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1 Departamento de Física Teórica & IFIC, Universidad de Valencia-CSIC, 46100 Burjassot (Valencia) Spain
2 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
3 Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
4 Department of Physics and Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-University Munich, Germany
5 Author to whom any correspondence should be addressed.

E-mail: banulsm@mpq.mpg.de

Keywords: open quantum systems, prethermalization, master equations

Abstract
The usual paradigm of open quantum systems falls short when the environment is actually
coupled to additional fields or components that drive it out of equilibrium. Here we explore the
simplest such scenario, by considering a two level system coupled to a first thermal reservoir that
in turn couples to a second thermal bath at a different temperature. We derive a master equation
description for the system and show that, in this situation, the dynamics can be especially rich. In
particular, we observe prethermalization, a transitory phenomenon in which the system initially
approaches thermal equilibrium with respect to the first reservoir, but after a longer time
converges to the thermal state dictated by the temperature of the second environment. Using
analytical arguments and numerical simulations, we analyze the occurrence of this phenomenon,
and how it depends on temperatures and coupling strengths. The phenomenology gets even richer
if the system is placed between two such non-equilibrium environments. In this case, the energy
current through the system may exhibit transient features and even switch direction, before the
system eventually reaches a non-equilibrium steady state.

1. Introduction

The standard theory of open quantum systems (OQS) typically considers that the system is coupled to a
single reservoir in equilibrium to analyse properties such as decoherence, dissipation and non-Markovianity
[1–4]. A richer situation emerges in the frame of quantum thermodynamics and thermal machines, in
which the system is coupled to two or more reservoirs, each of them equilibrated at a different temperature
and/or chemical potential [5–8]. Once the coupling is activated, the open system evolves towards a
non-equilibrium steady state that may contain persistent heat, particle or spin currents. An even more
involved scenario occurs when the system is coupled to one or more reservoirs that are each of them out of
equilibrium and therefore evolve in time. As a consequence, the action of the environment into the system
dynamics is no longer encoded in a correlation function that is time-translational invariant, such that
α(t, τ) = α(t − τ ), but rather on a correlation function that depends on both the current time of evolution
t and the past times τ .

The motivation to analyze complex environments beyond the standard OQS paradigm of single and
multiple equilibrium reservoirs is strong. From an application perspective, out of equilibrium environments
that present a temperature gradient can be encountered in electron transfer processes in quantum chemistry
and biology [9], in cellular media [10] and even in the thermosynthesis processes that use the solar energy
to create chemical compounds [11], to name just a few examples. These types of environments may indeed
be driven by an external source, corresponding to other molecular or biological structures or even to the
electromagnetic field. Non-equilibrium environments are also present in quantum technological devices,
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where the quantum system of interest may be directly coupled to an environment that is itself coupled to a
second reservoir, thermalized at a different temperature. Such temperature gradient of the different
components and subsystems surrounding the quantum system of interest is particularly present in quantum
computers [12, 13]. Superconducting qubits, for instance, are cooled down to cryostatic temperatures, while
their surrounding components, including amplifiers and processing units, as well as the cables and
waveguides that connect them to each other and to the qubit, are at higher temperatures the further they
are from the circuit.

Describing these situations is of fundamental and timely interest, but it also represents a significant
challenge, as the effects of indirect reservoirs on the OQS dynamics cannot be captured with a simple
Markovian approximation. To this aim, one possibility is to compute the full dynamics, including the
system and the environments, and then trace out the environmental degrees of freedom to obtain the OQS
reduced dynamics. However, the dimension of the full Hilbert space grows exponentially fast with the
number of degrees of freedom, and further, the relevant states may be largely entangled as well, which
makes inefficient a direct use of state of the art numerical methods like Monte Carlo [14–16] and matrix
product states [17–21].

While several approaches can be found in the literature to describe the full dynamics of the system
coupled to a single bath [22–25], much fewer works can be found that treat the presence of a second
environment driving the first one out of equilibrium. In this context, reference [26] considers an effective
(surrogate) Hamiltonian to describe the system and its direct coupling to a primary environment
(represented by a finite number of modes), while a second and larger environment is introduced and
coupled to the first. This second environment is treated stochastically. Here we propose an alternative
approach, which extends the standard tools of the OQS theory, namely the weak coupling approximation
and the master equation approach, to consistently tackle the problem in at least a limit of interest.

To be specific, we consider a two-level quantum system coupled to a first reservoir (RI) that is in turn
coupled to a second reservoir (RII). Initially, each reservoir is in a thermal state at a different temperature,
respectively TI and TII. We additionally consider that RII induces a Markovian evolution on the modes of RI
so that they thermalize efficiently. Therefore, even if RI is initially in thermal equilibrium, the coupling to a
second reservoir at a different temperature will drive it away from it, and enforce its evolution towards a
new equilibrium state with respect to RII. Thus, the dissipation of the open system will display very rich
features reflecting the interplay between two different timescales: thermalization of the system at a
temperature TI, and the thermalization to its final equilibrium state with TII. If the conditions of the
environment are suitable, and these two timescales are temporally separated, prethermalization [27] of the
OQS is observed, which is a stage in which the system remains thermalized at TI.

The plan of the paper is the following: We present the details of our model in section 2, while in
section 3 we discuss the master equation that is used to describe the reduced dynamics of the open system.
This master equation depends on a set of correlation functions that encode the effects of both reservoirs in
the open system, and which are discussed in section 4. Sections 5 and 6 describe the effects of
prethermalization when considering a single and two out of equilibrium reservoirs, respectively. Finally, we
draw some conclusions in section 7.

