
1.  Introduction
Terrestrial vegetation couples the global water and carbon cycles between the atmosphere and the land 
surface. Vegetation productivity is determined by a multitude of hydrometeorological variables (Monteith & 
Unsworth, 1990; Nemani et al., 2003; Piao et al., 2020). The underlying relationships are complex in time and 
space because of interactions among variables (Cox et al., 2013; Garonna et al., 2018; Pearson et al., 2013) 
and short-term variations of hydrometeorology potentially influencing ecosystems through nonlinear ef-
fects (De Keersmaecker et al., 2015; Fatichi & Ivanov, 2014; Paschalis et al., 2015; Reichstein et al., 2013). 
The hydrometeorological controls of anomalies in global vegetation productivity are still not fully under-
stood at the half-month time scale, because underlying variables were not investigated comprehensively. 
For example, previous research often used hand-designed approaches to represent the plant-available water 
(e.g., lagging precipitation in specific months). The knowledge gap contributes to uncertainties in assessing 
the sensitivity and resilience of ecosystems to different climate drivers (Sakschewski et al., 2016), and in 
future climate projections (Duveiller et al., 2018; Feng et al., 2014; Novick et al., 2016).

Previous studies investigated dominant hydrometeorological controls of vegetation productivity at a global 
scale and across different ecosystems (Beer et al., 2010; Jung et al. 2011, 2017; Li & Xiao, 2020; Madani 
et al., 2017; Seddon et al., 2016; Walther et al., 2019; D. Wu et al., 2015). While these studies and recent 
gross primary production estimates agree that vegetation in (semi-)arid area is significantly impacted by 
soil moisture (SM) (Stocker et al., 2018, 2020), a corresponding global analysis including the impact of SM 
from multiple depths is lacking. Several studies have already highlighted the local relevance of multi-layer 
SM to ecosystems: root water uptake from deeper soil layers can help mitigate water stress and maintain 
plant transpiration (Migliavacca et al., 2009; Schulze et al., 1996); Yinglan et al. (2019) demonstrated diver-
gent relative importance of surface SM versus deeper SM depending on land cover types; and Schlaepfer 
et al. (2017) simulated lowered sub-surface SM compared to surface SM which largely impact vegetation 
dynamics in temperate drylands. This way, distinguishing shallow and deep SM is expected to allow for a 
more accurate identification of global vegetation controls as the accessibility and availability of water for 
plants varies in space and time. For this purpose, the state-of-the-art ERA5 reanalysis provides multi-lay-
er SM (Hersbach et al., 2020) that has been successfully applied in hydrometeorological studies (Kolluru 
et al., 2020; Li, Wu, & Ma, 2020; Tarek et al., 2020).
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Reliable observation-based global photosynthesis proxies are available for recent years through satellite-de-
rived sun-induced fluorescence (SIF, Frankenberg et al., 2011; Joiner et al., 2013). SIF data are increasingly 
used to study the relationships between global vegetation productivity and hydrometeorological drivers 
(Chen et  al.,  2020; Jiao et  al.,  2019; Li, Xiao, et  al.,  2020; Wagle et  al.,  2016; Walther et  al.,  2019; Yang 
et al., 2015; Zuromski et al., 2018). Besides, spectral vegetation indices and biophysical parameters from 
multi-spectral satellite instruments are widely used to study drivers of vegetation phenology and productiv-
ity (Buermann et al., 2018; Forkel et al. 2015). In this study, we consider SIF alongside two spectral indices 
(the normalized difference vegetation index, NDVI, Tucker, 1979; and near-infrared reflectance of terrestri-
al vegetation, NIRv, Badgley et al., 2017), and a comprehensive set of explanatory variables representing en-
ergy (temperature; radiation; vapor pressure deficit, VPD) and water availability (precipitation; multi-layer 
SM) to revisit global photosynthesis and greenness controls.

2.  Data and Methods
2.1.  Remote Sensing Proxies of Vegetation Productivity and Greenness

2.1.1.  SIF

SIF is used as a proxy for variations in photosynthesis because it captures radiation emitted by chlorophyll 
molecules and is related to photosynthetic activity. We use one of the longest available satellite-derived SIF 
records which is based on the Global Ozone Monitoring Experiment–2 (GOME-2) instrument and ranges 
from 2007 to 2018 (Köhler et al., 2015). The raw global SIF observations at daily time scale are filtered to 
remove data based on (i) high solar zenith angles (>70°), (ii) large differences to the normal local overpass 
time (2 p.m.–8 a.m. in the next day), and (iii) large cloud cover (>50%), as done by Köhler et al. (2015). We 
note that different levels of cloud filtering of the satellite retrievals yield similar SIF anomalies, such that 
a cloud cover threshold of 50% is a reasonable compromise between SIF data quality and quantity (Köhler 
et al., 2015).

