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We present an extension of the Standard Model that results from the dimensional reduction of the N = 1, 
10D E8 group over a M4 × B0/Z3 space, where B0 is the nearly-Kähler manifold SU (3)/U (1) × U (1) and 
Z3 is a freely acting discrete group on B0. Using the Wilson flux breaking mechanism we are left in four 
dimensions with an N = 1 SU (3)3 gauge theory. Below the unification scale we have a two Higgs doublet 
model in a split-like supersymmetric version of the Standard Model, which yields third generation quark 
and light Higgs masses within the experimental limits and predicts the LSP ∼ 1500 GeV.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The origins of our study lie in context of the pioneering work of Forgacs-Manton (F-M) and Scherk-Schwartz (S-S) who studied 
the Coset Space Dimensional Reduction (CSDR) [1–3] and the group manifold reduction [4], respectively. Roughly, these mechanisms 
share a common view with another (almost) contemporary framework to them, that of the superstring theories [5], in the sense that they 
result in GUTs which originate from a spacetime that is extra-dimensional, as, in particular, in the heterotic string [6]. The two approaches 
found contact in the sense that CSDR incorporated the predictions of the heterotic string, that is the number of extra dimensions and the 
gauge group of the initial theory. In both, S-S and F-M, mechanisms, in the higher-dimensional theory, the gauge and scalar sector are 
unified and, specifically in the CSDR case, fermions of the higher-dimensional theory lead to Yukawa interactions in the 4D one. Also, it 
is remarkable that it can lead to 4D chiral theories [7]. An additional important property of the CSDR breaks the original supersymmetry 
of a theory, either completely when is reduced over symmetric cosets or softly in the case of the 6D non-symmetric [8] ones which are 
all nearly-Kähler manifolds admitting a connection with torsion [9–11] (see also [12]).

Performing the dimensional reduction of an N = 1 supersymmetric gauge theory, a very important and desired property is the amount 
of supersymmetry of the initial theory to be preserved in the 4D one. In the present letter we re-examine the dimensional reduction of 
E8 over SU (3)/U (1) × U (1) × Z3, where the latter is the non-symmetric coset space SU (3)/U (1) × U (1) equipped with the freely acting 
discrete symmetry Z3 in order that the Wilson flux breaking mechanism to get induced for further reduction of the gauge symmetry of 
the 4D GUT, specifically to SU (3)3 along with two U (1) global symmetries [2,8,9,13] (see also [14]). The potential of the resulting 4D
theory contains terms that can be identified as F -, D- and soft breaking terms, which means that the resulting theory is a (broken) N = 1
supersymmetric theory.

In our case, the compactification and unification scales coincide, leading to a split-like supersymmetry scenario in which some su-
persymmetric particles are superheavy, while others obtain mass in the TeV region. After the employment of the spontaneous symmetry 
breaking of the GUT, the model can be viewed as a two Higgs doublet model (2HDM) which is phenomenologically consistent, since it 
produces masses of the light Higgs boson and the top and the bottom quarks within the experimental range.
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2. Dimensional reduction of E8 over S U (3)/U (1) × U (1)

In this section we focus directly on the application of the CSDR scheme in which we are interested. For a more complete picture of 
the geometry of coset spaces see [2,15]. Also, for the main aspects of the CSDR, the generalized methodology of the reduction and the 
treatment of the constraints, see ref. [2].

Let us now demonstrate an illustrative example of the CSDR scheme, that is the case of an N = 1 supersymmetric E8 YM theory, 
which undergoes a dimensional reduction over the non-symmetric coset space SU (3)/U (1) × U (1) [2,8,14]. The 4D YM action is:

S = C

∫
d4x tr

[
−1

8
Fμν F μν − 1

4
(Dμφa)(Dμφa)

]
+ V (φ) + i

2
ψ̄�μDμψ − i

2
ψ̄�a Daψ , (1)

where it has been identified:

V (φ) = −1

8
gac gbdtr

(
fab

C φC − ig[φa, φb])( fcd
DφD − ig[φc, φd]

)
(2)

and tr(T i T j) = 2δi j , where T i are the generators of the gauge group, C is the volume of the coset, Dμ = ∂μ − ig Aμ is the 4D covari-
ant derivative, Da is that of the coset and the coset metric is given (in terms of its radii) by gαβ = diag(R2

1, R
2
1, R

2
2, R

2
2, R

2
3, R

2
3).