2. Model with two interacting environments

As is standard in the theory of OQS [3, 28, 29] we consider that the total evolution of system plus the
environment is unitary and described by the Hamiltonian,

H = HS + HE + Hint, (1)

where HS and HE are the free Hamiltonians of the system and environment, respectively, and Hint is the
interaction Hamiltonian between system and environment. We model the system as a two level system with
the free Hamiltonian

HS =
1

2
ω0σz , (2)

where ω0 is the energy6 gap between levels. We model the environment to which the system is coupled as an
set of open harmonic oscillators that is a first reservoir (RI) of harmonic oscillators where each mode in RI
is coupled to a independent reservoir, included in the second reservoir (RII). The Hamiltonian describing
this environment is

HE = HRI + HRII + Hint,2, (3)

6 Throughout this article we consider natural units in which the reduced Plank constant and the Boltzmann constant � = kB = 1.
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Figure 1. Schematic picture of the model. The OQS is coupled in a star configuration to a set of harmonic oscillators aλ, which
are coupled to their own individual baths of harmonic oscillators bλ,k.

where
HRI =

∑
λ

ωλa†λaλ and HRII =
∑
λ,k

ωλ,kb†λ,kbλ,k, (4)

are the free Hamiltonians of RI and RII, respectively, with operators that obey the commutation relations

[aλ, a†λ′] = δλ,λ′ , and [bλk, b†λ′k′] = δλ,λ′δk,k′ , (5)

and whose interaction

Hint,2 =
∑
λ

(
a†λ ⊗

∑
k

g̃λ,kbλ,k + aλ ⊗
∑

k

g̃∗λ,kb†λ,k

)
, (6)

conserves the boson number. The coupling strength between the λ-th oscillator in RI and the kth oscillator
in RII is g̃λ,k. The system is in a star configuration, i.e. the OQS is coupled to all the λ bosonic operators of
RI, and in turn each of these is coupled to a reservoir of harmonic oscillators that is a part of RII, as
depicted in figure 1. Only the first reservoir couples directly to the OQS, with the interaction Hamiltonian

Hint = σ− ⊗
∑
λ

g∗λa†λ + σ+ ⊗
∑
λ

gλaλ , (7)

which only considers interactions that conserve the particle number. We take as initial state a tensor
product,

ρ(0) = ρS(0) ⊗ ρE(0) = ρS(0) ⊗ ρth
I (βI) ⊗ ρth

II (βII). (8)

The initial state of the system can be arbitrary, while the initial states of the reservoirs are assumed to be
thermal, possibly at different temperatures,

ρth
i (βi) =

e−βiHRi

Zi(βi)
, (9)

where Z(βi) = Tr{e−βiHRi} is the partition function and βi = 1/Ti is the inverse temperature of each
reservoir, i = {I, II}.

Each reservoir may have a different spectral function depending on their microscopic properties and the
problem considered. In our analysis, we consider the Caldeira–Leggett phenomenological model of spectral
functions [30], which reads

Ji(ω) = giω
1−si
ci ωsi e−ω/ωci , (10)
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where gi is the strength of the coupling, si is a factor that takes different values depending on the particular
environment that needs to be modelled, and ωci determines a smooth frequency cut off for the modes of the
reservoir.

3. Study of the system evolution

To obtain a closed equation for the dynamics of the open quantum system, we consider that it is weakly
coupled to its environment, which makes it evolve slowly. Thus we can derive a second order weak coupling
master equation (ME) for the reduced density matrix of the open quantum system. The derivation of the
ME is standard and can be found in numerous works [28, 31],

d

dt
ρS(t)=−i [HS, ρS(t)]+

(∫ t

0
dτα+(t, τ)

[
Vτ−tσ+ρS(t),σ−

]
+

∫ t

0
dτα−(t, τ)

[
Vτ−tσ−ρS(t),σ+

]
+h.c.

)
,

(11)
where VtO = eiHStOe−iHSt is the free evolution of the operator O = {σ+,σ−}, and the correlation
functions are defined by

α+(t, τ) = Tr{B(t)†B(τ)ρE(0)} , α−(t, τ) = Tr{B(t)B†(τ)ρE(0)}, (12)

with B(t) = eiHEtBe−iHEt the free evolution of the environment operator B =
∑

λ gλaλ. Notice that this
equation is second order in the interaction operator B, and that no first order term is present, since it is
proportional to TrE{Hint(t)ρE(0)}, which is null for the initial state defined in equations (8) and (9). This
equation is a time-local ME, since its evolution can be recast in the form

ρ̇S(t) = Λt[ρS(t)], (13)

where Λt is a linear map, such that Λt[ρ(t)] is Hermitian and traceless for any ρ. To fully describe the OQS
through the differential equation (11), the correlation functions (12) have to be computed for the initial
states ρE(0) defined in equations (8) and (9). The following section is devoted to this derivation, but first we
rewrite the ME in equation (11) under its canonical form.

3.1. Canonical form of the ME
Any time-local ME equation of the form (13) can be recast into a canonical ME [32], of the form

d

dt
ρS(t) = −i[H(t), ρS(t)] +

d2−1∑
k=1

γk(t)

(
Lk(t)ρS(t)L†

k(t) − 1

2
{L†

k(t)Lk(t), ρS(t)}
)

, (14)

where γk(t) are the canonical decay rates corresponding to the canonical decoherence channels Lk(t), with
k = 1, . . . , d2 − 1, and d the dimension of the Hilbert space of the OQS. H(t) is, in general, not identical to
the free Hamiltonian of the system, since the interaction with the environment modifies it. The most
common effect is a shift of the natural frequency of the OQS, the so-called Lamb shift. The equation is
often written in a more compact form as

d

dt
ρS(t) = −i[H(t), ρS(t)] +D(t, ρS(t)). (15)

where the first term represents the unitary evolution of the OQS. The second term in (15) encompasses the
dissipative part of the evolution.

Recasting the time-local ME in this form allows us to easily evaluate whether, despite being an
approximated equation, it still preserves complete positivity of the evolution. In detail, if the decay rates
γk(t) are non-negative we can ensure that this is the case and that the dynamical map of the OQS is
Markovian [32]. The canonical decay rates, and the Lamb shift for our model, are discussed in the next
section and in appendix A.

