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Abstract

Many problems in computational science and engineering are simultaneously char-
acterized by the following challenging issues: uncertainty, nonlinearity, nonstationarity
and high dimensionality. Existing numerical techniques for such models would typically
require considerable computational and storage resources. This is the case, for instance,
for an optimization problem governed by time-dependent Navier-Stokes equations with
uncertain inputs. In particular, the stochastic Galerkin finite element method often leads
to a prohibitively high dimensional saddle-point system with tensor product structure.
In this paper, we approximate the solution by the low-rank Tensor Train decomposition,
and present a numerically efficient algorithm to solve the optimality equations directly
in the low-rank representation. We show that the solution of the vorticity minimiza-
tion problem with a distributed control admits a representation with ranks that depend
modestly on model and discretization parameters even for high Reynolds numbers. For
lower Reynolds numbers this is also the case for a boundary control. This opens the way
for a reduced-order modeling of the stochastic optimal flow control with a moderate cost
at all stages.

Keywords: Stochastic Galerkin system, iterative methods, PDE-constrained optimization,
saddle-point system, tensor train format, low-rank solution, preconditioning, Schur comple-
ment.

1 Introduction

We consider the numerical simulation of optimization problems constrained by partial differ-
ential equations (PDEs). This class of problems can be computationally challenging. This
is particularly so if the constraints are time-dependent PDEs since time-stepping methods
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quickly reach their limitations due to the enormous demand for storage [44]. The computa-
tional complexity associated with these problems is further increased when the constraints
are nonlinear [13] and contain (up to countably many) parametric or uncertain inputs [5, 8].
This is the core problem of this paper. A viable solution approach to optimization problems
with stochastic constraints employs the spectral stochastic Galerkin finite element method
(SGFEM). However, this intrusive approach1 leads to the so-called curse of dimensionality, in
the sense that it results in prohibitively high dimensional linear systems with tensor product
structure [5, 7, 40].

It is worth pursuing computationally efficient ways to simulate optimization problems
with stochastic constraints using SGFEMs since the Galerkin approximation yields the best
approximation with respect to the energy norm, as well as a favorable framework for error
estimation [10]. In order to cope with the curse of dimensionality we exploit the underlying
mathematical structure of the discretized optimality system. We develop a low-rank technique
based on recent advances in numerical tensor methods [22, 30] for efficient solution of an
optimization problem governed by nonlinear PDEs with random coefficients. More specifically,
we numerically simulate an Optimization Problem constrained by time-dependent Navier-
Stokes equations with random coefficients2 (OPNS). Our aim in this paper is to lift the
curse of dimensionality inherent in the OPNS and allow for efficient simulations of the model
on not much more than an average desktop computer. Such simulations would enhance the
understanding of the underlying physical model as the computed data can then be used for
the quantification of the statistics of the system response.

Alternative approaches to tackle optimization problems with stochastic constraints include
stochastic collocation schemes [11, 31, 46], as well as Monte Carlo methods [1]. These methods
are essentially sampling-based and non-intrusive. However, for optimization problems, the
SGFEM exhibits superior performance compared to the stochastic collocation method [40].
This is due to the fact that, unlike SGFEM, the non-intrusivity property of the stochastic
collocation method is lost when moments of the state variable appear in the cost functional,
or when the control is a deterministic function. On the other hand, Monte Carlo methods are
relatively straightforward to implement. However, they generally converge rather slowly and
do not exploit the regularity with respect to the parameters that the solution might have [46].

The rest of the paper is organised as follows. First, we present in Section 2 the PDE-
constrained optimization that we would like to solve, as well as the necessary mathematical
concepts and notation on which we shall rely in the rest of our discussion. Next, we proceed
to Section 3 to discuss the SGFEM discretization of the problem. Section 4 presents our low-
rank iterative solver and preconditioner which we use to tackle the high-dimensional saddle
point systems arising from the SGFEM discretization of the optimization problem. Finally,
in Section 5, we present numerical experiments to illustrate the performance of the low-rank
approach.

1Generally speaking, SGFEM techniques are intrusive in the sense that the codes for the associated de-
terministic problems cannot be directly reused. These methods are mainly non-ensemble-based methods and
require the solution of discrete systems that couple all spatial and probabilistic degrees of freedom.

2We remark here that our approach can be easily generalized to other nonlinear optimization problems
with stochastic constraints as well.
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2 Problem statement and mathematical description

Let (Ω,F ,P) be a complete probability space, where Ω is the set of outcomes, F ⊆ 2Ω is the σ-
algebra of events, and P : F → [0, 1] is an appropriate probability measure. Let D ⊂ Rd with
d ∈ {1, 2, 3}, be a bounded spatial domain with a piecewise Lipschitz boundary Υ. Moreover,
we consider a finite time interval [0, T ]. A random field z : Ω×D → R, means that z(·,x) is a
random variable defined on (Ω,F ,P) for each x ∈ D. We assume that z belongs to the tensor
product Hilbert space L2(Ω)⊗ L2(D) which is endowed with the norm

||z||L2(Ω)⊗L2(D) :=

(∫
Ω

||z(ω, ·)||2L2(D) dP(ω)

) 1
2

<∞,

where L2(Ω) := L2(Ω,F ,P). For any random variable g defined on (Ω,F ,P), the mean E(g)
of g is given by

〈g〉 := E(g) =

∫
Ω

g dP(ω) <∞. (1)

For a Hilbert space H of functions on D and a time interval [0, T ], we write L2(0, T ;H)
for the tensor product space L2([0, T ]) ⊗ H. However, in particular, we write L2(0, T ;D) for
L2(0, T ;L2(D)); we will be using these last two notations interchangeably.

We consider an optimization problem involving an incompressible Newtonian flow with an
uncertain inflow in a backward step domain. More precisely, the OPNS we want to solve is
given by the minimization of the total vorticity:

J =
1

2
‖∇ × v‖2 +

β

2
‖u‖2, (2)

where v, u : [0, T ] × Ω × D → Rd are random fields, representing the state (velocity) and
the control functions. The regularization constant β in (2) balances between minimization of
the vorticity and penalization of the control magnitude. The objective function J (v,u) is a
deterministic quantity with uncertain components v and u.

The minimization of J is considered subject, P-almost surely, to the Navier-Stokes equa-
tions3 

∂v

∂t
− ν∆v + (v · ∇)v +∇p = Fdu, in (0, T ]× Ω×D,

−∇ · v = 0, in (0, T ]× Ω×D,
v = θ, on (0, T ]× Ω×Υin,

v = 0, on (0, T ]× Ω×Υwall,

∂v

∂n
= 0, on (0, T ]× Ω×Υout,

∂v

∂n
= Fbu, on (0, T ]× Ω×Υcnt,

v(0, ·, ·) = 0, in Ω×D.

