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Abstract

We present an extension of the Standard Model that results from the dimensional
reduction of the N = 1, 10D E8 group over a M4 × B0/Z3 space, where B0 is the
nearly-Kähler manifold SU(3)/U(1)×U(1) and Z3 is a freely acting discrete group
on B0. Using the Wilson flux breaking mechanism we are left in four dimensions
with an N = 1 SU(3)3 gauge theory. Below the unification scale we have a two
Higgs doublet model in a split-like supersymmetric version of the Standard Model,
which yields third generation quark and light Higgs masses within the experimental
limits and predicts the LSP ∼ 1500 GeV .

1 Introduction

The origins of our study lie in context of the pioneering work of Forgacs-Manton (F-M) and
Scherk-Schwartz (S-S) who studied the Coset Space Dimensional Reduction (CSDR) [1–3]
and the group manifold reduction [4], respectively. Roughly, these mechanisms share
a common view with another (almost) contemporary framework to them, that of the
superstring theories [5], in the sense that they result with GUTs which originate from
a spacetime that is extra-dimensional, as, in particular, in the heterotic string [6]. The
two approaches found contact in the sense that CSDR incorporated the predictions of the
heterotic string, that is the number of extra dimensions and the gauge group of the initial
theory. In both, S-S and F-M, mechanisms, in the higher-dimensional theory, the gauge
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and scalar sector are unified and, specifically in the CSDR case, fermions of the higher-
dimensional theory lead to Yukawa interactions in the 4D one. Also, it is remarkable that
it can lead to 4D chiral theories [7]. An additional important property of the CSDR
breaks the original supersymmetry of a theory, either completely when is reduced over
symmetric cosets or softly in the case of the 6D non-symmetric [8] ones which are all
nearly-Kähler manifolds admitting a connection with torsion [9–11].

Performing the dimensional reduction of an N = 1 supersymmetric gauge theory, a
very important and desired property is the amount of supersymmetry of the initial theory
to be preserved in the 4D one. In the present letter we re-examine the dimensional
reduction of E8 over SU(3)/U(1)×U(1)×Z3, where the latter is the non-symmetric coset
space SU(3)/U(1)× U(1) equipped with the freely acting discrete symmetry Z3 in order
that the Wilson flux breaking mechanism to get induced for further reduction of the gauge
symmetry of the 4D GUT, specifically to SU(3)3 along with two U(1) global symmetries
[2,8,9,12] (see also [13]). The potential of the resulting 4D theory contains terms that can
be identified as F -, D- and soft breaking terms, which means that the resulting theory is
a (broken) N = 1 supersymmetric theory.

In our case, the compactification and unification scales coincide, leading to a split-like
supersymmetry scenario in which some supersymmetric particles are superheavy, while
others obtain mass in the TeV region. After the employment of the spontaneous symmetry
breaking of the GUT, the model can be viewed as a two Higgs doublet model (2HDM)
which is phenomenologically consistent, since it produces masses of the light Higgs boson
and the top and the bottom quarks within the experimental range.

2 Dimensional Reduction of E8 over SU(3)/U(1)×U(1)
In this section we focus directly on the application of the CSDR scheme in which we are
interested. For a more complete picture of the geometry of coset spaces see [2, 14]. Also,
for the main aspects of the CSDR, the generalized methodology of the reduction and the
treatment of the constraints, see ref. [2].

