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Abstract
We derive an exact formula for the field form factor in the anyonic Lieb–Liniger
model, valid for arbitrary values of the interaction c, anyonic parameter κ,
and number of particles N. Analogously to the bosonic case, the form factor
is expressed in terms of the determinant of an N × N matrix, whose elements
are rational functions of the Bethe quasimomenta but explicitly depend on κ.
The formula is efficient to evaluate, and provide an essential ingredient for sev-
eral numerical and analytical calculations. Its derivation consists of three steps.
First, we show that the anyonic form factor is equal to the bosonic one between
two special off-shell Bethe states, in the standard Lieb–Liniger model. Sec-
ond, we characterize its analytic properties and provide a set of conditions that
uniquely specify it. Finally, we show that our determinant formula satisfies these
conditions.

Keywords: anyonic Lieb–Liniger model, Bethe ansatz, exact results, correlation
functions

1. Introduction

Dimensionality plays a crucial role in the study of many-body quantum physics. For instance,
the well-known Fermi liquid theory breaks down in one-dimension, due to the drastic effects
of interactions compared to the higher dimensional case [1]. Even more fundamentally, it is
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closely related to the quantum statistics of indistinguishable particles: while in three spatial
dimensions they can only be Bosons or Fermions, two-dimensional systems allow for anyonic
statistics, with properties that interpolate between the two [2] and are responsible for unique
physical phenomena, such as, e.g., the quantum Hall effect [3].

As a recent development, a series of studies suggested the possibility of confining anyons
in one dimension, by exploiting experimental techniques that are in principle already avail-
able within cold atom physics [4–6]. These works paralleled several theoretical speculations
on the subject, which culminated in the study of concrete models of one-dimensional anyons
[7–17]. Focusing mainly on ground-state and thermal physics, these investigations already pro-
vided quantitative predictions for several quantities, including correlation functions [16,18–22]
and the (particle) entanglement entropy [23,24]. As a distinguished qualitative feature, it was
found that anyonic gases at equilibrium display a momentum distribution that is not symmetric,
signaling the fact that the Hamiltonian breaks parity symmetry [25–32].

The vast majority of these studies was restricted to infinitely repulsive anyons, since finite
interactions bring about additional computational challenges. This is true also in the integrable
anyonic Lieb–Liniger gas [15,16], which generalizes the well-known model of point-wise
interacting Bosons introduced long ago [33]. Indeed, despite the underlying integrability, the
computation of correlation functions is a hard problem. In the bosonic case, after many years
of technical advances, beautiful results have been derived for the ground-state [34–41] and
at thermal equilibrium [42–49]. However, so far much less attention has been devoted to the
anyonic case.

In the past ten years, the ability to compute correlation functions in integrable systems have
become even more urgent, due to the possibility of realizing them using cold atom settings
and of testing directly theoretical predictions against experiments [50,51]. Furthermore, the
increasing interest in isolated systems out of equilibrium [52,53] has provided a strong moti-
vation to compute correlation functions for arbitrary excited states. In the Lieb–Liniger gas,
this led to the discovery of new analytic formulas for one-point correlation functions [54–61]
and form factors [58,62–64] (the first determinant formula for the field form factor in this
model was obtained in reference [65], see also references [66,67]). The latter are matrix ele-
ments of local operators between different energy eigenstates, and are particularly important
out of equilibrium. Indeed, they represent one of the building blocks of the so-called quench
action method, an analytical approach to tackle exactly the dynamics of interacting integrable
systems [68–72].

In the case of anyons, several studies have already shown that intriguing properties emerge
beyond equilibrium physics, including, for instance, a ‘dynamical fermionization’ which
appears to be quite robust against different protocols [73–77]. However, these works were
restricted, once again, to the infinitely repulsive regime, while up to now no analytical tools
were available to tackle the case of finite interactions.

In this paper we study the form factors between arbitrary energy eigenstates in the anyonic
Lieb–Liniger gas, and derive an exact formula for the creation and annihilation fields of the
model. The latter is valid for all the values of anyonic parameter and interaction, both repulsive
and attractive, and for any number of particles N. Analogously to the bosonic case [62,65], the
form factor is expressed in terms of the determinant of an N × N matrix, whose elements are
rational functions of the eigenstate quasimomenta, and is efficient to evaluate. Our formula
provides an important first step toward the study of the model beyond the infinitely repulsive
regime, both in and out of equilibrium.

Due to the anyonic fractional statistics, the computation of correlation functions in the any-
onic Lieb–Liniger gas presents additional difficulties with respect to the bosonic case, which
can be studied by means of standard tools within the algebraic Bethe ansatz [78] (ABA). For
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this reason, instead of tackling the computation directly in the anyonic model, we map the
form factor to the matrix element of the bosonic field between two special off-shell Bethe
states (which will be defined in the next section). This allows us to make use of standard tech-
niques within the ABA formalism, and follow the strategy developed in reference [64], where
a set of determinant formulas were derived in the bosonic case.

The rest of this article is organized as follows. In section 2 we introduce the anyonic
Lieb–Liniger model, and its solution using the Bethe ansatz. In section 3 we present our main
result, namely the determinant formula for the field form factor, which is derived in the rest of
the paper. In particular, in section 4 we map the problem to a computation of matrix elements in
the bosonic Lieb–Liniger model. This is then tackled using the algebraic Bethe ansatz, which
is reviewed for convenience in section 5. In section 6 we derive a formula for the norm, while
the one for the form factors is finally proven in section 7. Our conclusions are consigned to
section 8, while the most technical aspects of our work are reported in a few appendices.

2. The model and the field form factors

2.1. The Hamiltonian and the Bethe ansatz solution

We consider the anyonic Lieb–Liniger Hamiltonian [16]

HLL =

∫ L

0
dx
[
∂xΨ

†
A(x)∂xΨA(x) + cΨ†

A(x)Ψ†
A(x)ΨA(x)ΨA(x)

]
, (1)

where c is the coupling constant of the model, which describes a gas of anyons confined in the
segment [0, L]. The anyonic fields satisfy the commutation relations

ΨA (x1)Ψ†
A (x2) = e−iπκε(x1−x2)Ψ†

A (x2)ΨA (x1) + δ (x1 − x2) , (2)

Ψ†
A (x1)Ψ†

A (x2) = eiπκε(x1−x2)Ψ†
A (x2)Ψ†

A (x1) , (3)

ΨA (x1)ΨA (x2) = eiπκε(x1−x2)ΨA (x2)ΨA (x1) , (4)

where

ε(x) =

⎧⎪⎪⎨⎪⎪⎩
+1 , x > 0,

−1 , x < 0,

0 , x = 0.

(5)

Here κ is the statistics parameter, and the above expressions reduce to the traditional bosonic
and fermionic commutation relations for κ = 0, 1 respectively.