(3)

3In this paper, we do not consider the case of state- or control- or mixed control-state-constrained problems
[24, 36, 38]. These problems can be tackled via, for instance, semi-smooth Newton algorithms [23, 27, 29].
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Figure 1: An uncertain inflow in a backward step domain
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Here, θ : [0, T ] × Ω × Υin → Rd is the inflow boundary condition, p : [0, T ] × Ω × D → R is
the pressure, and n is the outward-pointing normal to the boundary. The linear operators Fd
and Fb apply the control to the appropriate part of the system. We consider two cases.

1. Distributed (or full) control: Fd = I, Fb = 0, and

2. Boundary control: Fd = 0, and Fb = IΥcnt , the identity on Υcnt and zero otherwise.

The parameter ν is the kinematic viscosity. There exist variations of this problem such as
a deterministic control [40] or an uncertain domain [6].

In our experiments, we use a zero initial condition, applying instead an exponentially
growing stochastic inflow

θ =

[
κ(x, ω)(1− e−t)

0

]
(see Fig. 1), where κ(x, ω) is a random field on Υin. We assume that κ admits the Karhunen-
Loeve expansion (KLE):

κ(x, ω) = 4x2(1− x2) +
∞∑
k=1

1

2
γ−k · sin(2πkx2) · ξk(ω). (4)

Here, the first term is the mean parabolic inflow, whereas ξk, k = 1, 2, . . . are independent
uniformly distributed random quantities, ξk ∼ U(−1, 1). The parameter γ governs the KLE
decay rate, and hence the smoothness of the field. In computational practice, we truncate (4)
after m ∈ N terms such that the error is sufficiently small:

κ(x, ω) ≈ κm(x, ξ(ω)) = 4x2(1− x2) +
m∑
k=1

1

2
γ−k · sin(2πkx2) · ξk(ω), (5)
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where ξ := {ξ1, ξ2, . . . , ξm}. This coefficient mimics the (truncated) Fourier expansion of the
Matern covariance function for κ. The assumption that κ(x, ω) admits a KLE representation
allows to transform the stochastic OPNS into a parametric deterministic problem, depending
on ξ := {ξ1, ξ2, . . . , ξm}. For brevity, since we consider m as an a priory model parameter, we
always denote κm by κ in the rest of the paper.

We also assume that each random variable is characterized by a probability density function
ρi : Γi → [0, 1]. If the distribution measure of the random vector ξ(ω) is absolutely continuous
with respect to the Lebesgue measure, then there exists a joint probability density function
ρ : Γ → R+, where Γ :=

⊗m
k=1 Γk ⊂ Rm, ρ(ξ) =

∏m
k=1 ρk(ξk), and ρ ∈ L∞(Γ). In particular,

given the parametric representation (5) of κ(x, ω), the Doob-Dynkin Lemma [4], guarantees
that the solution, for example, v, corresponding to the the OPNS as given by (2) and (3)
admits exactly the same parametrization; that is,

v(t, ω,x) = v(t, ξ1(ω), ξ2(ω), . . . , ξm(ω),x). (6)

Furthermore, we can now replace the probability space (Ω,F ,P) with (Ω,B(Γ), ρ(ξ)dξ), where
B(Γ) denotes the Borel σ-algebra on Γ and ρ(ξ)dξ is the finite measure of the vector ξ.
Besides, denoting the space of square-integrable random variables with respect to the density
ρ by L2

ρ(Γ), we introduce the space L2
ρ(Γ)⊗ L2(D) equipped with the norm

||z||L2
ρ(Γ)⊗L2(D) :=

(∫
Γ

||z(ξ, ·)||2L2(D)ρ(ξ) dξ

) 1
2

<∞. (7)

Similarly, using equation (1), we have

〈g〉 := E[g] =

∫
Γ

g(ξ)ρ(ξ) dξ <∞. (8)

For the numerical simulation of the OPNS given by (2) and (3), we will adopt the so-called
optimize-then-discretize (OTD) strategy in which case we first build an infinite dimensional
Lagrangian and then consider its variation with respect to state, pressure, control, and two
Lagrange multipliers that can be identified as the adjoint state λ and adjoint pressure µ
[47, 25]. To this end, observe now that the optimization problem under consideration is
nonlinear due to the nonlinearity of the convective term (v · ∇)v. Both Newton and Picard
iterations have shown to be good iterative solvers to tackle these nonlinear equations [19]. Since
the Picard iteration has a larger radius of convergence compared to the Newton iteration, our
choice in this contribution is the Picard iteration. We apply the so-called Karush-Kuhn-Tucker
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procedure [19, Chapter 8.2] to obtain the optimality system [14]:

∂tv − ν∆v + (v̄ · ∇) v +5p = Fdu

∇ · v = 0

on Υwall : v = 0

on Υin : v = θ

on Υout :
∂v

∂n
= 0, (9)

on Υcnt :
∂v

∂n
= Fbu,

v(0, ·, ·) = 0,

−∂tλ− ν∆λ− (v̄ · ∇)λ+ (∇v̄)T λ+5µ = −∇× (∇× v)

∇ · λ = 0

on Υwall ∪Υin : λ = 0 (10)

on Υout ∪Υcnt :
∂λ

∂n
= 0

λ(T, ·, ·) = 0,

βu + (Fd + Fb)λ = 0, (11)

where v̄ denotes the velocity from the previous Picard iteration. Having solved this system,
we update v̄ = v and so on until convergence.

3 The discrete problem

The stochasticity of the inflow κ(x, ω) is inherited by all solution components. For example, the
velocity becomes a function of time, d spatial variables and m random parameters, v(t, ξ,x).
This makes the problem far more challenging than its deterministic counterpart. In this
paper, we employ simultaneous independent discretization of all variables, and the stochastic
Galerkin method (SGFEM) w.r.t. the parameters ξ.

