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Within the ultimate goal of classifying universality in quantum many-body dynamics, understanding
the relation between out-of-equilibrium and equilibrium criticality is a crucial objective. Models with
power-law interactions exhibit rich well-understood critical behavior in equilibrium, but the out-of-
equilibrium picture has remained incomplete, despite recent experimental progress. We construct
the rich dynamical phase diagram of free-fermionic chains with power-law hopping and pairing,
and provide analytic and numerical evidence showing a direct connection between nonanalyticities
of the return rate and zero crossings of the string order parameter. Our results may explain the
experimental observation of so-called accidental dynamical vortices, which appear for quenches
within the same topological phase of the Haldane model, as reported in [Fläschner et al., Nature
Physics 14, 265 (2018)]. Our work is readily applicable to modern ultracold-atom experiments, not
least because state-of-the-art quantum gas microscopes can now reliably measure the string order
parameter, which, as we show, can serve as an indicator of dynamical criticality.

I. INTRODUCTION

Criticality and universality in equilibrium1–3 are
well-established concepts thanks in large part to the
renormalization group.4,5 Universality classes in out-of-
equilibrium physics have also been developed for classical
systems.6,7 Nevertheless, criticality and universality in
out-of-equilibrium quantum many-body systems are still
much less understood concepts that are currently at the
forefront of research efforts in condensed matter and cold-
atom physics.

Among the prominent thrusts of this research effort
lies the phenomenon of dynamical phase transitions,8,9

which fall into two major categories when considering
sudden quenches of a quantum many-body system. The
first is characterized by a local order parameter, whose
long-time behavior determines the dynamical phase of
the steady state.10–26 In principle, this type of dynamical
phase transition separates a ferromagnetic from a para-
magnetic steady state in the wake of a quench, and this
has been recently observed experimentally in trapped-ion
setups.27 However, in cases where the system has no finite-
temperature phase transition and, therefore, always ends
up in a paramagnetic steady state in the infinite-time limit,
this dynamical phase transition can still be defined based
on the decay behavior of the order parameter.24,25,28–30

For small enough quenches starting in an ordered state,
the order parameter would decay asymptotically to zero
without ever crossing zero. On the other hand, when
the quench is large enough, the order parameter exhibits
zero crossings as a function of time while forming an en-
velope that decays to zero in the long-time limit. Very
interestingly, however, even when the model has no finite-
temperature phase transition, the order parameter can
exhibit persistent order at moderate-to-long times in the

case of sufficiently small quenches in the presence of long-
range interactions,19 which has been shown to be due to
domain-wall binding and confined dynamics.24,31

The second type of dynamical phase transition is based
on nonanalyticities in the so-called Loschmidt return
rate32 (see Sec. III for an overview), which can be con-
strued as a dynamical analog of the thermal free energy
with complexified evolution time standing for inverse tem-
perature. Consequently, nonanalyticities in the return
rate are construed as dynamical quantum phase transi-
tions (DQPT) that occur at critical evolution times after
a quench. In the few years since its introduction,32 DQPT
has witnessed a flurry of research activity from the per-
spective of both theory9,33 and experiment.34,35 Even
though the seminal work of Ref. 32 showed in the case of
the nearest-neighbor transverse-field Ising chain (TFIC)
that nonanalyticities in the return rate occur only upon
quenching across the quantum equilibrium critical point,
soon thereafter it was indicated that this is neither a
necessary nor a sufficient condition in other integrable
and nonintegrable models.36,37 Indeed, it was then firmly
established that the dynamical critical point, which sepa-
rates different phases of DQPT, is in general distinct from
the quantum equilibrium critical point and is strongly
dependent on the initial condition.18,21,22 Additionally,
this dynamical critical point was shown to coincide with
that of the type of dynamical phase transition based on
a local order parameter.18,20–25 Also recently, the theory
of DQPT has been extended to Floquet systems38–40 and
models with many-body localized phases.41,42 DQPTs in
nonintegrable models have been studied in, for instance,
Ref. 43.

Free-fermionic models have been a fundamental ingre-
dient to the comprehension of quantum critical behavior
both in and out of equilibrium. The introduction of
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long-range pairing couplings deeply influences the equilib-
rium phase diagram,44–48 leading to peculiar singularities
in the spectrum of the system 49 and violations of con-
formal symmetries.45,50,51 Similarly, long-range hopping
terms lead to the appearance of multiple Majorana edge
modes.52 Furthermore, while in the nearest-neighbor case
the quantum critical behaviour of free-fermionic mod-
els maps onto that of quantum spins,53 the introduc-
tion of long-range interactions in the latter spoils such
equivalence.54–56 In the dynamical realm, long-range cou-
plings induce a wide variety of peculiar features such
as modified Lieb-Robinson bounds 57,58 and anomalous
Kibble-Zurek scaling.59 Finally, long-range (interacting)
fermion models have also been studied in the context of
phase coherence in 1D superconductors.60

In the framework of DQPTs free-fermionic models have
been at the center of theoretical and even experimen-
tal investigations. Indeed, the connection of DQPT to
the underlying topological phase transition61 was first
illustrated in Bogoliubov-de Gennes Hamiltonians, and
one of the first experiments on DQPT implemented the
Haldane model on a hexagonal lattice.34 The relation
of topology changing quenches and DQPTs was further
studied for one- and two-dimensional systems in, for in-
stance, Refs. 62–64. On the other hand, long-range inter-
actions have proven to give rise to rich dynamical critical
behavior,18 just as they do for equilibrium criticality.65,66

In particular, the DQPT picture qualitatively changes
when long-range interactions are introduced. Domain-
wall binding and confined dynamics at sufficiently small
transverse-field strengths in long-range quantum Ising
chains24,31 lead to the appearance of anomalous cusps18,20

in the return rate (see Sec. III), which would be entirely
smooth otherwise. However, long-range quantum Ising
chains are nonintegrable, and most DQPT studies on them
have required advanced numerical treatment, such as the
time-dependent variational principle (TDVP) within uni-
form matrix product states.67–69 Consequently, the inter-
est in free-fermionic models with long-range hopping or
pairing has grown in recent years, as this allows the study
of DQPT in an exactly solvable setting. Indeed, Dutta
and Dutta70 have recently investigated DQPT in the Ki-
taev chain with nearest-neighbor hopping and long-range
pairing, while Defenu et al.71 have employed a truncated
Jordan-Wigner transformation on the so-called extended
long-range Ising chain to map it onto a free-fermionic
model of long-range hopping and pairing both scaling
as 1/rα, with r the inter-spin distance and α > 1. In
this paper, we investigate a Kitaev chain with generalized
power-law hopping and pairing profiles and draw a con-
nection between the different dynamical phases of DQPT
and the dynamic behavior of the string order parame-
ter (SOP). String order parameters are related to hidden
symmetry breaking and distinguish between topologically
ordered and trivial equilibrium phases.72 Comparing the
dynamics of the SOP after a quench to that of the return
rate can thus provide a natural link between DQPT and
the underlying equilibrium topological phase transitions.

The remainder of the paper is organized as follows: In
Sec. II, we introduce our model and discuss its equilibrium
phase diagram. In Sec. III, we provide a brief overview of
the theory of DQPT. An analytic treatment with which
we construct the dynamical phase diagram of the Kitaev
chain with general power-law hopping and pairing terms
is then presented in Sec. IV. In Sec. V, we derive the
string order parameter for our model. Our results for
the Loschmidt return rates and string order parameter
dynamics are then discussed in Sec. VI. We conclude in
Sec. VII.