The 4D gauge group is determined by the way the R = U (1) × U (1) is embedded in E8 and is obtained by the centralizer of R =
U (1) × U (1) in G = E8, that is:

H = C E8(U (1)A × U (1)B) = E6 × U (1)A × U (1)B . (3)

Moreover, solving the constraints, the scalar and fermion fields that remain in the 4D theory are obtained by the decomposition of the rep-
resentation 248 -adjoint representation- of E8 under U (1)A × U (1)B . Also, in order to obtain the representations of the surviving fields of 
the 4D theory, it is necessary to examine the decompositions of the vector and spinor representations of S O (6) under R = U (1)A × U (1)B

(details in [2,8,13]). Therefore, the CSDR rules imply that the surviving gauge fields (those of E6 × U (1)A × U (1)B ) are accommodated in 
three N = 1 vector supermultiplets in the 4D theory. Also, the matter fields of the 4D theory end up in six chiral multiplets. Three of 
them are E6 singlets carrying U (1)A × U (1)B charges, while the rest are chiral multiplets. The unconstrained fields transforming under 
E6 × U (1)A × U (1)B are:

αi ∼ 27(3, 1
2 ), βi ∼ 27(−3, 1

2 ), γi ∼ 27(0,−1), α ∼ 1(3, 1
2 ), β ∼ 1(−3, 1

2 ), γ ∼ 1(0,−1)

and the scalar potential of the theory is:

2

g2
V (αi,α,β i, β,γ i, γ ) = 2

5
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+
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3
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)
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(
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3
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(
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dijkα

iβ jγ k + √
280
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6

(
αi(Gα)

j
i α j + β i(Gα)

j
i β j + γ i(Gα)

j
i γ j

)2

+ 10

6

(
αi(3δ

j
i )α j + ᾱ(3)α + β i(−3δ

j
i )β j + β̄(−3)β

)2

+ 40

6

(
αi( 1

2 δ
j
i )α j + ᾱ( 1

2 )α + β i( 1
2 δ

j
i )β j + β̄( 1

2 )β + γ i(−1δ
j
i )γ

j + γ̄ (−1)γ

)2

+ 40αiβ jdi jkdklmαlβm + 40β iγ jdi jkdklmβlγm + 40αiγ jdi jkdklmαlγm

+ 40(ᾱβ̄)(αβ) + 40(β̄γ̄ )(βγ ) + 40(γ̄ ᾱ)(γ α) , (4)

being also positive definite. In the above expression of the scalar potential, the F−, D− and soft supersymmetry breaking terms are iden-
tified. The F -terms emerge from the superpotential:

W(Ai, B j, Ck, A, B, C) = √
40dijk Ai B jCk + √

40ABC , (5)

where Ai, B j, Ck are the superfields that are accommodated in the 27 representation and A, B, C are the superfields that are singlets 
under E6 and only have U (1) charges. The D-terms are structured as:

1

2
Dα Dα + 1

2
D1 D1 + 1

2
D2 D2 , (6)
2



G. Manolakos, G. Patellis and G. Zoupanos Physics Letters B 813 (2021) 136031
where the D quantities are calculated as:

Dα = 1√
3

(
αi(Gα)

j
i α j + β i(Gα)

j
i β j + γ i(Gα)

j
i γ j

)
,

D1 =
√

10

3

(
αi(3δ

j
i )α j + ᾱ(3)α + β i(−3δ

j
i )β j + β̄(−3)β

)
D2 =

√
40
3

(
αi( 1

2 δ
j
i )α j + ᾱ( 1

2 )α + β i( 1
2 δ

j
i )β j + β̄( 1

2 )β + γ i(−1δ
j
i )γ j + γ̄ (−1)γ

)
.

Apart from the terms of the potential of Eq. (4) identified as F - and D- terms, the remaining ones admit the interpretation of soft scalar 
masses and trilinear soft terms. The gaugino demonstrates a special behaviour compared to the rest soft supersymmetric terms, as can be 
seen in the following relation1:

M = (1 + 3τ )
R2

1 + R2
2 + R2

3

8
√

R2
1 R2

2 R2
3

. (7)

The next step is the minimization of the potential, which requires at least two of the three singlets to acquire vevs at the compactifi-
cation scale. For the purposes of our current work we choose the singlets α and β to acquire vevs, while γ remains massless. This results 
in the breaking of the two U (1), reducing our gauge group from E6 × U (1)A × U (1)B to E6. The two abelian groups remain, however, as 
global symmetries, which will be very useful in conserving Baryon number, as it will be discussed below.

