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Abstract
Local Hamiltonians arise naturally in physical systems. Despite their seemingly ‘simple’ local
structures, exotic features such as non-local correlations and topological orders exhibit in
eigenstates of these systems. Previous studies for recovering local Hamiltonians from
measurements on an eigenstate |ψ〉 require information of nonlocal correlation functions. In this
work, we argue that local measurements on |ψ〉 is enough to recover the Hamiltonian in most of
the cases. Specially, we develop an algorithm to demonstrate the observation. Our algorithm is
tested numerically for randomly generated local Hamiltonians of different system sizes and returns
promising reconstructions with desired accuracy. Additionally, for random generated
Hamiltonians (not necessarily local), our algorithm also provides precise estimations.

1. Introduction

The principle of locality, arising naturally in physical systems, states that objects are only affected by their
nearby surroundings. Locality is naturally embedded in numerous physical systems characterized by local
Hamiltonians, which plays a critical role in various quantum physics topics, such as quantum lattice models
[1–3], quantum simulation [4–7], topological quantum computation [8], adiabatic quantum computation
[9–11], and quantum Hamiltonian complexity [12–14]. In the past few years, rapidly developing machine
learning techniques allow us to study these topics in a new manner [15–20]. Empowered by traditional
optimization methods and contemporary machine learning techniques, we map the task of revealing the
information encoded in a single eigenstate of a local Hamiltonian to an optimization problem.

For a local Hamiltonian H =
∑

i ciAi with Ai being some local operators, it is known that a single
(non-degenerate) eigenstate |ψ〉 can encode the full Hamiltonian H in certain cases [21–23], such as when
the expectation value of Ais on |ψ〉, ai = 〈ψ|Ai |ψ〉, are given and further assumptions are satisfied. A
simple case is that when |ψ〉 is the unique ground state of H; thus the corresponding density matrix of |ψ〉
can be represented in the thermal form as

|ψ〉 〈ψ| = e−βH

tr(e−βH)
(1)

for sufficiently large β. This implies that the Hamiltonian H can be directly related to |ψ〉, and hence can be
determined by the measurement results ais, using algorithms developed in the literature [24, 25] for
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Figure 1. Diagram of our algorithm: The rounded boxes (the first row) represent known information—the fixed set of
Hermitian operators {Ai}, measurement outcome {ai} and a chosen precision parameter ε. The information in hand contributes
to the objective function f (equation (6)). The second row demonstrates the procedure of the algorithm: first, sample a set of
random parameters�x = {xi}; second, estimate the objective function f (�x) and determine whether f (�x) is smaller then the chosen
ε; update�x until it satisfies f (�x) < ε.

practical cases. Because Ais are local operators, the number of parameters of H (i.e., the number of cis) is
only polynomial in terms of system size. We remark that the problem of finding H is also closely related to
the problem of determining quantum states from local measurements [15, 16, 26–33], and also has a
natural connection to the study of quantum marginal problem [34–37], as well as its bosonic/fermionic
version that are called the N-representability problem [34, 38–44].

For a wavefunction |ψ〉 that is an eigenstate (i.e. not necessarily a ground state), one interesting situation
is related to the eigenstate thermalization hypothesis (ETH) [45–49]. When the ETH is satisfied, the
reduced density matrix of a pure and finite energy density eigenstate for a small subsystem becomes
asymptotically equal to a thermal reduced density matrix [21]. In other words, equation (1) will hold for
some eigenstate |ψ〉 of the system in this case, and one can use a similar algorithm [24, 25] to find H from
ais, as in the case of ground states. Another situation previously discussed is that if the two-point
correlation functions 〈ψ|AiAj |ψ〉 are known, one can reproduce H without satisfying ETH [22, 23]. Once
the two-point correlation functions are known, one can again use an algorithm to recover H from the
correlation functions, for the case of ground states. However, in practice, the nonlocal correlation functions
〈ψ|AiAj |ψ〉 are not easy to obtain [50].

In this paper, we answer a simple but significant question: can we determine a local Hamiltonian (cis)
from only the local information (ais) of any one of the eigenstates (|ψ〉) without further assumptions.
Obviously, there are cases that an eigenstate cannot determine the system Hamiltonian, such as the product
state and the eigenstates of a frustration-free Hamiltonians. However, for a randomly chosen physical
system for which the Hamiltonian has no special structures, we show that only the knowledge of ais is
sufficient to determine H.