II. MODEL

The model we consider is the generalized Kac-
normalized73 long-range Kitaev chain (LRKC) with power-
law hopping and pairing profiles and closed boundary
conditions. See Ref. 74 for a review. It is described by
the Hamiltonian

H = −
N∑
j=1

N
2 −1∑
r=1

(
Jrc
†
jcj+r + ∆rc

†
jc
†
j+r + H.c.

)
− h

N∑
j=1

(
1− 2c†jcj

)
, (1)

where

Jr =
r−α

Nα
, ∆r =

r−β

Nβ
, (2)

are the hopping and pairing profiles, respectively, with
Kac normalization factors

Nα =

N/2−1∑
r=1

r−α, Nβ =

N/2−1∑
r=1

r−β . (3)

Here and throughout N denotes the system size, α, β >
1 the power-law exponents, h the chemical-potential

strength, and cj , c
†
j the fermionic annihilation and cre-

ation operators, respectively, on site j that satisfy the

canonical anticommutation relations {cl, c†j} = δl,j and

{cl, cj} = 0. In (2) we have adopted the ring convention
of Ref. 52, which translates into r ranging from 1 up to
only N/2 − 1 rather than to N in (1). This is done in
order to adequately deal with closed boundary conditions
and effectively utilize the Fourier transformation

cj =
1√
N

B.z.∑
k

ckeikj , (4)

into momentum space motivated by the translation in-
variance of (1). In the limit N →∞, the choice between
periodic or anti-periodic boundaries is arbitrary as they
yield the same momentum-space Hamiltonian
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H =

B.z.∑
k

[
(c†kck − c−kc

†
−k)(h− Jk)

+ (c†kc
†
−k − ckc−k)∆k

]
, (5)

where the Fourier transforms of Jr and ∆r are

Jk =
1

ζ(α)

∞∑
r=1

cos(kr)

rα
=

Re[ Liα
(
eik
)
]

2ζ(α)
, (6)

∆k =
1

ζ(β)

∞∑
r=1

sin(kr)

rβ
=

Im[ Liβ
(
eik
)
]

2ζ(β)
, (7)

respectively, and Lis(z) denotes the polylogarithm of order
s and argument z. We recall here that we are working
in the thermodynamic limit N →∞, hence the Riemann
Zeta functions ζ arise in these coefficients. The Riemann
Zeta functions perform a Kac normalization that fixes the
positive quantum equilibrium critical point of the model
to hec = 1.

To solve for the spectrum of (5) one employs the Bo-
goliubov transformation

ck = i sin
θk
2
γk + cos

θk
2
γ†−k, (8)

where γk, γ
†
k are the fermionic Bogoliubov annihila-

tion and creation operators, respectively, with momen-
tum k obeying the canonical anticommutation relations
{γk, γ†p} = δk,p and {γk, γp} = 0, and

θk = arctan
∆k

h− Jk
. (9)

The transformation (8) diagonalizes (5) into the form

H =

B.z.∑
k

ωk(γ†kγk − γ−kγ
†
−k), (10)

ωk =
√

(h− Jk)2 + ∆2
k. (11)

III. DYNAMICAL QUANTUM PHASE
TRANSITIONS

The theory of DQPT relies on an intuitive connection
between the thermal partition function and the Loschmidt
amplitude32

G(t) = 〈ψi| exp(−iHf t) |ψi〉 , (12)

where |ψi〉 is the initial state, Hf is the quench Hamilto-
nian, and ~ is set inconsequentially to unity throughout

−3 −2 −1 0 1 2 3
k

0.0

0.5

1.0

1.5

Jk
∆k

ωk

FIG. 1. (Color online) Dispersion relation ωk (10) together
with the Fourier transforms of the hopping amplitude Jk (6)
and pairing amplitude ∆k (7) for quasi-momenta k within the
first Brillouin zone. The dispersion relation is calculated with
the following long-range hopping and pairing exponents α and
β and chemical potential h, listed from top to bottom of the
left end of each solid curve: (α, β, h) = (2.8, 1.7, 1.4) in purple,
(α, β, h) = (2.3, 1.2, 1.4) in violet, (α, β, h) = (3, 1.9, 0.4) in
green, (α, β, h) = (1.8, 1.5, 0.4) in blue.

our paper. The Loschmidt amplitude (12) is a boundary
partition function, and its logarithm is therefore propor-
tional to a dynamical free energy:

r(t) = − lim
N→∞

1

N
ln |G(t)|2, (13)

where N is the system size. Nonanalyticities in the ther-
mal free energy as a function of temperature indicate
critical temperatures at which thermal phase transitions
occur. In (13), complexified time replaces the inverse
temperature. Consequently, nonanalyticities of (13) as a
function of time indicate critical times at which DQPT
occur.

The type of nonanalyticities that occur in the wake of
a quench can either be regular or anomalous.18,20 The
former are the cusps that occur for quenches crossing the
dynamical critical point, while the latter can occur for
arbitrarily small quenches within the ordered phase of
the system, and they have been shown to be connected to
local spin excitations forming the lowest-lying excitations
in the spectrum of the quench Hamiltonian.24,25,71

The advantage of the LRKC is that it is integrable and
also allows for a closed-form expression of its return rate,
which we briefly derive here. Let us denote by Hi the
initial Hamiltonian in whose ground state |ψi〉 we prepare
our system, and by Hf the final Hamiltonian with which
we quench. Hamiltonian Hi(f) corresponds to (5) with
h = hi(f), where here it should be clear that we quench
the chemical-potential strength. Moreover, Hamiltonians
Hi(f) are diagonalised by different Bogolioubov bases,
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which we denote, respectively, as (ηk, η
†
k) and (γk, γ

†
k),

i.e.,

Hi =

B.z.∑
k

ωik(η†kηk − η−kη
†
−k),

Hf =

B.z.∑
k

ωfk (γ†kγk − γ−kγ
†
−k).

(14)

The respective ground states are the vacua |0〉η and

|0〉γ . For the calculation of G(t) it is useful to write |0〉η
in terms of |0〉γ by removing all η fermions from |0〉γ as

|0〉η = F−1
B.z.∏
k

ηk |0〉γ = F−1
∏
k>0

ηkη−k |0〉γ . (15)

Here F is a normalisation factor.
Following the BCS-theory75 approach one can show

that

|0〉η = F−1 exp

(
−i
∑
k>0

Λkγ
†
kγ
†
−k

)
|0〉γ , (16)

where the normalisation is given by F2 =
∏
k>0(1 + Λ2

k)
and Λk = tan(ϕk). The angle ϕk stems from a Bogoliubov
transformation between the pre- and post-quench basis

ηk = cosϕkγk + i sinϕkγ
†
−k, (17)

with

ϕk =
θfk − θik

2
. (18)

Substituting (16) into (12) we obtain

G(t) =F−2
γ〈0| exp

(
+ i
∑
k>0

Λkγ−kγk

)
e−iHf t

× exp
(
− i
∑
k>0

Λkγ
†
kγ
†
−k

)
|0〉γ .