The SGFEM is an intrusive approach in which one seeks the solution in a finite-dimensional
subspace Ynξ ⊗ Xh ⊂ L2

ρ(Γ) ⊗ L2(0, T ;L2(D)) consisting of tensor products of deterministic
functions defined on the spatial domain and stochastic functions defined on the probability
space [21, 39]. Different classes of SGFEMs are distinguished by their choices for Ynξ . When
all random variables ξk are independent and identically distributed Gaussian, the basis of
multidimensional Hermite polynomials of the total degree nξ is called the polynomial chaos, a
terminology originally introduced by Norbert Wiener [49] in the context of turbulence mod-
eling. The use of Hermite polynomials ensures that the corresponding basis functions are
orthogonal with respect to the Gaussian probability measure. This leads to sparse linear sys-
tems, a crucial property that must be exploited for fast solution schemes [39]. Relying on
the fact that there exists a one-to-one correspondence between the probability density func-
tions of alternative distributions and the weight functions of certain orthogonal polynomials,
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the concept of Hermite polynomials chaos has been extended to generalized polynomial chaos
[50]. For instance, if uniform random variables (having support on a bounded interval) are
chosen, then Legendre polynomials are the correct choice. Similarly, Jacobi polynomials go
with beta-distributed random variables. When random variables with bounded images are
used, the convergence and approximation properties of the resulting SGFEM are discussed in
[4]. Some SGFEM classes use tensor products of piecewise polynomials on the subdomains
Γk ⊂ Γ [4, 17, 33], where the polynomial degree is fixed and approximation is improved by
refining the partition of Γ.

Throughout this paper we use the classical, so-called spectral SGFEM (see e.g. [18, 20, 32,
39]), which employs global Legendre polynomials for uniformly distributed ξk. We discretize
each ξk independently via polynomials of the maximal degree nξ−1. That is, we use the space

Ynξ =

{
span

(
ψj(ξ) =

m∏
k=1

ψjk(ξk)

)
, ∀jk = 0, . . . , nξ − 1, j = (j1, . . . , jm)

}
.

This implies that the global discretization is done via multilinear polynomials of total degree
m(nξ − 1). The total number of basis functions in Ynξ is Nξ = nmξ , which can be prohibitively
large for a straightforward storage. We circumvent this problem by using low-rank product
decompositions on the discrete level in Section 4.

For the spatial discretization we use mixed finite element spaces with stable elements, i.e.
elements that satisfy the inf-sup condition, e.g. the Q2-Q1 pair [43]. This gives us different
spaces Vh = span{φ1, . . . , φNv} ⊂ L2(0, T ;H1

0 (D)) for the velocity and Ṽh = span{ϕ̃1, . . . , ϕ̃Np} ⊂
L2(0, T ;L2(D)) for the pressure.

The time is discretized on a uniform grid, tn = τn, n = 1, . . . , Nt, such that tNt = T .
The fully discrete coefficients of the velocity will be denoted as vh(n, j, k), and similarly the
coefficients of p,u,λ, and µ are denoted by ph,uh,λh and µh, respectively. The solution
functions are approximated as

v(tn, ξ,x) ≈
Nξ−1∑
j=0

Nv∑
k=1

vh(n, j, k)ψj(ξ)φk(x),

p(tn, ξ,x) ≈
Nξ−1∑
j=0

Np∑
k=1

ph(n, j, k)ψj(ξ)ϕ̃k(x).

(12)

Analogous expressions hold for u,λ and µ.
We plug these expressions into (9)–(11), and project the optimality system onto span(ψjφk)

for the velocity equations and span(ψjϕ̃k) for the pressure equations. We introduce the fol-
lowing matrices, composed from the corresponding bilinear forms:

• L0(k, k′) =
∫
D
∇φk(x) · ∇φk′(x)dx is the Laplace matrix for a single velocity component,

and L = blkdiag(L0, L0) is the Laplace matrix for both velocity components.

• M0(k, k′) =
∫
D
φk(x)φk′(x)dx and M = blkdiag(M0,M0), the mass matrix.

• B(k, k′) =
∫
D
ϕ̃k(x)∇φk′(x)dx, the mixed gradient matrix.
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• Nn = blkdiag(N0,n, N0,n), the convection matrix, where

N0,n(jk, j′k′) =

∫
Γ

ψj

Nξ−1∑
j′′=0

Ns[v̄h(n, j
′′, :)](k, k′)ψj′′ψj′ρdξ, (13)

Ns[v̄h](k, k
′) =

∫
D

φk(x)
Nv∑
k′′=1

φk′′(x)v̄h(k
′′) · ∇φk′(x)dx. (14)

• Wn(jk, j′k′) =
∫
Γ

ψj(ξ)
∑Nξ−1

j′′=0 Ws[v̄h(n, j
′′, :)](k, k′)ψj′′(ξ)ψj′(ξ)ρ(ξ)dξ, the adjoint con-

vection matrix, where

Ws[v̄h](k, k
′) =

∫
D

φk(x)
Nv∑
k′′=1

∇v̄h(k
′′)φk′′(x)φk′(x)dx. (15)

Since the Legendre polynomials are orthogonal, a proper normalization can turn the stochastic
mass matrix into an identity.

We use the implicit Euler approximation for the time derivative, although it can be replaced
by higher-order schemes. Overall, this gives the following discrete optimality equations.

vh(n, j, k)− vh(n− 1, j, k)

τ
−

Nv∑
k′=1

νL(k, k′)vh(n, j, k
′)

+

Nξ−1∑
j′=0

Nv∑
k′=1

Nn(jk, j′k′)vh(n, j
′, k′) +

Np∑
k′=1

B(k′, k)Tph(n, j, k
′) =

Nv∑
k′=1

Mcnt(k, k
′)uh(n, j, k

′)

Nv∑
k′=1

B(k, k′)vh(n, j, k
′) = 0 (16)

for k ∈ Υwall : vh(n, j, k) = 0

for k ∈ Υin : vh(n, j, k) = θh(n, j, k)

vh(0, j, k) = 0,

λh(n, j, k)− λh(n+ 1, j, k)

τ
−

Nv∑
k′=1

νL(k, k′)λh(n, j, k
′)

+

Nξ−1∑
j′=0

Nv∑
k′=1

(−Nn(jk, j′k′) +Wn(jk, j′k′))λh(n, j
′, k′)

+

Np∑
k′=1

B(k′, k)Tµh(n, j, k
′) =

Nv∑
k′=1

L(k, k′)vh(n, j, k
′)

Nv∑
k′=1

B(k, k′)λh(n, j, k
′) = 0 (17)
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for k ∈ Υwall ∪Υin : λh(n, j, k) = 0