4. Out-of-equilibrium correlation functions and decay rates

Obtaining the correlation functions (12) requires to compute the time evolution of aλ(t) in the operator
B(t) =

∑
λ gλaλ(t). We can simplify this calculation by assuming a large separation of timescales between

the second and the first reservoir. Specifically, we consider that the modes of the first reservoir, aλ(t) slowly
evolve towards an equilibrium state with respect to the second reservoir, and that this evolution is well

4
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described with the Markov approximation. This is discussed in appendix B, while the computation of the
correlation functions is treated in appendix C. Thus, the correlation functions are given by

α+(t, t′) =
1

π

∫
dωJI(ω)nI(ω)eiωt′e−

JII(ω)
2 (2t−t′) +

1

π2

∫∫
dωdω′JI(ω)nII(ω

′)K(ω,ω′)C(ω,ω′, t, t′),

α−(t, t′) =
1

π

∫
dωJI(ω)(nI(ω) + 1)e−iωt′e−

JII(ω)
2 (2t−t′) +

1

π2

∫∫
dωdω′JI(ω)(nII(ω

′) + 1)K(ω,ω′)

× C∗(ω,ω′, t, t′),

(16)

where Ji(ω), with i = {I, II}, are the spectral functions of each reservoir, which have the general form (10),
and ni(ω) = [exp(βiω) − 1]−1 is the average thermal number of quanta in mode ω at inverse temperature
βi. We have defined the function

K(ω,ω′) =
JII(ω′)(

JII(ω)
2

)2
+ (ω − ω′)2

, (17)

which is proportional to a Lorentzian kernel of width JII(ω)/2, and the function

C(ω,ω′, t, t′) =

[
e−iω′t − e

(
−iω− JII(ω)

2

)
t
] [

eiω′(t−t′) − e
(

iω− JII(ω)
2

)
(t−t′)

]
. (18)

Notice that, even though we can consider that the open system is weakly coupled to RI, and thus its master
equation is obtained within a second order perturbation theory, a Markov approximation cannot be taken
in a straightforward way. The reason is that the correlation functions (16) are no longer dependent on the
time difference t − τ , but on both times t and τ such that one can not simply extend the integration limits
in equation (11) by assuming that the integral kernel decays much faster than the system evolution
time-scale, as it is done in the Markov approximation.

We observe that the second term of the correlation functions contains the resonant term K(ω,ω′) (see
equation (17)) with a width proportional to the coupling strength between environments, and centered at
ω = ω′. Approximating this term by a delta function is consistent with the weak coupling approximation
already considered between RI and RII. Using this approach, we obtain an analytical approximation for the
canonical decay rates γ±(t), which correspond to the decoherence channels L± = σ± (see appendix A), and
which can be split into two contributions, γ±(t) = γST

± (t) + γLT
± (t), where the terms are labelled in reference

to their short time (ST) or long time (LT) dominance. The ST terms are

γST
+ (t) = JI(ω0)nI(ω0)e−JII(ω0)t

γST
− (t) = JI(ω0)(nI(ω0) + 1)e−JII(ω0)t ,

(19)

and the LT terms read
γLT
+ (t) = JI(ω0)nII(ω0)(1 − e−JII(ω0)t),

γLT
− (t) = JI(ω0)(nII(ω0) + 1)(1 − e−JII(ω0)t).

(20)

The validity of approximating equation (17) by a delta function is discussed in D. These decay rates present
a very suggestive form: at short times, the LT terms of each decay rate is negligible, while at later times it
dominates (see appendix D for a visual reference). The strength of the decay rates is governed by the
spectral function of the first environment, while the second environment spectral function is responsible for
the timescales at which each term dominates.

With this approximate expression for the decay rates it is possible to prove analytically that indeed the
OQS evolves, at long times, to a thermal state at the inverse temperature of the second reservoir βII (see
appendix E). Furthermore, since they are non-negative at all times, we can ensure that the ME preserves
complete positivity.

5. Prethermalization

The decay rates obtained in the previous section already suggest that the evolution of the OQS may exhibit
two different timescales. However, as it will soon become apparent, how well defined these two scales are
will be strongly determined not only by the value of gII, but also by other factors, such as the temperature of
each reservoir. Depending on these factors, there may be a transitory state in which the OQS remains close
to a thermal state corresponding to the initial temperature of RI, but after some longer time it finally relaxes
to a thermal state with the temperature of RII.

5
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This transient effect is an instance of prethermalization, a phenomenon in which the system, after a short
time, seems to relax to a state different from the true thermal equilibrium, which is eventually reached after
a much longer timescale [27, 33–35]. The most studied scenario of prethermalization concerns weakly
non-integrable systems, in which an eigenstate of an integrable model is evolved under a quenched
Hamiltonian that weakly breaks integrability. The short time dynamics is still determined by almost
conserved quantities, and the system arrives to a prethermalized state, but at long times the breaking of the
integrability dominates and the system finally thermalizes [36]. The phenomenon has also been studied in
the context of OQS in [37, 38] and observed experimentally in ultra-cold bosonic atoms [39–41].

In our setup, a small coupling to the second reservoir (gII �= 0) can play a similar role to the integrability
breaking, as it perturbs the thermal equilibrium of the enviroment RI (which would otherwise remain
stable). In this way, the initial temperature of RI may determine the short time evolution and the arrival to a
prethermal state, while the final equilibrium is determined by RII. We will thus consider that
prethermalization has occurred when the system reaches a state, independent of its initial conditions, close
to the thermal equilibrium at βI, and this state is mantained for a finite time, before the evolution definitely
drives the system to the equilibrium with RII.

In order to verify the occurrence of the effect, we analyse the evolution of all possible initial states. We
conveniently express the density matrix in terms of the polarization vector, ρ(t) = (I +�p(t) · �σ)/2 and
integrate the time evolution equations (see appendix A). The formal solution for the polarization vector is

�p(t) = r(t)R(t)�p(0) + �d(t), (21)

where

R(t) =

⎛
⎝cos(Ω̃(t)) − sin(Ω̃(t)) 0

sin(Ω̃(t)) cos(Ω̃(t)) 0
0 0 1

⎞
⎠ , (22)

is a rotation matrix, that performs a rotation about the z axis with angular frequency Ω̃(t) =
∫ t

0 dt′Ω(t′),
where Ω(t) is the shifted frequency of the OQS due to the action of the environment (see appendix A),

r(t) = e−Γ̃(t) is a scaling factor that affects equally all components, with Γ̃(t) =
∫ t

0 dt′(γ+(t′) + γ−(t′)),

where γ+(t) and γ−(t) are the canonical decay rates, and �d(t) = (0, 0, c(t)) is a displacement vector in the z
direction, with

c(t) = e−Γ̃(t)

∫ t

0
dt′eΓ̃(t′)(γ+(t′) − γ−(t′)). (23)

From this result, it is apparent that the effect of the dynamical map on any state is to rotate the
polarization vector around the z axis, rescale it by r(t) and add a displacement c(t) along the vertical
direction. These transformations are independent of the initial state, hence the space of accessible states,
initially described by the volume limited by the Bloch sphere, is isotropically contracted and shifted, and
can be characterized by its time dependent radius and center.