(19)

Using the unitarity of e−iHf t, we write the product of the
last two exponential terms above as

exp
(
− i
∑
k>0

Λke
−itHf γ†kγ

†
−ke

+itHf

)
e−itHf

= exp
(
− i
∑
k>0

Λkγ
†
kγ
†
−ke
−it2εfk

)
e−itHf ,

(20)

where we have defined εfk = 2ωfk . To arrive at the second
line we have used that

e−itHf γ†±ke
itHf = γ†±ke

−it2ωf
k , (21)

which follows from ωfk = ωf−k.

Substituting (20) back into (19), and applying Pauli
exclusion to the Taylor expansion of the remaining expo-
nential terms, then yields

G(t) =F−2
γ〈0|

∏
k>0

(1 + iΛkγ−kγk)

× (1− iΛkγ
†
kγ
†
−ke
−it2εfk ) |0〉γ ,

(22)

where we have dropped an inconsequential phase arising
from the e−itHf |0〉γ term. Taking care of the commuta-
tion relations when multiplying out the above product,
and writing the remaining terms in normal ordered form,
allows us to simplify the expression to

G(t) = F−2
∏
k>0

(1 + Λ2
ke
−it2εfk ). (23)

It is then straightforward to show that the return rate is

r(t) =− lim
N→∞

1

N

∑
k>0

ln
[
1− sin2(θfk − θik) sin2(εfkt)

]
=−

∫ π

0

dk

2π
ln
[
1− sin2(θfk − θik) sin2(2ωfk t)

]
.

(24)

Appendix A provides a comparison between the return
rate (24) in the limit of α, β →∞ and its counterpart in
the TFIC

HIsing = −
∑
j

[
σzjσ

z
j+1 + hσxj

]
. (25)

The latter exactly maps onto the LRKC (5) in this limit.
Immediately one sees that (24) can show nonanalytic
behavior only in the momentum sectors kc that satisfy

θfkc − θikc = π/2 + nπ, with n ∈ Z, or, in other words,
the mode kc is in an infinite-temperature state. One
can further show that these critical momenta satisfy the
implicit relation

hihf − Jkc(hi + hf ) + J2
kc + ∆2

kc = 0, (26)

which in the case of nearest-neighbor couplings
(α, β →∞), reduces to

kNN
c = arccos

(
hec
)2

+ hihf

hec(hi + hf )
. (27)

As we shall discuss in great detail later, the relation (26)
is satisfied if and only if hi and hf are on opposite sides
of the dynamical critical point hdc ≤ hec. Only quenches
where the value of hf leads to at least one real solution
of (26) can therefore lead to nonanalytic behavior in (24).
When (26) is satisfied, one finds nonanalytic behavior
in (24) at the critical times
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t∗n =

(
n+

1

2

)
π

2ωfkc

, n ∈ N. (28)

The TFIC can be mapped using a Jordan-Wigner transfor-
mation onto the LRKC model (5) in the limit α, β →∞.
In this case, (26) reduces to (27) and yields a real unique
value of kc if and only if hi and hf are on different sides
of the quantum equilibrium critical point hec, which in
this case equals hdc . In the case of the general LRKC
model, the situation is more subtle in that cusps from
the topological phase to just above hec can give rise to
three critical momenta;70 cf. Sec. IV. More intriguingly,
for certain regimes of (α, β), which we discuss in detail in
Sec. IV, doubly critical cusps — which are related to two
distinct critical momenta — can arise for quenches within
the topologically nontrivial phase.71 As we elaborate in
Sec. VI, these cusps may explain the so-called accidental
dynamical vortices observed in the experiment of Ref. 34.
It is worth noting here that LRKC has also been used to
study the effect of edge modes on the boundary contribu-
tions to the DQPTs and the dynamics of entanglement
entropy.76

IV. DYNAMICAL PHASE DIAGRAM

Now we present one of the main results of our work,
which is an analytic derivation of the dynamical phase
diagram further augmented by numerical results.

In equilibrium, long-range interactions do not cause
the appearance of any additional phases, but rather alter
the value of the critical boundaries. Critical points are
characterised by the occurrence of massless excitations
and, then, they can be identified by locating the zeros
of the single particle spectrum in (11) . The condition
∆k = 0 identifies two critical modes k = 0, π, each yielding
a critical point respectively at h = hec = (1,−1 + 21−α);
as can be deduced from the value of Jk=0,π, see (6) .
These boundaries reduce to the nearest-neighbor case
hec = (1,−1) in the α→∞ limit, irrespective of the value
of β since the condition ∆k = 0 always holds for k = 0, π.

Conversely, the presence of two different power-law
decays for the hopping and pairing matrices produces a
rich dynamical phase diagram in the LRKC (1), with novel
dynamical phases that have no equilibrium counterparts.
As already established,33 quenching the chemical potential
h across one of the equilibrium critical points produces
a dynamical phase transition, which takes the form of
regular18 singularities in the system’s return rate. In
the TFIC the origin of these singularities can be traced
back to the appearance of a perfectly athermal mode
whose excitation probability is exactly pk = 1/2. For
simplicity and without loss of qualitative generality, we
shall henceforth restrict ourselves to nonnegative values
of the chemical potential.

Conversely, different situations arise for general α and
β where more than a single dynamical critical mode can

occur for specific quenches. It has already been noticed
that in the case of nearest-neighbor hopping and long-
range pairing a triply critical phase can emerge with
three excitation modes having pk = 1/2 for quenches
across the topological phase transition.70 More recently,
the occurrence of a doubly critical dynamical phase in
which two critical modes arise has been demonstrated for
the case of long-range pairing and hopping with equal
decay rate β = α for quenches within the topologically
nontrivial phase, i.e., from hi < hec to hf ∈ (hdc , h

e
c).

71

It is worth noting that the properties of these peculiar
dynamical phases can hardly be connected with those
of equilibrium critical phenomena. Indeed, long-range
couplings alter the universal behavior close to the equi-
librium critical points only for α < 2 or β < 2. One
can immediately see this by considering the equilibrium
dynamical critical exponent z,

z =

{
φ− 1 if φ < 2,

1 if φ ≥ 2,
(29)

where φ = min(α, β) and we have used the definition
ωk ∝ kz at h = hec. The product between the dynamical
critical exponent z and the correlation length exponent ν
always remains the same as in the nearest-neighbor inter-
acting case, i.e., zν = 1. Note that the relevant region for
long-range couplings in the LRKC is radically different
with respect to the case of interacting field theories.54 On
the other hand, the doubly critical phase also arises in
the case of irrelevant long-range couplings φ ≥ 2, demon-
strating that the dynamical critical behavior of long-range
systems is not as strictly tied to the equilibrium universal-
ity as in nearest-neighbor systems.21 A similar discrepancy
in the relevance of long-range couplings, first noticed in
Ref. 71 for the β = α case, also exists in the present
general case.