Let us now demonstrate an illustrative example of the CSDR scheme, that is the case
of an N = 1 supersymmetric E8 YM theory, which undergoes a dimensional reduction
over the non-symmetric coset space SU(3)/U(1)× U(1) [2, 8, 13]. The 4D YM action is:

S = C

∫

d4x tr

[

−1

8
FµνF

µν − 1

4
(Dµφa)(D

µφa)

]

+ V (φ) +
i

2
ψ̄ΓµDµψ − i

2
ψ̄ΓaDaψ , (1)

where it has been identified:

V (φ) = −1

8
gacgbdtr

(

f C
ab φC − ig[φa, φb])(f

D
cd φD − ig[φc, φd]

)

(2)

and tr(T iT j) = 2δij, where T i are the generators of the gauge group, C is the volume of
the coset, Dµ = ∂µ − igAµ is the 4D covariant derivative, Da is that of the coset and the
coset metric is given (in terms of its radii) by gαβ = diag(R2

1, R
2
1, R

2
2, R

2
2, R

2
3, R

2
3).
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The 4D gauge group is determined by the way the R = U(1) × U(1) is embedded in
E8 and is obtained by the centralizer of R = U(1)× U(1) in G = E8, that is:

H = CE8
(U(1)A × U(1)B) = E6 × U(1)A × U(1)B . (3)

Moreover, solving the constraints, the scalar and fermion fields that remain in the 4D the-
ory are obtained by the decomposition of the representation 248 -adjoint representation-
of E8 under U(1)A×U(1)B . Also, in order to result with the representations of the surviv-
ing fields of the 4D theory, it is necessary to examine the decompositions of the vector and
spinor representations of SO(6) under R = U(1)A×U(1)B (details in [2,8,12]). Therefore,
the CSDR rules imply that the surviving gauge fields (those of E6 × U(1)A × U(1)B) are
accommodated in three N = 1 vector supermultiplets in the 4D theory. Also, the matter
fields of the 4D theory end up in six chiral multiplets. Three of them are E6 singlets car-
rying U(1)A × U(1)B charges, while the rest are chiral multiplets. The unconstrained
fields transforming under E6 × U(1)A × U(1)B are:

αi ∼ 27(3, 1
2
), βi ∼ 27(−3, 1

2
), γi ∼ 27(0,−1), α ∼ 1(3, 1

2
), β ∼ 1(−3, 1

2
), γ ∼ 1(0,−1)

and the scalar potential of the theory is:

2

g2
V (αi, α, βi, β, γi, γ) =

2

5

(

1

R4
1

+
1

R4
2

+
1

R4
3

)

+

(

4R2
1

R2
2R

2
3

− 8

R2
1

)

αiαi +

(

4R2
1

R2
2R

2
3

− 8

R2
1

)

ᾱα

+

(

4R2
2

R2
1R

2
3

− 8

R2
2

)

βiβi +

(

4R2
2

R2
1R

2
3

− 8

R2
2

)

β̄β

+

(

4R2
3

R2
1R

2
2

− 8

R2
3

)

γiγi +

(

4R2
3

R2
1R

2
2

− 8

R2
3

)

γ̄γ

+

[√
280

(

R1

R2R3
+

R2

R1R3
+

R3

R2R1

)

dijkα
iβjγk+

√
280

(

R1

R2R3
+

R2

R1R3
+

R3

R2R1

)

αβγ+h.c

]

+
1

6

(

αi(Gα)jiαj + βi(Gα)jiβj + γi(Gα)jiγj

)2

+
10

6

(

αi(3δji )αj + ᾱ(3)α+ βi(−3δji )βj + β̄(−3)β

)2

+
40

6

(

αi(1
2
δji )αj + ᾱ(1

2
)α + βi(1

2
δji )βj + β̄(1

2
)β + γi(−1δji )γ

j + γ̄(−1)γ

)2

+ 40αiβjdijkd
klmαlβm + 40βiγjdijkd

klmβlγm + 40αiγjdijkd
klmαlγm

+ 40(ᾱβ̄)(αβ) + 40(β̄γ̄)(βγ) + 40(γ̄ᾱ)(γα) ,

being also positive definite. In the above expression of the scalar potential, the F−, D−
and soft supersymmetry breaking terms are identified. The F -terms emerge from the
superpotential:

W(Ai, Bj, Ck, A, B, C) =
√
40dijkA

iBjCk +
√
40ABC , (4)
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while the D-terms are structured as:

1

2
DαDα +

1

2
D1D1 +

1

2
D2D2 , (5)

where the D quantities are calculated as:

Dα =
1√
3

(

αi(Gα)jiαj + βi(Gα)jiβj + γi(Gα)jiγj

)

,

D1 =

√

10

3

(

αi(3δji )αj + ᾱ(3)α + βi(−3δji )βj + β̄(−3)β
)

D2 =
√

40
3

(

αi(1
2
δji )αj + ᾱ(1

2
)α + βi(1

2
δji )βj + β̄(1

2
)β + γi(−1δji )γj + γ̄(−1)γ

)

.

Apart from the terms of the potential of Eq. (4) identified as F - and D- terms, the
remaining ones admit the interpretation of soft scalar masses and trilinear soft terms.
The gaugino demonstrates a special behaviour compared to the rest soft supersymmetric
terms, as can be seen in the following relation1:

M = (1 + 3τ)
R2

1 +R2
2 +R2

3

8
√

R2
1R

2
2R

2
3

. (6)

The next step is the minimization of the potential, which requires at least two of the
three singlets to acquire vevs at the compactification scale. For the purposes of our current
work we choose the singlets α and β to acquire vevs, while γ remains massless. This results
in the breaking of the two U(1), reducing our gauge group from E6 × U(1)A × U(1)B to
E6. The two abelian groups remain, however, as global symmetries, which will be very
useful in conserving Baryon number, as it will be discussed below.

3 Breaking by Wilson Flux mechanism

In the above section we presented the case in which the CSDR scheme is applied on a
higher-dimensional E8 gauge theory which is reduced over an SU(3)/U(1) × U(1) coset
space and leads to a 4D E6 gauge theory. However, the E6 group cannot be broken
exclusively by the presence of the 27 Higgs multiplet. For this reason, that is to reduce
the resulting gauge symmetry, the Wilson flux breaking mechanism is employed [15–17].
The below procedure can be found in detail in [12].

3.1 SU(3)3 produced by Wilson flux

The Wilson flux breaking mechanism, projects the theory in such a way that the surviving
fields are those which remain invariant under the action of the freely acting discrete

1The relation shows that the gauginos naturally obtain mass at the compactification scale [2]. This,
however, is prevented by the inclusion of the torsion [8], which is the case in the following construction.
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symmetry, the Z3, on their gauge and geometric indices. The non-trivial action of the Z3

group on the gauge indices of the various fields is parametrized by the matrix [18]:

γ3 = diag{13, ω13, ω
213} , (7)

where ω = ei
2π

3 . The latter acts on the gauge fields of the E6 gauge theory and a non-trivial
phase acts on the matter fields. First, the gauge fields that pass through the filtering of
the projection are those which satisfy the condition:

[AM , γ3] = 0 ⇒ AM = γ3AMγ
−1
3 (8)

and the remaining gauge symmetry is SU(3)c×SU(3)L×SU(3)R. The matter counterpart
of Eq. (8) for is:

~α = ωγ3~α, ~β = ω2γ3~β, ~γ = ω3γ3~γ , α = ωα, β = ω2β, γ = ω3γ . (9)

where ~α, ~β,~γ are the matter superfields which belong to the 27 representation and α, β, γ
the singlets that only carry U(1)A,B charges. The representations of the remnant group,
SU(3)c × SU(3)L × SU(3)R, in which the above fields are accommodated, are obtained
after considering the decomposition rule of the 27 representation of E6 under the new
group, (1, 3, 3̄) ⊕ (3̄, 1, 3) ⊕ (3, 3̄, 1). Therefore, in the projected theory we are left with
the following matter content:

α3 ≡ Ψ1 ∼ (3̄, 1, 3)(3, 1
2
), β2 ≡ Ψ2 ∼ (3, 3̄, 1)(−3, 1

2
), γ1 ≡ Ψ3 ∼ (1, 3̄, 3)(0,−1), γ ≡ θ(0,−1),

where the three former are the leftovers of ~α, ~β,~γ and together they form a 27 represen-
tation of E6, that means that the leftover content can be identified as one generation.
In order to obtain a spectrum consisting of three generations, one may introduce non-
trivial monopole charges in the U(1)s in R, resulting in a total of three replicas of the
above fields (where an index l = 1, 2, 3 can be used to specify each of the three families).

