
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Resources/head_c_sharpR.R
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Resources/head_c_sharpR.R
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Head_with_r.cs
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Head_with_r.cs

protected override bool TryGetCodeFile(Parameters
param, out string
codeFile)
{

byte[] code = (byte[])Resources.
ResourceManager.GetObject("head_c_sharpR");

codeFile = Path.GetTempFileName();
File.WriteAllText(codeFile, Encoding.UTF8.
GetString(code));

return true;
}
protected override string GetCommandLineArguments
(Parameters param)

{
var tempFile = Path.GetTempFileName();
param.ToFile(tempFile);
return tempFile;

}
protected override Parameter[] SpecificParameters
(IMatrixData mdata, ref string errString)

{
if (mdata.ColumnCount < 3)
{
errString = "Please add at least 3 main columns
to the matrix.";

return null;
}
return new Parameter[]
{
new IntParam("Number of rows", 15)
{
Help = "The number of rows for the header needs
to be kept."

}
};

}
}

Heading, Name and Description should be changed to match the needs of
the project (the details of these methods were mentioned at step 4 of Basic Pro-
tocol 3). TryGetCodeFile() is for getting the R script from the project re-
sources. The only thing that needs to be edited here is the name of the R script in
(byte[])Resources.ResourceManager.GetObject(), omitting the file ex-
tension (head_c_sharpR). GetCommandLineArguments() will convert the pa-
rameters specified at SpecificParameters() and filled in by the user to a temporary
file which can be read inside the R script. This method definition does not require further
editing. SpecificParameters() is similar to GetParameters(), which was intro-
duced at step 5 of Basic Protocol 3. It needs to return an array of parameter definitions,
which will be used to generate the interface. For definition of several parameters please
refer to Support Protocol 4, which shows a more advanced example.

5. Generate R script for data processing.
At this point, the C# side of the interface has been established. Next, the R code for the
actual data processing is added. The code is very similar to the script presented in Support
Protocol 1. The only difference is that the additional parameters are transferred as one file
from the C# interface, rather than as individual arguments. The order of the command line
arguments is now parameter file, input file and output file. Yu et al.

17 of 29

Current Protocols in Bioinformatics

args = commandArgs(trailingOnly = TRUE)
paramFile <- args[1]
inFile <- args[2]
outFile <- args[3]

Afterwards, the user input has to be extracted by a function called “parseParame-
ters” and several type-specific functions like intParamValue(), or boolParam-
Value(). Table 1 summarizes the most commonly used functions and their C# counter-
parts. In this demonstration, the type of the parameter is integer and the name is “Number
of rows.”

parameters <- parseParameters(paramFile)
num_row <- intParamValue(parameters, 'Number of
rows')

The remainder of the R script is the same as in Support Protocol 1.

6. Store R script to resource folder.

As mentioned in steps 2 and 3, the R script needs to be placed in the resource folder of the
C# project. To do so follow these steps:

a. Right-click “Properties” under the project (PluginTutorial) in Visual Studio.
b. Click “Resources.”
c. Click “Add Resource” and navigate to the target R script (head_c_sharpR.R).

Then save it.

7. Build the solution and place the required files to the bin folder of Perseus.

Just as with a C#-only plugin, the code needs to be compiled and moved to the Perseus
bin folder. Please refer to step 7 of Basic Protocol 3 for this. The only difference is that
the .pdb file also has to be transferred, as it contains the R script. Thus, PluginTuto-
rial.dll and PluginTutorial.pdb need to be copied. The plugins can be used
after re-starting Perseus (Fig. 1).

SUPPORT
PROTOCOL 3

ADVANCED EXAMPLE OF R PLUGIN WITH C# INTERFACE: UMAP

UMAP (Becht et al., 2019; McInnes, Healy, & Melville, 2018) is a powerful
dimensionality-reduction algorithm that is widely used for many different studies.
It will be extremely useful to add UMAP to Perseus. This section will take UMAP as
an advanced example to demonstrate how powerful the new Perseus plugin interface
is for data analysis. The C# script can be found at https://github.com/JurgenCox/
perseus-plugin-programming/blob/master/PluginTutorial/UmapAnalysis_with_r.cs,
and the R script is saved at https://github.com/JurgenCox/perseus-plugin-programming/
blob/master/PluginTutorial/Resources/Umap_R.R.