After a quench of the chemical potential h in the
model (1), quasiparticles in certain momentum sectors k
may attain infinite temperature with excitation probabil-
ity pk = 1/2. The value of the final chemical potential
hf at which the momentum k becomes critical after a
quench starting at the chemical potential hi is given by71

hf (k) = Jk +
∆2
k

Jk − hi
, (30)

which is a mere rearrangement of (26), with Jk and ∆k

given in (6) and (7). For simplicity, and without loss of
qualitative generality, we shall restrict our analysis to
quenches starting at hi = 0, which simplifies (30) to

hf (k) = Jk +
∆2
k

Jk
. (31)

Physically, the relation between the dynamical and equi-
librium phase diagrams is due to the peculiarity of the
k = 0 mode. Indeed, the pairing gap in the Hamiltonian
in (5) vanishes at k = 0, and the k ≈ 0 modes decou-
ple from the dynamics since they are eigenstates of the
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FIG. 2. (Color online). The four different forms that function (31) can take for quenches from hi = 0. In form (i), we see that
there exist only the singly critical phase, where quenches to hf > he

c = 1 generate a unique critical momentum mode that gives
rise to critical times in the return rate. In form (ii), we see again the singly critical phase, but also the doubly critical phase,
which occurs for quenches within the topologically nontrivial phase and allows for two critical momentum modes. In form (iii),
the singly critical phase emerges for quenches just above he

c and also for large quenches. Quenches in between lead to a triply
critical phase with three critical momentum modes. Finally, form (iv) exhibits the richest dynamical criticality, in that again
the doubly critical phase emerges for quenches within the topologically nontrivial phase, the triply critical phase appears for
quenches in a region above he

c, but for quenches above that region only the singly critical phase exists.

momentum density operator and cannot be excited by a
time-dependent chemical potential, at least so long as the
equilibrium critical boundary is not crossed. Yet, if the
chemical potential h dynamically crosses the equilibrium
threshold hec, the k = 0 ground state changes its nature,
but not its occupation, leading to maximal excitation
probability pk=0 = 1 for hf > hec. Moreover, quenches be-
tween hi = 0 and hf > 0 never cause excitations beyond
the critical threshold (pk = 1/2) for high-energy modes
(k > π/2).

Therefore, when hf (k) has a single minimum, which lies
below the equilibrium critical threshold (mink hf (k) =
hmin < hec), all the quenches with hmin < hf < hec develop
two critical modes, as the excitation probability shall cross
the critical value pk = 1/2 twice in order to satisfy the
boundary pk=0 = 0 and pk < 1/2 at large k. Using the
same argument one may derive the whole dynamical phase
diagram by a careful study of the function hf (k). The
four possible different forms of hf (k) are shown in Fig. 2:

(i). The function hf (k) is monotonous and the system
has only the traditional singly critical dynamical
phase with hdc = hec = 1 with just a single critical
momentum.32

(ii). The function hf (k) has a single minimum with value
hdc < 1 such that for hdc < hf < 1 a doubly critical
phase with two critical momenta emerges, whereas
when hf > 1 a singly critical phase with a single
critical mode appears. In this case, hf (k) has no
local maximum.

(iii). The function hf (k) has a local minimum and a local
maximum both at k > 0, where both the maximum
and the minimum lie in the region hf > 1 such that
hmax > hmin > 1. This gives rise to a singly critical
phase for 1 < hf < hmin or hf > hmax, and a triply
critical phase, which has three critical momentum
modes, for hmin < hf < hmax. In this case, the local
maximum occurs at a smaller momentum relative
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to the local minimum.

(iv). The local minimum has a value hmin = hdc < 1,
while the local maximum always occurs at hmax > 1,
leading to the emergence of all three dynamically
critical phases: The doubly critical phase for hdc <
hf < 1, the triply critical phase for 1 < hf < hmax,
and the singly critical phase for hf > hmax. Also in
this case, the local maximum appears at a smaller
momentum relative to the local minimum.

These forms show that the triply critical phase can
only emerge at hf > 1, and that the doubly critical phase
only appears for hf < 1. In the case of form (ii) where
only a local minimum, but not a local maximum, exists,
the doubly critical phase can be detected by the sign of
the leading correction to the function hf (k) at k ' 0,
while for form (iv) the Taylor expansion around k = 0
cannot be used to detect the doubly critical phase. In
short, when the sign of the leading correction to hf (k) is
negative, one can be certain that form (ii) arises, whereas
for a positive sign any of the other three forms can occur.

In the following, our approach to uncover most of the
properties of the dynamical phase diagram will be to study
the function (31) around k = 0. To ease the analysis, we
split hf (k) into two contributions

h1 = Jk = 1 +
Γ(1− α) sin(πα/2)

ζ(α)
kα−1

− ζ(α− 2)

2ζ(α)
k2 +O

(
k3
)
, (32)

h2 =
∆2
k

Jk
=

[
Γ(1− β)

ζ(β)
cos

βπ

2
kβ−1 +

ζ(β − 1)

ζ(β)
k

]2

+O
(
k3
)
. (33)

Conveniently, the two exponents α and β enter separately
into these contributions. This allows for an independent
analysis of their influence on the forms (i)–(iv).

A. The leading long-range pairing case (β < 2)

In the case β < 2 the second contribution is dominated
by the nonanalytic power, leading to

h2 =
Γ2(1− β)

ζ2(β)
cos2 βπ

2
k2β−2 +O

(
kβ
)
. (34)

Consequently, only two possibilities can arise, as follows.

1. The α < (2β − 1) regime

In this regime the leading-order expansion for hf (k) is
given by h1 as

hf (k) = 1 +
Γ(1− α) sin(πα/2)

ζ(α)
kα−1 +O

(
k2β−2

)
. (35)

The coefficient Γ(1−α) sin(πα/2)/ζ(α) is always negative
and therefore the doubly critical phase is always present
in this regime. The subleading term is given by h2 and is
always positive. In this regime there is no triply critical
phase. Examples of this regime are shown in the top right
panel of Fig. 2.

2. The α > (2β − 1) regime

In this case the roles of α and β are reversed. The
leading-order term is given by h2 and the expansion reads

hf (k) = 1 +
Γ2(1− β)

ζ2(β)
cos2 βπ

2
k2β−2 + · · · . (36)

In this regime, the leading term is always positive and
thus the existence of the doubly critical phase cannot be
directly inferred. The α, β dependence of the subleading
correction depends on the value of α.

For α < β + 1, the subleading term is
[Γ(1− α) sin(πα/2)/ζ(α)]kα−1, whereas for α > β + 1 it
is 2[Γ(1− β)ζ(β − 1) cos(πβ/2)/ζ2(β)]kβ . In either case
the slope is negative, implying that the subleading term
can overcome the initial positive slope of the leading
term at hf (k = 0) = 1. Consequently, hf (k) can go below
unity, in which case one can be sure of the existence of
the doubly critical phase, i.e., form (iv).

In such a case, the triply critical phase exists. Examples
for this are shown in the bottom right panel of Fig. 2,
for α < β + 1 (α = 2.3 and β = 1.5) and for α > β + 1
(α = 2.8 and β = 1.5), where in both cases α > 2β − 1.

However, it is also possible that form (i) or (iii) may
emerge instead, in which no doubly critical phase exists
as both the maximum and minimum of hf (k) occur above
unity. As examples, we show in the top left panel of
Fig. 2 how for α < β + 1 (α = 2.85 and β = 1.9) and for
α > β+ 1 (α = 3 and β = 1.9) form (i) can emerge where
only a singly critical phase is possible. Additionally, we
shown examples of how form (iii) may arise in the bottom
left panel of Fig. 2 for α < β + 1 (α = 2.65 and β = 1.7)
and for α > β + 1 (α = 2.8 and β = 1.7). Note that all
these examples satisfy α > 2β − 1.