The Hamiltonian (1) generalizes the well known bosonic Lieb–Liniger model [33]. It was
introduced and solved using the Bethe ansatz by Kundu [10], and systematically analyzed by
Batchelor et al [14,16] and Pâtu et al [15,18,19]. In the following, we briefly review the aspects
of its solution that are directly relevant for our purposes. Note that we will employ the same
conventions used in reference [18].

We start by recalling that the Hamiltonian (1) acts on states of the form

|ΨN〉 =
1√
N!

∫ L

0
dz1 · · ·

∫ L

0
dzNχN (z1, . . . , zN)Ψ†

A (zN) · · ·Ψ†
A (z1) |0〉, (6)
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where |0〉 is the Fock vacuum state. For consistency with equations (2)–(4), the wave function
has to satisfy

χN

(
. . . , zi, zi+1, . . .

)
= eiπκε(zi−zi+1)χN

(
. . . , zi+1, zi, . . .

)
. (7)

Note that the order of the field operators in equation (6) is important.
Next, the eigenvalue equation HLL|ψ〉N = EN|ψ〉N can be reduced to the quantum-

mechanical problem [14,15]

HNχN (z1, . . . , zN) = ENχN (z1, . . . , zN) , (8)

where

HN =
N∑

j=1

(
− ∂2

∂z2
j

)
+ 2c

∑
1� j�k�N

δ
(
z j − zk

)
. (9)

Equation (8) has to be supplemented with a set of boundary conditions for the quantum mechan-
ical wave function χN. As discussed in [15], the anyonic commutation relations are not con-
sistent with requiring periodic boundary conditions for all their coordinates zj. In this work,
following reference [18], we will make the consistent choice

χN (0, z2, . . . , zN) = χN (L, z2, . . . , zN) , (10)

χN (z1, 0, . . . , zN) = ei2πκχN (z1, L, . . . , zN) , (11)

...

χN (z1, z2, . . . , 0) = ei2π(N−1)κχN (z1, z2, . . . , L) . (12)

The eigenvalue problem (8), with the additional conditions (7) and (10)–(12) was solved in
reference [10,14,15] using the coordinate Bethe ansatz approach. As in the well-known bosonic
case [33], it was found that each N-particle eigenstate is associated with a set of quasimomenta,
or rapidities {λ j}N

j=1 which generalize the concept of particle momenta for free Fermi gases.
The rapidities λj must satisfy the Bethe equations

eiλ jL = e−iπκ(N−1)
N∏

k=1
k �= j

(
λ j − λk + ic′

λ j − λk − ic′

)
, (13)

where

c′ =
c

cos(κπ/2)
. (14)

Given a solution to the Bethe equations (13), we can write, up to an arbitrary normalization,
the wave function of the corresponding eigenstate as [15]

χN

(
z1, . . . , zN |{λ j}

)
=

c′N/2

√
N!

e
+i πκ2

∑
j<k

ε(z j−zk)∑
π∈SN

ei
∑N

n=1 znλπ(n)
∏
j<k

[
1 − ic′ε

(
zk − z j

)
λπ(k) − λπ( j)

]
,

(15)

where ε(x) is defined in equation (5), while the sum is over all the permutations π ∈ SN of the
N rapidities. The corresponding energy eigenvalue is
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E
[
{λ j}N

j=1

]
=

N∑
j=1

λ2
j . (16)

The wave function (15) defines a state also when the rapidities do not satisfy the Bethe
equations, which we call off-shell. In the case when the Bethe equations are instead satisfied,
we call the state corresponding to (15) on-shell.

2.2. The field form factors

In this work we are interested in the form factors of the creation and annihilation operators.
Explicitly, we consider

FN+1,N

[
x; {λ j}N+1

j=1 , {μ j}N
j=1

]
=

1√
(N + 1)!N!

∫
dN+1ydNzχ∗

N+1

(
y1, . . . , yN+1|{λ}

)
× χN

(
z1, . . . , zN |{μ}

)〈
0
∣∣∣ΨA (y1) · · ·ΨA

(
yN+1

)
Ψ†

A(x)Ψ†
A (zN) · · ·Ψ†

A (z1)
∣∣∣ 0
〉

,

(17)

and

GN,N+1

[
x; {μ j}N

j=1, {λ j}N+1
j=1

]
=

1√
(N + 1)!N!

∫
dNydN+1zχ∗

N

(
y1, . . . , yN|{μ j}

)
× χN+1

(
z1, . . . , zN+1|{λ j}

)〈
0
∣∣∣ΨA (y1) · · ·ΨA (yN)ΨA(x)Ψ†

A

(
zN+1

)
· · ·Ψ†

A (z1)
∣∣∣ 0
〉
.

(18)

These expressions can be rewritten using the commutation relations (2)–(4). In particular, it is
straightforward to compute [15]

FN+1,N

[
x; {λ j}N+1

j=1 , {μ j}N
j=1

]
=

√
N + 1

∫
dNzχ∗

N+1

(
z1, . . . , zN , x|{λ}

)
χN

(
z1, . . . , zN|{μ}

)
, (19)

while we simply have

GN,N+1

[
x; {μ j}N

j=1, {λ j}N+1
j=1

]
=
(

FN+1 N

[
x; {λ j}N+1

j=1 , {μ j}N
j=1

])∗
. (20)

Note that the wave functions are not normalized. Then, in order to obtain the normalized form
factors, we also need to compute

〈ΨN |ΨN〉 =
∫

dNzχ∗
N

(
z1, . . . , zN|{λ}

)
χN

(
z1, . . . , zN|{λ}

)
. (21)

3. Summary of our results

3.1. The field form factor

Let {μ j}N
j=1 and {λ j}N+1

j=1 be two sets of rapidities satisfying the Bethe equation (13), such that
μj �= λk, ∀j,= 1, . . . , N, k = 1, . . . , N + 1. Our main result is the following formula

5
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GN,N+1

[
x; {μ j}N

j=1, {λ j}N+1
j=1

]
= − i√

c′
exp

⎡⎣i

⎛⎝N+1∑
j=1

λ j −
N∑

j=1

μ j

⎞⎠ x

⎤⎦ N+1∏
j,k=1

(
λ jk + ic′

)

×

⎛⎝N+1∏
j=1

N∏
k=1

1
λ j − μk

⎞⎠ N+1∏
j=1

(
V+

j (κ) − V−
j (κ)

) detN+1

(
δ jk + U jk

)(
V+

p (κ) − V−
p (κ)

) , (22)

where λjk = λj − λk, while

V±
j (κ) = e∓iπκ/2

∏N
m=1 μm − λ j ± ic′∏N+1
m=1 λm − λ j ± ic′

, (23)

U jk =
i

V+
j (κ) − V−

j (κ)

∏N
m=1 (μm − λ j)∏N+1
m=1
m�= j

(λm − λ j)

[
Qκ(λ j,λk) −Qκ(λp,λk)

]
, (24)

Qκ(x, y) = cos(πκ/2)K+(x, y) + i sin(πκ/2)K−(x, y), (25)

with

K+(x, y) =
2c′

(x − y)2 + c′2
, (26)

K−(x, y) =
2i(x − y)

(x − y)2 + c′2
. (27)

Finally, λp is an arbitrary complex constant (the value of equation (22) does not depend on λp).