2.1.2.  Vegetation Indices

To complement the photosynthesis analysis we use NDVI and NIRv as spectral vegetation indices (Badgley 
et al., 2017; Huete et al., 2002). NIRv is defined as NDVI multiplied by the near-infrared reflectance (Badgley 
et al., 2017). We obtain red and near-infrared reflectances from MOD13C1 v006 product (https://lpdaac.
usgs.gov/products/mod13c1v006/) in an original 16-day and 0.05° resolution. NDVI and NIRv are comput-
ed from data with quality flags 0 and 1 representing good and marginal data, thereby ignoring low-quality 
data.

2.2.  Hydrometeorological Data

We consider a comprehensive selection of energy and water-related variables from the ERA5 reanalysis. 
This dataset accounts for spatial variations in soil types and assimilates spaceborne microwave instruments 
of surface SM (Balsamo et al., 2009; Hersbach et al., 2020). Even though SM estimates from deeper layers 
in ERA5 are less constrained by observations, previous studies illustrated the agreement of ERA5 SM data 
in each layer with independent observations (Albergel et al., 2012, 2013, 2018; Li, Wu, & Ma, 2020; Liu 
et al., 2013; Hersbach et al., 2020; Jing et al., 2018; see Text S1 for details). Energy-related variables include 
temperature at 2-m height (temperature), surface downward solar radiation (solar radiation) and VPD, and 
the water-related variables are total precipitation (precipitation), SM layer 1 (0–7 cm), layer 2 (7–28 cm), 
layer 3 (28–100 cm) and layer 4 (100–289 cm). For comparison, we compute total SM by averaging values 
across the individual layers weighted by their thickness. It is to note that VPD is related to the relative hu-
midity and temperature. Hence, it is an energy-related variable but representing the demand of the water 
in the atmosphere.

2.3.  Climate and Vegetation Regimes

To evaluate the results of our analyses, we compute the aridity index for each grid cell as the ratio between the 
long-term averages of net radiation (expressed in mm) and precipitation using ERA5 data (Budyko, 1974). 
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We distinguish climate regimes using long-term mean temperatures and aridity index. We use fractional 
vegetation cover data from the AVHRR vegetation continuous fields products (VCF5KYR, https://lpdaac.
usgs.gov/products/vcf5kyrv001/) from 2007 to 2016 to classify the fraction of total vegetation cover, and the 
fraction of tree cover in total vegetation cover (Song et al., 2018).

2.4.  Methods

2.4.1.  Data Pre-processing

The data pre-processing is illustrated in Figure S1. All vegetation data and hydrometeorological data are 
aggregated to 0.5° spatial and half-monthly temporal resolution where SIF is available, and 16-day original 
NDVI and NIRv are linearly interpolated to half-monthly resolution. The first half-month consists of the 
first 15  days of the month, and the second half-month consists of the remaining days in the respective 
month. The study period is limited to 2007–2018 because of the SIF availability. In all SIF-based analyses 
we focus on data with SIF > 0.5 mW/m2/sr/nm to filter out sparse or dormant vegetation. This filtering is 
also applied in the NDVI and NIRv analyses, where additionally negative NDVI and NIRv values are filtered 
out. Grid cells are only considered in the analysis if more than 15 data points are left after filtering, and 
if the vegetation cover fraction exceeds 5%. For all target and predictor variables, we obtain half-monthly 
anomalies by subtracting the mean seasonal cycles determined by averaging values from all years for each 
of the 24 half-monthly periods between the first half of January and the second half of December. As we 
focus on relationships at short time scales, we remove long-term trends for each grid cell determined by a 
locally weighted smoothing filter (Cleveland et al., 1979) with a smoothing span of 0.4. Moreover, this helps 
to filter out any signal introduced by potential satellite sensor degradation.