B. The subleading long-range pairing case (β > 2)

When β > 2, the second contribution to hf (k) is domi-
nated by the analytic power,

h2 =
ζ2(β − 1)

ζ2(β)
k2 +O

(
k2β−2

)
, (37)

which leads to two different regimes as a function of α. It
is worth noting that in this region no triply critical phase
can ever exist as we shall discuss in the following.
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1. The α < 3 regime

In this case the Taylor expansion for the critical final
field reads

hf (k) = 1 +
Γ(1− α) sin(πα/2)

ζ(α)
kα−1 +O

(
k2
)
. (38)

Since the coefficient is always negative, the doubly critical
phase is always present in this regime. This would bring
about form (ii), which excludes the emergence of a triply
critical dynamical phase. An example is shown in the top
right panel of Fig. 2 for α = 1.5 and β = 2.5.

2. The α > 3 regime

In this regime both of the nonanalytic terms are irrele-
vant and the leading contribution reads

hf (k) = 1 +

[
ζ2(β − 1)

ζ2(β)
− ζ(α− 2)

2ζ(α)

]
k2 +O

(
k2β−2

)
.

(39)

The existence of the doubly critical phase depends on the
coefficient

c1 =
ζ2(β − 1)

ζ2(β)
− ζ(α− 2)

2ζ(α)
. (40)

For c1 < 0 the doubly critical phase exists within form
(ii), meaning that the triply critical phase cannot exist in
this case, and an example of this regime is given in the
top right panel of Fig. 2 for α = 3.1 and β = 6. On the
other hand, for c1 > 0 the function hf (k) is monotonous
and only the singly critical phase exists, as illustrated by
the example for α = 3.4 and β = 3.5 shown in the top
left panel of Fig. 2. The dynamical phase diagram of the
model in this region is shown in Fig. 3.

As we discuss in Sec. VI, of particular interest to us is
the doubly critical phase. This is due to recent experi-
mental observations34 of so-called accidental dynamical
vortices that appear in time-resolved Bloch tomography
measurements for quenches within the same topological
phase. Our results indicate that this is indeed possible
even in models with no interactions such as the Haldane-
like model realized in Ref. 34. Indeed, the generally
accepted explanation — based on results of long-range
interacting quantum spin models — for why the dynam-
ical critical point can be smaller than the equilibrium
critical point has been that this is most likely due to
interactions.18–26 Nevertheless, as indicated in our previ-
ous work Ref. 71 and solidified in our current study, the
case of hdc < hec is very prevalent for noninteracting free
fermionic systems with long-range hopping and pairing.
Fig. 4 shows hdc as a function of the pairing exponent β
at fixed values of the hopping exponent α. For small to
intermediate values of α this function is not monotonous,
but instead goes from very small values at β & 1, to a

4 6 8

β

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

α

FIG. 3. (Color online). Phase diagram of the model in the
(α, β) plane. In the red-colored region the doubly critical phase
exists, while in the white region c1 > 0 and there is no doubly
critical phase.

maximum (which is still below unity) at intermediate
values of β, and then asymptotically towards a smaller
value at β →∞.

The case of nearest-neighbor hopping (α → ∞) and
pairing (β → ∞) deserves special attention. A sketch
of the dynamical phase diagram for the triply critical
phase in the α→∞ limit has been obtained numerically
in Ref. 70, but no doubly critical phase has been found,
consistently with the results depicted in Fig. 3, where
the doubly critical phase disappears at large α. On the
other hand, the purely long-range hopping case β →∞
always contains a doubly critical phase for α . 3.6223,
as follows from (38) and (39), but it does not display the
triply critical phase for any α value.

V. STRING ORDER PARAMETER

The nonlocal form of the SOP makes it a useful quan-
tity to use when studying transitions between equilib-
rium topological phases. den Nijs and Rommelse first
showed that the SOP witnesses the hidden Néel order of
the Haldane phase of the spin-1 AKLT model.77 More
recent work has extended the use of SOPs in the anal-
ysis of topological phases also to bosonic and fermionic
systems.78–82 Recently, within the context of high Tc su-
perconductivity, SOPs have been used to theoretically
study the topological phases diagram of the t−J model.83

It has further been proposed to study this model in quan-
tum gas microscopes,84 as they are ideal platforms for
the measurement of SOPs.85,86

Since the return rate is by definition also nonlocal, it
is natural to ask whether the dynamical evolution of the
SOP after a quench captures physics similar to that cap-
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FIG. 4. (Color online). The value hd
c which delimits the

appearance of the doubly critical phase for a quench starting
at hi = 0 is shown as a function of β for different values of α.

tured by the return rate. The recent work of Budich and
Heyl61 has indeed shown a link between these two quan-
tities for a Kitaev chain with next-to-nearest-neighbor
hopping and nearest-neighbor pairing interactions; For
a quench from the topologically nontrivial phase into
the trivial phase, the authors showed that the times at
which zero crossings of the SOP occur are exactly the
critical times of the return rate. As a natural exten-
sion of this work, we examine in the subsequent section
whether this correspondence also holds in the general
Kitaev chain with long-range hopping and pairing (1),
thereby extending the link between DQPT and the under-
lying equilibrium phases to this model. This is especially
interesting because we know from quantum Ising chains
that the presence of long-range interactions leads to a
more subtle picture in the connection between DQPT
and the longitudinal magnetization. For instance, for
sufficiently small quenches, anomalous cusps appear even
when the order parameter never changes sign. Also the
regular cusps — which are connected to zero crossings of
the order parameter — display slightly different periodic-
ities compared to the cusps of the return rate at short to
intermediate evolution times, as shown, for example, in
the case of the Lipkin-Meshkov-Glick (LMG) model.21,22

In this section we show how the SOP can be calculated
numerically for this model.87 We write the SOP defined
in Ref. 61 as

Olm(t) = φ−l (t)

 m−1∏
j=l+1

φ+
j (t)φ−j (t)

φ+
m(t), (41)

where φ±i = c†i ± ci and the time evolution is generated
by the post-quench Hamiltonian Hf . Our aim is to nu-

merically calculate

M(t) := |〈ψi|Olm(t)|ψi〉|, (42)

i.e., the absolute value of the expectation value of (41)
with respect to the ground state of the pre-quench Hamil-
tonian Hi. Here we give a brief summary of how this is
achieved.

First, since (42) is defined with respect to |ψi〉, it is
useful to write (41) in normal-ordered form via Wick’s
theorem. A direct consequence of this theorem is that the
vacuum (ground state) expectation value of a product of
an even number of fermionic operators Ai reduces to a
sum of elementary contractions88

〈ψi|A1 . . . A2n|ψi〉 =
∑
π∈Π

sgn(π) 〈Ai1Aj1〉 . . . 〈AinAjn〉 ,

(43)
where Π ⊂ S2n is the set of permutations
{π : {1, 2, . . . , 2n} → {i1, j1, i2, j2, . . . , in, jn} | i1 < i2 <
. . . < in and ik < jk for k = 1, 2, . . . , n} and 〈AikAjk〉 =
〈ψi|AikAjk |ψi〉.