The scalar potential of the E6 (plus the global abelian symmetries) that was obtained
after the dimensional reduction of E8, Eq. (4), can now (that is after the adoption of
the Wilson flux breaking mechanism and the projection of the theory) be rewritten in the
SU(3)c × SU(3)L × SU(3)R language as [12]:

Vsc = 3 · 2
5

( 1

R4
1

+
1

R4
2

+
1

R4
3

)

+
∑

l=1,2,3

V (l) , (10)

in which:

V (l) = Vsusy + Vsoft = VD + VF + Vsoft . (11)

From now on, we give up on the generation superscript (l), since our analysis will be
focused on the third generation, and it will only be written explicitly when required.
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Regarding the D and F -terms, they are identified as:

VD =
1

2

∑

A

DADA +
1

2
D1D1 +

1

2
D2D2, (12)

VF =
∑

i=1,2,3

|FΨi
|2 + |Fθ|2, FΨi

=
∂W
∂Ψi

, Fθ =
∂W
∂θ

, (13)

where the F -terms derive from the expression:

W =
√
40dabcΨ

a
1Ψ

b
2Ψ

c
3 , (14)

while the D-terms are written explicitly as:

DA =
1√
3

〈

Ψi|GA|Ψi

〉

, (15)

D1 = 3

√

10

3
(
〈

Ψ1|Ψ1

〉

−
〈

Ψ2|Ψ2

〉

), (16)

D2 =

√

10

3
(
〈

Ψ1|Ψ1

〉

+
〈

Ψ2|Ψ2

〉

− 2
〈

Ψ3|Ψ3

〉

− 2|θ|2) . (17)

Last, the soft supersymmetry breaking terms are written down as:

Vsoft =

(

4R2
1

R2
2R

2
3

− 8

R2
1

)

〈

Ψ1|Ψ1

〉

+

(

4R2
2

R2
1R

2
3

− 8

R2
2

)

〈

Ψ2|Ψ2

〉

+

(

4R2
3

R2
1R

2
2

− 8

R2
3

)

(
〈

Ψ3|Ψ3

〉

+ |θ|2)

+ 80
√
2

(

R1

R2R3

+
R2

R1R3

+
R3

R1R2

)

(dabcΨ
a
1Ψ

b
2Ψ

c
3 + h.c) (18)

=m2
1

〈

Ψ1|Ψ1

〉

+m2
2

〈

Ψ2|Ψ2

〉

+m2
3

(

〈

Ψ3|Ψ3

〉

+ |θ|2
)

+ (αabcΨ
a
1Ψ

b
2Ψ

c
3 + h.c) . (19)

The (GA) b
a are the structure constants of the SU(3)c × SU(3)L × SU(3)R and therefore

antisymmetric in a and b. According to ref. [19], the vectors of the 27 of E6 can be written
in a more convenient form in the SU(3)c×SU(3)L×SU(3)R language, that is in complex
3× 3 matrices. Identification of:

Ψ1 ∼ (3̄, 1, 3) → (qc) α
p , Ψ2 ∼ (3, 3̄, 1) → (Q a

α ), Ψ3 ∼ (1, 3, 3̄) → L p
a , (20)

leads to the following relabeling and assignment of the particle content of the MSSM (and
more) in the above representation of the model:

qc =





dc1R uc1R Dc1
R

dc2R uc2R Dc2
R

dc3R uc3R Dc3
R



 , Q =





−d1L −d2L −d3L
u1L u2L u3L
D1

L D2
L D3

L



 , L =





H0
d H+

u νL
H−

d H0
u eL

νcR ecR S



 .