3. Breaking by Wilson flux mechanism

In the above section we presented the case in which the CSDR scheme is applied on a higher-dimensional E8 gauge theory which is 
reduced over an SU (3)/U (1) × U (1) coset space and leads to a 4D E6 gauge theory. However, the E6 group cannot be broken exclusively 
by the presence of the 27 Higgs multiplet. For this reason, that is to reduce the resulting gauge symmetry, the Wilson flux breaking 
mechanism is employed [16–18]. The below procedure can be found in detail in [13].

3.1. SU (3)3 produced by Wilson flux

The Wilson flux breaking mechanism, projects the theory in such a way that the surviving fields are those which remain invariant 
under the action of the freely acting discrete symmetry, the Z3, on their gauge and geometric indices. The non-trivial action of the Z3

group on the gauge indices of the various fields is parametrized by the matrix [19]:

γ3 = diag{13,ω13,ω
213} , (8)

where ω = ei 2π
3 . The latter acts on the gauge fields of the E6 gauge theory and a non-trivial phase acts on the matter fields. First, the 

gauge fields that pass through the filtering of the projection are those which satisfy the condition:

[AM , γ3] = 0 ⇒ AM = γ3 AMγ −1
3 (9)

and the remaining gauge symmetry is SU (3)c × SU (3)L × SU (3)R . The matter counterpart of Eq. (9) is:

�α = ωγ3 �α, �β = ω2γ3 �β, �γ = ω3γ3 �γ , α = ωα, β = ω2β, γ = ω3γ . (10)

where �α, �β, �γ are the matter superfields which belong to the 27 representation and α, β, γ the singlets that only carry U (1)A,B charges. 
The representations of the remnant group, SU (3)c × SU (3)L × SU (3)R , in which the above fields are accommodated, are obtained af-
ter considering the decomposition rule of the 27 representation of E6 under the new group, (1, 3, ̄3) ⊕ (3̄, 1, 3) ⊕ (3, ̄3, 1). Therefore, in 
the projected theory we are left with the following matter content:

α3 ≡ �1 ∼ (3̄,1,3)(3, 1
2 ), β2 ≡ �2 ∼ (3, 3̄,1)(−3, 1

2 ), γ1 ≡ �3 ∼ (1, 3̄,3)(0,−1), γ ≡ θ(0,−1),

where the three former are the leftovers of �α, �β, �γ and together they form a 27 representation of E6, that means that the leftover content 
can be identified as one generation. In order to obtain a spectrum consisting of three generations, one may introduce non-trivial monopole 
charges in the U (1)s in R , resulting in a total of three replicas of the above fields (where an index l = 1, 2, 3 can be used to specify each 
of the three families).

The scalar potential of the E6 (plus the global abelian symmetries) that was obtained after the dimensional reduction of E8, Eq. (4), 
can now (that is after the adoption of the Wilson flux breaking mechanism and the projection of the theory) be rewritten in the SU (3)c ×
SU (3)L × SU (3)R language as [13]:

V sc = 3 · 2

5

( 1

R4
1

+ 1

R4
2

+ 1

R4
3

)
+

∑
l=1,2,3

V (l) , (11)

1 The relation shows that the gauginos naturally obtain mass at the compactification scale [2]. This, however, is prevented by the inclusion of the torsion [8], which is the 
case in the following construction.
3
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in which:

V (l) = V susy + V sof t = V D + V F + V sof t . (12)

From now on, we give up on the generation superscript (l), since our analysis will be focused on the third generation, and it will only be 
written explicitly when required. Regarding the D and F -terms, they are identified as:

V D = 1

2

∑
A

D A D A + 1

2
D1 D1 + 1

2
D2 D2, (13)

V F =
∑

i=1,2,3

|F�i |2 + |Fθ |2, F�i = ∂W
∂�i

, Fθ = ∂W
∂θ

, (14)

where the F -terms derive from the expression:

W = √
40dabc�

a
1�

b
2�

c
3 , (15)

while the D-terms are written explicitly as:

D A = 1√
3

〈
�i|G A |�i

〉
, (16)

D1 = 3

√
10

3
(
〈
�1|�1

〉 − 〈
�2|�2

〉
), (17)

D2 =
√

10

3
(
〈
�1|�1

〉 + 〈
�2|�2

〉 − 2
〈
�3|�3

〉 − 2|θ |2) . (18)

Last, the soft supersymmetry breaking terms are written down as:

V sof t =
(

4R2
1

R2
2 R2

3

− 8

R2
1

)〈
�1|�1

〉 +
(

4R2
2

R2
1 R2

3

− 8

R2
2

)〈
�2|�2

〉

+
(

4R2
3

R2
1 R2

2

− 8

R2
3

)
(
〈
�3|�3

〉 + |θ |2)

+ 80
√

2

(
R1

R2 R3
+ R2

R1 R3
+ R3

R1 R2

)
(dabc�

a
1�

b
2�

c
3 + h.c) (19)

=m2
1

〈
�1|�1

〉 + m2
2

〈
�2|�2

〉 + m2
3

(〈
�3|�3

〉 + |θ |2
)

+ (αabc�
a
1�

b
2�

c
3 + h.c) . (20)

The (G A)a
b are the structure constants of the SU (3)c × SU (3)L × SU (3)R and therefore antisymmetric in a and b. According to ref. [20], 

the vectors of the 27 of E6 can be written in a more convenient form in the SU (3)c × SU (3)L × SU (3)R language, that is in complex 3 × 3
matrices. Identification of:

�1 ∼ (3̄,1,3) → (qc)p
α, �2 ∼ (3, 3̄,1) → (Q a

α), �3 ∼ (1,3, 3̄) → La
p , (21)

leads to the following relabelling and assignment of the particle content of the MSSM (and more) in the above representation of the 
model:

qc =
⎛
⎜⎝

dc1
R uc1

R Dc1
R

dc2
R uc2

R Dc2
R

dc3
R uc3

R Dc3
R

⎞
⎟⎠ , Q =

⎛
⎜⎝

−d1
L −d2

L −d3
L

u1
L u2

L u3
L

D1
L D2

L D3
L

⎞
⎟⎠ , L =

⎛
⎜⎝

H0
d H+

u νL

H−
d H0

u eL

νc
R ec

R S

⎞
⎟⎠ .

It is evident from the above that dL,R , uL,R , D L,R transform as 3, ̄3 under the colour group.

4. Selection of parameters and GUT breaking

With the above-mentioned theoretical framework fully in place, it is time to specify the compactification scale of the theory, as well 
as other (resulting) quantities, in order to proceed to phenomenology.

4.1. Choice of radii

We will examine the case where the compactification scale is high,2 and more specifically MC = MGU T . Thus for the radii we have 
Rl ∼ 1

MGU T
, l = 1, 2, 3.

Without any special treatment, this results in soft trilinear couplings and soft scalar masses around MGU T . However, we can select our 
third radius slightly different than the other two in a way that yields:

2 In this case Kaluza-Klein excitations are irrelevant. Otherwise one would need the eigenvalues of the Dirac and Laplace operators in the 6D compactification space.
4
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Table 1
Approximate scale of parameters.

Parameter Scale

Soft trilinear couplings O(GU T )

Squark masses O(GU T )

Slepton masses O(TeV)

μ(3) O(TeV)

μ(1,2) O(GU T )

Unified gaugino mass MU O(TeV)

m2
3 ∼ −O(TeV2), m2

1,2 ∼ −O(M2
GU T ), aabc � MGU T . (22)

In other words, we have supermassive squarks and TeV-scaled sleptons. Thus, supersymmetry is softly broken already at the unification 
scale, in addition to its breaking by both D-terms and F -terms.

4.2. Further gauge symmetry breaking of SU (3)3

The spontaneous breaking of the SU (3)L and SU (3)R can be triggered by the following vevs of the two families of L’s.

〈L(3)
s 〉 =

⎛
⎝ 0 0 0

0 0 0
0 0 V

⎞
⎠ , 〈L(2)

s 〉 =
⎛
⎝ 0 0 0

0 0 0
V 0 0

⎞
⎠ ,

where the s index denotes the scalar component of the multiplet. These vevs are singlets under SU (3)c , so they leave the colour group 
unbroken. If we use only 〈L(3)

s 〉 we get the breaking

SU (3)c × SU (3)L × SU (3)R → SU (3)c × SU (2)L × SU (2)R × U (1) , (23)

while if we use only 〈L(2)
s 〉 we get the breaking

SU (3)c × SU (3)L × SU (3)R → SU (3)c × SU (2)L × SU (2)′R × U (1)′ . (24)

Their combination gives the desired breaking [21]:

SU (3)c × SU (3)L × SU (3)R → SU (3)c × SU (2)L × U (1)Y . (25)

The configuration of the scalar potential just after the breaking gives vevs to the singlet of each family (not necessarily to all three). In 
our case we have 〈θ(3)〉 ∼O(TeV) , 〈θ(1,2)〉 ∼O(MGU T ).
Electroweak (EW) breaking then proceeds by the vevs [22]:

〈L(3)
s 〉 =

⎛
⎝ υd 0 0

0 υu 0
0 0 0

⎞
⎠ .