λh(Nt, j, k) = 0,

β
Nv∑
k′=1

M(k, k′)uh(n, j, k
′) +

Nv∑
k′=1

Mcnt(k, k
′)λh(n, j, k

′) = 0, (18)

where Mcnt = Fd + Fb. This system can be written in a compact matrix form

 M1 0 −K∗
0 βM2 MT

3

−K M3 0


︸ ︷︷ ︸

:=A


vh
ph
uh
λh
µh


︸ ︷︷ ︸

:=y

=

 0
0
gh


︸ ︷︷ ︸

:=b

. (19)

Since we use tensor product basis functions, each of the block matrices in A can be rep-
resented via Kronecker products. In particular, the forward and adjoint operators for the
time-stochastic-space Navier-Stokes equations write as

K = INt ⊗ I⊗mnξ ⊗ L+ Cτ−1 ⊗ I⊗mnξ ⊗M+N [v̄h], (20)

K∗ = INt ⊗ I⊗mnξ ⊗ L+ C>τ−1 ⊗ I⊗mnξ ⊗M+W [v̄h]−N [v̄h], (21)

where [5]

• INt is the identity matrix and C = tridiag(−1, 1, 0) comes from the implicit Euler dis-
cretization;

• Inξ is the identity mass matrix for each variable ξ.

• L =

[
νL B>

B 0

]
is the discretization of the stationary Stokes operator, and M =

blkdiag(M, 0) for the velocity mass matrix, extended by zeros to the pressure space;

• N and W correspond to the convection terms. They depend on the low-rank structure
of the solution v̄h, which will be introduced in the next section.

Furthermore, we introduce an extended velocity Laplace matrix L0 = blkdiag(L, 0). Then we
have

M1 = INt ⊗ I⊗mnξ ⊗ L0, M2 = INt ⊗ I⊗mnξ ⊗M, M3 = INt ⊗ I⊗mnξ ⊗
[
Mcnt

0

]
, (22)

where

1. Mcnt = M for the distributed control, and

2. Mcnt(k, k
′) =

{
M(k, k′), if k, k′ ∈ Υcnt,
0, otherwise,

for the boundary control.

9



The third vector gh in the right-hand side b in (19) depends on the boundary conditions.
The KLE yields the following tensor form for the inflow function,

θh = gt ⊗
m∑
k=0

[(
k−1⊗
`=1

e1

)
⊗ e2 ⊗

(
m⊗

`=k+1

e1

)
⊗ θkh

]
, (23)

where gt is the vector of the 1 − exp(−t) factor sampled at all time points, e1 and e2 are
the first and second unit vectors, respectively, and θkh is the discretization of the k-th spatial
factor in (4). Now, distinguishing inner and boundary degrees of freedom, we partition the
PDE matrix into the corresponding blocks,

K =

[
KII KIB

KBI KBB

]
.

The actual separation of inner (I) and boundary (B) elements is done in the spatial factors
only. Then the usual finite element approach is employed: we eliminate KIB and KBI in the
left hand side of (19), replacing K by KII , and construct the right-hand side from (23) as
gh = KIBθh.

4 Tensor Train decomposition approach

The solution y(t, ξ1, . . . , ξm,x) (where y stands for v, p,u,λ or µ) is a multivariate function.
After discretization, independently in each variable t, ξ1, . . . , ξm,x, the discrete values of y can
be enumerated by D = m + 2 independent indices4, i.e. they form a tensor. Storing such a
tensor directly might be prohibitively expensive. Therefore, we decompose tensors using the
separation of variables.

Given a D-index tensor y(i1, . . . , iD), its Tensor Train decomposition [34] is written as
follows:

y(i) =

r1∑
s1=1

· · ·
rD−1∑
sD−1=1

y(1)
s1

(i1)y(2)
s1,s2

(i2) · · · y(D)
sD−1

(iD), (24)

where i denotes the multi-index, i = (i1, . . . , iD). Each element of y is represented (or ap-
proximated) by a sum of products of elements of smaller tensors y(`), ` = 1, . . . , D, called TT
blocks. The auxiliary summation indices s1, . . . , sD−1 are called rank indices, and their ranges
r1, . . . , rD−1 are called TT ranks. The TT decomposition is also known as the Matrix Product
States [41, 37], since, omitting s1, . . . , sD−1, we can say that an element y(i) is equal to a prod-
uct of i`-dependent matrices. The TT ranks depend on the particular tensor and accuracy, if
(24) is satisfied approximately. Denoting upper bounds r` . r, i` . N , ` = 1, . . . , D − 1, we
estimate the storage cost of the TT blocks to be in O(DNr2), which can be much less than
the full amount ND. Usually, we refer to r as the maximal TT rank.

The TT format allows to compress a given tensor up to a threshold ε, also if y is already
given in the TT format, but possibly with overestimated TT ranks. This happens if we sum
two arrays in the TT format, or perform the matrix multiplication. A matrix A, acting on

4We don’t separate different components of x, which are actually dependent, due to the domain geometry.
Therefore, all spatial degrees of freedom are treated as one variable.
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tensors of type y, can be seen as a 2D-dimensional tensor and represented in a slightly different
TT format,

A(i, j) =

R1,...,RD−1∑
s1,...,sD−1=1

A(1)
s1

(i1, j1) · · ·A(D)
sD−1

(iD, jD), (25)

where i, j are multi-indices consisting of i` and j`, respectively. This is consistent with the
Kronecker product (⊗) if D = 2 and R = 1. The matrix-vector product

∑
jA(i, j)y(j) can

then be implemented in the TT format block by block [34, 41].

TT format of the convection matrix

We assume now that the velocity, in particular the previous Picard iterate, is represented by
a TT decomposition (24),

v̄h(n, j1, . . . , jm, k) = v̄(1)(n)v̄(2)(j1) · · · v̄(m+1)(jm)v̄(m+2)(k), (26)

with the ranks r1, . . . , rm+1. We are going to derive a matrix TT format (25) for N [v̄h] from
(20). First, we notice from (14) that N depends linearly on v̄h. Therefore, we can plug (26)
into (14) and distribute the summations. This gives

N0,n(jk, j′k′) = v̄(1)(n) (27)

·

Nξ−1∑
j′′=0

∫
Γ

ψj(ξ)ψj′(ξ)ψj′′(ξ)ρ(ξ)dξ · v̄(2)(j′′1 ) · · · v̄(m+1)(j′′m)

 (28)

·

[
Nv∑
k′′=1

∫
D
φk(x)∇φk′(x)φk′′(x)dx · v̄(m+2)(k′′)

]
. (29)

The last term in this expression is a deterministic convection matrix Ns

[
v̄(m+2)