Necessary Resources

All of the resources listed in Basic Protocol 4
UMAP: a dimensionality-reduction method. The R version of UMAP can be found

at CRAN (https://cran.r-project.org/web/packages/umap/ index.html)

Input files

The samples for the example of UMAP analysis can be downloaded at PRIDE
(PXD003710) (Bailey, McDevitt, Westphall, Pagliarini, & Coon, 2014).
Additionally, the MaxQuant (Cox & Mann, 2008; Sinitcyn, Rudolph, & Cox,
2018; Tyanova, Temu, & Cox, 2016; Yu, Kiriakidou, & Cox, 2020)
proteinGroup table of this dataset is also provided at https://github.com/
JurgenCox/perseus-plugin-programming/ tree/master/dataset. The values are
normalized and transformed by logarithm, and the unreliable protein groups
(reversed, only identified by site, contaminant, containing more than 30%Yu et al.

18 of 29

Current Protocols in Bioinformatics

https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/UmapAnalysis_with_r.cs
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/UmapAnalysis_with_r.cs
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Resources/Umap_R.R
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Resources/Umap_R.R
https://cran.r-project.org/web/packages/umap/index.html
https://github.com/JurgenCox/perseus-plugin-programming/tree/master/dataset
https://github.com/JurgenCox/perseus-plugin-programming/tree/master/dataset

missing values) are all removed from the table. Moreover, the data is well
annotated by experimental design. This table can be directly used for the
advanced example.

1. Create a C# project.

Please see step 1 of Basic Protocol 3.

2. Add the dependencies.

Please see step 2 of Basic Protocol 4.

3. Import packages and define namespace with a class.

Please see step 3 of Basic Protocol 4.

4. Override methods in the class.

In general, the practical procedures are the same as in step 4 of Basic Protocol 4. The only
requirement is to modify several methods and variables to match this example. First, the
Head, Name, and Description need to be changed.

public override string Heading => "Tutorial";
public override string Name => "Umap analysis with
R";

public override string Description => "Applying
Umap to cluster the data";

Secondly, the R script of UMAP analysis has to be assigned properly.

byte[] code = (byte[])Resources.ResourceManager.
GetObject("Umap_R");

Third, all the parameters should be added to SpecificParameters() one by one with
their corresponding data type.

protected override Parameter[] SpecificParameters
(IMatrixData mdata, ref string errString)

{
if (mdata.ColumnCount < 3)
{
errString = "Please add at least 3 main data
columns to the matrix.";

return null;
}

return new Parameter[]
{
new IntParam("Number of neighbors", 15)
{

Help = "The number of neighbors."
},
new IntParam("Number of components", 2)
{

Help = "The number of components."
},
new IntParam("Random state", 1)
{

Help = "Set seed for reproducibility."
},
new DoubleParam("Minimum distance", 0.1)
{ Yu et al.

19 of 29

Current Protocols in Bioinformatics

Help = "Set minimum distance between the
data point."

},
new SingleChoiceParam("Metric")
{

Values= new[] { "euclidean", "manhattan",
"cosine", "pearson","pearson2"},

Help = "The method of metric for doing
clustering."

}
};

}

The structure of SingleChoiceParam() is different from IntParam() or Dou-
bleParam(). SingleChoiceParam() has to contain an array called Values to
store all the options for the users. The first element of Values is the default one, which
will appear on the dropdown list of the Perseus plugin.

5. Generate R script for data processing.

The basic rules for generating an R script are the same as in step 5 of Basic Protocol 4.
Hence, the most important thing is to obtain the information of parameters from C#. The
other parts of the R script can be done like normal R programming and are not shown here.

args = commandArgs(trailingOnly = TRUE)
paramFile <- args[1]
inFile <- args[2]
outFile <- args[3]
parameters <- parseParameters(paramFile)
n_neighbor <- intParamValue(parameters, "Number of
neighbors")

n_component <- intParamValue(parameters, "Number of
components")

seed <- intParamValue(parameters, "Random state")
metric <- singleChoiceParamValue(parameters,
"Metric")

m_dist <- intParamValue(parameters, "Minimum
distance")

intParamValue() can also be used to receive the value with the double-precision data
type because R can handle the conversion at the first assignment of the variables.