3.2. The norm

As a byproduct of our study, we also obtained a formula for the norm of on-shell Bethe states,
which is of course crucial in order to compute normalized form factors. It turns out that it
is expressed in terms of the same Gaudin matrix appearing in the Lieb–Liniger model (after
substituting c → c′). Explicitly, we derived

〈ΨN |ΨN〉 = c′N
∏
j<k

(λ j − λk)2 + c′2

(λ j − λk)2
det G j,k , (28)

where

G j,k =

[
L +

N∑
r=1

K+(λ j,λr)

]
δ j,k − K+(λ j,λk). (29)

3.3. Numerical checks and discussions

We have tested the validity of equations (22) and (28) against direct numerical calculations,
for different values of x, c, L, κ and N. In particular, we have computed both the form factor
and the norm for different energy eigenstates by performing numerically the multi-dimensional
integrals of the wave functions, for N = 2, 3, 4, 5 (we mainly focused on the ground-state and
small excitations above it). The result obtained in this way was always found to be in agreement,
up to the precision of the numerical integration, with our analytic formulas.

6



J. Phys. A: Math. Theor. 53 (2020) 405001 L Piroli et al

Due to the increasing complexity of the Bethe wave functions, we could not test our formulas
for higher values of N. We note, however, that the test is already highly nontrivial for N = 5,
where the direct calculation involves integration of many terms over a four-dimensional space.
We were able to perform such integrals using the program Mathematica, and found that our
prediction was always verified with a relative error smaller than ε ∼ 10−6, which we attribute
to the inaccuracy of the multidimensional integration (as expected, the relative error was found
to decrease for smaller values of N ).

Finally, we comment on the fact that equation (22) is valid only for sets of rapidities {μ j}N
j=1,

{λ j}N+1
j=1 with μj �= λk, ∀j, k. A priori, it might happen that for different on-shell Bethe states

μj = λk for some j, k. However, at least in the limit of large c (and κ �= 1) it was shown in
reference [18] that this can not happen. For finite values of c and κ, in analogy with the bosonic
case [62], we still expect this not to happen except possibly for a negligibly small number of
states, due to the strong constraints imposed by the Bethe equation (13).

4. Preliminary observations and mapping to a bosonic form factor

In this section we show how the anyonic form factor between on-shell Bethe states can be
mapped onto the matrix element of the Bose field between special off-shell Bethe states in the
standard Lieb–Liniger model. The starting point is given by the following formula, relating
the form factors of the field at different points in space

FN+1,N

[
x; {λ j}N+1

j=1 , {μ j}N
j=1

]
= exp

⎡⎣−i

⎛⎝N+1∑
j=1

λ j −
N∑

j=1

μ j

⎞⎠ x

⎤⎦
× FN+1,N

[
0; {λ j}N+1

j=1 , {μ j}N
j=1

]
. (30)

This is the same relation that holds in the bosonic Lieb–Liniger model, and that was also
derived in reference [18] for the case of infinitely repulsive anyons. In fact, it is possible to
prove it also in the case of finite interactions, based exclusively on the form of the Bethe wave
functions and on the fact that the rapidities satisfy the Bethe equation (13). In particular, one
can show that

d
dx

FN+1,N

[
x; {λ j}N+1

j=1 , {μ j}N
j=1

]
= −i

⎛⎝N+1∑
j=1

λ j −
N∑

j=1

μ j

⎞⎠FN+1,N

[
x; {λ j}N+1

j=1 , {μ j}N
j=1

]
,

(31)

which yields immediately equation (30). The derivation of equation (31) is straightforward, but
involves very unwieldy manipulations of the Bethe wave functions. For this reason, we report
the proof of equation (31) in appendix A. Note that taking complex conjugation of equation (30)
we also obtain

GN,N+1

[
x; {μ j}N

j=1, {λ j}N+1
j=1

]
= exp

⎡⎣i

⎛⎝N+1∑
j=1

λ j −
N∑

j=1

μ j

⎞⎠ x

⎤⎦
× GN,N+1

[
0; {μ j}N

j=1, {λ j}N+1
j=1

]
. (32)

7
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Equation (30) is extremely useful, as it allows us to only focus on the computation of the
form factor at x = 0. Dropping the dependence on the rapidities, we can rewrite it in terms of
the Bethe wave functions as

FN+1,N(0) =
c′(2N+1)/2

N!
e−iπκN/2

∑
σ∈SN+1

∑
π∈SN

∫
dNz e−i

∑N
j=1 z j(λσ( j)−μπ( j))

×
N∏

j=1

[
1 − ic′

λσ(N+1),σ( j)

]⎛⎝ ∏
N� j>k�1

[
1 +

ic′ε(z j − zk)
λσ( j),σ(k)

] [
1 − ic′ε(z j − zk)

μσ( j),σ(k)

]⎞⎠ ,

(33)

where we employed the shorthand notation λjk = λj − λk, and used that zj � 0.
Up to the trivial prefactor e−iπκN/2, the rhs of equation (33) is almost the same expression for

the form factor that one would obtain in the bosonic Lieb–Liniger model. There are, however,
two differences. First, the interaction c has to be replaced by its effective value c′. Second, and
most importantly, the rapidities λj and μj must satisfy the anyonic, and not the bosonic, Bethe
equation (13), with a nonzero statistics parameter κ.

In summary, we showed that in order to obtain the anyonic form factors, we can compute
them in the bosonic Lieb–Liniger model (with interaction set to c′) between two off-shell Bethe
states, whose rapidities satisfy a set of ‘twisted’ boundary conditions given by equation (13).
We note that the twist in the Bethe equations depends on the number of rapidities, which is
an essential ingredient determining the nontrivial features of the final result, and which is dif-
ferent from what encountered, e.g., in integrable spin chains with diagonal twisted boundary
conditions.

In order to compute these form factors in the Lieb–Liniger model, we will follow the same
strategy developed in reference [64], where determinant formulas for several observables were
derived. On the technical level, this is based on the algebraic Bethe ansatz approach; in the
next section, we briefly review it, and present the aspects that are needed in our subsequent
derivations.

5. The algebraic Bethe ansatz

In this section we introduce the algebraic Bethe ansatz, which is the natural framework for the
computation of correlation functions in integrable models [78]. In particular, here we describe
the ABA for the (bosonic) Lieb–Liniger model, with interaction strength c′.