We would like to emphasize that the Lamb shift does not play any role in the evolution of the diagonal
elements of the reduced density matrix, which ultimately means that it does not affect either the long time
thermalization or the prethermalization dynamics. It is encoded in the angular frequency of equation (22)
and thus it has the effect of rotating the ball of accessible states with an angular velocity different from ω0,
but does not affect the rescaling and displacement of the whole space.

This representation allows us to understand how fast the memory of the initial state is lost, and in which
state the OQS is. For the approximate decay rates equations (19) and (20) we obtain the following
expression for the radius of the ball of accessible states

r(t) = e−(2nII(ω0)+1)JI(ω0)t exp

(
2(nII(ω0) − nI(ω0))

JI(ω0)

JII(ω0)
(1 − e−JII(ω0)t)

)
, (24)

which in the limit JII(ω0)t → 0 becomes

r(t) = e−(2nI(ω0)+1)JI(ω0)t , (25)

that is the expression that we would obtain if only RI was considered. This means that the rate at which the
volume of the accessible states reduces is mainly governed by RI. A smaller coupling between OQS and RI
would cause a slower reduction of the accessible states space. The center of the ball of accessible states is
given by the evolved polarization vector of the maximally mixed state, namely the origin of the Bloch
sphere, and is thus at�c(t) = (0, 0, c(t)) with

c(t) = −JI(ω0)

∫ t

0
dt′e−(2nII(ω0)+1)JI(ω0)(t−t′) exp

(
2(nI(ω0) − nII(ω0))JI(ω0)

e−JII(ω0)t − e−JII(ω0)t′

JII(ω0)

)
. (26)

6
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This expression has no analytic solution, but can be solved in the short time limit (ST), JII(ω0)t � 1. If
the exponentials inside the second factor are Taylor expanded in terms of JII(ω0)t and JII(ω0)t ′ � JII(ω0)t up
to first order, the resulting integral is solvable and yields

cST(t) =
e−JI(2nI(ω0)+1)t − 1

2nI(ω0) + 1
. (27)

Within this regime, we distinguish two limiting cases

• When JI(ω0)(2nI(ω0) + 1)t � 1, equation (27) approximately reduces to

cST(t) ≈ −JI(2nI(ω0) + 1)

2nI(ω0) + 1
t, (28)

which at time t = 0 corresponds to the center of the Bloch sphere.

• When JI(ω0)(2nI(ω0) + 1)t 	 1, the exponential in equation (27) vanishes, and this expression
becomes

cST =
−1

2nI(ω0) + 1
, (29)

such that (0, 0, cST) corresponds to the thermal state ρth
S (βI). This expression holds when

JI(ω0)(2nI(ω0) + 1) 	 JII(ω0), (30)

in which case the ball of accessible states is centred around the point corresponding to the thermal
state of the OQS at βI as long as JII(ω0)t � 1. Moreover, in this limit the radius of the ball of
accessible states equations (24) and (25) is close to 0, meaning that the state of the OQS is
independent of the initial condition and close to the state ρth

S (βI), which shows that the system
thermalizes to βI.

Equation (30), shows that the condition for the OQS to prethermalize to βI, depends on the relationship
of this temperature and the coupling strengths, but is independent of βII. In the next section we analyse
how βII affects the prethermalization.

The long time (LT) limit (JII(ω0)t →∞) of equation (26), studied analytically in appendix F, yields

cLT =
−1

2nII(ω0) + 1
, (31)

where the point (0, 0, cLT) corresponds to the thermal state ρth
S (βII) as the asymptotic state. This asymptotic

state was also checked analytically using the approximate decay rates in appendix E.
To illustrate the above discussion, we display in figures 2 and 3 the evolution of the system in two

different scenarios. In both cases, the time dependence of the ρ++(t) = 〈+|ρS(t)|+〉 component7 of the
state of the system is shown for several initial pure states, which allows us to visualize the evolution of the
ball of accessible states. In the first case, for βI = 1, βII = 0.1 and gII = 10−5 we observe prethermalization
(figure 2), but when the coupling is increased to gII = 10−2 (figure 3), the phenomenon does not appear.

Following our previous considerations, we identify two relevant timescales that govern the OQS
evolution in the prethermalization regime of figure 2. First, the time tI after which the OQS has evolved to
the thermal state at βI. At this time, the space of accessible states has already contracted to a point, so that
the state reached is independent of the initial condition. The second timescale tII determines the time
required for thermalization to the asymptotic state ρth

S (βII). If tI is sufficiently smaller than tII, as in figure 2,
the system first evolves to ρth

S (βI) (red dot), and stays close to it for a certain time tpr, which we call
prethermalization time. After this time, it smoothly evolves to ρth

S (βII) (green dot). As shown in figure 3,
when the conditions of the problem do not allow for prethermalization, we observe the thermalization of
any initial condition directly to the state ρth

S (βII), without any transitory approach to ρth
S (βI).

5.1. Prethermalization time
To give a more quantitative estimation of the time during which the OQS remains approximately
thermalized at the temperature βI, i.e. the prethermalization time tpr, we make use of the trace distance

T(ρ1, ρ2) =
1

2
Tr

{√
(ρ1 − ρ2)2

}
, (32)

between the evolved state of the OQS, with initial condition ρS(0) = ρth
S (βI), and the thermal state ρth

S (βI).
We define tpr as the time elapsed between the time at which the radius of the ball of accessible states has

7 Where |±〉 is the eigenbasis defined by HS in equation (2) with eigenvalues ±ω0/2.

7
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Figure 2. Evolution of the population of the |+〉 state for different initial pure states, and snapshots of the evolution of the ball
of accessible states. Initially, all initial conditions tend to the upper population of the thermal state with βI at time tI, from which
point the evolution is identical. This effect translates into the reduction of the ball of accessible states to a point around the
thermal state at βI, as shown in equation (29), represented by a red dot. The OQS stays close to this thermal state for some time:
the prethermalization time tpr. Afterwards, the OQS starts the evolution towards the thermal state at βII. This corresponds to the
displacement of a point (marked as a cross) from the red dot to the green one (representing the thermal state at βII). The arrows
connect the points of the upper population with the snapshots of the evolution of the ball of accessible states. The environments
parameters are gI = 10−2, gII = 10−5, sI = sII = 1, ωcI = ωcII = 10, βI = 1 and βII = 0.1 and the system frequency is ω0 = 1.