2.4.2.  Identification of Relative Importance of Hydrometeorological Variables Using Random 
Forests (RF)

RF is a nonparametric regression-based methods requiring no statistical assumptions on predictor and tar-
get variables, and is designed to process large amounts of diverse input data (Breiman, 2001). With this flex-
ibility it is better placed than traditional statistical methods to detect nonlinear relationships among short-
term hydrometeorological variations and vegetation productivity. We also note that our RF analysis can 
indicate plausible governing processes from emergent relationships, but by construction it does not suggest 
causality. In this study, all hydrometeorological anomalies are used as predictor variables, and anomalies of 
SIF and vegetation indices are employed as target variables per each grid cell, respectively (Figure S1). RF 
training is done using information from each grid cell and the surrounding grid cells (forming 3 × 3 grid 
cell matrices) to obtain sufficient data. The performance of the RF model is then evaluated by the fraction 
of explained variance in regression analysis carried out with the linear least squares using cross-validation 
(hereafter referred to as R2; see details in Text S2.1). Grid cells with R2 lower than or equal to 0 are filtered 
out. Finally, two experiments are performed with RF models differing in the SM data used: total versus 
multi-layer SM alongside precipitation, VPD, solar radiation, and temperature.

Permutation importance is one of the most common methods for RF to measure the relative importance 
of each predictor variable (Lunetta et al., 2004; Nicodemus, 2011; Zhang & Yang, 2020). It is inferred from 
the difference of error before and after a temporal permutation applied to the particular variable (Cutler 
et al., 2012; Gómez-Ramírez et al., 2020). To validate results of permutation importance we employ two 
more methods and to infer confounding effects we also quantify the sensitivity of SIF response to each 
predictor variable (see Text S2.1 for variable importance identification methods, Text S2.2 for sensitivity 
algorithm).

When considering multiple hydro-meteorological variables, the identification of global vegetation controls 
is challenged by potential high collinearity (Dormann et al., 2013) between some of the variables. Most 
previous studies did not consider more than three variables, thereby somewhat circumventing this problem 
while ignoring potentially important variables (Claessen et al., 2019; Garonna et al., 2018; Li & Xiao, 2020; 
Seddon et al., 2016). Though RF are also challenged by the collinearity in the input data, they yield more 
robust results with noisy training data and have high interpretability (Zhang & Yang, 2020), for example 
by inferring the sign of the sensitivity of vegetation productivity to particular predictor variables. As the 
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computed relationships and their signs are consistent with previous literature and physical expectations 
(see Section 3), we note that RF are applicable in our multi-variate context. Further, collinearity can some-
times be mitigated through a pre-processing of the data by removing long-term trends or the mean seasonal 
cycle (see Section 2.4.1), as long as the collinearity is mainly driven by them, that is trends or seasonal cycles 
would be similar between variables while shorter-term dynamics are not.

3.  Results and Discussion
3.1.  Model Performance

The spatial patterns of RF model performance are similar between the two experiments using total and 
multi-layer SM with comparatively high R2 (>0.3) in the central North America, central Eurasia, southern 
and eastern Africa, central Asia, and eastern Australia (Figure 1). The predictive performance is improved 
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Figure 1.  RF model performance (R2) in predicting sun-induced fluorescence (SIF) when using (a) total and (b) multi-
layer soil moisture (SM). (c) is the difference between (b) and (a); and (d) summarizes (c) across climate regimes (i.e., 
temperature and aridity).
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in most regions across the globe when using multi-layer instead of total SM. Vertical SM information im-
proves model performance particularly in semi-arid regions such as Australia, central North America and 
central Asia (Figures 1c and 1d). In these regions plant rooting systems apparently adapt to compensate for 
local water deficits which arise from divergent dynamics of surface and root-zone SM across time and space 
(Berg et al., 2017; Lian et al., 2020; Schlaepfer et al., 2017; Zhang et al., 2016).