One of the fundamental objects in this framework is the monodromy matrix

T(λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
, (34)

where A(λ), B(λ), C(λ), D(λ) are operators acting on a reference state which we denote by
|0〉. These operators satisfy a set of nontrivial commutation relations encoded in the famous
Yang–Baxter equations, involving the R-matrix

R(λ,μ) =

⎛⎜⎜⎝
f (μ,λ)

g(μ,λ) 1
1 g(μ,λ)

f (μ,λ)

⎞⎟⎟⎠ , (35)

8
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where the empty entries are defined to be vanishing and where

f (λ,μ) =
λ− μ+ ic′

λ− μ
, (36)

g(λ,μ) =
ic′

λ− μ
. (37)

The operator entries of the monodromy matrix act on the Hilbert space generated by the Bethe
states

N∏
j=1

B(λ j)|0〉, (38)

with dual states

〈0|
N∏

j=1

C(λ j), (39)

while the action on the reference state of the operators A(λ), D(λ) is given by

A(λ)|0〉 = a(λ)|0〉 , D(λ)|0〉 = d(λ)|0〉. (40)

In the Lieb–Liniger model the functions a(λ), d(λ) are

a(λ) = e−i L
2 λ, d(λ) = ei L

2 λ. (41)

We further define for later convenience the function

r(λ) =
a(λ)
d(λ)

= e−iλL. (42)

Finally, it is useful to define rescaled operators

B(λ) =
1

d(λ)
B(λ) , C(λ) =

1
d(λ)

C(λ), (43)

where d(λ) is given in (41).
In the following we will be interested in two quantities. The first one is the norm

N
[
{λ j} j

]
= lim

{μ j} j→{λ j} j

〈0|C(λ1) · · · C(λN)B(μN) · · · B(μ1)|0〉, (44)

while the second one is the field form factor

GN({μ j}N
j=1, {λ j}N+1

j=1 , {r(μ j)}N
j=1, {r(λ j)}N+1) = 〈0|

N∏
j=1

C(μ j)Ψ(0)
N+1∏
j=1

B(λ j)|0〉. (45)

In both equations (44) and (45) we made use of the fact that B†(μ̄) = C(μ), where μ̄ is the
complex conjugated of μ [79].

The framework summarized in this section can be considered as the algebraic counterpart
of the wave-function formalism of the coordinate Bethe ansatz. In particular, all the quantities
computed using the representation (38) for the Bethe states can be related to those obtained
using the wave functions (15) (for κ = 0). For instance, it can be shown that the function GN

9
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in equation (45) is proportional to GN,N+1 defined in equation (18), which is what we aim to
compute. This will be shown in detail in section 8. In the following two sections, instead, we
will focus entirely on the algebraic formalism and derive determinant formulas for N and GN

defined above.

6. Computation of the norms

In this section we provide a determinant formula for the norm (44). Let us first define the scalar
product between different Bethe states

S
[
{λ j}N

j=1, {μ j}N
j=1, {r(λ j)}N

j=1, {r(μ j)}N
j=1

]
= 〈0|C(λ1) · · · C(λN)B(μN) · · · B(μ1)|0〉.

(46)

This is a well-studied object in the ABA formalism [78,79]. Using the known commutation
relations between the matrix elements of the monodromy matrix (34) and equation (40), one
immediately sees that (46) can be expressed as a rational function of the rapidities, where r(λj)
and r(μj) play the role of functional parameters. In particular, the scalar product can be formally
rewritten as [78]

S
[
{λ j}, {μ j}, {r(λ j)}, {r(μ j)}

]
=
∑⎧⎨⎩

N∏
j=1

r(νA
j )

⎫⎬⎭K

(
{λ j} {μ j}
{νA

j } {νB
j }

)
. (47)

Here the sum is with respect to all partitions of the set {λj} ∪ {μj} (consisting of 2N elements)
into two disjoint sets {νA

j } and {νB
j } possessing equal numbers of elements; the coefficients

KN are rational functions of the rapidities that do not depend on the vacuum eigenvalues r(λj),
r(μj).

In the case when the rapidities {λj} satisfy the standard Bethe equations (namely
equation (13) with κ = 0) this rational function can be expressed in terms of the famous
Slavnov formula [80]. It turns out that the same formula holds, with minor modifications, also
when {λj} satisfy the twisted equation (13), as we now show.

In order to see this, consider the normalized scalar product

S̃
[
{λ j}, {μ j}, {r(λ j)}, {r(μ j)}

]
= e−iπκ(N−1)NS

[
{λ j}, {μ j}, {r(λ j)}, {r(μ j)}

]
. (48)

From equation (47) it is immediate to see

S̃
[
{λ j}, {μ j}, {r(λ j)}, {r(μ j)}

]
= S

[
{λ j}, {μ j}, {r̃(λ j)}, {r̃(μ j)}

]
, (49)

where r̃(λ) = e−iπκ(N−1)r(λ). Due to the Bethe equation (13) we have

r̃(λ j) =
N∏

k=1
k �= j

(
λ j − λk − ic′

λ j − λk + ic′

)
. (50)

From equations (49) and (50) we see that S̃ is expressed as the same rational function cor-
responding to the overlap between an on-shell Bethe state in the bosonic Lieb–Liniger model
and an off-shell state with vacuum expectation values r̃(μ j). We can thus apply directly Slavnov

10
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formula [80] to obtain

S̃
[
{λ j}, {μ j}, {r(λ j)}, {r(μ j)}

]
=

⎡⎣∏
j<k

g(λ j,λk)g(μk,μ j)

⎤⎦ N∏
j,k=1

h(λ j,μk)detNMl,k,

(51)

where

h(λ,μ) =
f (λ,μ)
g(λ,μ)

, (52)

and

Ml,k =
g(λk,μl)
h(λk,μl)

− r̃(μl)
g(μl,λk)
h(μl,λk)

N∏
m=1

f (μl,λm)
f (λm,μl)

. (53)

From equation (51) we can finally compute the norm taking the limit {μj} → {λj}. The cal-
culation is completely analogous to the one originally reported in reference [80], and presents
no difficulty. In particular, we have

N = lim
{μ j}→{λ j}

S
[
{λ j}, {μ j}, {r(λ j)}, {r(μ j)}

]
= eiπκ(N−1)N lim

{μ j} j→{λ j} j

S̃
[
{λ j}, {μ j}, {r(λ j)}, {r(μ j)}

]
= eiπκ(N−1)Nc′N

∏
j<k

(λ j − λk)2 + c′2

(λ j − λk)2
det

N

(
∂ϕ j

∂λk

)
, (54)

where

ϕ j = i ln

⎧⎨⎩r̃(λ j)
∏
k �= j

f (λ j,λk)
f (λk,λ j)

⎫⎬⎭ . (55)

We recall that here r̃(λ) = e−iπκ(N−1)r(λ) = e−iπκ(N−1) e−iλL. We can simplify equation (54)
further, using

∂ϕ j

∂λk
=

∂

∂λk
i ln

⎧⎨⎩r̃(λ j)
∏
k �= j

f (λ j,λk)
f (λk ,λ j)

⎫⎬⎭ =
∂

∂λk
i ln

⎧⎨⎩r(λ j)
∏
k �= j

f (λ j,λk)
f (λk,λ j)

⎫⎬⎭
=

∂

∂λk
i ln

⎧⎨⎩e−iλ jL
∏
k �= j

f (λ j,λk)
f (λk ,λ j)

⎫⎬⎭ . (56)

Then, putting all together, we finally obtain

N [{λ j} j] = eiπκ(N−1)Nc′N
∏
j<k

(λ j − λk)2 + c′2

(λ j − λk)2
detNG j,k, (57)

where the matrix G j,k is defined in equation (29).