Based on the available information—a set of possible Hermitian operators {Ai} for the system
Hamiltonian and the measurement outcomes {ai}, we formulate a positive-semidefinite function f (�x)
(equation (6)), with the f (�c) = 0 for the desired�c. The problem of finding the exact Hamiltonian converts
to an unconstrained optimization problem of finding �x that minimizing f. A small real number ε is chosen
to control the precision of the result. We update the sampled �x until f (�x) is less than ε. Figure 1 depicts the
procedure of our algorithm.

We test the algorithm in two scenarios: one with randomly generated operator Ais acting on the whole
system, and one with random local operators Ais. Our algorithm almost perfectly reproduces cis, that is, the
average fidelities for both scenarios are close to 1. Since the algorithm recovers Hamiltonians with almost
perfect fidelities based on the reconstructed Hamiltonian H (i.e. cis), one can also recover the eigenvalue of
|ψ〉 from cis and ais, and the wave function itself from the eigenvectors of Hamiltonian H. In the case when
Ais are local operators, our method can find cis from only local measurement results, hence shed light on
the correlation structures of eigenstates of local Hamiltonians.

2. Algorithm

We start to discuss our method in a general situation, where the Hamiltonian H can be expressed in terms
of a set of known Hermitian operators {A1, A2, . . . , Am}: H =

∑
ciAi with (c1, c2, . . . , cm) = �c. For an

eigenstate |ψ〉 of H with unknown eigenvalue λ, which satisfies H|ψ〉 = λ|ψ〉, we can denote the
measurement results as ai = 〈ψ|Ai|ψ〉. With only knowing the measurement results ais, our goal is to find
the coefficients�c to determine H.
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We observe that, even if |ψ〉 is not the ground state of H, it can be the ground state of another
Hamiltonian H̃2 with H̃ given by

H̃ = H − λI =
∑

i

ci(Ai − aiI), (2)

since
〈ψ|H |ψ〉 = λ =

∑
i

ci 〈ψ|Ai |ψ〉 =
∑

i

ciai. (3)

Then the density matrix of |ψ〉 (which is in fact of rank 1) can be written in the form of a thermal state:

ρ(�c) = |ψ〉 〈ψ| = e−βH̃2

tr(e−βH̃2 )
(4)

for sufficiently large β, satisfying

tr(Aiρ(�c)) = ai, tr(H̃2ρ(�c)) = 0. (5)

With these conditions in mind, we are ready to reformulate our task as an optimization problem with
the following objective function:

f (�x) =
m∑

i=1

[tr(Aiρ(�x)) − ai]
2 + tr(H̃2ρ(�x)), (6)

where �x is the estimation of�c, and �x = �c when f (�x) is minimized.
Notice that the first term of f (�x) is minimized by tr(Aiρ(�c)) = ai, which guarantees that the state ρ(�c)

obtained is the state that produces the desired measurement outcomes on Ais. However, there may be many
(thermal) states which also yield such outcomes. By simply minimizing this first term, optimization
algorithms tend to return thermal states ρ(�c) with nonzero entropy, which is not the eigenstate of H (with
entropy zero) that we are willing to find. In order to fix this issue and ensure that the optimization
returning a (nearly) rank 1 state ρ(�c), we add the second term, which is only zero when ρ(�c) is the ground
state of H̃2, hence an eigenstate of H. Combining these two terms together, we make sure that when the
minimum value of Hamiltonian f (�x) is reached, we will obtain a ρ(�c) corresponding to measurement
outcomes ai, and at the same time an eigenstate of H. In practice, we set up a parameter ε, such that with
f (�x) < ε, we find a result with high fidelity to the desired value of {ci}.

For the convenience of numerical implementation, we let H̃β =
√
βH̃, then the thermal state ρ(�c)

becomes

ρ(�c) =
e−H̃2

β

tr(e−H̃2
β )
. (7)

Consequently, the objective function equation (6) can be rewritten in an equivalent form

f (�x) =
m∑

i=1

[tr (Ai · ρ(�x)] − ai)
2 + tr(H̃2

β · ρ(�x)). (8)

We aim to solve for f (�x) = 0 by minimizing f (�x). In practice, we terminate our iterations when f (�c) is
smaller than a fixed small value ε. The corresponding optimization result is denoted as�copt. As we reformed
the objective function by using H̃β , the result is actually�copt =

√
β ·�c.