4.3. Lepton Yukawa couplings and μ terms

Although the two U (1)s were already broken before the Wilson flux breaking, they still impose global symmetries. As a result, in the 
lepton sector we cannot have invariant Yukawa terms. However, below the unification scale, an effective term can occur from higher-
dimensional operators [13]:

LeHd

( K

M

)3
, (26)

where K is the vacuum expectation value of the conjugate scalar component of either S(i), ν
(i)
R or θ(i) , or any combination of them, 

with or without mixing of flavours. Using similar arguments, one can also have mass terms for S(i) and ν(i)
R , which will then be rendered 

supermassive.
Another much needed quantity that is missing from our model is the μ term, one for each family of Higgs doublets. In the same way, 

we can have:

H (i)
u H (i)

d θ
(i) K

M
. (27)

The first two generations of Higgs doublets will then have supermassive μ terms, while the μ term of the third generation will be at the 
TeV scale.
In order to avoid confusion, it is useful to sum up the scale of some important parameters in Table 1.
5
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Table 2
b coefficients for gauge RGEs.

Scale b1 b2 b3

MEW -MTeV
21
5 −3 −7

MTeV-Mint
11
2 − 1

2 −5
Mint -MGU T

39
5 3 −3

Table 3
Scale predicted by gauge 
unification.

Scale GeV

MGU T ∼ 1.7 × 1015

Mint ∼ 9 × 1013

MTeV ∼ 1500

5. Phenomenological analysis

Like every GUT, this model considers all gauge couplings to start as one coupling g at MGU T . However, since at the E8 level there is 
only one coupling, it is clear that the (quark) Yukawa couplings are equal to g at MGU T as well. This makes the selection of a large tanβ

necessary. We use the unified coupling g as a boundary condition for all the above-mentioned couplings at MGU T .
In our analysis we will use 1-loop beta functions for all parameters included. Below the unification scale they run according to the 

RGEs of the MSSM (squarks included) plus the 4 additional Higgs doublets (and their supersymmetric counterparts) that come from the 
two extra L multiplets of the first and second generations, down to an intermediate scale Mint . Below this scale, all supermassive particles 
and parameters are considered decoupled, and the RGEs used include only the 2 Higgs doublets that originate from the third generation 
(and their respective Higgsinos), the sleptons and the gauginos. Finally, below a second intermediate scale that we call MTeV, we run the 
RGEs of a non-supersymmetric 2HDM.

5.1. Constraints

In our analysis we apply several experimental constraints, which we briefly review in this subsection.
Starting from the strong gauge coupling, we use the experimental value [23]:

as(M Z ) = 0.1187 ± 0.0016 . (28)

We calculate the top quark pole mass, while the bottom quark mass is evaluated at M Z , in order not to induce uncertainties that are 
inherent to its pole mass. Their experimental values are [23]:

mexp
t = (172.4 ± 0.7) GeV , mb(M Z ) = 2.83 ± 0.10 GeV . (29)

We interpret the Higgs-like particle discovered in July 2012 by ATLAS and CMS [24] as the light CP-even Higgs boson of the supersym-
metric SM. The (SM) Higgs boson experimental average mass is [23]:

Mexp
H = 125.10 ± 0.14 GeV . (30)

5.2. Gauge unification

A first challenge for each unification model is to predict a unification scale, while maintaining agreement with experimental constraints 
on gauge couplings. The 1-loop gauge β functions are given by:

2πβi = biα
2
i , (31)

where for the three energy regions the b coefficients are given in Table 2.
The a1,2 determine the unification scale and the a3 is used to confirm that unification is indeed possible. Using a 0.3% uncertainty at 

the unification scale boundary, we predict the different scales of our model (shown on Table 3), while the strong coupling is predicted 
within 2σ of the experimental value (Eq. (28)):

as(M Z ) = 0.1218 . (32)

It should be noted that although the unification scale is somewhat lower than expected in a supersymmetric theory, there is no fear of 
fast proton decay, as the U (1)A remaining global symmetry can be immediately recognised as:

U (1)A = −1

9
B , (33)

where B is the baryon number. Therefore, the unification scale could, in principle, lie even lower without such problems.
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5.3. Higgs potential

We once again turn our focus on the third family. After GUT breaking, the Higgs scalar potential calculated from the D-, F - and soft 
terms of Sect. 3.1 is given by:

V Higgs =
(

3|μ(3)|2 + m2
3

)(
|H0

d |2 + |H−
d |2

)
+

(
3|μ(3)|2 + m2

3

)(
|H0

u|2 + |H+
u |2

)
+ b(3)

[
(H+

u H−
D − H0

u H0
D) + c.c.