6. Store R script to resource folder.

Please see step 6 of Basic Protocol 4.

7. Build the solution and place the required files to the bin folder of Perseus

Please see step 7 of Basic Protocol 4.

8. Run UMAP and plot the result.

In this section, the dataset from Bailey, D. J., et al. will be applied to test the newly devel-
oped plugin of UMAP (Bailey et al., 2014).

a. Open Perseus and load proteinGroup.txt.

Since proteinGroup.txt is already pre-processed and grouped, it can be directly
loaded into Perseus by clicking the green icon of arrow in the block of “Load.”

b. Run R plugin of UMAP.

Yu et al.

20 of 29

Current Protocols in Bioinformatics

Click “Tutorial” −> “Umap analysis with R” to specify the parameters and run the plugin
(Fig. 2A and 2B). After running the plugin of UMAP, the matrix will be transposed and the
main values will be changed to components.

c. Plot the result of UMAP.

Use scatter plot (with columns) to view the result of the UMAP analysis. The outcome
shows that the data points are clustered based on cell types (Fig. 2C).

BASIC
PROTOCOL 5

BASIC STEPS OF CONSTRUCTION AND CONNECTION FOR PYTHON
PLUGINS WITH C# INTERFACE

This protocol will continue to demonstrate how to generate Python plugins with C#
interface using the same examples as Basic Protocol 4. The C# script of the basic exam-
ple can be found at https://github.com/JurgenCox/perseus-plugin-programming/blob/
master/PluginTutorial/Head_with_py.cs, and the Python code can be found at https://
github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Res
ources/head_c_sharpPy.py.

Necessary Resources

All requirements of Basic Protocols 2 and 3
Additionally, the C# package PluginInterop is required: this can also be installed

by using “Manage NuGet Packages” in a Visual Studio project as described in
step 2

1. Create a C# project.

Please see step 1 of Basic Protocol 3.

2. Add the dependencies.

Please see step 2 of Basic Protocol 4.

3. Import packages and define namespace with a class.

The only difference between this step and step 3 of Basic Protocol 4 is that the inheritance
has to be edited for connecting Python instead of R to C#.

public class HeadPy : PluginInterop.Python.
MatrixProcessing

Like PluginInterop.R.MatrixProcessing, PluginInterop.Python.
MatrixProcessing is for managing the matrix of Perseus and the communication
between Python and C#. Of course, the name of the class can be changed as well (from
HeadR to HeadPy).

4. Override methods in the class.

The majority of the code is the same as step 4 of Basic Protocol 4. Only several commands
need to be modified to match the needs of integrating the Python script.

public override string Heading => "Tutorial";
public override string Name => "Head with Python";
public override string Description => "extract the
header of the matrix";

protected override bool TryGetCodeFile(Parameters
param, out string codeFile)

{
byte[] code = (byte[])Resources.ResourceManager.
GetObject(

"head_c_sharpPy");
codeFile = Path.GetTempFileName();

Yu et al.

21 of 29

Current Protocols in Bioinformatics

https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Head_with_py.cs
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Head_with_py.cs
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Resources/head_c_sharpPy.py
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Resources/head_c_sharpPy.py
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Resources/head_c_sharpPy.py

File.WriteAllText(codeFile, Encoding.UTF8.
GetString(code));

return true;
}

Based on the above code, Heading, Name and Description were changed from
R to Python. Additionally, the name of Python script was assigned to (byte[])
Resources.ResourceManager.GetObject().

5. Generate Python script of data processing.

For the basic principles of generating Python plugins, please refer to Basic Protocol 2. In
order to gain the information about the parameters assigned through the C# interface, a
variable needs to be created for receiving the file storing the parameter values.

_, paramfile, infile, outfile = sys.argv

parse_parameters() is a function for parsing the parameters from the parameter
file. Based on different data types, all the values of parameters can be used for the Python
script by applying corresponding functions like intParam(). Table 1 summarizes the
most commonly used functions and their C# counterparts.

parameters = parse_parameters(paramfile)
head = intParam(parameters, "Number of rows")

6. Store Python script to resource folder.

Please see step 6 of Basic Protocol 4.