It is evident from the above that dL,R, uL,R, DL,R transform as 3, 3̄ under the colour group.
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4 Selection of parameters and GUT breaking

With the above-mentioned theoretical framework fully in place, it is time to specify the
compactification scale of the theory, as well as other (resulting) quantities, in order to
proceed to phenomenology.

4.1 Choice of radii

We will examine the case where the compactification scale is high2, and more specifically
MC =MGUT . Thus for the radii we have Rl ∼ 1

MGUT

, l = 1, 2, 3.
Without any special treatment, this results in soft trilinear couplings and soft scalar

masses around MGUT . However, we can select our third radius slightly different than the
other two in a way that yields:

m2
3 ∼ −O(TeV 2), m2

1,2 ∼ −O(M2
GUT ), aabc &MGUT . (21)

In other words, we have supermassive squarks and TeV -scaled sleptons. Thus, supersym-
metry is softly broken already at the unification scale, in addition to its breaking by both
D-terms and F -terms.

4.2 Further gauge symmetry breaking of SU(3)3

The spontaneous breaking of the SU(3)L and SU(3)R can be triggered by the following
vevs of the two families of L’s.

〈L(3)
s 〉 =





0 0 0
0 0 0
0 0 V



 , 〈L(2)
s 〉 =





0 0 0
0 0 0
V 0 0



 ,

where the s index denotes the scalar component of the multiplet. These vevs are singlets
under SU(3)c, so they leave the colour group unbroken. If we use only 〈L(3)

s 〉 we get the
breaking

SU(3)c × SU(3)L × SU(3)R → SU(3)c × SU(2)L × SU(2)R × U(1) , (22)

while if we use only 〈L(2)
s 〉 we get the breaking

SU(3)c × SU(3)L × SU(3)R → SU(3)c × SU(2)L × SU(2)′R × U(1)′ . (23)

Their combination gives the desired breaking [20]:

SU(3)c × SU(3)L × SU(3)R → SU(3)c × SU(2)L × U(1)Y . (24)

2In this case Kaluza-Klein excitations are irrelevant. Otherwise one would need the eigenvalues of the
Dirac and Laplace operators in the 6D compactification space.
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The configuration of the scalar potential just after the breaking gives vevs to the singlet of
each family (not necessarily to all three). In our case we have 〈θ(3)〉 ∼ O(TeV ) , 〈θ(1,2)〉 ∼
O(MGUT ).
Electroweak (EW) breaking then proceeds by the vevs [21]:

〈L(3)
s 〉 =





υd 0 0
0 υu 0
0 0 0



 .

4.3 Lepton Yukawa couplings and µ terms

Although the two U(1)s were already broken before the Wilson flux breaking, they still
impose global symmetries. As a result, in the lepton sector we cannot have invariant
Yukawa terms. However, below the unification scale, an effective term can occur from
higher-dimensional operators [12]:

LeHd

(K

M

)3

, (25)

where K is the vacuum expectation value of the conjugate scalar component of either
S(i), ν

(i)
R or θ(i), or any combination of them, with or without mixing of flavours. Using

similar arguments, one can also have mass terms for S(i) and ν
(i)
R , which will then be

rendered supermassive.
Another much needed quantity that is missing from our model is the µ term, one for

each family of Higgs doublets. In the same way, we can have:

H(i)
u H

(i)
d θ

(i)K

M
. (26)

The first two generations of Higgs doublets will then have supermassive µ terms, while
the µ term of the third generation will be at the TeV scale.

In order to avoid confusion, it is useful to sum up the scale of some important parameters
in Table 1.