11
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7. Computation of the form factors

In this section we provide a determinant formula for the field form factor (45) in the case when
the two sets of rapidities {λj} and {μj} satisfy the twisted Bethe equation (13). In fact, we will
treat a slightly more general case, as we now explain.

First, analogously the scalar product (47), the function GN in (45) can be written as a sum
of rational functions of the rapidities, with r(λj) and r(μj) appearing as functional parameters.
In the following, we are interested in the expression that we get by replacing these functional
parameters with explicit rational functions. Specifically, introducing

ϑN

(
{λk}N

k=1; x; q
)
= −eiqπκ

N∏
k=1

λk − x + ic
λk − x − ic

, (58)

we choose

r(λ j) = ϑN+1({λk};λ j; q) = eiπqκ
N+1∏
k=1
k �= j

λk − λ j + ic
λk − λ j − ic

, (59)

r(μ j) = ϑN({μk};μ j; q − 1) = eiπ(q−1)κ
N∏

k=1
k �= j

μk − μ j + ic
μk − μ j − ic

. (60)

With the above definitions, the expression for the form factor becomes a rational function
of the rapidities, with no dependence on the functional parameter r(λ) left. With a slight abuse
of notation, we continue to denote this function by GN . More precisely, we define

GN(q, {μk}, {λk}) = GN({μk}N
k=1, {λk}N+1

k=1 , {r(μ j)}N
j=1, {r(λ j)}N+1

j=1 )| {r(μ j)}={ϑN ({μk}, μ j,q−1)}
{r(λ j)}={ϑN+1({λk}, λ j,q)}

.

(61)

We stress that this function is defined for arbitrary values of the rapidities and of the parameter
q, even though it is physically relevant only for sets satisfying the Bethe equation (13), and
with the choice q = N.

There are arguably different ways to compute the function GN (q, {μk}, {λk}). In the rest of
this section, we will follow the strategy developed in reference [64] which provides a rather
clean way of proving the final result. Note that we will derive a formula which is valid for
general q, and at the end of the calculation we can simply set q = N.

7.1. Analytic properties of the form factor

Following reference [64], we begin by stating two fundamental propositions regarding the form
factor GN . These are presented below, and provide a strict characterization of the latter in terms
of its analytic properties.

Proposition 1. Consider the function GN defined in (61). Then the following properties
hold

(a)

G0(q, ∅,λ) = (−i
√

c)eiqπκ; (62)

12
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(b) Consider μm ∈ {μ j}N
j=1; then the asymptotic behavior of GN as a function of μm is given

by

lim
μm→∞

GN(q, {μ j}, {λ j}) = 0; (63)

(c) Consider GN (q, {μ j}, {λ j}) as a function of μm ∈ {μ j}N
j=1. Then it is a rational function

and its only singularities are first order poles at μm = λj, j = 1, . . . , N + 1;
(d) The residues of the form factors are given by the following recursive relations

GN (q, {μ j}N
j=1, {λ j}N+1

j=1 )|μm→λk
∼ g(μm,λk)

⎡⎢⎣ei(q−1)πκ
N∏

j=1
j�=m

f (μ j,μm)
N+1∏
j=1
j�=k

f (λk,λ j)

− eiqπκ
N+1∏
j=1
j�=k

f (λ j,λk)
N∏

j=1
j�=m

f (μm,μ j)

⎤⎥⎦GN−1

(
q, {μ j} j�=m, {λ j} j�=k

)
. (64)

The second proposition tells us that the analytic properties listed above uniquely specify the
form factor, and reads as follows.

Proposition 2. Let {HN = HN({μ j}N
j=1, {λ j}N+1

j=1 )} be a family of functions and suppose
that HN satisfies properties (a)–(d) of proposition 1 for every N � 0. Then

HN({μ j}N
j=1, {λ j}N+1

j=1 ) = GN(q, {μ j}N
j=1, {λ j}N+1

j=1 ). (65)

The proofs of these propositions follow closely the ones reported in appendices A and B of
reference [64], with only minor modifications required with respect to the bosonic case. For
this reason, we omit them here, and refer the reader to eeference [64] for all the necessary
details.

7.2. The determinant formula

In this section we exhibit a candidate expression for the rational function corresponding to the
field form factor. We will then show that it satisfies all the properties of proposition 1. Thus,
thanks to proposition 2, this will allow us to conclude that it is the correct expression.

The candidate function for the field form factor reads

HN({μ j}, {λ j}) = −eiqπκ(N+1) e−iκNπ/2

√
c′

N+1∏
j,k=1

(
λ jk + ic′

)

×

⎛⎝N+1∏
j=1

N∏
k=1

1
λ j − μk

⎞⎠ N+1∏
j=1

(
V+

j (κ) − V−
j (κ)

) detN+1
(
δ jk + U jk

)(
V+

p (κ) − V−
p (κ)

) , (66)

where V±
j , Ujk are given in equations (23) and (24) respectively, while λp is an arbitrary com-

plex number. We have conjectured this expression based on the formula for the bosonic form
factor derived in reference [62]. In particular, we looked for the ‘minimal modification’ of the
latter which could satisfy properties (a)–(d) of proposition 1.

Before proving that equation (66) satisfies the properties of proposition 1, let us show that
HN does not depend on the parameters λp. This is done by means of some identities involving
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sums of rational functions, that are reported for convenience in appendix B. First, define

Ξ j =

∏N
k=1 (μk − λ j)∏N+R
k=1
k �= j

(λk − λ j)
, (67)

Θ j(κ) = V+
j (κ) − V−

j (κ). (68)

For k = 2, . . . , N + 1 add to the first column of the matrix δjk + Ujk column k multiplied by
Ξk/Ξ1. From identity (B.1) in appendix B it follows that the first column becomes proportional
to V+

p (κ) − V−
p (κ). Exploiting the multilinearity of the determinant we get

detN+1
(
δ jk + U jk

)
V+

p (κ) − V−
p (κ)

=
detN+1

(
M jk

)
Ξ1

, (69)

where

M jk =

⎧⎪⎨⎪⎩
Ξ j

V+
j (κ) − V−

j (κ)
, if k = 1,

δ jk + U jk , otherwise .

(70)

Now, for k = 2, . . . , N + 1, add to column k of matrix M jk column 1 multiplied by iQκ(λp,λk)
[defined in equation (25)]. Exploiting again the multilinearity of the determinant we obtain

det
N+1

(
M jk

)
= det

N+1

(
M̃ jk

)
, (71)

where

M̃ jk =

⎧⎪⎪⎨⎪⎪⎩
Ξ j

V+
j (κ) − V−

j (κ)
, if k = 1,

δ jk +
i

V+
j (κ) − V−

j (κ)
Ξ jQκ(λ j,λk), otherwise.