7. Build the solution and place the required files to the bin folder of Perseus

Please see step 7 of Basic Protocol 4.

If all the procedures are done, the plugin will be shown in Perseus (Fig. 3)

SUPPORT
PROTOCOL 4

ADVANCED EXAMPLE OF PYTHON PLUGIN WITH C# INTERFACE:
UMAP

Since UMAP is also available in Python, the same analysis can be used as an advanced
example to show the power of Perseus Plugins for data analysis. The C# and Python
scripts are listed at https://github.com/JurgenCox/perseus-plugin-programming/blob/
master/PluginTutorial/UmapAnalysis_with_py.cs, and https://github.com/JurgenCox/
perseus-plugin-programming/blob/master/PluginTutorial/Resources/Umap_Py.py, re-
spectively.

Necessary Resources

All of the requirements listed in Basic Protocol 5.
UMAP: a dimensionality-reduction method. The Python version of UMAP can be

found at PyPI (https://pypi.org/project/umap-learn/).

Input files

Same as Support Protocol 4

1. Create a C# project.

Please see step 1 of Basic Protocol 3.

2. Add the dependencies.

Please see step 2 of Basic Protocol 4.

3. Import packages and define namespace with a class.

Please see step 3 of Basic Protocol 5.Yu et al.

22 of 29

Current Protocols in Bioinformatics

https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/UmapAnalysis_with_py.cs
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/UmapAnalysis_with_py.cs
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Resources/Umap_Py.py
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/PluginTutorial/Resources/Umap_Py.py
https://pypi.org/project/umap-learn/

4. Override methods in the class.

The most important thing is to specify the correct names of plugin and Python script.

public override string Heading => "Tutorial";
public override string Name => "Umap analysis with
Python";

public override string Description => "Applying
Umap to cluster the data";

protected override bool TryGetCodeFile(Parameters
param, out string codeFile)

{
byte[] code = (byte[])Resources.ResourceManager.
GetObject("Umap_Py");
codeFile = Path.GetTempFileName();
File.WriteAllText(codeFile, Encoding.UTF8.
GetString(code));
return true;

}

5. Generate Python script for data processing.

Since this part of data processing will be done in Python script, all the parameters need
to be transferred to Python variables.

n_neighbor = intParam(parameters, "Number of
neighbors")

n_component = intParam(parameters, "Number of
components")

seed = intParam(parameters, "Random state")
m_dist = doubleParam(parameters, "Minimum distance")
metric = singleChoiceParam(parameters, "Metric")

As in step 5 of Support Protocol 4, intParam() can be used for handling the double-
precision data type because Python can automatically adjust for the conversion. Addition-
ally, the Perseus matrix has to be transposed due to the input format of UMAP. There-
fore, the category rows need to be extracted for the modification as well. Similar to an-
notRows in PerseusR, read_annotation can return a matrix containing all category
rows.

annotations = read_annotations(infile)

Furthermore, Perseuspy has a function called main_df(), which is similar to main()
in PerseusR, for extracting the main matrix in Perseus. Based on this, only the values of
the main matrix will be used for the UMAP analysis, which is not shown here.

newDF1 = main_df(infile, df)

6. Store Python script to resource folder.

Please see step 6 of Basic Protocol 4.

7. Build the solution and place the required files in the bin folder of Perseus

Please see step 6 of Basic Protocol 4.

8. Run UMAP and plot the results.

Please see step 8 of Support Protocol 4. Figure 4 shows the outcome of the plugin and the
results of UMAP with the data points grouped based on cell types.

Yu et al.

23 of 29

Current Protocols in Bioinformatics

SUPPORT
PROTOCOL 5

A BASIC WORKFLOW FOR THE ANALYSIS OF LABEL-FREE
QUANTIFICATION PROTEOMICS DATA USING PERSEUS

Based on the above protocols, Perseus plugins can be generated according to the user’s
needs. In order to demonstrate the benefits that Perseus can offer for data analysis, a
basic workflow for the analysis of label-free quantification (LFQ) will be presented in
this section. The UMAP plugin generated via Support Protocols 4 and 5 can be ap-
plied to this analysis. The samples are from a part of the dataset in a Proteome In-
formatics Research Group (iPRG) 2015 Study (Choi et al., 2017). The proteinGroup
table used for this example can be downloaded from https://github.com/JurgenCox/
perseus-plugin-programming/blob/master/dataset/proteinGroups_LFQ.txt.