Second, we note that the right-hand side of (43) is
equivalent to the Pfaffian Pf(M) of an anti-symmetric
2n× 2n matrix M with entries

Mrs = 〈ArAs〉 for 1 ≤ r < s ≤ 2n. (44)

Since Olm(t) is a product of 2(m− l) = 2d fermionic oper-
ators, we then have that M(t) = |Pf(M)|. Consequently,
for a given time t ≥ 0, calculating (42) is reduced to three
steps:

(i) Calculate the four distinct types of elementary con-
tractions 〈φpa(t)φqb(t)〉 where l ≤ a ≤ b ≤ m and
p, q ∈ {+,−}.

(ii) Construct the antisymmetric matrix M ∈ C2d×2d

with entries

Mrs = 〈φpa(t)φqb(t)〉 such that for 1 ≤ r < s ≤ 2d

p =

{
+ for r even,

− for r odd,

q =

{
+ for s even,

− for s odd,

a = l + br/2c and b = l + bs/2c,

(45)

where bxc is the largest integer smaller than or equal
to x ∈ R.

(iii) Calculate |Pf(M)|, which can be done either by
numeric calculation of the Pfaffian,89 or by using the
relation Pf(M)2 = det(M). Calculating |

√
det(M)|

is faster, especially for large matrices.

It remains to determine the elementary contractions of
step (i). We show in Appendix B how to express these
in terms of matrix products conducive to numeric imple-
mentation.
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For the numeric results of Sec. VI we choose lattice
sites l,m in (41) symmetrically around the center of the
lattice, i.e., l = (N −d)/2 and m = (N +d)/2. All results
shown are for d = N/2.

VI. RESULTS AND DISCUSSION

FIG. 5. (Color online). Time evolution of the squared longi-
tudinal magnetization of the TFIC (25) and the norm of the
string order parameter of its Jordan-Wigner mapping for a
quench from hi = 0 to hf = 3. The result for the magnetiza-
tion is simulated using TDVP.67–69

Finally, we compare the return rate and the SOP for
quenches leading to the three different dynamical phases
identified in Sec. IV, and we discuss the intimate relation
between the periodicities of cusps in the return rates and
those of the zero crossings of the SOP.

It has already been shown in the nearest-neighbor case
that for quenches of the chemical potential h across the
equilibrium phase boundary hec the kinks appearing in
the return rate correspond to zeros of the string order
parameter’s normM(t).61 In Fig. 5 we show the time evo-
lution of the square of the TDVP-computed longitudinal
magnetization in the TFIC (25) and that of the norm of
the string order parameter in the corresponding Jordan-
Wigner mapping, which is the LRKC Hamiltonian (1)
in the limit of α, β → ∞. When α and β are finite, we
can no longer in general find a spin model that can be
mapped onto the corresponding LRKC Hamiltonian (1).
Consequently, the LRKC can no longer be associated with
a local order parameter such as the longitudinal magne-
tization. Nevertheless, the fact that the SOP norm and
the square of the magnetization are the same observable
in the nearest-neighbor limit motivates the study of the
SOP — which is accessible regardless of the value of α and
β — as a viable (nonlocal) order parameter. It further
motivates relating its dynamics to that of the return rate,
as is done in the case of the local order parameter in spin
models.

The picture in the long-range case is similar to its

nearest-neighbor counterpart in that large quenches across
hec lead to SOP zeros and return rate cusps that exhibit
the same periodicity. This is shown in Fig. 6 where we
calculate the dynamical evolution of the system after a
quench of the chemical potential to h = hf = 2 starting
from the ground state of the h = hi = 0 Hamiltonian for
different values of α and β. The return rate and SOP both
display regular singularities in the form of cusps and zero
crossings, respectively. As in the nearest-neighbor case,61

these singularities occur simultaneously. It is remarkable
that the time evolution of the return rate remains very
regular (and is similar to the nearest-neighbor case) in
the case of β < α, regardless of the actual β value.

Having identified the doubly critical phase boundary
hdc , we can study the dynamical properties of this phase by
quenching the system from hi = 0 to the final field hf =
1.075hdc < hec, where two dynamical critical momenta
appear. Not surprisingly, for small α and β, numerical
calculations are plagued by considerable finite-size effects.
Therefore, we will focus on two particular sets of decay
rates (α, β) = (1.75, 1.50) and (1.90, 1.50), both of which
are inside the relevant region where the effect of long-
range couplings is expected to be more drastic and the
doubly critical phase is larger; cf. Fig. 4. Indeed, as per
the analysis of Sec. IV, in both these cases β < 2 and
α < 2β − 1, meaning that for quenches just below the
equilibrium critical point a doubly critical phase emerges,
while for quenches above it, only the singly critical phase
can appear; cf. top right panel of Fig. 2. The dynamics
of the return rate and the SOP for these two parameter
sets are shown in Fig. 7. Even though not as clear cut as
in the case of the singly critical phase, we see that the
cusps in the return rate and the zero crossings of the SOP
nevertheless share similar periodicities. Moreover, the
number of cusps over the time interval we show equals the
number of zero crossings the SOP makes. Once again, this
indicates a nontrivial connection between DQPT and the
dynamics of the SOP, much the same way the local order
parameter in spin chains has been shown to be intimately
connected to regular cusps in the return rate.18,20–25 We
note here how both the cusps of the return rate and the
zero crossings of the SOP show two periodicities due to
these quenches having two emerging critical momenta.
These periodicities are indicated by two different fonts of
dashed lines, each corresponding to the critical times of a
given periodicity.

It is interesting here to relate the doubly critical phase
we observe in our simulations to recent experimental
findings. In the experiment of Ref. 34, a topological
Haldane-like model is implemented using spin-polarized
fermions in a driven optical lattice. Initially suppressed
with a large energy offset, the tunneling strength between
the two sublattices is then suddenly quenched, where
near-resonant driving reestablishes tunneling in the final
Floquet Hamiltonian. A time-resolved Bloch state to-
mography is then carried out for the pseudo-spin-1/2 in
momentum space arising from the sublattice degree of
freedom. This system gives rise to the same physics of
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FIG. 6. (Color online) The time evolution of the return rate r(t) and SOP norm M(t) for the Kitaev chain with long-range
hopping and pairing with decay exponents α and β, respectively, for three different values of α ∈ {1.75, 2.25, 3.25}, each at
three different values of β ∈ {1.50, 2.50, 3.50}. These results are for quenches from hi = 0 to hf > he

c, i.e., in the singly critical
dynamical phase. The SOP is calculated for N = 4000 sites while the return rate r(t) for N = 10000 sites, where these system
sizes are chosen such that the corresponding quantity reaches convergence. The second time-derivative (curvature) of the return
rate, r̈(t), is also provided in order to highlight cusps that may not appear clearly in r(t). As can be seen, the cusps of r(t) and
the zeros of M(t) exhibit the same periodicity.
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c < he
c, for two choices of (α, β). In both panels the top quadrant shows the SOP norm and the middle quadrant

the return rate. The bottom quadrant shows the curvature r̈(t) of the return rate in order to identify the critical times, which
are further indicated by the vertical dashed lines. The critical times exhibit two distinct periodicities, distinguished by the black
and gray dashed lines, respectively, arising from the two distinct critical momenta of this quench. The system sizes were chosen
as in Fig. 6.