Theoretically, we need β to be ‘infinity’ to pick up the ground state of H̃2
β . In practice, however, we only

require that β is some ‘large number’. What is more, to pick up the ground state of H̃2
β for ρ(�c), what really

matters is in fact the gap between the first excited state and the ground state of H̃2
β . Therefore, we just

simply set β = 1 and let the optimizer automatically amplify the energy gap during iteration, when ρ(�c) is
approaching the desired state. A more detailed discussion regarding the choice of β can be found in
appendix A.

Since all the constraints are written in equation (8), minimizing f (�c) is an unconstrained minimization
problem. There are plenty of standard algorithms for this task. In our setting, computing the second-order
derivative information of f (�c) is quite complicated and expensive. Therefore, instead of using Newton
method which requires the Hessian matrix of the second derivatives of the objective function, we choose the
quasi-Newton method with BFGS-formula to approximate the Hessians [51–54]. The MATLAB function
FMINUNC, which uses the quasi-Newton algorithm, is capable of realizing this algorithm starting from an
initial random guess of cis. When the quasi-Newton algorithm fails (converges into a local minimum), we
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start with a different set of random initial value cis and optimize again until we obtain a good enough
solution.

The BFGS algorithm is a typical optimization algorithm which requires gradients of the objective
function on cis. The form of the objective function f (�c) is so complicated such that computing the gradient
is a difficult task. To solve this issue, we borrow the methods of computational graph and auto
differentiation from machine learning. The computational graph is shown in figure 10, in which we show
the intermediate functions and variables. Mathematically, the final gradients could be calculated via chain
rules. However, since some of the intermediate variables are matrices and complex-valued, the automatic
differentiation toolboxes, which deal with real variables, can not be applied directly. To obtain the gradients,
we have to careful handle the derivation of the intermediate functions, especially those with matrices as
their variables. More details about the our gradient method can be found in appendix B.

We use Matlab to implement our algorithm, and the detailed implementation can be found in
appendix C.

3. Results

In this section, we test our algorithm in three steps as follows. First, we randomly generate several Ais and
cis, hence the Hamiltonian Hrd and its eigenstates. Second, for each Hamiltonian, we randomly choose one
eigenstate |ψ〉, therefore we have ai = 〈ψ|Ai|ψ〉 and ρ = |ψ〉〈ψ|. Hereby we can run our algorithm to find
the Hamiltonian Hal. Comparing Hal and Hrd, we then know that how well the approach works. The
algorithm has been tested for two scenarios: Ai being the generic operator and local operator.

To compare Hal and Hrd, we need a measure to characterize the similarity, or distance between these two
Hamiltonians. The metric we used here is the following fidelity as discussed in [55]:

f (Hal, Hrd) =
tr HalHrd√

Tr H2
al

√
Tr H2

rd

. (9)

To see the meaning of this metric, notice that trHalHrd is the inner product of the two Hamiltonians, while√
Tr H2

al and
√

Tr H2
rd are the two normalization constants. Therefore, f (Hal, Hrd) ∈ [0, 1]. If Hal and Hrd

describe the same system up to a constant b ∈ R, then f (Hal, Hrd) = 1. Smaller values of f (Hal, Hrd) indicate
that the two Hamiltonians are far apart. Moreover, notice that in our settings the Hamiltonians are
represented by vectors�c and�c′ in m-dimensional real space. If the chosen Ais are normalized and
orthogonal, which means

tr(AiAj) = dδij, (10)

where d is the normalization constant given by the system dimension (e.g. for Pauli matrices, d = 2), this
fidelity definition is exactly the cosine loss function of�c and�c ′, where�c ′ is generated from our algorithm,
that is, for normalized Ais,

f (Hal, Hrd) =
Tr HalHrd√

Tr H2
al

√
Tr H2

rd

=
�c ·�c ′

‖�c‖‖�c ′‖ , (11)

where ‖�c‖ means the two-norm of the vector�c.