Necessary Resources

All of the requirements listed in Basic Protocol 5 and Support Protocol 5

Input files

proteinGroups_LFQ.txt from https://github.com/JurgenCox/perseus-
plugin-programming/blob/master/dataset/proteinGroups_LFQ.txt. This dataset
contains three samples named as 1, 2, and 3. Moreover, each sample has three
technical replicates labeled as A, B, and C.

The workflow, plugins, and settings for the basic analysis are shown in Figure 8.
The results of most commonly used statistics methods–differential expression analysis
(ANOVA test is used) and dimensionality reduction (UMAP is applied) are presented
in Figure 9 and 10. This example only demonstrates a basic workflow. Perseus contains
numerous useful plugins and parameters. The user can change the settings based on dif-
ferent requirements.

GUIDELINES FOR UNDERSTANDING RESULTS

During the development of new Perseus plugins, execution errors may occur. In this case.
a window, “Execution halted,” will pop up and show the trace-back of the error. If this
happens, refer to the troubleshooting information in Table 2 about common mistakes and
how to avoid them. If the error stems from the external plug-in, it is recommended to use
the two download options provided in the command line−style interfaces. The first one
allows you to download a data preview, which is just the regular temporary file written
for the data transfer from Perseus to the plugin. The second download option is for the
parameters. This allows the developer to generate test data and parameters for debug-
ging the plugin outside of Perseus, without writing the same temporary files multiple
times. If the plugin executes smoothly without any errors, it is still recommended to val-
idate correctness of the results, for instance by writing unit tests. For this, the developer
should prepare a minimal test data set that allows validation of the computation results.

Table 2 Summary of the Most Widely Used Parameter Options

C# function parameter
specification

R function for parameter
value retrieval

Python function for
parameter value retrieval

IntParam intParamValue intParam

DoubleParam intParamValue doubleParam

BoolParam boolParamValue boolParam

SingleChoiceParam singleChoiceParamValue singleChoiceParam

SingleChoiceWithSubParams singleChoiceParamValuea singleChoiceWithSubParams

BoolWithSubParams boolParamValuea boolWithSubParams

aFor these functions to return the correct value, all sub-parameters need to have unique names across the whole plugin.
Yu et al.

24 of 29

Current Protocols in Bioinformatics

https://github.com/JurgenCox/perseus-plugin-programming/blob/master/dataset/proteinGroups_LFQ.txt
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/dataset/proteinGroups_LFQ.txt
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/dataset/proteinGroups_LFQ.txt
https://github.com/JurgenCox/perseus-plugin-programming/blob/master/dataset/proteinGroups_LFQ.txt

Figure 8 Workflow and settings of a basic analysis. The rectangle blocks represent the steps for the analysis.
The blue paths are the plugins used for the steps. The green statements are the settings that need to be changed
and results of the plugins; the rest of the parameters can remain as the default.

Additionally, the returned data types of all columns should be assessed, to seamlessly
integrate the resulting matrix into the overall workflow. If everything is correct, a second
test data set that challenges the plugin with common error sources like missing values
or false column types should be generated. Once the plugin is fully functional, proper
documentation of the plug-in’s dependencies and parameters will ensure that it can be
successfully applied by Perseus users or other developers. Many useful tools have al-
ready been integrated into Perseus and made available to the community (Table 1). With
this, we hope to enable many developers to add custom functionality to Perseus; we also Yu et al.

25 of 29

Current Protocols in Bioinformatics

Figure 9 Volcano plots of the example LFQ dataset. (A, B, and C) show the volcano plots of
sample 1 versus 2, sample 1 versus 3, and sample 2 versus 3, respectively. The red squares
represent the differential expressed proteins.

hope that users will soon have an even larger collection of plugins available to use in their
research.