]
(14), which

can be assembled with the cost O(rm+1Nv). The middle term can be further factorised due
to the tensor product PCE space Ynξ . Indeed, introducing the matrices of triple products for
all k = 1, . . . ,m,

Hj′′k
(jk, j

′
k) =

∫
Γk

ψjk(ξk)ψj′k(ξk)ψj′′k (ξk)ρk(ξk)dξk, Hj′′k
∈ Rnξ×nξ , (30)

we see that the multi-dimensional triple product in (28) can be written as a Kronecker product
of m individual matrices (30). Finally, we notice that N0,n acts independently on each time
step n, i.e. it is diagonal w.r.t. n, and so is N . Overall, given the TT format of v̄ (26), there
exists a TT format for the convection matrix with the same TT ranks,

N [v̄h] =

r1,...,rm+1∑
s1,...,sm+1=1

diag(v̄(1)
s1

)

⊗

[
nξ−1∑
j1=0

Hj1v̄
(2)
s1,s2

(j1)

]
⊗ · · · ⊗

[
nξ−1∑
jm=0

Hjmv̄(m+1)
sm,sm+1

(jm)

]
⊗ blkdiag

(
Ns

[
v̄(m+2)
sm+1

]
, Ns

[
v̄(m+2)
sm+1

])
.

(31)
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Notice that the right-hand side gh = KIBθh in (19) must be recomputed in every Picard
iteration, since KIB carries the corresponding (new) part NIB. The adjoint convection matrix
can be constructed similarly, with Ws defined in (15),

W [v̄h] =

r1,...,rm+1∑
s1,...,sm+1=1

diag(v̄(1)
s1

)

⊗

[
nξ−1∑
j1=0

Hj1v̄
(2)
s1,s2

(j1)

]
⊗ · · · ⊗

[
nξ−1∑
jm=0

Hjmv̄(m+1)
sm,sm+1

(jm)

]
⊗Ws

[
v̄(m+2)
sm+1

]
.

Alternating linear solver

The Oseen equation given by (19) is a large linear system for y, and needs to be solved
keeping all the components in the TT format in order to keep the storage requirements low. A
state of the art approach to this problem is alternating tensor product algorithms [48, 41, 26].
Given the system Ay = b, we iterate over ` = 1, . . . , D, and seek only the elements of
y(`) in each step, while the other TT blocks are fixed. Notice that the TT format (24) is
linear with respect to the elements of each y(`), i.e., there exists a matrix Y` (34) such that
y = Y`y

(`). This renders Ay = b an overdetermined system AY`y
(`) = b w.r.t. the elements

of y(`). This system is resolved via a projection onto Y`, such that y(`) is computed from a
smaller system

(
Y >` AY`

)
y(`) = Y >` b. Particularly efficient realizations are the Density Matrix

Renormalization Group (DMRG) methods from quantum physics [48, 28] and the Alternating
Minimal Energy (AMEn) algorithm [16] from the mathematical community. The DMRG
approach computes two neighboring TT blocks in each step, say, ` and ` + 1, which allows
to adapt the TT rank r` to the desired accuracy. While the DMRG method was found to
be extremely effective for spin Schroedinger eigenvalue problems, it may deliver insufficient
accuracy for linear systems, especially with non-symmetric matrices. The AMEn method
is usually faster and more robust, since it seeks only one TT block in each step, but then
performs an explicit augmentation of the computed TT block of the solution by a TT block
of the current residual. This allows to change TT ranks and facilitate convergence.

However, the standard AMEn method is not applicable to A directly: due to indefiniteness
of A, its Galerkin projection may be degenerate. For example, consider

A =

1 0 1
0 1 1
1 1 0

 and Y` =

0
0
1

 .
One can readily verify that Y >` AY` = 0. To cope with this issue, we employ the so-called block
TT format [15] and project each submatrix of A separately.

Let us enumerate the components of (19) as yι, where y1 = vh, y2 = ph, y3 = uh, y4 = λh
and y5 = µh. We approximate all components simultaneously by a TT format with the same
blocks except the `-th one for some ` = 1, . . . , D, where the enumerator ι = 1, . . . , 5 appears,

yι(i) =
∑

s1,...,sD−1

y(1)
s1

(i1) · · · y(`)
s`−1,s`

(i`, ι) · · · y(D)
sD−1

(iD). (32)
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Using an SVD of the core y(`), we can turn (32) into the form

yι(i) =
∑

s1,...,sD−1

y(1)
s1

(i1) · · · y(`)
s`−1,s`

(i`) · y(`+1)
s`,s`+1

(i`+1, ι) · · · y(D)
sD−1

(iD)

or vice versa. That is, we can move ι to any particular TT block in the course of the alternating
iteration [15]. When the `-th block carries ι = 1, . . . , 5, the Oseen system (19) is projected
onto the other TT blocks component by component, giving a system M̂1 0 −K̂∗

0 βM̂2 M̂T
3

−K̂ M̂3 0

 y(`) =

0
0
ĝ

 (33)

on the components of the current TT block. Here, Â = Y T
` AY` for A ∈ {K,M1,M2,M3}

are the submatrices projected onto the Galerkin basis Y` composed from the frozen TT blocks,

Y`(i, s`−1i
′
`s`) = y(1)(i1) · · · y(`−1)

:,s`−1
(i`−1) · In`(i`, i′`) · y(`+1)

s`,:
(i`+1) · · · y(D)(iD), (34)

where “:” stands for the full index range.
Under certain assumptions on the original system, one can prove that the block-reduced

system (33) is not degenerate.

Theorem 1. Suppose that the symmetric parts of K and K∗ are positive, K + K> > 0,
K∗ +K∗> > 0. Then the reduced matrix in (33) is invertible.

Proof. Due to the Poincaré theorem, the eigenvalues of an orthogonal projection of a sym-
metric matrix interlace with the eigenvalues of the original matrix. In particular,

λmin(K̂ + K̂>) = λmin

(
Y >k (K +K>)Yk

)
≥ λmin(K +K>) > 0.

We also use that Yk is orthogonal in the AMEn method. So, the symmetric part of K̂ (as
well as of K̂∗) is positive. Moreover, by the same interlace theorem we have that M̂1 ≥ 0 and
M̂2 > 0. Now employ [9, Theorem 3.2], which says that sufficient conditions for the KKT
matrix to be invertible are that the matrix of constraints

[
−K̂ M̂3

]
is full rank, and

ker

[
M̂1 0

0 βM̂2

]
∩ ker

[
−K̂ M̂3

]
= {0}.