]
+ 10

3
g2

[
|H0

d |4 + |H−
d |4 + |H0

u|4 + |H+
u |4+

2|H0
d |2|H−

d |2 + 2|H−
d |2|H0

u|2 + 2|H0
d |2|H+

u |2 + 2|H0
u|2|H+

u |2
]

+ 20

3
g2

[
|H0

d |2|H0
u|2 + |H−

d |2|H+
u |2

]
− 20g2

[
H0

d H−
d H0

u H+
u + c.c.

]
, (34)

where g is the gauge coupling at the unification scale and it is understood that the RG running has not yet taken place. One can easily 
compare the above potential with the standard 2 Higgs doublet scalar potential [25–27] and identify:

λ1 = λ2 = λ3 = 20

3
g2 , λ4 = 20g2 , λ5 = λ6 = λ7 = 0 (35)

The above relations are used as boundary conditions at the GUT scale. Then, all the Higgs couplings run using their RGEs (see [28] for 
the full expressions), which in turn change appropriately for each energy interval explained above.

5.4. 1-loop results

The Higgs couplings λi are evolved from the GUT scale down to the EW scale together with the gauge couplings, the top, bottom and 
tau Yukawas, all at 1 loop. It is useful to remind the reader that all gauge and quark Yukawa couplings use g as boundary condition, while 
the tau Yukawa emerges from a higher-dimensional operator and has significantly wider freedom. We use the standard tau lepton mass 
[23] as an input.

We consider uncertainties on the two important boundaries we consider, namely MGU T and MTeV, because of threshold corrections 
(for a more comprehensive discussion see [29]). For simplicity we have considered degeneracy between all supersymmetric particles that 
acquire masses at the TeV scale. The uncertainty of the top and bottom Yukawa couplings on the GUT boundary is taken to be 6%, while 
on the TeV boundary is taken to be 2%. For λ1,2 the uncertainty is 8% on both boundaries and for λ3,4 is 7% at GUT and 5% at TeV.

Both top and bottom quark masses are predicted within 2σ of their experimental values (Eq. (29)):

mb(M Z ) = 3.00 GeV , m̂t = 171.6 GeV , (36)

while the light Higgs boson mass is predicted within 1σ of Eq. (30):

mh = 125.18 GeV . (37)

The model features a large tanβ ∼ 48. This is necessary, since the Yukawas begin from the same value at the GUT boundary, so a large 
difference between the two vevs is needed to reproduce the known fermion hierarchy. The pseudoscalar Higgs boson is considered to have 
mass between 700 − 3000 GeV.

The above 1-loop calculation could be subject to larger uncertainties, since they lack the precision of a higher-loop analysis. The 
prediction of the full (light) supersymmetric spectrum, a 2-loop analysis of the model, the application of more experimental constraints 
(i.e. B-physics observables) and its discovery potential at present and/or future colliders are planned for future work.

6. Conclusions

Starting from an N = 1, 10D E8 Yang-Mills theory, we consider a compactified spacetime M4 × B0/Z3, where B0 is the non-
symmetric manifold SU (3)/U (1) × U (1) and Z3 is a freely acting discrete group on B0. Then we reduce dimensionally the E8 on this 
manifold and we employ the Wilson flux mechanism leading in four dimensions to an N = 1 SU (3)3 gauge theory. We consider the 
compactification scale to match the unification scale, a choice that results in a split-like SUSY scenario, where gauginos, Higgsinos (of the 
third generation) and sleptons all acquire masses at ∼ 1500 GeV, and the rest supersymmetric spectrum is superheavy (∼ MGU T ). The 
global U (1)A conserves Baryon number, a fact which allows for the predicted unification scale ∼ 1015 GeV. The 2HDM employed below 
GUT predicts a light Higgs boson mass within the experimental limits, while the top and bottom quark masses are also in (2σ ) agreement 
with experimental measurements.
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