Figure 3. Evolution of the population of the |+〉 state for different initial conditions of pure states, and snapshots (A, B, C) of
the evolution of the ball of accessible states. In this case, in opposition to figure 2, all initial condition directly tend to the thermal
state at βII, which is the asymptotic state of the system. The ball of accessible states contracts around the point representing the
thermal state at βII, and after becoming punctual it stays there. There is no prethermalization phenomenon in this case, where
the spectral functions parameters are as in figure 2 with the exception that gII = 10−2.

reduced below 10%, and the time at which the above trace becomes bigger than a fixed trace distance dpr.
This represents a threshold distance below which two states could not be distinguished. If the order in
which these events happen is the opposite, it means that no prethermalization is present.

We can visualize this by looking at the dynamics of the polarization vector corresponding to the density
matrix of the system, starting from ρth(βI). If that point has been significantly displaced before the ball of
accessible states has contracted, then no prethermalization is present: see figures 2 and 3 for a visual
reference of this criterion. If the trace distance between the thermal state of the system at βI and βII is
smaller than dpr, the prethermalization time is not defined, as these two states would not be distinguishable.

With this definition we studied how tpr varies as a function of the initial temperatures of both reservoirs,
as well as for different values of the coupling strength between them, i.e. gII. In figure 4 we show the
prethermalization time as a function of the trace distance for fixed βI varying βII. We observe the
prethermalization time to be longer, the closer the two states are. The same can be appreciated in figure 5,
which shows the calculation of tpr for different separations of the thermal states at βI and βII: When they are
closer (orange line) tpr is higher and when they are further apart (blue and green lines) tpr decreases.

We realized that the prethermalization scale for fixed temperatures of both reservoirs depends inversely
with gII, i.e., tpr ∼ g−1

II , for small values of gII. This can be clearly seen, for small coupling strenghts, in

8
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Figure 4. Prethermalization time, as a function of the trace distance between the thermal state of the system at fixed βI = 1.1
and varying βII. When the trace distance is smaller than dpr = 10−2 prethermalization is not defined. The coupling strength
between reservoirs is gII = 10−3 and the remaining parameters are the same as in figure 2.

Figure 5. Trace distance between the OQS and its thermal state at a fixed βI = 1.1 for different values of β i
II = {1.6, 1.4, 1.2}.

Dashed lines represent the trace distance between thermal states at βI and β i
II, i.e., T(ρth

S (βI), ρth
S (β i

II)), so that when the OQS
approaches the asymptotic state, solid lines tend to the dashed lines. Initially the OQS is in a thermal state at βI and departs from
it as it evolves. We observe that this departure happens faster for a larger separation between the thermal states of the
environments. The red line represents the distance dpr = 10−2 and the rest of the parameters are as in figure 4.

Figure 6. Prethermalization time, as a function of the coupling strength gII, for a fixed βI = 1.1 varying βII (the left panel) and
for fixed βII = 1.1 varying βI (right panel). The rest of the parameters are the same as in figure 2.

figure 6. In this figure we checked that condition (30) is fulfilled for all points. It was pointed out in [33]
that the thermalization time tII scales as g−1

II similarly as tpr, and we checked that this is true for our case8 as
well.

From figures 4 and 6 we also observe that the time the OQS stays in the prethermal state is shorter for a
higher temperature of RII (lower βII), while the duration of the prethermalized state increases with βII. A
similar qualitative behaviour is observed for varying βI (see right panel of figure 6), but the overall
prethermalization scale is smaller in case of a larger βI.

8 In [33] the thermalization timescales with g−2, where the weakly perturbed Hamiltonian is proportional to g. In our case the
perturbation is proportional to gλ,k and gII ∝ |gλ,k|2.

9
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Figure 7. Panel (c) represents the heat flux corresponding to the system coupled to two equilibrium environments, as depicted
in panel (a). Panel (d) represents the heat flux where each of the environments are out of equilibrium, as depicted in panel (b).
Both panels (c) and (d) show how different initial conditions evolve, after some time, to a flux J ss(qs)

(
βL

I ,βR
I

)
. However, while in

the simple case (c) this flux remains constant, in (d) the system continues to evolve to a final flux given by βL
II and βR

II. The
parameters are ω0 = 1, gI = 10−2, gII = 10−3, sI = sII = 1, ωcI = ωcII = 10 for both environments, while the temperatures differ
as βL

I = 1, βR
I = 0.1, βL

II = 0.1 and βR
II = 1. We plotted a special initial condition in blue that starts in the steady state defined by

the temperatures of the first reservoirs. Panel (e) shows a more complex evolution of the fluxes in which there are two sign flips of
the heat flux. The parameters of this simulation are βR

I = 0.1, βL
I = 0.5, βR

II = 1, βL
II = 10, gR

II = 10−2 and gL
II = 10−5, while the

rest of parameters are the same as the other plots.

6. Composite non-equilibrium environments

In the scenario discussed in the previous sections, the OQS is expected to reach a steady state at thermal
equilibrium, consistent with the temperature of the largest reservoir RII. However, using the same ME
formalism it is also possible to construct more complex scenarios in which the steady state of the open
system is out of equilibrium, for instance when the system is coupled to two independent environments, as
depicted in the left column of figure 7. The additional environment gives rise to a new dissipative term in
the master equation (15) and a new term in the environment corrected Hamiltonian H(t). The
corresponding rates and Lamb shift corrections are computed identically as before. The heat flow between
environments produces a change in the energy of the system ES = Tr{HSρS(t)}, where HS is the system
Hamiltonian. The evolution of this quantity can be expressed by the canonical ME (15) as

dES

dt
= −iTr

{
HS[H̃(t), ρS(t)]

}
+

∑
ν=L,R

Tr
{

HSD(ν)(t, ρS(t))
}

, (33)

where the superindex (ν) = {L, R} refers to the left and right environments and H̃(t) = HS +∑
ν

1
2Δω(ν)(t)σz. Since H̃(t) and HS are both proportional to σz, the first term vanishes, and the second one

defines the heat fluxes
J (ν)(t) = Tr

{
HSD(ν)(t, ρS(t))

}
, (34)

from environment (ν) to the OQS. By convention, we consider the heat flux from the right reservoir to be
positive, and the one from the left to be negative. Thus, a positive total heat flux indicates a flow of energy
from right to left, and vice versa. In the following subsections we first analyze the heat fluxes when the left
and right reservoirs are each in a thermal equilibrium state, and then when each of them are out of
equilibrium.

