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Abstract. We study the characteristic energy and time scales describing 
the coherent electron dynamics and decoherence phenomena in solids 
interacting with ultrashort laser pulses. Our analysis resulted in the 
derivation system of dimensionless adiabaticity parameters and derivation 
of the non-Markovian density-matrix equations applicable on arbitrary 
short timescales.  

In our recent work [1], we systematically applied theoretical methods of adiabatic 
perturbation theory [2, 3] to study the problem of electron in the periodic potential driven 
by an external electric field. Interaction regimes of this system can be completely classified 
with a set of dimensionless adiabaticity parameters (see Tables 1 and 2), each of which is a 
ratio of two characteristic frequencies. 

Table 1. Characteristic frequencies and 
dimensionless adiabaticity parameters describing the 
regimes (adiabatic and diabatic limits) of laser-field 
interaction with periodic potentials. The parameters 
are proportional to the ratio of the frequencies from 

upper row and left column. 
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Table 2. Acronyms of adiabaticity 
parameters and their meanings. 

NP NonPerturbative intensity [4] 

DL Dynamic Localization [5] 

K Keldysh [6] 

RF Rabi Flopping [7] 

BH Band Hybridization [8] 

BP Bloch-to-Ponderomotive 

RP Rabi-to-Ponderomotive 

RB Rabi-to-Bloch 

Here, N  is the order of the lowest possible multiphoton transition, gE  is the minimal direct 

bandgap, (c) (v)
p p p(0) (0)U U U� � , ( )

p ( ) ( ( )) ( )n
n nU E t E� �k K k  is the ponderomotive energy 
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of electron in the band n with dispersion ( )nE k , ( ( ))nE tK is the cycle-averaged energy of 

electron, ( ) ( )t t� �K k A is the kinetic crystal momentum, 
0

1 1)( ) (
t

t
t dt t� ��A F is the 

vector potential of the laser field ( )tF , 0B F a� � is the peak Bloch frequency, a is the 

lattice constant, )
R cv

(max
0� � �F � is the peak Rabi frequency, (max)

ccv vmax ( )� k� � � is the 
peak absolute value of the interband matrix element.

Each parameter defines the adiabatic and diabatic limits, where one of the characteristic 
frequencies is dominant, and thus allows for effective time scale separation by using the
adiabatic (field-dressed) or diabatic (field-free) basis.

Time-dependent perturbative Dyson series constructed in these two bases are dual, i.e. 
their small parameters are inversely proportional to each other. In particular, the Keldysh 
parameter K� emerging from the perturbation theory constructed in the Houston basis is 
inversely proportional to the Rabi flopping parameter (0)

RF� , which appears in the theory 
employing the Bloch basis

K (0)
RF

1
2

�
�

� . 

All real-world quantum systems are connected to some dissipative environment and 
experience an irreversible decay of quantum coherence and state population. Thus, analysis 
of characteristic timescales for relaxation processes is essential for both fundamental and 
applied research. Recent numerical simulations of high-harmonic generation in solids [10,
11] have shown that unphysically fast pure dephasing times T2 ~ 1 – 3 fs are required to 
reach an agreement with experimental data, if the modelling is performed in the 
independent-particle and Markov approximations. Our estimations of correlation decay 
time �B for electron-electron and electron-phonon interactions in semiconductors at room 
temperature have shown that it is comparable to typical pulse durations (from units to tens 
of femtoseconds). This implies that scattering processes cannot be considered as
instantaneous events. The characteristic time scales and applicability conditions of common
approximations for dielectrics exposed to a few-cycle visible/near-infrared pulse (VIS/NIR) 
are summarized in the Tables 3 and 4, respectively [12]. 

Table 3. Characteristic time scales of the laser-matter interaction problem in the Houston basis and 
their typical values for the bath of phonons (ph) and carrier correlations (c). The parameters are 

estimated for the �-quartz ( g 9E � eV, ex 1.2E � eV, LO 0.153E � eV) and VIS/NIR laser pulses 
in the wavelength range 400–2500 nm.

Time scale Denotation Values
Optical cycle 0 02 /T 	 �� 1.4–8.4 fs
Pulse duration L
 0.7–40 fs
Elapsed time maxt L~ 


Minimal bandgap g g p2 / ( )E U
 	� � 0.23–0.46 fs
Change of adiabatic energies AE
 0.1 fs�
Change of adiabatic states AS
 1–8 fs
Minimal relaxation time R
 27 fs (ph)� , ~ 4 fs (c)

Bath correlation decay time B
 10 fs (ph)� , ~ 2 fs (c)
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Table 4. Summary of approximations applicability for the bath of carrier correlations.

Approximation Conditions Applicability
Weak coupling (Born) B R
 
� Yes
Secular g R
 
� ; g AE AS,
 
 
� Partial

Instantaneous eigenbasis B AE AS,
 
 
� Partial
Markov B maxt
 � No

The theory open quantum systems [13] suggests the master equations with effective 
time-dependent relaxation rates taking into account finite correlation decay time and 
memory effects. In this approach, the equations of motion are generalized into the non-
Markovian regime by using the time-dependent decoherence rates , ( )nm t� k [12]:
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where , ( ) ( ) ( ( )) exp[ ( , )]nm nm nmt t t i t��
 � �k F � � � is the matrix element of interband 
interaction,

0
1 1( , ) ( ( )) d ,

t

nm nmt
t E t t�� �� �k K   

is the change of a total phase between the Houston states of the bands n and m,
( ( )) ( ( )) ( ( ))nm n mE t E t E t� � �� �K K K , ( ( )) ( ( )) ( ) ( ( ))n n nnE t E t t t� � � �K K F � � , and ( ( ))nn t� � is 

the Berry connection of the nth band.
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