spin chains in the limit of no interactions. Dynamical
vortices — which indicate that the time-evolved wavefunc-
tion is orthogonal to the initial state, and are therefore
representative of cusps in the Loschmidt return rate — are
directly observed when quenching between two phases of
different Chern numbers. However, accidental dynamical
vortices are also observed for quenches close to the above
phase transition, but not crossing it. Indeed, the right

panels of Fig. 2 show two forms of hf (k) described in (31)
that lead to the dynamical phase diagram hosting a dou-
bly critical phase in which nonanalytic behavior in the
return rate arises for quenches within the topologically
nontrivial phase in the LRKC. This could very well be the
underlying phenomenon behind the accidental dynamical
vortices in Ref. 34. One possible way of ascertaining this
would be to study these accidental dynamical vortices as
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FIG. 8. (Color online). Return rate and SOP norm for a quench from hi = 0 into the the triply critical phase with hf = 1.05 > he
c,

for two choices of (α, β). The quadrants are arranged as in Fig. 7. The vertical lines indicate the critical times with three
distinct periodicities (black dashed, dark gray dashed, light gray dot-dashed) arising from the three critical momenta of this
quench. The system sizes were chosen as in Fig. 6.

a function of varying the range of the hopping terms of
the Floquet system into which they quench. As detailed
through our analytic treatment and numerical results in
Sec. IV, there are certain regimes of the hopping and
pairing exponents (α, β) where the doubly critical phase
is prominent — such as in forms (ii) and (iv) in Fig. 2 —
or outright absent — such as in forms (i) and (iii) in
Fig. 2. In particular, as proven in Sec. IV and illustrated
in Fig. 3, when α is sufficiently small (i.e., the hopping is
sufficiently long-range), the dynamical critical phase will
emerge regardless of the value of β, even when pairing is
nearest-neighbor. Therefore, by making α smaller, more
of the abovementioned accidental dynamical vortices are
expected to appear deeper within the same topological
phase and for significantly smaller quench distances.

However, here we have to be careful and note that
there are nontrivial differences between our model and
that realized in Ref. 34. Not only is their model two-
dimensional, but their quenches also always start in the
topologically trivial phase. In contrast, for the case of the
(one-dimensional) LRKC that we consider here, quenches
within the topologically trivial phase do not seem to
give rise to cusps in the return rate (not shown, but
extensively studied by us). Nevertheless, this may be
different if the LRKC is extended to two dimensions
as in the experimental model. In this case, it may be
possible that quenches within the topologically trivial
phase, and not just its nontrivial counterpart, will also
lead to nonanalytic behavior in the return rate due to
higher overall connectivity. We leave this question open
for possible future investigation.

Finally, we consider quenches that give rise to the triply
critical dynamical phase in the LRKC. Unlike the case
of the doubly critical phase, and similar to that of the

singly critical phase, the triply critical phase occurs for
quenches crossing hec, albeit it seems to only appear when
the quench is right above the equilibrium critical point,
hf & hec, and also when the model is in the relevant region
of long-range pairing β < 2; cf. Sec. IV B. Note that the
region of hf to which one must quench in order to observe
the triply critical phase can either be immediately above
the equilibrium point up to a small hf > 1 (see form (iv)
of hf (k) in bottom right panel of Fig. 2), or within a small
region slightly above, but separated from, hec (see form
(iii) of hf (k) in bottom left panel of Fig. 2). In Fig. 8 three
different fonts of dashed lines indicate the critical times
in the return rate arising due to three distinct critical
momenta for these quenches. Here, the connection with
the zero crossings in the SOP is more subtle than in the
case of the singly and doubly critical phases. The fact that
the triply critical phase appears in a very small regime
of (α, β) makes the investigation of this subtlety more
challenging. This is mainly because with hf so close (from
above) to the equilibrium critical point, most quenches
would require impractically large lattice sizes in order to
obtain converged dynamics due to critical fluctuations.
Nevertheless, it is still not completely surprising here
that the connection is not one-to-one as in the singly
critical phase. As briefly discussed in Sec. V, when long-
range interactions are present in quantum spin chains,
the connection between cusps in the return rate and
zeros in the order parameter becomes less straightforward
compared to the nearest-neighbor case.21,23 This has been
clearly demonstrated in the LMG model, which is the fully
connected transverse-field Ising model, where especially
at short times the periodicity of the cusps in the return
rate does not match that of the zero crossings of the order
parameter, in stark contrast to the case of the TFIC.
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At longer times, these two periodicities nevertheless do
become equal in the LMG model. In the case of LRKC,
the SOP decreases exponentially fast, making it much
harder to tell whether this may also be the case here.

VII. CONCLUSION

We have investigated the effect of having both long-
range hopping (∝ 1/rα) and long-range pairing (∝ 1/rβ)
on the dynamics of free-fermionic models in the wake of a
quench. In particular, we have thoroughly constructed the
rich dynamical phase diagram of the long-range Kitaev
chain using scaling arguments and extensive numerical
simulations. We find three main phases: a singly critical
phase known from seminal works in which the cusps of
the return rate correspond to a single critical momentum
mode; the doubly critical phase in which cusps in the
return rate correspond to two distinct critical momenta;
and the triply critical phase where cusps arise due to
three distinct critical momenta. We identified regimes
of (α, β) associated with each of these phases, where the
succinct summary would be that small α guarantees the
emergence of the doubly critical phase, while small enough
β is necessary for the triply critical phase to exist. Both
the singly and the triply critical phases can occur for
quenches crossing the equilibrium critical point, whereas
in contrast the doubly critical phase appears for quenches
within the topologically nontrivial phase.

Furthermore, we have related the cusps in the
Loschmidt return rate to the zero crossings of the string
order parameter. Our results indicate that there is a
close connection between the cusps and zero crossings,
especially in the case of singly and doubly critical dynam-
ical phases. For large quenches from the topologically
nontrivial phase crossing the equilibrium critical point, a
singly critical phase arises regardless of the values of α
and β. This extends what is already known on DQPT as
a probe of the underlying equilibrium physics, but also
shows that the connection between DQPT and equilib-
rium physics is not one-to-one, especially in the case of
the doubly critical phase as it arises for quenches within
the topologically nontrivial phase, i.e., without having to
cross any equilibrium critical point.

Our work shows experimental promise as it may ex-
plain the so-called accidental dynamical vortices from
time-resolved Bloch tomography measurements in Ref. 34
that appear for quenches close to, but not crossing, the
topological phase transition. This parallels our observa-
tion of cusps in the return rate for quenches within the
same topological phase, giving rise to a doubly critical
dynamical phase possessing two distinct periodicities in
the return rate cusps. Our analysis suggests that by tun-
ing the hopping range these accidental vortices can be
better understood in that for longer hopping ranges more
vortices will appear deeper within the same topological
phase and for smaller quenches.

Finally, it is worth mentioning that our results suggest

that the SOP can offer an indirect way of measuring the
nonanalyticities of the Loschmidt return rate. In the
work of Refs. 85 and 86, a quantum gas microscope has
been used to measure the string order, respectively, in
one-dimensional bosonic Mott insulators and the Fermi-
Hubbard chain. Given the close connection evident in
our simulations between the return rate cusps and the
SOP zeros, this would be a viable and much more prac-
tical way of observing dynamical critical behavior than
actually measuring the return rate itself, which becomes
exponentially harder with system size.
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Appendix A: Nearest-neighbor LRKC and TFIC:
return rate

In Fig. 9 we compare the return rates of the TFIC (25)
and the LRKC (1) in the limit α, β → ∞. These two
models are identical via an exact Jordan-Wigner mapping.