6.1. Heat flux between environments in equilibrium
In the case of equilibrium environments of figure 7(a), which we depict as single reservoirs on each side of
the OQS, any initial state reaches a non equilibrium steady state that depends on the initial state of both
environments under our model assumptions. In figure 7(c) we plot the total heat flux J L(t) + J R(t)
calculated using equation (34) with γ(ν)

+ = J(ν)
I (ω0)n(ν)

I (ω0) and γ(ν)
− = J(ν)

I (ω0)(n(ν)
I (ω0) + 1) the decay rates

of the spin boson model with one reservoir. We observe that initially, the heat flux depends on the initial
condition, but after some time it always converges to the value in the steady state,

J ss(ν) = ω0

[
γ(ν)
+ − ρ

qs
++(βL

I ,βR
I )

(
γ(ν)
+ + γ(ν)

−

)]
, (35)

10
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where ρqs
++(βL

I ,βR
I ) is given in appendix G. When the OQS reaches the asymptotic state there is a constant

heat flux from the environment with the higher temperature. In figure 7(c), which corresponds to βR
I < βL

I ,
this is observed by a positive steady state flux.

6.2. Heat flux between environments that are out of equilibrium
We now consider the case where the OQS is coupled to two out of equilibrium reservoirs, as schematically
depicted in figure 7(b). Figure 7(d) shows that the heat flux, independently of the initial condition, is
dominated by the temperature gradient between βR

I and βL
I , while the gradient for β(R,L)

II becomes relevant
at longer times. The timescale in which each gradient is dominant is determined by g(ν)

II . Interestingly, we
observe that the interplay between these gradients may even produce a change of sign in the current. This is
because we have chosen βR

I < βL
I , but βR

II > βR
II, such that the quasi-stationary flux is positive (the right RI

is hotter than the left RI), while at long times is negative (since the right RII is colder than the left RII).
Moreover, one can tune these gradients and the couplings g(ν)

II to be such that there are two changes of
sign in the heat current. This is observed in figure 7(e), where βR

I < βL
I < βR

II < βL
II and gR

II > gL
II, which

leads to an initial and final positive flux (βR
i < βL

i ). But as gR
II > gL

II there is some time that the
quasi-stationary flux is determined by βL

I < βR
II, such that the flux during that time is negative.

The stationary and quasi-stationary states for the setup figure 7(b) can be explicitly derived, and are
shown in appendix G.

7. Conclusions

We have presented a model to describe an OQS which is coupled to a hierarchy of environments at different
temperatures, a situation that can be found in complex environments and interfaces that are present in both
natural and quantum technological scenarios. Although these situations are in principle very complex to
analyse, we have shown here that, under certain constraints, one can extract a well-behaved master equation
that allows such a description in relevant limits.

In detail, we have considered an open system directly coupled to a reservoir RI, at an inverse
temperature βI, that is driven out of equilibrium because of its coupling to a second reservoir RII at βII.
With the use of weak coupling and Markovian approximations, we have derived a master equation to
describe the evolution of the reduced density matrix of the system, by tracing out the evolution of the
environment. Even with these approximations, we were able to observe a rich dynamics of the open system,
with the existence of a transitory state, called prethermal state, before the final thermalization, which was
found to be determined by the larger reservoir solely. We investigated under which conditions
prethermalization is present, and concluded that this state is longer lived when the reservoir RI, directly
coupled to the OQS, is hotter and RII colder, as well as when the coupling between reservoirs is the smallest
possible. We presented a way to characterize prethermalization that is independent of the initial condition
of the OQS, through the evolution of the volume of accessible states.

We have also shown that non-trivial dynamics and competing timescales are also present when we
consider two out of equilibrium environments coupled to the system. It is well-known that, in the standard
situation where the environments are in equilibrium, a heat flux with a given direction (from the hot to the
cold reservoir) is established and prevails at long times. Interestingly, when considering out of equilibrium
environments we observe that the timescales induced by different environments may induce that the heat
flux switches direction, even more than once.

As shown, the OQS dynamics and its currents do not evolve according to a single timescale, but present
a richer dynamics that may be evident in experiments and quantum information processes, particularly at
long times. The presence of a prethermalization transitory may be harnessed in quantum technological
applications, for instance by considering the initialization protocols of a qubit based on coupling it to a
reservoir [42, 43]. The added reservoir can potentially be controlled by a second one, according to our
scheme, in order to optimize further the protocol. In other words, our work describes the possibility of
manipulating and controlling an open system by externally modifying and controlling the reservoir to
which it is directly coupled.

Our scheme can be adapted to include more external reservoirs at different temperatures. Multiple layer
environments can be found, for instance, in superconducting quantum computers, where qubits are
affected not only by surrounding layers cryogenically cooled, but also by outer layers at increasingly higher
temperatures. Considering this reservoir structure would allow us to find additional transitory and steady
states of the OQS, which can potentially be harnessed and controlled. An interesting subject for further
investigation would also be the consideration of the dynamics beyond the weak-coupling approximation,
and the inclusion of non-Markovian effects.
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Appendix A. Canonical master equation, decay rates and frequency shift

For the interaction Hamiltonian considered in equation (7), the canonical decay rates and decoherence
channels of the master equation (11) are

γ1(t) = P(t) + P∗(t) ≡ γ+(t), L1(t) = σ+ ≡ L+,

γ2(t) = M(t) + M∗(t) ≡ γ−(t), L2(t) = σ− ≡ L−,

γ3(t) = 0, L3(t) =
1√
2
σz , (A1)

where we defined

P(t) =

∫ t

0
dt′α+(t, t′)e−iω0t′ , (A2)

and

M(t) =

∫ t

0
dt′α−(t, t′)eiω0t′ . (A3)