The first condition is fulfilled since K̂ is invertible. To verify the second criterion, consider a
vector in the kernel of the constraints, which has the form

w =

[
y
u

]
=

[
K̂−1M̂3u

u

]
, ∀u 6= 0.

Now check if it belongs to the kernel of the other matrix:

w>
[
M̂1 0

0 βM̂2

]
w = u>M̂>

3 K̂
−>M̂1K̂

−1M̂3u+ βu>M̂2u > 0,

since u>M̂2u > 0 while the first term is non-negative. Together with positive semi-definiteness
of blkdiag(M̂1, βM̂2), this yields that w is not in its kernel.
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The second modification to the AMEn algorithm is the unification of sizes and elimination
of pressures. Note that the last (D-th) TT block carries the spatial degrees of freedom, and
different components of yι have different numbers of spatial basis functions: Nv for vh, uh and
λh, and Np for ph and µh. The Galerkin matrix Y` has always the same number of rows; we
make it Ntn

m
ξ Nv, i.e. consistent with vh, uh and λh.

The state and adjoint pressures are on the one hand more difficult, since they are of
different sizes, and moreover make K itself saddle-point, but on the other hand they are only
connected with the other components via a Kronecker-rank-1 matrix B = INt ⊗ I⊗mnξ ⊗ B.
Therefore, we can compute the pressure components only within the D-th, the spatial, block.
When we proceed to ` < D (time and stochastic variables), we eliminate the pressures in

a Gauss-Seidel fashion: having originally K =

[
A BT

B 0

]
, we project only the velocity part

K̂ = Y T
` AY` in the left hand side, and cast Y T

` B
Tph and Y T

` B
Tµh to the right hand side.

The consequence is two-fold: the velocity part A is positive definite, hence so is K̂, and all
sizes are now consistent.

Preconditioning

Even the reduced system (33) can still be rather large: for ` = D for example, it is of size
(3Nv + 2Np)rm+1. Therefore, we use GMRES with the matching preconditioner [45, 5], based
on approximating the Schur complement. The reduced matrix admits a (straightforwardly
verifiable) decomposition M̂1 0 −K̂∗

0 βM̂2 M̂T
3

−K̂ M̂3 0

 =

I ∗ ∗I
I

 −Ŝ
βM̂2 M̂T

3

−K̂ M̂3 0

 , (35)

where Ŝ = K̂∗ + M̂1K̂
−1M̂3(βM̂2)−1M̂T

3 . Next, we use the second (anti-triangular) factor in
(35) as a preconditioner. However, K̂ and Ŝ must be approximated to make solving linear
systems with them feasible.

The first matrix has the Kronecker form

K̂ = Î ⊗ L+ Ĉ ⊗M+

rm+1∑
s=1

D̂s ⊗Ns,

where Î, Ĉ and D̂s are INt ⊗ I⊗mnξ , Cτ−1 ⊗ I⊗mnξ and the parts of the convection matrix (31),

respectively, projected via Ym+2. We approximate K̂ by the following Sylvester operator:

K̃ = Î ⊗

(
L+

rm+1∑
s=1

Eλ(D̂s) · Ns

)
+ Ĉ ⊗M,

where Eλ(D̂s) is an average of the eigenvalues of D̂s (it is symmetric, since so is the time-
stochastic part of N ). Now K̃ can be inverted by the Bartels-Stewart method, since Ĉ is
small and can be easily Schur-factorized.
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For the Schur complement Ŝ we use the matching factorisation,

S̃ =

(
K̂∗ +

1

c
M̂1

)
K̂−1

(
K̂ + c · M̂3(βM̂2)−1M̂T

3

)
, (36)

where c > 0 is a normalization constant. Traditionally it is proposed [45, 5] to take c =
√
β,

and this is indeed an optimal choice for the distributed control. For the boundary control,
however, M̂3(βM̂2)−1M̂T

3 is significantly rank-deficient, and an optimal c may differ. We look
for c that minimizes the residual of the system (S̃−1Ŝ)u = S̃−1f with a random right-hand
side f after 5 GMRES iterations. Since it is difficult to differentiate the GMRES residual
w.r.t. c, we employ the zero-order golden section optimization algorithm [12], initialized with
an interval log10 c ∈ [log10

√
β − 6, log10

√
β + 6]. Fortunately, it is sufficient to perform this

procedure in the first Picard iteration only, as the optimal c does not seem to change in the
latter. To solve systems with S̃ efficiently, we also approximate the factors in brackets in (36)
by Sylvester matrices, similarly to K̃.

The full Algorithm 1 combines the standard Picard iteration for the Navier-Stokes equation
[19] and the AMEn iteration in the block TT format [5].

5 Numerical results

We implemented the computational codes on the basis of the Matlab TT-Toolbox [35] and
the IFISS 3.3 toolbox [42] and run on one core of the otto cluster at MPI Magdeburg, an
Intel Xeon X5650 @ 2.67GHz. The main focus of this paper is the numerical scheme, hence
we vary the model and discretization parameters one by one. The default parameters, unless
otherwise stated, are presented in Table 1.

Table 1: Default model and discretization parameters
ε ν β Nt T h nξ γ m

10−4 0.1 10−2 210 30 2−3 8 4 4

The natural indicators of computational complexity are the CPU time and the number of
iterations, while the storage complexity of the TT representation is governed by the TT ranks.
We show the maximal TT rank and the memory saving ratio of the TT format, compared to
the full tensor representation, i.e.

MemR =
Ntr1 +

∑m
`=1 r`r`+1nξ + rm+1Nv

Ntnmξ Nv

.

The smaller the TT ranks, the smaller is this ratio, which indicates the storage savings.
As a quantity of interest, we compute the average squared norm of vorticity ‖∇ × v‖2,

where the norm is taken in L2([0, T ]) × L2(Ω) × L2(D), i.e. the doubled first term of the
functional (2).

The largest problem was solved with m = 8, Nt = 1024 and h = 2−4; this value of h
gives Nv = 23042 and Np = 2945. Thus, the number of unknowns in the full KKT problem
would be (3Nv + 2Np) · nξm · Nt = 1.29 × 1015. Note that the number of TT elements is
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Algorithm 1 Block AMEn-Picard iteration for solving the stochastic inverse Navier-Stokes
equations in the TT format

1: Initialize vh = uh = λh = 0, ph = µh = 0.
2: Initialize the block TT format (32) with ι placed in y(m+2).
3: for iter=1,2,. . . do
4: Copy v̄h = vh, p̄h = ph, ūh = uh, λ̄h = λh, µ̄h = µh.
5: Construct the convection matrices N [v̄h] and W [v̄h] (31).
6: Construct and solve the projected system (33) for ` = m+ 2.
7: Extract individual components vh = y1, ph = y2,uh = y3,λh = y4, µh = y5.
8: if ‖vh − v̄h‖ ≤ ε‖vh‖, ‖ph − p̄h‖ ≤ ε‖ph‖ and ‖uh − ūh‖ ≤ ε‖uh‖ then
9: Stop.