Although the performance of SIF prediction is improved with multi-layer SM, the R2 values are still relative-
ly low, especially in large regions in South America. This relates to a typically significantly decreased mod-
el performance in predicting global vegetation productivity for anomalies compared to absolute data and 
mean seasonal cycles (Kraft et al., 2019). Further, it is related to input data quality where the satellite-based 
SIF retrievals are strongly impacted by noises in large regions in South America (Joiner et al., 2013; Köhler 
et al., 2015). Furthermore, using relatively coarser GOME2 pixels to derive the SIF data includes more resid-
ual cloud contamination than for example the finer-scale MODIS footprints (Joiner et al., 2013). Therefore, 
our RF models show much better performance in the case of NDVI and NIRv (Figure S2) compared with 
SIF. In this context the performance of RF is generally lower in humid regions compared to drier regions, 
related to increased cloud cover which degrades the quality of the satellite retrievals as previously showed 
(Kraft et al., 2019; Linscheid et al., 2020). We include regions with weak model performance in the case of 
SIF for the subsequent analyses, and we believe that our methodology is robust, because (i) our main goal 
is to rank the relative importance of predictors instead of accurately capturing their dynamics; (ii) we find 
strongly similar global patterns of main controlling variables across SIF, NIRv and NDVI; and (iii) con-
trolling patterns are largely in line with previous studies (Madani et al., 2017; Nemani et al., 2003; Seddon 
et al., 2016).

Additionally, we verify that the efficiency of using multi-layer SM in RF is not an artifact of over-fitting 
(Figures S3 and S4), and we find similar results when using the root fractions in each soil layer as weights in 
the total SM vertical average computation rather than the layer depths (Figure S5; root fractions are derived 
from ERA5 data by following ECMWF, 2020). See Text S3 for uncertainties in vegetation data and model 
tests in details.

3.2.  Main Hydrometeorological Controls on Global Vegetation Productivity

The global partitioning of water- vs energy-related controls of vegetation productivity significantly varies 
between the two experiments involving total and multi-layer SM (Figure 2). Apparently, total SM does not 
provide sufficient information to the RF model to detect water-controlled regions (Figure 2a). Overall, in the 
multi-layer SM analysis (Figure 2b) temperature is identified as the main driver of SIF in the higher north-
ern latitudes, solar radiation dominantly controls SIF in tropical regions, and VPD emerges as a main con-
trol in parts of the western Amazon forests (Green et al., 2020), eastern North America, northern Eurasia 
and eastern Asia. In between the tropics and the higher latitudes, where mostly (semi-)arid climate regimes 
are prevailing, water-related variables play the dominant role. Precipitation and surface SM (0–7  cm in 
ERA5) control SIF in central India, western Sahel and in central-southern Africa. Root-zone SM (7–28 cm in 
ERA5) mainly controls SIF in southern North America, southern Europe, and many parts of Eurasia, India 
and Australia. In general, root-zone SM (7–28 cm in ERA5) emerges as the most relevant water reservoir for 
vegetation productivity, while deeper SM (28–100 cm in ERA5) is particularly important in the transitional 
zones and temperate dry regions, such as central North America and southern Europe. To further test the 
assumption of energy variables misleadingly being detected as the main control where surface SM is the ac-
tual main driver due to the insufficiency of the total SM experiment (energy variables negatively contribute 
to the variation of SIF), we repeat the analysis from Figure 2 while only considering variables with positive 
contributions to SIF prediction. The result confirms our hypothesis and illustrates that confounding effects 
can be minimized using multi-layer SM (Figure S6; see Text S4.1).