The operator H(t) is a modification of the free Hamiltonian of the OQS

H(t) = HS +
1

2
Δω(t)σz, (A4)

which, in this case, represents a shift of the natural frequency of the system, given by

Δω(t) =
i

2
(P(t) − P∗(t)) − i

2
(M(t) − M∗(t)). (A5)

Therefore, this Hamiltonian can be rewritten as

H(t) =
1

2
Ω(t)σz, (A6)

where Ω(t) = ω0 +Δω(t), is the shifted frequency of the OQS due to the action of the environment. The
ME for the different matrix elements of the reduced density matrix reads

ρ̇++(t) =γ+(t) − ρ++(t)[γ+(t) + γ−(t)],

ρ̇+−(t) = {−iΩ(t) − [γ+(t) + γ−(t)]}ρ+−(t),
(A7)

where ρ++(t) = 〈+|ρS(t)|+〉 is the upper population and ρ+−(t) = 〈+|ρS(t)|−〉 is the coherence, in the |±〉
eigenbasis of HS. We made use of the trace preservation of the dynamical map.

Appendix B. Evolution of RI operators

The time evolution of the operator aλ(t) is given by the Heisenberg equation

d

dt
aλ(t) = i [HE, aλ(t)] = −iωλaλ(t) − i

∑
k

g̃λkbλk(t), (B1)

where bλ,k(t) is, in turn, given by its corresponding equation

d

dt
bλk(t) = i [HE, bλk(t)] = −iωλ,kbλk(t) − ig̃λkaλ(t). (B2)

Formal integration of the latter and substitution on the former yields

d

dt
ãλ(t) = −i

∑
k

g̃λkbλk(0) e−i(ωλ,k−ωλ)t −
∑

k

g̃2
λk

∫ t

0
dt′ e−i(ωλ,k−ωλ)(t−t′)ãλ(t′), (B3)
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where we also performed the change of variable ãλ(t) = eiωλtaλ(t) in order to separate the free evolution
part of this operator for a better implementation of the following approximation. The first term on the rhs
is the quantum noise originated by RII. The second term can be simplified under the Weisskopf–Wigner
approximation [44, 45], where the operator ãλ(t) is assumed to vary with a rate slower than ωλ. This allows
us to move the operator ãλ(t) outside the integral and, since the exponential inside the integral evolves
faster than ãλ(t), to extend the integration limit to infinity, i.e.

∫ t

0
dt′ei(ωλ−ωλ,k)(t−t′)ãλ(t′) ≈ ãλ(t)

∫ ∞

0
dτei(ωλ−ωλ,k)τ , (B4)

where the change of variable τ = t − t ′ has been performed. The above approximation is, in fact, a
Markovian approximation for the interaction with RII, since the operator ãλ(t) only depends on t, so that
we have neglected its past evolution. This integral can be solved via the Sokhotski–Plemelj theorem by
rewriting the second term in the rhs of equation (B3) as γλãλ(t), where we defined the damping constant

γλ = π
∑

k

|g̃λk|2δ(ωλ,k − ωλ) − i
∑

k

|g̃λk|2P
(

1

ωλ,k − ωλ

)
. (B5)

This approximation allows for an exact solution of equation (B3), which after undoing the change of
variable introduced above leads to

aλ(t) = aλ(0)e−(iωλ+γλ)t +

∫ t

0
dt′e−(iωλ+γλ)(t−t′)fλ(t′), (B6)

where we introduced
fλ(t) = −i

∑
k

g̃λkbλk(0)e−iωλ,kt . (B7)

Appendix C. Correlation function of the ME

Once the time dependence of the operator B(t) =
∑

λ gλaλ(t) is explicitly known, we can compute the
correlation functions (12). First notice that the first (second) term of equation (B6) is lineal in operators
acting on RI (RII), so that the traces, which are linear in these operators, will be null, and only the quadratic
ones will yield non vanishing terms. In this way α+(t, τ ) becomes

α+(t, τ) =
∑
λ,λ′

g∗λgλ′e
(iωλ−γλ)te(−iωλ′−γλ′ )τTI

λ,λ′ +
∑
λ,λ′

g∗λgλ′

∫ t

0
dt′

∫ τ

0
dt′′TII

λ,λ′(t′, t′)

× e(iωλ−γλ)(t−t′)e(−iωλ′−γλ′ )(τ−t′′),

(C1)

where the first trace is

(C2)

and similarly the second one gives

TII
λ,λ′ (t′, t′) = TrI,II{ f †λ (t′)fλ′(t′′)(ρI(0) ⊗ ρII(0))}

=
∑
k,k′

g̃∗λkg̃λ′k′e
iωλ,kt′e−iωλ′ ,k′ t

′′
nII(ωλk)δλ,λ′δk,k′ ,

(C3)

where the commutation relations (5) have been used, and ni(ω) = [exp(βiω) − 1]−1 is the average thermal
number of quanta in the mode ω at an inverse temperature β i, for the i = {I, II} environment. After these
results, it remains to perform the sums in λ′ and k′, and the integrals of the second term to yield

α+(t, τ) =
∑
λ

|gλ|2nI(ωλ)eiωλ(t−τ)e−γλ(t+τ) +
∑
λ,k

|gλ|2|g̃λk|2nII(ωλk)Cλ,k(t, τ), (C4)

where we defined

Cλ,k(t, τ) =
eiωλ,kt − e(iωλ−γλ)t

−i(ωλ − ωλ,k) + γλ

e−iωλ,kτ − e(−iωλ−γλ)τ

i(ωλ − ωλ,k) + γλ
. (C5)
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Figure 8. Comparison between the exact and the approximation of each term of the canonical decay rates. The environments
parameters are ω0 = 1, gI = gII = 10−2, sI = sII = 1, ωcI = ωcII = 10, βI = 0.1 and βII = 0.2. The long term exact solution
presents some numerical noise.