10: end if
11: Assemble yι from y1 = vh, y2 = uh, y3 = λh only.
12: Apply the SVD to y(m+2) and move ι to y(m+1).
13: for ` = m+ 1,m, . . . , 1, 2, . . . ,m+ 1 do
14: Construct and solve an analog of (33) with fixed pressures,M̂1 0 −Â∗

0 βM̂2 M̂T
3

−Â M̂3 0

 y(`) =

 −Y T
` B

Tµh
0

ĝ − Y T
` B

Tph


15: Apply the SVD to y(`).
16: if ` is increasing then
17: Move ι to y(`+1).
18: else
19: Move ι to y(`−1).
20: end if
21: end for
22: end for

(3Nv + 2Np)r+mnξr
2 +Ntr; but since the first term is dominating, it suffices to estimate the

whole cost with the first term. The maximum ranks are 70 for the distributed control and 120
for the boundary control cases (see Figures 6 and 13 right, respectively). This gives roughly
5 and 9 millions of unknowns.

5.1 Distributed control

5.1.1 Discretization parameters

In the first series of tests we consider the distributed control, applied in the right hand side
of (9). We start with verifying correctness of the discretization schemes. We show the results
for different spatial mesh sizes in Fig. 2, and for different time step sizes in Fig. 3.

The number of spatial degrees of freedom grows quadratically with the number of steps in
each dimension. Since we use a direct solver for the spatial Stokes-like problems in (36), the
computational complexity is higher; in particular, it grows proportionally to h−2.5 in Fig. 2.
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To estimate the discretization error, we take the vorticity from the finest grid h = 2−4 as the
reference value ‖∇ × v∗‖, and compare it with the values on coarser grids. We observe the
convergence order h1.5, which is reasonable for the backstep domain, containing a corner with
an angle 3π/2; see e.g., [3, 2].

In order to keep the same number of stochastic variables throughout the spatial mesh
test, we restrict it to m = 2. This is necessary since the higher KLE components in (4)
are not resolved on the coarsest grid in this test, and the problem would be in a severely
pre-asymptotic regime otherwise.

The TT ranks grow very moderately with the grid sizes, with the asymptotic dependence
close to logarithmic. Since the full tensor storage, proportional to both Nv and Nt grows much
faster, this leads actually to a decrease of the memory ratio with both spatial (Fig. 2) and
time (Fig. 3) grid refinement.

The CPU time versus the time grid size demonstrates two regions. For smaller numbers
of time steps, solution of the spatial problems is dominating in the total complexity, while
the TT ranks grow logarithmically. This leads to a logarithmic growth of the CPU time as
well. When the number of time steps is large, the temporal problems become the most time
consuming, and the CPU time starts to grow linearly with Nt (the actual estimated order is
1.2 due to the additional logarithmic growth of the ranks).

The implicit Euler time discretization manifests an expected convergence of the first order.
Here the reference vorticity ‖∇ × v?‖ is computed at the Nt = 215 grid.

Figure 2: CPU time and convergence w.r.t. grid refinement (left) and TT rank and memory
reduction ratio (right) for different spatial mesh sizes. Change of defaults: m = 2.
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5.1.2 Robustness with respect to model parameters: viscosity, KLE decay rate
and dimension

Having checked the discretization schemes, we can vary the other model parameters and see
how the performance and the quantity of interest behave. In Fig. 4 we vary the viscosity from
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Figure 3: CPU time and convergence w.r.t. grid refinement (left) and TT rank and memory
reduction ratio (right) for different numbers of time steps.
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10−1 to 10−4 and track the computational time and the number of Picard iterations (left), as
well as the storage indicators and the quantity of interest (right). We see that the CPU time
grows only logarithmically with the Reynolds number, and 3 Picard iterations are enough for
the nonlinear system to converge. This is also the case for other experiments with a sufficient
control, i.e. with the distributed control and small enough β, that was observed previously [14]
for a deterministic problem as well. The TT rank (and hence memory ratio) and the vorticity
remain at almost the same level (compared to variation of other parameters and other tests),
which indicates that the minimal-vorticity solution is similar to the Stokes flow, fully defined
by the domain and boundary conditions, rather than the viscosity.

Figure 4: CPU time and the number of Picard iterations (left) and TT rank, memory reduction
ratio and the vorticity (right) for different kinematic viscosities.
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There are two parameters defining the “randomness” of the problem: the decay rate of
the KLE coefficients γ, and the total number of KLE components after truncation m, see (5).
The smaller is γ, the slower is the decay, and hence the larger is the number of “effective”
dimensions. This makes the problem more difficult to solve, as we observe in Fig. 5.

Figure 5: CPU time and the vorticity (left) and TT rank and the memory reduction ratio
(right) for different KLE decay rates γ.
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Increasing the number of stochastic variables faces the same issue as decreasing the number
of spatial grid points: a coarse spatial grid may not resolve the latter KLE terms. In order to
vary m up to 8, we employ the spatial grid with h = 2−4. The results are shown in Fig. 6.
The CPU times grows milder than linearly with m since (a) the most time-consuming stage
is still the solution of the spatial problems, and (b) the model saturates with larger m due
to the decaying KLE series. The latter phenomenon is also illustrated by convergence of the
vorticity norm with m.

This example illustrates how the TT decomposition gets rid of the curse of dimensionality.
The total number of degrees of freedom in a full tensor would grow exponentially in m,
while the TT ranks (and hence the TT storage) grow milder than linearly. This leads to an
exponential decay of the memory reduction ratio, which reaches 9 orders of magnitude for the
largest dimension.