Parameter Scale

soft trilinear couplings O(GUT )

squark masses O(GUT )

slepton masses O(TeV )

µ(3) O(TeV )

µ(1,2) O(GUT )

unified gaugino mass MU O(TeV )

Table 1: Approximate scale of parameters.
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5 Phenomenological Analysis

Like every GUT, this model considers all gauge couplings to start as one coupling g at
MGUT . However, since at the E8 level there is only one coupling, it is clear that the
(quark) Yukawa couplings are equal to g at MGUT as well. This makes the selection of a
large tanβ necessary. We use the unified coupling g as a boundary condition for all the
above-mentioned couplings at MGUT .

In our analysis we will use 1-loop beta functions for all parameters included. Below
the unification scale they run according the RGEs of the MSSM (squarks included) plus
the 4 additional Higgs doublets (and their supersymmetric counterparts) that come from
the two extra L multiplets of the first and second generations, down to an intermediate
scale Mint. Below this scale, all supermassive particles and parameters are considered
decoupled, and the RGEs used include only the 2 Higgs doublets that originate from
the third generation (and their respective Higgsinos), the sleptons and the gauginos.
Finally, below a second intermediate scale that we call MTeV , we run the RGEs of a
non-supersymmetric 2HDM.

5.1 Constraints

In our analysis we apply several experimental constraints, which we briefly review in this
subsection.
Starting from the strong gauge coupling, we use the experimental value [22]:

as(MZ) = 0.1187± 0.0016 . (27)

We calculate the top quark pole mass, while the bottom quark mass is evaluated at MZ ,
in order not to induce uncertainties that are inherent to its pole mass. Their experimental
values are [22]:

mexp
t = (172.4± 0.7) GeV , mb(MZ) = 2.83± 0.10 GeV . (28)

We interpret the Higgs-like particle discovered in July 2012 by ATLAS and CMS [23]
as the light CP-even Higgs boson of the supersymmetric SM. The (SM) Higgs boson
experimental average mass is [22]:

M exp
H = 125.10± 0.14 GeV . (29)

5.2 Gauge unification

A first challenge for each unification model is to predict a unification scale, while main-
taining agreement with experimental constraints on gauge couplings. The 1-loop gauge β
fuctions are given by:

2πβi = biα
2
i , (30)

where for the three energy regions the b coefficients are given in Table 2.
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Scale b1 b2 b3
MEW -MTeV

21
5 −3 −7

MTeV -Mint
11
2 −1

2 −5

Mint-MGUT
39
5 3 −3

Table 2: b coefficients for gauge RGEs.

The a1,2 determine the unification scale and the a3 is used to confirm that unification is
indeed possible. Using a 0.3% uncertainty at the unification scale boundary, we predict
the different scales of our model (shown on Table 3), while the strong coupling is predicted
within 2σ of the experimental value (Eq. (27)):

as(MZ) = 0.1218 . (31)

It should be noted that although the unification scale is somewhat lower than expected
in a supersymmetric theory, there is no fear of fast proton decay, as the U(1)A remaining
global symmetry can be immediately recognised as:

U(1)A = −1

9
B , (32)

where B is the baryon number. Therefore, the unification scale could, in principle, lie
even lower without such problems.

Scale GeV

MGUT ∼ 1.7× 1015

Mint ∼ 9× 1013

MTeV ∼ 1500

Table 3: Scale predicted by gauge unification.

5.3 Higgs potential

We once again turn our focus on the third family. After GUT breaking, the Higgs scalar
potential calculated from the D-, F - and soft terms of Sect. 3.1 is given by:

VHiggs =
(

3|µ(3)|2 +m2
3

)(

|H0
d |2 + |H−

d |2
)

+
(

3|µ(3)|2 +m2
3

)(

|H0
u|2 + |H+

u |2
)

+ b(3)
[

(H+
u H

−

D −H0
uH

0
D) + c.c.

]

+
10

3
g2
[

|H0
d |4 + |H−

d |4 + |H0
u|4 + |H+

u |4+

2|H0
d |2|H−

d |2 + 2|H−

d |2|H0
u|2 + 2|H0

d |2|H+
u |2 + 2|H0

u|2|H+
u |2

]

+
80

3
g2
[

|H0
d |2|H0

u|2 + |H−

d |2|H+
u |2

]

− 20g2
[

H0
dH

−

d H
0
uH

+
u + c.c.