We see that there is a qualitative difference between
the return rates in the case of a quench from the ordered
phase (hi < hdc), with the periodicity of cusps in the
LRKC being half that of the TFIC. This is due to the
fact that in the fermionic system the ground state is
always nondegenerate, while in the case of the TFIC,
the ground state in the ferromagnetic phase is always
doubly degenerate. The return rates can be brought to
quantitative and qualitative agreement by updating the
return rate definition to

r(t) = − lim
N→∞

1

N
ln

1∑
n=0

|〈ψi,n|e−iHf t|ψi,n〉|2, (A1)

where {|ψi,0〉 , |ψi,1〉} are the two degenerate ground states
at hi < hec.

On the other hand, the return rates are in full qualita-
tive and quantitative agreement in the case of quenches
from the paramagnetic phase. This is because in the
latter phase the TFIC has a nondegenerate ground state.
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FIG. 9. (Color online). Comparison between the return rate of the TFIC (25) and that of the LRKC (1) in the limit α, β →∞
for a quench from hi = 0 to hf = 3 (left panel) and a quench from hi →∞ to hf = 0.5 (right panel). The return rates of the
TFIC are computed using TDVP.

Appendix B: Elementary contractions for the
numeric calculation of string order parameters

Here we demonstrate how to calculate the elementary
contractions 〈φpa(t)φqb(t)〉, required in step (i) of Sec. V.

We will require two linear canonical transformations
which respectively diagonalise the pre- and post-quench
Hamiltonians as

Hi =

N∑
n=1

λinα
†
nαn and Hf =

N∑
n=1

λfnβ
†
nβn, (B1)

The motivation for this is that whilst the post-quench
evolution of the fermionic operators φ±j (t) is easily solved
in the post-quench β-basis, we would like to make use
of the fact that in the pre-quench α-basis terms such as
αn |ψi〉 vanish trivially since |ψi〉 = |0〉α.

We define the relevant real transformation matrices as(
~β
~β†

)
=

(
Gf Ff
Ff Gf

)(
~c
~c†

)
, (B2)(

~α
~α†

)
=

(
Gi Fi
Fi Gi

)(
~c
~c†

)
, (B3)

where ~c =
(
c1 c2 . . . cN

)ᵀ
, ~c† =

(
c†1 c†2 . . . c†N

)ᵀ
are

column vectors and, as before, the subscripts i, f respec-
tively refer to the pre- and post-quench values of the
chemical potential h. Note that since the above trans-
formations are canonical, i.e. preserve the fermionic anti-
commutation relations, matrices G,F satisfy identities

GᵀG+ F ᵀF = 1N×N and GᵀF + F ᵀG = 0N×N . (B4)

One can then obtain the transformation matrices (B2)
as follows: First write the long-range Kitaev Hamiltonian

(1) as

Hf =

N∑
m,n=1

c†m(Af )mncn

+
1

2

(
c†m(Bf )mnc

†
n − cm(Bf )mncn

)
,

(B5)

where

(Af )mn = (Af )nm ∈ RN×N , (B6)

(Bf )mn = −(Bf )nm ∈ RN×N . (B7)

The exact epressions for these matrices are given below
in (B17). As shown in Ref. 90 we can then express

Gf = (Φf + Ψf )/2 and Ff = (Φf −Ψf )/2, (B8)

where the nth columns of the real, orthogonal matrices
Φf ,Ψf are obtained by solving the eigensystem

(Φf )n(Af −Bf )(Af +Bf ) = (λfn)2(Φf )n, (B9)

and by making use of the relation

(Φf )n(Af −Bf ) = λfn(Ψf )n. (B10)

The advantage of this approach is that we obtain the
transformation matrices of (B2) by solving the eigensys-
tem of an N ×N symmetric matrix (Af −Bf )(Af +Bf ),
instead of the 2N×2N Hamiltonian Hf . To obtain Gi, Fi
we repeat (B5)–(B10) with hf replaced by hi.

Having obtained all transformation matrices we now
solve the time evolution of φqb(t) |ψi〉. Using (B4) to invert
(B2), we may write

φqb(t) =
[
~c†(t) + q ~c(t)

]
b

=
{

(Ff )ᵀe−iΛt~β + (Gf )ᵀeiΛt ~β†

+ q
[
(Gf )ᵀe−iΛt~β + (Ff )ᵀeiΛt ~β†

]}
b
,

(B11)
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where we have used (B1) to write ~β(t) = e−iΛt~β with

Λ = diag(λf1 , . . . , λ
f
N ). Having solved the time-evolution

in the post-quench β-basis, we use (B2) and (B4) to
transform directly into the pre-quench α-basis as(

~β
~β†

)
=

(
T1 T2

T2 T1

)(
~α
~α†

)
with

T1 =Gf (Gi)
ᵀ + Ff (Fi)

ᵀ,

T2 =Gf (Fi)
ᵀ + Ff (Gi)

ᵀ.

(B12)

This allows us to make use of αn |ψi〉 = 0 after substituting
(B12) into (B11). We then obtain

φqb(t) |ψi〉 =
[
(Θq

f )ᵀ
(
qe−iΛtT2 + eiΛtT1

) ~α†]
b
|ψi〉 ,

(B13)

where

Θq
f = Gf + qFf =

{
Φf , q = +,

Ψf , q = −. (B14)

Repeating (B11)–(B13) for 〈ψi|φpa(t) then yields

〈ψi|φpa(t)φqb(t)|ψi〉 =
[
(Θp

f )ᵀ
(
pe−iΛtT1 + eiΛtT2

)
×
(
q(T2)ᵀe−iΛt + (T1)ᵀeiΛt

)
Θq
f

]
ab
,

(B15)

where we have used that for any two N × N matrices
M1,M2〈

ψi

∣∣∣[M1~α
]
a

[
M2

~α†
]
b

∣∣∣ψi〉 = [M1(M2)ᵀ]ab . (B16)

The useful result here is (B15), which expresses the ele-
mentary contractions required to populate matrix (45) as
the elements of a matrix product which is in turn defined
purely in terms of the eigensystem of (Af −Bf )(Af +Bf )
and of (Ai −Bi)(Ai +Bi), which can be easily obtained
with, for instance, Mathematica.

We conclude by giving the explicit forms for matrices
A and B of (B5):

Amn =2hδm,n −
N/2−1∑
r=1

r−α

Nα
[
(−1)Θ(m−N−1+r)δm,(n−r)

+ (−1)1−Θ(m−r−1)δm,(n+r)

]
,

Bmn =−
N/2−1∑
r=1

r−β

Nβ
[
(−1)Θ(m−N−1+r)δm,(n−r)

− (−1)1−Θ(m−r−1)δm,(n+r)

]
,

(B17)

where Θ(x) is the Heaviside function and the subscripts
of all Kroenecker delta functions δ are to be read as
modulo N , i.e., δm,(n−r) = δm(modN),(n−r)(modN) when
using circular boundaries. The prefactors expressed
in terms of Θ(x) impose the correct phases under
anti-periodic boundary conditions and should be set to 1
when imposing periodic boundaries instead.
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