COMMENTARY

Background Information
Perseus was originally developed to-

gether with MaxQuant (Cox & Mann, 2008;
Tyanova et al., 2016) for quantitative pro-
teomics analysis. MaxQuant is one of the
most commonly used software applications

for mass-spectrometry-based proteomics data
analysis. It can support numerous types of
labeling strategies and MS platforms (Cox
et al., 2014; Tyanova, Mann, & Cox, 2014; Yu
et al., 2020). Moreover, different quantifica-
tion methods, false-discovery rate control, andYu et al.

26 of 29

Current Protocols in Bioinformatics

Figure 10 UMAP plot of the example LFQ dataset. The blue, red, and green squares represent the sample
1, 2, and 3, respectively.

Table 3 Troubleshooting Guide for Perseus

Error Solution

The R or python
executable cannot be
found by Perseus.

The executables have to be added to the system “Path” environment variable.
To do this, open the “Control Panel,” go to “System,” and then to “Advanced
System Settings.” In the new window, click on the “Environment variables”
configuration. From the list of environment variables, select the “PATH,”
click “edit,” and check that the entry for the R/Python executable is correct. If
it is missing, add the directory as a new entry. These instructions are for
Windows 10. If you cannot locate your path variable, please refer to one of
many instructions that can be found online.

A package (in R) or library
(in python) cannot be
imported.

If this error occurs, please make sure that your R or Python environment
contains the respective library. Perseus cannot install required libraries on the
fly.

Perseus cannot recognize
the output matrix
generated after R or
Python execution

Be sure in which kind of format the output from the R/Python script is
defined. Perseus takes the matrix generated by a data.frame

Identification of
Annotation Rows in case
of possible groups

In plugins where annotation rows are necessary, be sure that your script
recognizes the groups defined in the matrix input, adding the if-case as the
argument (!length(annotRows(mdata)), and then call it again at the end of
script execution if you want to combine your annotation with the results
obtained

PerseusR package (in R)
and/or Perseuspy (in
python) are not recognized

Before to use the packages, check if the installation is done correctly by the
command line
In R: library(PerseusR)
In Python: import argparse from perseuspy

27 of 29

Current Protocols in Bioinformatics

visualization are also provided in MaxQuant.
The output tables of MaxQuant can be directly
imported into Perseus for the downstream
bioinformatics and statistical analyses.

In past decades, high-throughput sequenc-
ing (HTS) has become a potent method in nu-
merous biological research fields. Perseus also
provides the ability to import BAM files and
genome annotation files for mRNA quantifica-
tion (Tyanova et al., 2016). Thus, the bioinfor-
matics and statistical analyses can be applied
to HTS datasets as well. This makes Perseus
a powerful multi-omics data analysis platform
(Poulopoulos et al., 2019).

Critical Parameters
Table 2 lists commonly used parameters for

R, Python, and C# plugins.

Troubleshooting
Table 3 provides troubleshooting informa-

tion.

Acknowledgments
This work was partially funded by the Max

Planck Society for the Advancement of Sci-
ence and the German Research Foundation
(DFG/Gottfried Wilhelm Leibniz Prize MA
1764/2-1), and has been made possible in part
by grant number 2019-202671 from the Chan
Zuckerberg Foundation. Open access funding
enabled and organized by Projekt DEAL

Author Contributions
Sung-Huan Yu: Conceptualization; for-

mal analysis; methodology; writing-original
draft; writing-review & editing. Daniela
Ferretti: Formal analysis; software; writing-
original draft; writing-review & editing.
Julia P. Schessner: Formal analysis; writing-
original draft; writing-review & editing. Jan
Daniel Rudolph: Writing-original draft;
writing-review & editing. Georg H. H.
Borner: Writing-original draft; writing-
review & editing. Jürgen Cox: Conceptual-
ization; formal analysis; funding acquisition;
investigation; methodology; project admin-
istration; software; supervision; writing-
original draft; writing-review & editing.

Literature Cited
Bailey, D. J., McDevitt, M. T., Westphall, M. S.,

Pagliarini, D. J., & Coon, J. J. (2014). Intelligent
data acquisition blends targeted and discovery
methods. Journal of Proteome Research, 13(4),
2152–2161. doi: 10.1021/pr401278j.