(72)

In the final expression (72) λp has disappeared: we conclude that the lhs of (69) and thus
HN in (66) are independent of the parameter λp. In fact, with this procedure we also see that
HN , as a function of the parameter μm, does not have poles corresponding to the zeroes of
V+

p (κ) − V−
p (κ), since these factors are canceled by the determinant in the numerator in the

rhs of equation (66).
We shall now show that HN satisfies properties (a)–(d) of proposition 1. Property (a) is

trivial. To see that the second is true, it is sufficient to observe that

HN({μ j}, {λ j}) = O(μ−1
m ), (73)

which follows straightforwardly from equation (66).
Property (c) is also easy to prove. In fact, we have already shown that there are no poles

corresponding to the zeros of V+
p (κ) − V−

p (κ), which implies that the only poles can be at
μk = λj.

As the only nontrivial part of the proof, we have to show that property (d) is satisfied.
Suppose μr → λ�. In this limit, all the elements of the row � of the matrix δjk + Ujk become
zero, except for the diagonal one, so it is straightforward to compute
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lim
μr→λ�

HN({μr}, {λ�}) ∼ g(μr,λ�)

(
−eiqπκN e−iκ(N−1)π/2

√
c′

)

×

⎡⎢⎣ei(q−1)κπ
∏
j=1
j�=r

f (μ j,μr)
∏
j=1
j�=�

f (λ�,λ j) − eiqκπ
∏
j=1
j�=�

f (λ j,λ�)
∏
j=1
j�=r

f (μr,μ j)

⎤⎥⎦
×
∏
j,k=1
j,k �=�

(
λ jk + ic′

)∏
j=1
j�=�

∏
k=1
k �=r

1
λ j − μk

∏
j=1
j�=�

(
V+

j (κ) − V−
j (κ)

)

× 1(
V+

p (κ) − V−
p (κ)

) detN
(
δ jk + U jk

)
, (74)

where V±
j and Ujk are defined in (23), (24) for the sets of rapidities {μ j} j�=r, {λ j} j�=�. Com-

paring with equation (66), we have thus shown that the function HN satisfies property (d) of
proposition 1.

8. From the algebraic Bethe ansatz to the wave functions

The results derived in the previous sections hold within the framework of the ABA. In this
section, we discuss the correct prefactors that must be taken into account when using the wave-
function formalism introduced in section 2.

The relation between the two frameworks is given by the formula [78]

〈0|Ψ(xN) · · ·Ψ(x1)
N∏

j=1

B(λ j)|0〉 = (−i
√

c′)N exp

(
−i

L
2

N∑
k=1

λk

)

×
∑
P∈SN

ei
∑N

j=1 x jλP j
∏
j<k

(
1 − ic′ ε(xk − x j)

λPk − λP j

)
,

(75)

where Ψ(x) are bosonic operators. This gives us the precise wave function corresponding to
the Bethe state (38). Comparing to the conjugate of equation (33), we conclude

〈0|
N∏

j=1

C(μ j)Ψ(0)
N+1∏
j=1

B(λ j)|0〉 = (−i)e−iπκN/2 exp

(
−i

L
2

N+1∑
k=1

λk + i
L
2

N∑
k=1

μk

)
GN,N+1

×
[
0; {μ j}N

j=1, {λ j}N+1
j=1

]
, (76)

and also

〈0|
N∏

j=1

C(λ j)
N∏

j=1

B(λ j)|0〉 = 〈ΨN|ΨN〉, (77)

where 〈ΨN|ΨN〉 is defined in equation (21). Note that in the previous sections we have always
worked with the normalized operatorsB(λ) and C(λ) defined in equation (43), which are related
to B(λ) and C(λ) by the prefactor d(λ) = eiλL/2. Taking this into account, we can derive directly
the exact expression for GN,N+1 and 〈ΨN|ΨN〉 from equations (76) and (77), in terms of the
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formulas in equations (57) and (66). By doing this, we finally obtain the results anticipated in
equations (22) and (28).

9. Conclusions

In this work we have derived an exact formula for the (normalized) field form factor in the
anyonic Lieb–Liniger model, valid for arbitrary values of the interaction c, anyonic parameter
κ, and number of particles N. The final result is a remarkably simple generalization of the
bosonic formula first derived in reference [65] (see also [62]), and is expressed in terms of the
determinant of an N × N matrix whose elements are rational functions of the Bethe rapidities.

From the physical point of view, our formula represents the starting point for many numer-
ical and analytical calculations. For instance, a natural application of our result would be the
computation of the Green function, namely the expectation value of the operator Ψ†

A(x)ΨA(y)
(also at different times). This could be done very efficiently using the ABACUS algorithm
[48,81–84], for arbitrary excited states and large numbers of particles.

Another particularly interesting direction would be to exploit our formula to derive nonuni-
versal prefactors in the Luttinger-liquid description of the 1D anyonic gas, along the lines of
references [85–87]. In turn, this would make it possible to study the system in inhomogeneous
settings, both in and out of equilibrium, thus generalizing recent results obtained in the bosonic
Lieb–Liniger model [88–90]. We plan to address these problems in future work.
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Appendix A. Proof of equation (31)

The proof of equation (31) is nontrivial, and is derived in the following. First, throughout
this section we choose a different normalization for the wave functions, which makes the
computations a bit lighter. In particular, we use

χN({z j}, {λ j}) = e
i πκ2

∑
j<k

ε(z j−zk)∑
π∈SN

(−1)πei
∑N

n=1 znλπ(n)

×
∏
j>k

[
λπ( j) − λπ(k) − ic′ε

(
z j − zk

)]
. (A.1)

Using this wave function, the form factor is written as

FN+1,N(x) =
∑

σ∈SN+1

∑
π∈SN

(−1)σ+π e−ixλσ(N+1)

∫
dNz e−i(πκ/2)

∑N
j=1 ε(z j−x) e−i

∑N
j=1 z j(λσ( j)−μπ( j))

×
N∏

j=1

[
λσ(N+1),σ( j) + ic′ε(x − z j)

]⎛⎝ ∏
N� j>k�1

[
λσ( j),σ(k) + ic′ε(z j − zk)

]
×
[
μσ( j),σ(k) − ic′ε(z j − zk)

])
, (A.2)
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where we used the shorthand notation λjk = λj − λk. Taking the derivative w.r.t. x, we obtain

d
d x

FN+1,N(x) =
∑

σ∈SN+1

∑
π∈SN

(−1)σ+π(−iλσ(N+1))e−ixλσ(N+1)

∫
dNz e−i(πκ/2)

∑N
j=1 ε(z j−x)

× e−i
∑N

j=1 z j(λσ( j)−μπ( j))
∏

N� j>k�1

[
λσ( j),σ(k) + ic′ε(z j − zk)

]

×
[
μσ( j),σ(k) − ic′ε(z j − zk)

] N∏
j=1

[
λσ(N+1),σ( j) + ic′ε(x − z j)