3.1. Results with general operators
When implementing our method on generic operators, we randomly generate three Hermitian operators
Ais and fix them. We also create several real constants ci randomly, then assemble Ais and cis into
Hamiltonians

H = c1A1 + c2A2 + c3A3. (12)

After diagonalizing H, we choose one eigenvector |ψ〉 and calculate the expectation values ai = 〈ψ|Ai|ψ〉.
For n-qubit systems, the dimension of the system is d = 2n. We tested the cases for n = 4, 5, 6 and 7. For

each n, we generate 200 data points. Each test set is {ci, Ai, ai|i = 1, 2, 3}, where ci ∈ (0, 1) for i = 1, 2, 3 and
Ais are randomly generated Hermitian matrices of dimension d = 2n [56]. With this data, Hrd =

∑
i ciAi is

obtained. Diagonalizing Hrd and randomly choosing one eigenvector |ψ〉, we obtain {a1, a2, a3}. We show
the results for applying our algorithm to all cases in figure 2.

We find that the final fidelities are larger than 99.8% for all tested cases. Although the fidelity slightly
decreases with the increasing number of qubits, the lowest fidelity (seven-qubit case) is still higher than
99.8%. Because the eigenvector |ψ〉 is randomly chosen, our method is not dependent on the energy level of
eigenstates.
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Figure 2. Results for generic operators. Each dot represents the fidelity f of a test data point. (a) 4 qubits. (b) 5 qubits. (c) 6
qubits. (d) 7 qubits.

Figure 3. Configurations and results of tested local Hamiltonians (a) structure of a four-qubit full connected lattice. (b) The
fidelity f between random four-qubit fully connected lattice Hamiltonians Hrd and Hamiltonian obtained in our algorithm Hal .
(c) The fidelity distribution of four-qubit systems. (d) Structure of a seven-qubit chain lattice. (e) The fidelity f between
seven-qubit two-local Hamiltonians Hrd and Hamiltonian estimation Hal of our algorithm. (f) The fidelity distribution of our
seven-qubit systems.

3.2. Results with local operators
In this section, we report our results on the systems with a two-local interaction structure. We tested two
different structures, shown in figures 3(a) and (d). Each circle represents a qubit on a lattice, and each line
represents an interaction between the connected two qubits.

The fully-connected four-qubit system is shown in figure 3(a). The Hamiltonian can be written as

H =
∑

1�j,i�4

∑
i<j

cijAij, (13)

5
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Figure 4. The average fidelities f by applying our algorithm to different energy levels of eigenstates of the four-qubit case.
The average fidelities for different energy levels of eigenstates are all higher than 99.97%.

where cijs are real parameters and Aijs are random generated two-local operators. One eigenstate out of 16 is
randomly chosen as the state |ψ〉. Our algorithm has been tested on 800 such Hamiltonians.

We then analyze the seven-qubit chain model shown in figure 3(d). Similarly, we can write the
Hamiltonian as

H =
∑

1�i�6

ci,i+1Ai,i+1, (14)

where ci,i+1s and Ai,i+1s are the parameters and two-local interactions. We randomly generate 40 such
Hamiltonians and applied our algorithm.

The results of these two two-local Hamiltonians are shown in figure 3. Our algorithm recovered
Hamiltonians with high fidelities for both cases. The average fidelity for our four-qubit (seven-qubit)
system is 99.99% (99.73%). As the dimension of the system increases, the fidelity between Hrd and Hal

slightly decreased. The histogram of the fidelities shows that, for most data points, the fidelities are very
close to 1. Our algorithm almost perfectly recovered these two-local Hamiltonian from measurement
outcomes of a randomly picked eigenvector.

We examine the effectiveness of our algorithm according to different eigenvectors of the same
Hamiltonians. Figure 4 demonstrates average fidelities between Hrd and Hal of four-qubit case by energy
level of eigenstates. These average fidelities are higher than 99.9% for all 16 eigenvectors. Hence, the
effectiveness of our algorithm is independent of energy levels.

4. Further analysis of the algorithm

In this section, we analyze the error tolerance and the performance of the algorithm, based on the results of
our numerical experiments.

4.1. Error tolerance analysis
The numerical tests in previous sections deal with noiseless theoretical data. In practical scenarios, however,
data is always noisy. Here we provide analysis of error tolerance for our algorithm.

As an example, we consider a four-qubit system with Hamiltonian H =
∑3

i=1 ciAi where Ai’s are
random generated 16 by 16 Hermitian operators. Choose one eigenstate |ψ〉 of H, the noiseless
measurements of the eigenstate are denoted as {ai|ai = 〈ψ|Ai |ψ〉}. Noises used here are randomly drawn
from normal distributions γ ∼ N (0,σ2). Adding the generated noise γ to measurements ai, the noisy data
ai,m follows the normal distribution N (ai,σ2).