Becht, E., McInnes, L., Healy, J., Dutertre, C.-
A., Kwok, I. W. H., Ng, L. G., … Newell, E.
W. (2019). Dimensionality reduction for visu-
alizing single-cell data using UMAP. Nature

Biotechnology, 37(1), 38–44. doi: 10.1038/nbt.
4314.

Choi, M., Eren-Dogu, Z. F., Colangelo, C., Cottrell,
J., Hoopmann, M. R., Kapp, E. A., … Vitek, O.
(2017). ABRF Proteome Informatics Research
Group (iPRG) 2015 study: Detection of differ-
entially abundant proteins in label-free quanti-
tative LC-MS/MS experiments. Journal of Pro-
teome Research, 16(2), 945–957. doi: 10.1021/
acs.jproteome.6b00881.

Cox, J., Hein, M. Y., Luber, C. A., Paron, I.,
Nagaraj, N., & Mann, M. (2014). Accurate
proteome-wide label-free quantification by de-
layed normalization and maximal peptide ra-
tio extraction, termed MaxLFQ. Molecular and
Cellular Proteomics, 13(9), 2513–2526. doi: 10.
1074/mcp.M113.031591.

Cox, J., & Mann, M. (2008). MaxQuant enables
high peptide identification rates, individual-
ized p.p.b.-range mass accuracies and proteome-
wide protein quantification. Nature Biotechnol-
ogy, 26(12), 1367–1372. doi: 10.1038/nbt.1511.

Johnson, W. E., Li, C., & Rabinovic, A. (2007). Ad-
justing batch effects in microarray expression
data using empirical Bayes methods. Biostatis-
tics, 8(1), 118–127. doi: 10.1093/biostatistics/
kxj037.

Langfelder, P., & Horvath, S. (2008). WGCNA:
An R package for weighted correlation network
analysis. BMC Bioinformatics, 9(1), 559. doi:
10.1186/1471-2105-9-559.

Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A.
E., & Storey, J. D. (2012). The sva package for
removing batch effects and other unwanted vari-
ation in high-throughput experiments. Bioinfor-
matics (Oxford, England), 28(6), 882–883. doi:
10.1093/bioinformatics/bts034.

Love, M. I., Huber, W., & Anders, S. (2014).
Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2.
Genome Biology, 15(12), 550. doi: 10.1186/
s13059-014-0550-8.

van der Maaten, L., & Hinton, G. (2008). Vi-
sualizing data using t-SNE. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.457.7213.

McInnes, L., Healy, J., & Melville, J. (2018).
UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction. Retrieved
from http://arxiv.org/abs/1802.03426.

Mckinney, W. (2010). Data Structures for Statisti-
cal Computing in Python. In S. van der W. J.
Millman (Ed.), Proceedings of the 9th Python
in Science Conference (51–56).

Poulopoulos, A., Murphy, A. J., Ozkan, A., Davis,
P., Hatch, J., Kirchner, R., & Macklis, J. D.
(2019). Subcellular transcriptomes and pro-
teomes of developing axon projections in the
cerebral cortex. In Nature (Vol. 565, Issue 7739,
pp. 356–360). New York: Nature Publishing
Group. doi: 10.1038/s41586-018-0847-y.

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y.,
Law, C. W., Shi, W., & Smyth, G. K. (2015).
Limma powers differential expression analysesYu et al.

28 of 29

Current Protocols in Bioinformatics

http://doi.org/10.1021/pr401278j
http://doi.org/10.1038/nbt.4314
http://doi.org/10.1038/nbt.4314
http://doi.org/10.1021/acs.jproteome.6b00881
http://doi.org/10.1021/acs.jproteome.6b00881
http://doi.org/10.1074/mcp.M113.031591
http://doi.org/10.1074/mcp.M113.031591
http://doi.org/10.1038/nbt.1511
http://doi.org/10.1093/biostatistics/kxj037
http://doi.org/10.1093/biostatistics/kxj037
http://doi.org/10.1186/1471-2105-9-559
http://doi.org/10.1093/bioinformatics/bts034
http://doi.org/10.1186/s13059-014-0550-8
http://doi.org/10.1186/s13059-014-0550-8
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.457.7213
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.457.7213
http://arxiv.org/abs/1802.03426
http://doi.org/10.1038/s41586-018-0847-y

for RNA-sequencing and microarray studies.
Nucleic Acids Research, 43(7), e47–e47. doi:
10.1093/nar/gkv007.