]
+

∑
σ∈SN+1

∑
π∈SN

(−1)σ+π e−ixλσ(N+1)

∫
dNz e−i

∑N
j=1 z j(λσ( j)−μπ( j))

×
∏

N� j>k�1

[
λσ( j),σ(k) + ic′ε(z j − zk)

] [
μσ( j),σ(k) − ic′ε(z j − zk)

]

×

⎡⎣ N∑
j=1

d
dx

{
e−i(πκ/2)ε(z j−x)

[
λσ(N+1),σ( j) + ic′ε(x − z j)

]}

×

⎛⎜⎝ N∏
k=1
k �= j

e−i(πκ/2)ε(zk−x)
[
λσ(N+1),σ(k) + ic′ε(x − zk)

]⎞⎟⎠
⎤⎥⎦ . (A.3)

We now focus on the second term, and show

N∑
r=1

∑
σ∈SN+1

∑
π∈SN

(−1)σ+π e−ixλσ(N+1)

∫
dNz e−i

∑N
j=1 z j(λσ( j)−μπ( j))

× d
dx

{
e−i(πκ/2)ε(zr−x)

[
λσ(N+1),σ(r) + ic′ε(x − zr)

]}
×

⎛⎝ ∏
N� j>k�1

[
λσ( j),σ(k) + ic′ε(z j − zk)

] [
μσ( j),σ(k) − ic′ε(z j − zk)

]⎞⎠

×

⎡⎢⎣
⎛⎜⎝ N∏

k=1
k �=r

e−i(πκ/2)ε(zk−x)
[
λσ(N+1),σ(k) + ic′ε(x − zk)

]⎞⎟⎠
⎤⎥⎦

=

N∑
r=1

∑
σ∈SN+1

∑
π∈SN

(−1)σ+π e−ixλσ(N+1)

∫
dNz e−i

∑N
j=1 z j(λσ( j)−μπ( j)) [−i

(
λσ(r) − μπ(r)

)]

×

⎛⎝ ∏
N� j>k�1

[
λσ( j),σ(k) + ic′ε(z j − zk)

] [
μσ( j),σ(k) − ic′ε(z j − zk)

]⎞⎠
×
(

N∏
k=1

e−i(πκ/2)ε(zk−x)
[
λσ(N+1),σ(k) + ic′ε(x − zk)

])
. (A.4)
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In order to do this, we proceed as follows. The rhs is a sum of N terms labeled by r = 1, . . .N.
Consider a generic term r, and perform integration over the variable zr in the multiple integral.
The integral of the factors depending on zr yields

∫ L

0
dzr

N∏
k=1
k �=r

[
λσ(k),σ(r) + ic′ε(zk − zr)

] [
μσ(k),σ(r) − ic′ε(zk − zr)

]
× e−i(πκ/2)ε(zr−x)

[
λσ(N+1),σ(r) + ic′ε(x − zr)

]
e−izr(λσ(r)−μπ(r))

=

⎧⎪⎨⎪⎩
⎛⎜⎝ N∏

k=1
k �=r

[
λσ(k),σ(r) + ic′ε(zk − zr)

] [
μσ(k),σ(r) − ic′ε(zk − zr)

]

× e−i(πκ/2)ε(zr−x)
[
λσ(N+1),σ(r) + ic′ε(x − zr)

]) e−izr(λσ(r)−μπ(r))

−i
[
λσ(r) − μπ(r)

]}∣∣∣∣L
0

−
∫ L

0
dzr

d
dzr

⎛⎜⎝ N∏
k=1
k �=r

[
λσ(k),σ(r) + ic′ε(zk − zr)

] [
μσ(k),σ(r) − ic′ε(zk − zr)

]

× e−i(πκ/2)ε(zr−x)
[
λσ(N+1),σ(r) + ic′ε(x − zr)

]) e−izr(λσ(r)−μπ(r))

−i
[
λσ(r) − μπ(r)

] . (A.5)

Crucially, it is easy to see that the first term is vanishing, due to the Bethe equation (13). In
order to evaluate the second term, we use the identity

dε (x − zn)
dzn

= −2δ (x − zn) (A.6)

so that the second integral in equation (A.5) becomes

−
∫ L

0
dzr

d
dzr

⎛⎜⎝ N∏
k=1
k �=r

[
λσ(k),σ(r) + ic′ε(zk − zr)

] [
μσ(k),σ(r) − ic′ε(zk − zr)

]

× e−i(πκ/2)ε(zr−x)
[
λσ(N+1),σ(r) + ic′ε(x − zr)

]
e−izr(λσ( j)−μπ( j))

) e−izr(λσ(r)−μπ(r))

−i
[
λσ(r) − μπ(r)

]
= (∗)r + (∗∗)r + (∗ ∗ ∗)r, (A.7)

where

(∗)r = −
∫ L

0
dzr

N∏
k=1
k �=r

[
λσ(k),σ(r) + ic′ε(zk − zr)

] [
μσ(k),σ(r) − ic′ε(zk − zr)

]

× d
dzr

(
e−i(πκ/2)ε(zr−x)

[
λσ(N+1),σ(r) + ic′ε(x − zr)

]) e−izr(λσ(r)−μπ(r))

−i
[
λσ(r) − μπ(r)

] ,

(A.8)
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(∗∗)r = 2ic′
N∑

p=1
p�=r

(
e−i(πκ/2)ε(zp−x)

[
λσ(N+1),σ(r) + ic′ε(x − zp)

]) e−izp(λσ(r)−μπ(r))

−i
[
λσ(r) − μπ(r)

]

×

⎛⎜⎝ N∏
k=1

k �=r,p

[
λσ(k),σ(r) + ic′ε(zk − zr)

] N∏
k=1
k �=r

[
μσ(k),σ(r) − ic′ε(zk − zr)

]⎞⎟⎠ , (A.9)

(∗ ∗ ∗)r = 2ic′
N∑

p=1
p�=r

(
e−i(πκ/2)ε(zp−x)

[
λσ(N+1),σ(r) + ic′ε(x − zp)

]) e−izp(λσ(r)−μπ(r))

−i
[
λσ(r) − μπ(r)

]

×

⎛⎜⎝ N∏
k=1
k �=r

[
λσ(k),σ(r) + ic′ε(zk − zr)

] N∏
k=1

k �=r,p

[
μσ(k),σ(r) − ic′ε(zk − zr)

]⎞⎟⎠ .