We can control how noisy ai,m is by changing the standard deviation σ. Clearly, the noisiness of data is
relative to the magnitude of true values, thus σ/ai can be used as an indicator. We test ten different σ’s of
which σ/ai’s ranging from 0.01 (1%) to 0.1 (10%). For each σ, 1000 data points have been generated.

The Hamiltonians attained by our algorithm with these noisy data ai,m are denoted as Herr. The fidelity
between each pair of the true Hamiltonian H and Herr is shown in figure 5. Though increasing the noise
causes the fidelities of a few points to significantly decrease, all median fidelities of different σ are above
99.8%. Even for σ/ai = 0.1 (added 10% of noise), only 2.1% of data points have fidelities lower than
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Figure 5. Fidelities of noisy data: Each σ/ai (σ) has 1000 test points. Blue cross marks represent the fidelities between
Hamiltonians recovered with noisy data Herr and real Hamiltonians H . The red pentagons are median values of fidelities for each
σ/ai.

Figure 6. The schematic diagram for demonstrate the influences of local minima. A0 and C0 are local minima of the object
function f(x). B0 is the global minimum. A slightly larger ε may cause the iteration sticks in the local minima.

99.0%. In other words, singular points that have significant low fidelities are rare. This demonstrates that
the performance of our algorithm is stable.

4.2. Performance analysis
The convergence and time cost of our method are analyzed in this subsection. We study the relationship
between the halting condition ε and the convergence of our algorithm. We also observed that the time cost
tends to differ for each Hamiltonian configuration.

The parameter ε, which is the halting condition of the algorithm, affects the convergence of our
algorithm. It is the consequence of the object function f (�x) has many local minima. In the schematic
diagram figure 6, if the initial point is chosen as A or A′, the gradient method will return the value A0,
which is a local minimum (so as B or B′ to B0, and C or C′ to C0).

When ε is greater then ‖f (A0) − f (B0)‖ or ‖f (C0) − f (B0)‖, the algorithm may recognize A0 or C0 as the
optimal solution instead of finding the true global minimum B0. An appropriate choice of ε is necessary to
eliminate certain local minima.

The objective function equation (6) used in our method has a high dimension and complicated
landscape. Its properties are also subject to the particular class of H that we work with. More analysis could
be done in terms of finding an appropriate ε. Empirically, we choose ε as 10−6 for all our numerical
experiments. It is numerically proved to be applicable as shown in figure 7. The figure depicts the relation
between ε and the output fidelity of the three-qubit general operator’s case. Chosen ε � 10−3 grantees the
average fidelity almost equals to 1.

By setting the halting parameter ε to 10−6, we can now discuss the time cost for each numerical
experiment. The total time cost t for optimization depends on the number of trials n for each numerical
example and the time t0 of each trial. The initial values are chosen randomly, n is different from case to case.
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Figure 7. The impact of ε on the final fidelity (the three-qubit general operator scenario). For each ε, we conduct 50
numerical experiments, then take the average of outcome fidelities. The vertical axis is the average fidelity and the horizontal axis
is the value of ε.

Table 1. Time consumed of each trial and the number of trials. For general operator cases and the 4-qubit
local operators case, we used 200 examples to achieve the averages. For 7-qubit local operators, The result is
obtained from 40 examples.

General operators Local operators

Number of qubits 4 5 6 7 4 7
Time for single trial t0(s) 0.0487 0.0518 0.0539 0.0579 0.2246 7.938
Number of trials n̄ 32.36 42.34 45.89 161.6 54.84 539.4
Average time cost (̄t) (s) 1.576 2.193 2.377 2.4735 12.32 4282

We consider the average number of trials n̄ for each Hamiltonian class. Let t0 be the duration of a single
trial which is mainly depending on the Hamiltonian configuration and number of qubits. The total average
time t̄ could be estimated as

t̄ = n̄t0. (15)

We test our algorithm on a workstation with Intel i7-8700K and 32 GB RAM, the results are listed in
table 1. The table demonstrates that the time cost does not grow rapidly for the general operator cases,
while it changes dramatically with the system size for the local operator cases. The t̄ of seven-qubit general
operator instance is almost 2 times more than t̄ of the four-qubit general operator case. On the contrast, the
average time cost t̄ of seven-qubit lattice is almost 350 times more than the t̄ of four-qubit lattice.