Confirming these SIF-based results, we find similar global patterns of the main controlling variables in the 
case of NIRv and NDVI (Figure S7), even though they show extended SM-controlled regions. Furthermore, 
indicating physical meaningfulness of the obtained global patterns, we find that the sensitivities of SIF to 
the respective diagnosed hydrometeorological main controls are typically strongly positive (Figure S8). This 
is also true for precipitation when it is identified as the most important predictor.
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Next, we analyze the prevailing main controls across climate and vegetation regimes. Overall, controlling 
patterns across climate regimes in Figure 3a are in line with first-order constraints for evapotranspiration 
from Seneviratne et al. (2010), and from Denissen et al. (2020) in a European study. Root-zone SM (7–28 cm 
in EAR5) is identified as the main control in (semi-)arid regions. In humid regions energy variables are the 
most relevant, and overall temperature is the most important while solar radiation also plays a role. Solar 
radiation best explains SIF variability for forests in humid regions, because SIF is mechanistically linked 
through absorbed photosynthetically active radiation which depends on the variability of the irradiance 
(Li & Xiao, 2020). In extreme warm and dry conditions, precipitation is identified as the dominant control. 
This could be explained as (usually weak) rainfall would not significantly wet the soil surface because of 
quick evaporation from warm surfaces (Seneviratne et al., 2010) and soil water repellency after long dry pe-
riods (Song & Wang, 2019). The rain-induced evaporation in turn mitigates atmospheric water stress (high 
VPD), and thereby contributes to the precipitation control on SIF. In Figures 3d–3f we show that grasses 
and shrubs with a low fraction of tree cover are most water-controlled, regions with intermediate tree cov-
er are typically temperature-controlled, and regions with the highest tree cover are mostly radiation-con-
trolled. Energy controls involve a relatively lower vulnerability of tree ecosystems to droughts than other 
ecosystems (Huang & Xia, 2019), as droughts are typically associated with above-average solar radiation 
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Figure 2.  Main hydrometeorological controls on sun-induced fluorescence (SIF) using (a) total and (b) multi-layer soil 
moisture (SM). (c) Shifts between the energy and water controls from (a) to (b). Proportions of study area where each 
variable is the most important factor are shown in (d and e). TP denotes precipitation; TSM denotes total SM; SM1, 2, 
3, 4 denote SM in layers 1, 2, 3, 4 respectively; TEM denotes temperature; SSRD denotes solar radiation; VPD denotes 
vapor pressure deficit.
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and newly developing leaves that can support photosynthesis (Hutyra et al., 2007; X. Li et al., 2018; Orth 
& Destouni, 2018; J. Wu et al., 2016; Yan et al., 2019). While the NDVI and NIRv analyses overall confirm 
the SIF results, they show extended water-related controls in arid regions and in tree-grass mixed regimes, 
consistent with previous findings (Walther et al., 2019). This is more pronounced for NDVI, potentially due 
to larger confounding effects of background brightness in NDVI as a response to SM changes, while NIRv 
contains more information about vegetation canopy structure and partly overcomes this issue (Badgley 
et al., 2017, 2019). Figure S9 finally investigates jointly the role of fraction of tree cover and aridity and 
shows that the main hydrometeorological controls change in response to both of them.

We furthermore analyze variations of hydrometeorological controls between early and late growing sea-
sons. Temperature control can be found in larger regions in the early growing season compared to the later 
growing season, while the control of SM expanded in the late growing season (Figures S10 and S11) is in 
line with previous studies (Buermann et al., 2018; Lian et al., 2020; Zhang et al., 2020). Overall, patterns for 
these two sub-periods do not differ much from the results for the entire growing season (See Text S4.2 for 
details).

3.3.  Main Water-Related Controls on Global Vegetation Productivity

Focusing exclusively on water-related first- and second-order controls reveals that the most important soil 
layer varies across climate-vegetation regimes (Figures 4a–4c). Shallow (7–28 cm in ERA5) and deep root-
zone SM (28–100 cm in ERA5) are the most relevant layers for semi-arid grasses or shrubs, indicating that 
plants can adapt to water-scarce conditions at the surface with establishing deeper-reaching rooting systems 
(Fan et al., 2017). This is in line with previous but smaller-scale study from Yinglan et al. (2019); further 
studies confirm that in dry surface soils in (semi-)arid regions, root plasticity and morphology support water 
uptake from deeper soil layers (Schulze et al., 1996), for instance in local Mediterranean grass (Barkaoui 
et al., 2016), savannas ecosystems (Hoekstra et al., 2014; Nippert & Holdo, 2014) or central Brazilian savan-
nas (Oliveira et al., 2005). For even drier climate conditions, shallower soil layers become more relevant 
(Figures 4a–4c), probably because intermittent vegetation productivity mostly benefits from rainfed surface 
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Figure 3.  Main hydrometeorological controls on (a), (d) sun-induced fluorescence (SIF) (b), (e) NIRv and (c), (f) normalized difference vegetation index 
(NDVI) across climate and vegetation regimes. The most important variables are indicated by the color of the temperature-aridity and tree-vegetation boxes, 
respective second most important variables are denoted by the inner square color, where the size indicates the relative importance compared to the most 
important variable. Temperature-aridity and tree-vegetation boxes containing less than 10 available data points (grid cells) are shown in gray. The aridity index 
and the fraction of vegetation cover are visualized by nonlinear sequences following their skewed distributions.
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SM, or deeper fine roots down to the water table capillary fringe play a role (Fan et al., 2017). Interestingly, 
toward humid conditions our analysis shows a dominant role of surface SM (0–7 cm in ERA5) and precip-
itation, while these regions are characterized by high tree cover with expected deep rooting systems. This 
could be due to frequent precipitation keeping surface soil layers wet such that trees absorb significant 
fractions of water through the near-surface roots (S. G. Li et al., 2007), while the dependence on deeper 
layers for trees during short droughts is not reflected here. Furthermore, we note that these regions are 
characterized by first-order energy controls (Figure 3) such that the results could also partly be an artifact as 
precipitation and surface SM are expected to co-vary with the dominant energy variables.