]

, (33)
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where g is the gauge coupling at the unification scale and it is understood that the RG
running has not yet taken place. One can easily compare the above potential with the
standard 2 Higgs doublet scalar potential [24–26] and identify:

λ1 = λ2 = λ3 =
20

3
g2 , λ4 = 20g2 , λ5 = λ6 = λ7 = 0 (34)

The above relations are used as boundary conditions at GUT scale, then all the Higgs
couplings run using their RGEs (see [27] for the full expressions), which in turn change
appropriately for each energy interval explained above.

5.4 1-loop results

The Higgs couplings λi are evolved from the GUT scale down to the EW scale together
with the gauge couplings, the top, bottom and tau Yukawas, all at 1 loop. It is useful to
remind the reader that all gauge and quark Yukawa couplings use g as boundary condition,
while the tau Yukawa emerges from a higher-dimensional operator and has significantly
wider freedom. We use the standard tau lepton mass [22] as an input.

We consider uncertainties on the two important boundaries we consider, namelyMGUT

andMTeV , because of threshold corrections (for a more comprehensive discussion see [28]).
For simplicity we have considered degeneracy between all supersymmetric particles that
acquire masses at the TeV scale. The uncertainty of the top and bottom Yukawa couplings
on the GUT boundary is taken to be 6%, while on the TeV boundary is taken to be 2%.
For λ1,2 the uncertainty is 8% on both boundaries and for λ3,4 is 7% at GUT and 5% at
TeV .

Both top and bottom quark masses are predicted within 2σ of their experimental
values (Eq. (28)):

mb(MZ) = 3.00 GeV , m̂t = 171.6 GeV , (35)

while the light Higgs boson mass is predicted within 1σ of Eq. (29):

mh = 125.18 GeV . (36)

The model features a large tanβ ∼ 48. This is necessary, since the Yukawas begin from
the same value at the GUT boundary, so a large difference between the two vevs is needed
to reproduce the known fermion hierarchy. The pseudoscalar Higgs boson is considered
to have mass between 700− 3000 GeV .

The above 1-loop calculation could be subject to larger uncertainties, since they lack
the precision of a higher-loop analysis. The prediction of the full (light) supersymmetric
spectrum, a 2-loop analysis of the model, the application of more experimental constraints
(i.e. B-physics observables) and its discovery potential at present and/or future colliders
are planned for future work [29].
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6 Conclusions

Starting from an N = 1, 10D E8 Yang-Mills theory, we consider a compactified spacetime
M4×B0/Z3, where B0 is the non-symmetric manifold SU(3)/U(1)×U(1) and Z3 is a freely
acting discrete group on B0. Then we reduce dimensionally the E8 on this manifold and
we employ the Wilson flux mechanism leading in four dimensions to an N = 1 SU(3)3

gauge theory. We consider the compactification scale to match the unification scale, a
choice that results in a split-like SUSY scenario, where gauginos, Higgsinos (of the third
generation) and sleptons all acquire masses at ∼ 1500 GeV , and the rest supesymmetric
spectrum is superheavy (∼ MGUT ). The global U(1)A conserves Baryon number, a fact
which allows for the predicted unification scale ∼ 1015GeV . The 2HDM employed below
GUT predicts a light Higgs boson mass within the experimental limits, while the top and
bottom quark masses are also in (2σ) agreement with experimental measurements.

We would like to thank our collaborators Sven Heinemeyer, Pantelis Manousselis and
Myriam Mondragon for their contribution in parts of the present study and Peter For-
gacs, Louis Ibanez, Dieter Lust, Stefan Theisen, David Sutherland and Angel Uranga for
constructive discussions.
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