5. Comparison with the correlation matrix method

In reference [22], a method is proposed to recover Hamiltonians from correlation functions. Their method
works as follows: with an eigenstate |ψ〉, the Hamiltonian of the system is defined as

H =
∑

i

ciLi, (16)

where Lis are normalized and orthogonal Hermitian matrices (e.g. the Pauli matrices). They defined a
correlation matrix, of which the matrix elements are

Mij =
1

2
〈ψ|{Li, Lj}|ψ〉 − 〈ψ|Li|ψ〉〈ψ|Lj|ψ〉, (17)

where {Li, Lj} = LiLj + LjLi is the anti-commutator. Then diagonalize matrix M and find the eigenvector
�ω = (ω1,ω2, . . . ,ωi)T corresponding to the eigenvalue 0. The Hamiltonian

Hcor =
∑

ωiLi (18)

is the desired Hamiltonian of the system H. We refer to this algorithm as the correlation matrix method
(CMM).

8
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Figure 8. The impact of condition number on our algorithm. The x axis is the condition number. The y axis is the error rate
r(Hrd , Hal) = 1 − f (Hrd, Hal).

We conduct numerical experiments to compare the performance of CMM and our method. We calculate
such four-qubit Hamiltonians

H =

4∑
i=1

aiσ
i
z +

3∑
i=1

biσ
i
xσ

i+1
x , (19)

where σi
k is the kth Pauli matrix acting on the ith qubit. It turns out that CMM and our algorithm both

render good estimations. The results of CMM possess greater accuracy–the error rate, defined as
r(Hrd, Hal) = 1 − f (Hrd, Hal), is less than 10−10. Error rates of our results range from 10−4 to 10−2.

CMM is deterministic, more accurate as well as faster than our method. It only involves diagonalization
of matrix M, of which the dimension is polynomial of the number of qubits for local systems. CMM also
provides a criteria to decide whether the eigenstate is uniquely determining the Hamiltonian. That is, if M
only has one eigenvalue equals to 0, then the Hamiltonian is uniquely determined. The advantage of CMM
arises from more restrictions and more information required for applying it: (1) All Lis in CMM are
orthogonal, while in our tests the corresponding Ais are randomly generated; (2) CMM requires non-local
correlation functions. The matrix element includes the term

〈ψ|{Li, Lj}|ψ〉, (20)

where {Li, Lj} = LiLj + LjLi. Although Lis may be local, LiLj for all is and js could be global. Therefore, as
indicated in [22], if only partial knowledge of the system is available, the question that whether the
Hamiltonian can be reconstructed remains unclear.

Another problem of applying CMM is similar to the problem of the halting parameter ε in our method.
The recovery depends on the existence of one eigenvalue equals to 0. However, the equivalence of two
numbers in a computer is different from in theory. Even when working with noiseless theoretical data, the
finite length data storage (e.g. the precision of double float-point format is 10−16) and data processing can
introduce certain errors, not to mention the noisy data from real quantum devices. Namely, determine
whether a number is equal to 0 is up to a certain precision. Therefore, one needs to set a threshold δ to
determine equivalence before applying CMM. How to appropriately chose a δ is empirical and case
dependent. From this perspective, both methods are similarly complicated.

We are also willing to check the consistency of CMM and our methods. Lacking a systemic way of
choosing the threshold δ, we need to seek another way to bridge these two methods. From the numerical
experiments, we find in CMM that the lowest absolute eigenvalue (denotes as λ0) of M is about 10−16 to
10−18 and the second-lowest absolute eigenvalue (denotes as λ1) ranges from 10−2 to 10−12. If λ1 is too
small, it would be hard to tell whether there exists one or more 0 eigenvalues, that is, the farther λ0 and λ1

are, the more accurate the CMM’s outcome is. It will be evidence of consistency if we can witness the same
tendency from our method. We, therefore, define the condition number as the ratio of the second-lowest
absolute eigenvalue to the lowest absolute eigenvalue (λ1/λ0). We use the estimations provided by our
method to construct the correlation matrix M, obtain the λ0 and λ1 from M, then calculate the condition
number λ1/λ0. The results are shown in figure 8. We find, generally, the larger the condition number, the
better our algorithm performs (higher fidelity). It is consistent with the behavior of CMM.