By following similar steps one arrives, for α−(t, τ ), to

α−(t, τ) =
∑
λ

|gλ|2(nI(ωλ) + 1)e−iωλ(t−τ)e−γλ(t+τ) +
∑
λ,k

|gλ|2|g̃λk|2(nII(ωλk) + 1)C∗
λ,k(t, τ). (C6)

The spectral function is related to the couplings in equations (C4) and (C6) in the following way

JI(ω) = 2π
∑
λ

|gλ|2δ(ωλ − ω), (C7)

for RI and
JλII(ω) = 2π

∑
k

|g̃λ,k|2δ(ωλ,k − ω), (C8)

for RII, where the λ index in JλII(ω) corresponds to the reservoir to which mode aλ is coupled to. We will
assume that all the reservoirs that surround any aλ are identical, so that we drop the λ dependence on the
spectral function of RII. These definitions allow us to reformulate the problem in integral form.

Since in the master equation (11) the system operators evolve with τ − t, it is suitable to introduce the
change of variable t′ = t − τ . With these considerations one obtains the correlation functions in
equation (16) in integral form. We also comment that we have neglected the imaginary part of (B5) such
that γλ = JII(ωλ)/2. It is well-known that the contribution of the imaginary part of equation (B5) can be
re-casted as a Lamb shift Hamiltonian of the form HLS

RI =
∑

λ γ
imag
λ a†λaλ, where γ

imag
λ = �{γλ}. This

Hamiltonian is diagonal with HRI, and therefore only contributes as a shift to the energies ωλ that is not
relevant for our analysis.

Appendix D. Validity of approximate decay rates

The validity of the approximation of the Lorentzian kernel K(ω,ω′) in equation (17) by a delta function in
order to obtain an analytical expression for the canonical decay rates, depends on the parameters of the
spectral functions (10) for both environments. We have numerically checked the accuracy of the
approximation for a broad range of parameters that is relevant for our study. This is illustrated in figure 8,
where we compare both terms of γ+(t) with the exact result (numerical integration of equation (A2)). The
ST term does not reproduce the oscillations of the exact solution, while the LT term perfectly matches the
exact result.

We also considered a more accurate approximation, which consists in taking JII(ω) independent of ω,
instead of approximating K(ω,ω0) by a delta function. This allowed to resolve the oscillatory nature of γST

± ,
which is of frequency ω0, but the result is not as intuitive as the decay rates (19) and (20).
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Appendix E. Equilibrium asymptotic state

With the help of the approximation (19) and (20) we are able to compute the asymptotic state, and prove
that the OQS thermalizes to a thermal state with the temperature of RII. Consider the differential equation
for the upper population in equation (A7), and the asymptotic limit

ρss = lim
t→∞

ρS(t), (E1)

where the density matrix becomes independent of time, then

ρss
++ = lim

t→∞

γ+(t)

γ+(t) + γ−(t)
=

e−βIIω0/2

eβIIω0/2 + e−βIIω0/2
. (E2)

The coherence matrix element obeys an oscillatory decay equation, encoding the decoherence of the OQS.
Trace preservation and hermiticity of the density matrix can be used to obtain the remaining matrix
elements, so as to check that, indeed

ρss =
e−HSβII

Z(βII)
, (E3)

i.e., the OQS asymptotic state is a thermal state at temperature βII.

Appendix F. Asymtotic limit of the center of the ball of accessible states

To consider the limit JII(ω0)t →∞ of equation (26), we first introduce the following change of variables

x = Ae−JII(ω0)t′ , (F1)

with

A = 2(nI(ω0) − nII(ω0))
JI(ω0)

JII(ω0)
, (F2)

B = (2nII(ω0) + 1)
JI(ω0)

JII(ω0)
, (F3)

and
ε = e−JII(ω0)t . (F4)

Then equation (26) becomes

c(ε) =
JI(ω0)

JII(ω0)
(Aε)BeAε

∫ Aε

A
x−B−1e−x dx (F5)

which can be rewritten as a difference of two incomplete gamma functions

c(ε) =
JI(ω0)

JII(ω0)
(Aε)BeAε [Γ(−B, A) − Γ(−B, Aε)] , (F6)

where we made use of the definition

Γ(a, z) =

∫ ∞

z
ta−1e−t dt. (F7)

The first term of equation (F6) is null in the limit ε→ 0 (JII(ω0)t →∞), while the second one becomes
equation (31) after taking the limit

lim
ε→0

Γ(−B, Aε)

(Aε)−B
=

1

B
. (F8)

Appendix G. Non-equilibrium asymptotic state

The addition of a new environment is encoded, in the ME for the upper population, as

ρ̇++(t) =
∑

ν={L,R}

(
γ(ν)
+ (t) − ρ++(t)[γ(ν)

+ (t) + γ(ν)
− (t)]

)
, (G1)

which in the steady state limit allows us to obtain

ρss
++ = lim

t→∞

γL
+(t) + γR

+(t)

γL
+(t) + γR

−(t) + γR
+(t) + γR

−(t)
. (G2)
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By taking the limit, one obtains the following matrix element of the non-equilibrium steady state

ρss
++ =

JL
I (ω0)nL

II(ω0) + JR
I (ω0)nR

II(ω0)

JL
I (ω0)(2nL

II(ω0) + 1) + JR
I (ω0)(2nR

II(ω0) + 1)
, (G3)

while the coherence matrix element in the steady state is null. The rest of the matrix elements can be
obtained from the trace preserving property of the evolution. Even though this steady state does not directly
represent a thermal state, one can obtain an effective temperature for the OQS, since it is a diagonal state in
the basis of HS. The effective temperature of the OQS in the steady state is defined as

βeff =
1

ω0
ln

(
1 − ρss

++

ρss
++

)
, (G4)

which is a function of both temperatures βII of the environments. A very similar expression is obtained for
the quasi-stationary states ρqs

++(βL
i ,βR

j )

JL
I (ω0)nL

i (ω0) + JR
I (ω0)nR

j (ω0)

JL
I (ω0)(2nL

i (ω0) + 1) + JR
I (ω0)(2nR

j (ω0) + 1)
, (G5)

where the indices i, j refer to whether the corresponding environment is in the prethermal state (i = I) or in
the asymptotic state (i = II). This allows us to obtain the quasi-stationary state of the OQS when both
environments are prethermalizing (i = j = I), or the state when one has thermalized while the other
remains in the prethemalization stage (i = I, j = II, or interchanged). When i = j = II it corresponds to the
asymptotic state of equation (G3).
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