Robinson, M. D., McCarthy, D. J., & Smyth,
G. K. (2010). edgeR: A Bioconductor pack-
age for differential expression analysis of dig-
ital gene expression data. Bioinformatics (Ox-
ford, England), 26(1), 139–140. doi: 10.1093/
bioinformatics/btp616.

Rudolph, J. D., & Cox, J. (2019). A network
module for the perseus software for computa-
tional proteomics facilitates proteome interac-
tion graph analysis. Journal of Proteome Re-
search, 18(5), 2052–2064. doi: 10.1021/acs.
jproteome.8b00927.

Sinitcyn, P., Rudolph, J. D., & Cox, J. (2018).
Computational methods for understanding
mass spectrometry–based shotgun proteomics
data. Annual Review of Biomedical Data
Science, 1(1), 207–234. doi: 10.1146/annurev-
biodatasci-080917-013516.

Tyanova, S., Mann, M., & Cox, J. (2014).
MaxQuant for in-depth analysis of large SILAC
datasets. Methods in Molecular Biology, 1188,
351–364. doi: 10.1007/978-1-4939-1142-4_24.

Tyanova, S., Temu, T., & Cox, J. (2016). The
MaxQuant computational platform for mass
spectrometry−based shotgun proteomics. Na-
ture Protocols, 11(12), 2301–2319. doi: 10.
1038/nprot.2016.136.

Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A.,
Hein, M. Y., Geiger, T., … Cox, J. (2016). The

Perseus computational platform for comprehen-
sive analysis of (prote)omics data. Nature Meth-
ods, 13(9), 731–740. doi: 10.1038/nmeth.3901.

Wiśniewski, J. R., Hein, M. Y., Cox, J., & Mann, M.
(2014). A “Proteomic Ruler” for protein copy
number and concentration estimation without
spike-in standards. Molecular & Cellular Pro-
teomics, 13(12), 3497–3506. doi: 10.1074/mcp.
M113.037309.

Yu, S.-H., Kiriakidou, P., & Cox, J. (2020).
Isobaric matching between runs and novel
PSM-level normalization in MaxQuant strongly
improve reporter ion-based quantification.
BioRxiv, 2020.03.30.015487. doi: 10.1101/
2020.03.30.015487.

Internet Resources
Plugin repositories

https://github.com/cox-labs/PluginTutorial
Tutorial scripts.

https://github.com/JurgenCox/perseus-plugins
Source code for many plug-ins.

Tutorial videos can be found in
MaxQuant Summer School

https://www.youtube.com/watch?v=
fYGx4oplCpI&t=3146s

MQSS 2018.

https://www.youtube.com/watch?v=-3oq9e_92lc
MQSS 2019.

Yu et al.

29 of 29

Current Protocols in Bioinformatics

http://doi.org/10.1093/nar/gkv007
http://doi.org/10.1093/bioinformatics/btp616
http://doi.org/10.1093/bioinformatics/btp616
http://doi.org/10.1021/acs.jproteome.8b00927
http://doi.org/10.1021/acs.jproteome.8b00927
http://doi.org/10.1146/annurev-biodatasci-080917-013516
http://doi.org/10.1146/annurev-biodatasci-080917-013516
http://doi.org/10.1007/978-1-4939-1142-4_24
http://doi.org/10.1038/nprot.2016.136
http://doi.org/10.1038/nprot.2016.136
http://doi.org/10.1038/nmeth.3901
http://doi.org/10.1074/mcp.M113.037309
http://doi.org/10.1074/mcp.M113.037309
http://doi.org/10.1101/2020.03.30.015487
http://doi.org/10.1101/2020.03.30.015487
https://github.com/cox-labs/PluginTutorial
https://github.com/JurgenCox/perseus-plugins
https://www.youtube.com/watch?v=fYGx4oplCpI&t=3146s
https://www.youtube.com/watch?v=fYGx4oplCpI&t=3146s
https://www.youtube.com/watch?v=-3oq9e_92lc