In summary, for all the tests performed, CMM and our method have similar behavior in terms of the
condition number, which shows that both method return the desired results (for reconstruction the desired
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Hamiltonian with high fidelity). Regarding algorithm performance, when all sorts of correlations are
available, the CMM is numerically more efficient and accurate. In contrast, our algorithm uses less
information, therefore can be used in much wider situations, especially when certain global correlation
information is hard to obtain in practice.

6. Discussion

In this work, we discuss the problem of reconstructing a system Hamiltonian H =
∑

i ciAi using only
measurement data ai = 〈ψ|Ai |ψ〉 of one eigenstate |ψ〉 of H by reformulating the task as an unconstrained
optimization problem of some target function of cis. We numerically tested our method for both randomly
generated Ais and also the case that Ais are random local operators. In both cases, we obtain good fidelities
of the reconstructed Hal. Our results are somewhat surprising: only local measurements on one eigenstate
are enough to determine the system Hamiltonian for generic cases, no further assumptions are needed.
Though it is beautiful theoretically, our algorithm is not scalable since the calculations of exponentiation
and gradient of matrices become expensive when the system size gets large. Improvements can be made by
more efficiently approximating them.

We also remark that, in the sense that our method almost perfectly recovered the Hamiltonian H, the
information encoded in the Hamiltonian H, such as the eigenstate |ψ〉 itself (though described
exponentially many parameters in system size) can also in principle be revealed. This builds a bridge from
our study to quantum tomography and other related topics of local Hamiltonians. Empowered by
traditional optimization methods and machine learning techniques, our algorithm could be applied in
various quantum physics problems, such as quantum simulation, quantum lattice models, adiabatic
quantum computation, etc.

Our discussion also raises many new questions. For instance, a straightforward one is whether other
methods can be used for the reconstruction problem, and their efficiency/stability compared to the method
we have used in this work. One may also wonder how the information of ‘being an eigenstate’ helps to
determine a quantum state locally, which is generically only the case for ground states, and how this
information could be related to help quantum state tomography in a more general setting.
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Appendix A. The value of β

It is easy to observe that H̃2 and H̃2
β have the same eigenstates. The constant β only contributes a constant

factor to the magnitude of eigenvalues, i.e., the eigenenergies of the given system. Theoretically, a thermal
state tends to the ground state of the given Hamiltonian if and only if the temperature is zero (or, for a
numerical algorithm, close to zero), which means β = 1

kT goes to infinite. Numerically, the β only needs to
be a sufficiently large positive number.

Let us denote the ith eigenvalue of H̃2
β as Ei and the energy gaps as Δi = Ei+1 − Ei. From the definition

of H̃2
β , the ground energy Eg = E1 is always 0. As we observed, during the optimization process, the

eigenenergies, as well as the energy gaps of the Hamiltonian, gets larger. From figure 9(a), we can see the
energy gaps grow as the optimization goes. The corresponding β is a finite sufficient large number.

On the other hand, we can also examine the probability of the ground state of H̃2
β as the iteration goes.

This probability can be expressed as

P(E = Eg) =
e−Eg

Tr e−H̃2
β

Since the ground state energy of H̃2
β is always have zero, the probability is

P(E = Eg) =
1

Tr e−H̃2
β

.

The change of the probability P(E = Eg) with iterations is shown in figure 9(b), from which we can see that
finally, the probability goes to 1, which means that the thermal state form is (almost) ground state when β

is a relatively large positive constant.
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Figure 9. Behavior of H̃2
β in the optimization process. (a) Energy spectrum of H̃2

β . (b) The ground state population during
optimization.

Appendix B. Calculation of the gradient of f (�c)

B.1. General method
The computational graph of this technique is shown in figure 10. Each node of the graph represents an
intermediate function. In principle, the chain rule can be applied. It seems that we can compute the
gradient by using the existing deep learning frameworks. However, those auto differentiation tools
embedded in the frameworks such as PyTorch [57] and TensorFlow [58] cannot harness our problem due to
the following two reasons: first, most of the tools only deal with real numbers while in quantum physics we
often deal with complex numbers; second and the most important, some of the intermediate functions in
the computational graph use matrices (or in physics, operators) as variables, while in neural networks, the
variables are real numbers. One should be careful while deriving matrices since a matrix usually does not
commute with its derivative. For instance, even for some simple conditions, the node v3 = H̃2 = v2

2 , the
derivative ∂v3

∂v1,k
cannot be simply considered as 2v2

∂v2
∂v1,k

because [H̃, ∂H̃
ck

] 	= 0. Instead,
∂v3
∂v1,k

= v2
∂v2
∂v1,k

+ ∂v2
∂v1,k

v2.