5.1.3 Influence of the regularization

In Fig. 7, we investigate how the model and the scheme depend on the regularization parameter
β. Setting β � 1 means solving almost an uncontrolled problem, while β < 1 corresponds to
a control with a certain “power”. We see that the CPU time and TT ranks grow significantly
with β, when the model switches from effectively Stokes to an essentially nonlinear Navier-
Stokes regime. This is also reflected by a larger number of Picard iterations, needed for the
system to converge. The norm of vorticity starts growing fast when β exceeds 1. On the other
hand, for very large β > 10 we observe a slight decrease of the CPU time due to a smaller
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Figure 6: CPU time and the vorticity (left) and TT rank and the memory reduction ratio
(right) for different numbers of stochastic variables m. Change of defaults: h = 2−4.
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number of the local GMRES iterations: the KKT matrix becomes anti-diagonally dominant,
and the preconditioner (36) becomes more efficient.

Figure 7: CPU time and the number of Picard iterations (left) and TT rank, memory reduction
ratio and vorticity (right) for different regularization parameters.
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Figures 8 and 9 show the first two moments of the velocity and control for the final
time. For comparison, the uncontrolled flow is shown in Figure 10. We can notice that the
uncontrolled flow is more aligned to the top of the domain, while developing an eddy below the
step. The controlled minimal vorticity flow reflects the regime of a larger viscosity. Moreover,
the reattachment point shrinks significantly compared to that in Figure 10.
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Figure 8: Plots of the mean (top) and variance (bottom) of the stream function for an unsteady
distributed control flow with ν = 1/50 at t = 10
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Figure 9: Plots of the mean (top) and variance (bottom) of the control for an unsteady
distributed control flow with ν = 1/50, nt = 1024.
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5.2 Time-dependent boundary control problem

Now we switch to the boundary control, applied as a Neumann boundary condition on the
step wall (9). The problem is more difficult since the partial control cannot fully steer the
flow to the Stokes regime. Strongly nonlinear effects that remain in the flow inflate the TT
ranks and slow down the convergence.
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Figure 10: Stream function for an unsteady uncontrolled flow at t = 10.
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In particular, in Fig. 11 we show how the scheme behaves for different viscosities. We see
that, compared to the distributed control case, even the case ν = 1/50 is difficult to solve
due to very large TT ranks. On the other hand, changing the regularization parameter (Fig.
12) does not influence the cost and storage complexities as much as in the distributed control
case. In fact, taking small β in the partial control case leads to a poor performance of the
Schur complement preconditioner, and hence a large CPU time due to a large number of local
GMRES iterations. Nevertheless, smaller vorticity norm and number of Picard iterations for
β < 1 indicates that the target functional is optimized as expected.

Figure 11: CPU time and the number of Picard iterations (left) and TT rank and memory
reduction ratio (right) for different viscosities with the boundary control.
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Concerning the stochastic parameters, we see qualitatively the same behaviour as in the
distributed control case: all complexity indicators increase for smaller γ and larger m, although
the CPU time and TT ranks saturate with m, see Fig. 13.

5.3 Stationary boundary control problem

One of the sources of the rank inflation in the previous section is the simultaneous storage of
all time snapshots in a single TT representation. In the next tests we consider the stationary
Navier-Stokes equations as constraints. In Fig. 14, we vary the viscosity, and in Fig. 15
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Figure 12: CPU time and the number of Picard iterations (left) and TT rank and vorticity
(right) for different regularization parameters of the boundary control.

−3 −2 −1 0 1 2

10000

12000

14000

16000

18000

20000

log10 β

CPU Time

CPU Time
Picard iterations

5

5.5

6

6.5

7

Picard iterations

−3 −2 −1 0 1 2
80

100

120

140

160

180

log10 β

max. TT rank

max. TT rank

‖∇ × v‖2

11.1

11.15

11.2

11.25

11.3

11.35

11.4

‖∇ × v‖2

Figure 13: CPU time and the TT rank for different KLE decays (left) and KLE dimensions
(right), boundary control.

1 1.5 2 2.5 3 3.5 4

15000

20000

25000

30000

γ

CPU Time

CPU Time
max. TT rank 160

180

200

220

240

260

280

max. TT rank

2 3 4 5 6 7 8

15000

20000

25000

30000

m

CPU Time

CPU Time
max. TT rank 60

70

80

90

100

110

120

max. TT rank

we investigate the influence of the regularization parameter. We see that the results reflect
qualitatively the behaviour of the time-dependent problem with the boundary control, i.e. the
stochastic components are also strongly coupled due to the nonlinearity, and it needs more
Picard iterations and larger TT ranks for the solution to converge in a low viscosity regime.
Nonetheless, the TT ranks (and hence the computational times) are much smaller than in the
time-dependent case.

Finally, Figures 16 and 17, depict the moments of the velocity and control of the stationary
boundary controlled flow. The boundary controlled flow still manifests an eddy around the
corner. Nonetheless, it corresponds to a smaller vorticity than in the uncontrolled regime (Fig.
10), where there is a rather sharp interface between the main stream and the corner area. We
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Figure 14: CPU time and number of Picard iterations (left) and TT rank and memory reduc-
tion ratio (right) for different viscosities, boundary control, stationary problem.
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Figure 15: CPU time and number of Picard iterations (left) and TT rank and vorticity (right)
for different regularization parameters, boundary control, stationary problem.
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also remark that the number of Picard iterations remains generally below 10, with just a few
exceptions.

6 Conclusions and outlook

We demonstrated the applicability of low-rank tensor decompositions to the solution of optimal
control problems constrained by unsteady Navier-Stokes equations with stochastic inputs.
This problem has a threefold challenge: a nonlinear time-dependent PDE, an optimization
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Figure 16: Plots of the mean (top) and variance (bottom) of the stream function for a sta-
tionary boundary control flow with ν = 1/50.
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Figure 17: Plots of the mean (top) and variance (bottom) of control for a stationary boundary
control flow with ν = 1/50.
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problem using a Lagrangian approach, and random inputs. In a classical stochastic Galerkin
discretization one needs to multiply the numbers of degrees of freedom coming from space,
time and stochastic quantities. In particular, the outer optimization implies storing all time
snapshots, and random quantities are introduced as independent variables.

We never store or compute all elements of such a solution as this would quickly become
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infeasible even on large computers. Instead we compress them into the Tensor Train repre-
sentation. A crucial part of the scheme is an alternating iterative solver, which computes the
TT factors directly. Although known in the multilinear algebra community, this idea required
substantial modifications in order to be applicable to the OPNS. We preserve the saddle-
point structure in the reduced model and accommodate components of different sizes, such
as the boundary control. Moreover, given a low-rank representation of the previous solution,
we assemble the linearized operator also in a low-rank form. The scheme provides a signifi-
cant reduction of complexity, up to 9 orders of magnitude for the largest number of random
variables.
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