(A.10)

We can now plug these expressions into the rhs of equation (A.4), and obtain

N∑
r=1

∑
σ∈SN+1

∑
π∈SN

(−1)σ+π e−ixλσ(N+1)

⎛⎜⎝ N∏
s=1
s �=r

∫
dzs e−izs(λσ(s)−μπ(s))

⎞⎟⎠[
−i
(
λσ(r) − μπ(r)

)]

×

⎛⎜⎝ ∏
N� j>k�1

j,k �=r

[
λσ( j),σ(k) + ic′ε(z j − zk)

] [
μσ( j),σ(k) − ic′ε(z j − zk)

]⎞⎟⎠
× [(∗)r + (∗∗)r + (∗ ∗ ∗)r] . (A.11)

Now, we claim that the second and third terms, proportional to (∗∗) and (∗∗∗) respectively, are
vanishing. Let us consider for example the term proportional to (∗∗). We have

2ic
N∑

r,p=1
r �=p

⎛⎜⎝ N∏
s=1
s �=r

∫
dzs

⎞⎟⎠ ∑
σ∈SN+1

∑
π∈SN

(−1)σ+π e−ixλσ(N+1)e−i
∑N

j�=r,p z j(λσ( j)−μπ( j))

×

⎛⎜⎝ N∏
k=1

k �=r,p

e−i(πκ/2)ε(zk−x)
[
λσ(N+1),σ(k) + ic′ε(x − zk)

]⎞⎟⎠

×

⎛⎜⎝ ∏
N� j>k�1

k,r �=r

[
λσ( j),σ(k) + ic′ε(z j − zk)

] [
μσ( j),σ(k) − ic′ε(z j − zk)

]⎞⎟⎠
× e−iπκε(zp−x)

[
λσ(N+1),σ(p) + ic′ε(x − zp)

] [
λσ(N+1),σ(r) + ic′ε(x − zp)

]
× e−izp(λσ(r)+λσ(p)−μσ(r)−μσ(p)). (A.12)
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We claim that the terms in the sum over the permutations σ ∈ SN+1 appear in pairs with oppo-
site sign and equal absolute value, and thus cancel exactly. Indeed, for each permutation σ
consider the permutation σ̃ = τr,p ◦ σ where τ r,p swaps λp and λr leaving stable λj for j �= r, p.
Clearly, (−1)σ̃ = −(−1)σ, so that the first line in the above sum gives opposite signs for the
two permutations. On the other hand, lines 2 through 5 are exactly equal for the two terms, so
that we have an overall minus sign, as anticipated.

With a similar reasoning (now involving the permutations π instead of σ), we can prove that
the term proportional to (∗∗∗) is also vanishing. Next, using

d
dzr

(
e−i(πκ/2)ε(zr−x)

[
λσ(N+1),σ(r) + ic′ε(x − zr)

])
= − d

dx

(
e−i(πκ/2)ε(zr−x)

[
λσ(N+1),σ(r) + ic′ε(x − zr)

])
(A.13)

and the definition in equation (A.8), we see that equation (A.11) implies equation (A.4).
Putting equations (A.3) and (A.4) together, we finally obtain

d
dx

FN+1,N(x) =
∑

σ∈SN+1

∑
π∈SN

(−1)σ+π e−ixλσ(N+1)

∫
dNz e

−i
∑N

j=1 z j

(
λσ( j)−μπ( j)

)

×
[
−i

(
N+1∑
r=1

λσ(r) −
N∑

r=1

μπ(r)

)]⎛
⎝ ∏

N� j>k�1

[
λσ( j),σ(k) + ic′ε(z j − zk)

]

×
[
μσ( j),σ(k) − ic′ε(z j − zk)

])( N∏
k=1

e−i(πκ/2)ε(zk−x)
[
λσ(N+1),σ(k) + ic′ε(x − zk)

])

=

[
−i

(
N+1∑
r=1

λr −
N∑

r=1

μr

)] ∑
σ∈SN+1

∑
π∈SN

(−1)σ+πe−ixλσ(N+1)

∫
dN z e

−i
∑N

j=1 z j

(
λσ( j)−μπ( j)

)

×

⎛
⎝ ∏

N� j>k�1

[
λσ( j),σ(k) + ic′ε(z j − zk)

] [
μσ( j),σ(k) − ic′ε(z j − zk)

]⎞⎠

×
(

N∏
k=1

e−i(πκ/2)ε(zk−x) [λσ(N+1),σ(k) + ic′ε(x − zk)
])

=

[
−i

(
N+1∑
r=1

λr −
N∑

r=1

μr

)]
FN+1,N(x). (A.14)

Appendix B. Useful identities

In this appendix we discuss some identities involving sums of rational functions. The first
useful identity is

i
N+1∑
j=1

K+(λs,λ j)

∏N
m=1 (μm − λ j)∏N+1
m�= j (λm − λ j)

= −
(
V+

s (κ = 0) − V−
s (κ = 0)

)
, (B.1)
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where V±
s (κ) and K+(x, y) are defined in equations (23) and (26). Equation (B.1) is obtained

applying the residue theorem to the complex function

gs(z) =
1

(z − λs − ic′)(z − λs + ic′)

∏N
m=1 (μm − z)∏N+1
m=1 (λm − z)

. (B.2)

Indeed the function gs(z) has first order poles for z = λj, j = 1, . . . ,λN+1 and for z = λs ± ic,
while it is easy to see that it has vanishing residue at infinity. Using the fact that the sum of the
residues has to be zero one immediately arrives at identity (B.1).

The second useful identity is

i
N+1∑
j=1

K−(λs,λ j)

∏N
m=1 (μm − λ j)∏N+1
m�= j (λm − λ j)

= +
(
V+

s (κ = 0) + V−
s (κ = 0)

)
, (B.3)

where K−(x, y) is defined in (27). Equation (B.3) is obtained applying again the residue theorem
to the complex function

gs(z) =
(z − λs)

(z − λs − ic′)(z − λs + ic′)

∏N
m=1 (μm − z)∏N+1
m=1 (λm − z)

. (B.4)

Finally, putting equations (B.1) and (B.3) together, we arrive at the third useful identity

i
N+1∑
j=1

Qκ(λs,λ j)

∏N
m=1 (μm − λ j)∏N+1
m�= j (λm − λ j)

= −
(
V+

s (κ) − V−
s (κ)

)
, (B.5)

where Qκ(x, y) is defined in (25).

ORCID iDs

Lorenzo Piroli https://orcid.org/0000-0002-0107-3338

References

[1] Giamarchi T 2003 Quantum Physics in One Dimension (Oxford: Clarendon)
[2] Leinaas J M and Myrheim J 1977 Nuovo Cimento B 37 1

Wilczek F 1982 Phys. Rev. Lett. 48 1144
Wilczek F 1982 Phys. Rev. Lett. 49 957

[3] Laughlin R B 1983 Phys. Rev. Lett. 50 1395
Halperin B I 1984 Phys. Rev. Lett. 52 1583
Wilczek F 1990 Fractional Statistics and Anyon Superconductivity (Singapore: World Scientific)
Camino F E, Zhou W and Goldman V J 2005 Phys. Rev. B 72 75342
Kim E-A, Lawler M, Vishveshwara S and Fradkin E 2005 Phys. Rev. Lett. 95 176402

[4] Keilmann T, Lanzmich S, McCulloch I and Roncaglia M 2011 Nat. Commun. 2 361
[5] Greschner S and Santos L 2015 Phys. Rev. Lett. 115 53002
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