We validate our findings on the relative importance of the different soil layers by comparing them with 
multiple global rooting-depth products from two perspectives, effective root-zone water uptake and physical 
maximum rooting depths (Figures 4d–4i). In general, rooting depths from Fan et al. (2017) and Schenk and 
Jackson (2009) although from the physical maximum perspective show similar patterns as our results with 
deepest roots in semi-arid areas and for nontree vegetation such as grasses and shrubs. Canadell et al. (1996) 
states that maximum rooting depths of trees, shrubs and grasses can exceed 2 meters, respectively. Our re-
sults indicate that grasses and shrubs use their deep roots more often such that we can detect a respective 
relevance of deep SM reservoirs while trees predominantly use shallow roots as water is often easily acces-
sible in wet surface layers. See Text S5 for data details.
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Figure 4.  (a–c) Main water-related controls on sun-induced fluorescence (SIF), and distributions of rooting depths from (d–f) Fan et al. (2017) and (g–i) 
Schenk and Jackson. (2009) across climate regimes and vegetation characteristics. (a–c) Similar to Figure 3 but focusing on SIF and water-related controls only. 
Dark-gray hatching indicates that an energy variable is identified as the main control on SIF in these boxes in Figure 3.
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To illustrate the robust importance-based analyses we use: (i) Spearman correlation (Figure S13) and (ii) 
SHAP feature importance (Figure S14) and find similar results. Further, we employ alternative SM prod-
ucts, namely GLEAM, MERRA-2 and SoMo.ml (see data details in Text S5; Figure S15), all of which lead to 
similar results as found with the ERA5 SM. We note that using a suite of SM products derived independent-
ly with physical models or machine learning approaches highlights that our results are not an artifact of 
one single SM model. In particular we find across these datasets that generally shallow soil layers are more 
relevant in humid regimes and deep(er) soil layers are more important in semi-arid areas and for nontree 
vegetation such as grasses and shrubs, confirming our previous results, while the layer depths and amounts 
are different across products and cannot be readily compared. In addition, we convert multi-layer SM to wa-
ter potential. Thereby, the water potential is computed as the difference between actual SM and the perma-
nent wilting point which is inferred from the soil texture in each grid cell (ECMWF, 2020). We find similar 
results indicating no major influence of the considered water availability metric on our results (Figure S16, 
as the role of different soil types might be diluted at large spatial scales where usually different soil types 
coincide in individual grid cells. Furthermore, we acknowledge, however, that our analyses do not consider 
water storage strategies related to hydraulic traits (Matheny et al., 2015) and irrigation effects.

4.  Conclusions
This study illustrates that vegetation productivity relies on water from different soil depths while these 
characteristic depths vary with climate and vegetation types. In particular, we elucidate at the global scale 
that semi-arid areas and vegetation types such as grasses and shrubs are controlled by comparatively deep 
layers as they have deep rooting systems. This complexity is not yet sufficiently acknowledged by dynamic 
global vegetation models (Guimberteau et al., 2018; Schaphoff et al., 2018; Warren et al., 2015) which apply 
globally constant soil depths, and do not account for deep rooting strategies or potential physical barriers 
for vertical soil water transport (Sakschewski et al., 2020). This highlights the relevance of our results, and 
of our approach illustrating that sub-surface soil processes can be inferred with the help of surface-based 
Earth observations.

Further, we compare the hydrometeorological controls of vegetation productivity obtained with different 
respective proxy metrics. SIF is more strongly related to photosynthesis, compared with NDVI and NIRv, 
but SIF data are only available for recent years. Our results show that NDVI and NIRv yield similar spatial 
patterns and largely confirm the SIF-based results. However, we find extended water-related controls in the 
cases of NDVI and NIRv, especially in temperate wet regimes, probably induced by changes of soil back-
ground reflectance as a response to SM changes.

Overall, our study contributes to an advanced understanding of the global-scale partitioning of hydrome-
teorological controls of vegetation productivity by benefitting from the ever-growing suite of global eco-hy-
drological data streams.
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