The derivatives in the computational graph shown in figure 10 are listed in table 2. Here, due to the
reason mentioned above, we use forward propagation to calculate the gradients. In table 2, the derivative
could be separated into the following categories: 1. The variable(s) of the function is a number. This
corresponds to the simplest case, and the derivatives could be obtained simply using chain rules; 2. The

11
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Figure 10. Computational graph. Each node represents an intermediate function with the label on its left. The arrows from
lower nodes to upper nodes represent the propagation of function while those for upper nodes to lower nodes represent the
propagation of the derivatives.

Table 2. The types of the variables and values of the intermediate functions.

Node Function Derivative Type of variable(s) Type of function value

v2 v2 =
∑

ci(Ai − aiI) Ai − aiI Number Matrix
v3 v3 = v2 · v2

∂v2
v1,k

H̃ + H̃ ∂v2
v1,k

Matrix Matrix

v4 v4 = e−v3
∫ 1

0 eαv3 ∂v3
v1,k

e(1−α)v3 dα Matrix Matrix

v5 v5 = trv4 tr( ∂v4
v1,k

) Matrix Number

v6 v6 =
v4
v5

∂v4
v1,k

1
v5

− v4

v2
5

∂v5
∂v1,k

Matrix & number Matrix

v7 v7, j = tr(Ajv6) − aj tr(Aj
∂v6
∂v1,k

) Matrix Number

v8 v8 =
∑

v2
7,j 2v7,j

∂v7,j
∂v1,i

Number Number

v9 v9 = tr(v3v6) tr( ∂v3
∂v1,i

v6 + v3
∂v6
∂v1,i

) Matrix Number

v10 v10 = v8 + v9
∂v8
∂v1,i

+ ∂v9
∂v1,i

Number Number

variables are matrices, but the function is the trace function tr. The derivatives could be obtained by
applying d tr(A)

dx = tr dA
dx ; 3. Some elementary functions take matrices as variables, i.e., v3 = v2

2 . In this case,

one should be careful about the commutators when dealing with it; 4. v4 = eH̃2
, of which the gradients are

difficult to calculate, which will be discussed in detail.

B.2. Derivative of matrix exponentials
The derivative of function f (X) = exp(X(ck)) with respect to ck can be written as

∂eX(ck)

∂ck
=

∫ 1

0
eαX(ck) ∂X(ck)

∂ck
e(1−α)X(ck)dα, (B1)

where, in our cases, X(ck) = −H̃(ck)2 = −v3. Generally, the commutator [X, ∂X
∂ck

] 	= 0. Therefore, the
integration equation (B1) cannot be simply calculated. In reference [25], the authors approximate the
integration using the value of the upper and lower limits. This approach does not work for our case. Thus
we introduce a new way to calculate it. Let

A(β) =
∂eX(ck)

∂ck
=

∫ β

0
eαX(ck) ∂X(ck)

∂ck
e−αX(ck)dα, (B2)
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B(β) = e−βX(ck)A(β), (B3)

and
C(β) = e−βX(ck). (B4)

Note that A(1) = B(1)exp[X(ck)]. It can be derived that

d

dβ

(
B(β)
C(β)

)
=

⎛
⎝−X(ck)

∂X(ck)

∂ck
0 −X(ck)

⎞
⎠(

B(β)
C(β)

)
. (B5)

Let

G =

⎛
⎝−X(ck)

∂X(ck)

∂ck
0 −X(ck)

⎞
⎠ , (B6)

The derivative equation (B5) can be solved as(
B(1)
C(1)

)
= eG

(
B(0)
C(0)

)
, (B7)

where B(0) is a matrix with all entries 0 and C(0) is the identity matrix. With B(1), we can obtain A(1) as
well as the integration equation (B1). This completes the gradient calculation for our algorithm.

Appendix C. Software implementations

According to the computational graph figure 10 and the table 2, we can define a function which accepts�c,
the operators A, and returns the value of f (�c) and the gradient ∇f (�c):

The function FMINUNC in MATLAB/Octave can accept the function and the gradient and doing the
optimization:

The default algorithm is BFGS. To make the algorithm using gradient we provide:

Then, we can start the optimization

Here, c1 is the final points, fval is the final value of the objective function and c0 is the initial value.
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