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Abstract

Native speakers are often assumed to be efficient in identifying whether a word in their

language has been borrowed, even when they do not have direct knowledge of the donor

language from which it was taken. To detect borrowings, speakers make use of various

strategies, often in combination, relying on clues such as semantics of the words in

question, phonology and phonotactics. Computationally, phonology and phonotactics

can be modeled with support of Markov n-gram models or – as a more recent technique

– recurrent neural network models. Based on a substantially revised dataset in which

lexical borrowings have been thoroughly annotated for 41 different languages of a large

typological diversity, we use these models to conduct a series of experiments to

investigate their performance in borrowing detection using only information from

monolingual wordlists. Their performance is in many cases unsatisfying, but becomes

more promising for strata where there is a significant ratio of borrowings and when most

borrowings originate from a dominant donor language. The recurrent neural network
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performs marginally better overall in both realistic studies and artificial experiments,

and holds out the most promise for continued improvement and innovation in lexical

borrowing detection. Phonology and phonotactics, as operationalized in our lexical

language models, are only a part of the multiple clues speakers use to detect borrowings.

While improving our current methods will result in better borrowing detection, what is

needed are more integrated approaches that also take into account multilingual and

cross-linguistic information for a proper automated borrowing detection.

Introduction 1

Problem and Motivation 2

Lexical borrowing, the direct transfer of words from one language to another, is one of 3

the most frequent processes of language evolution [1]. We can easily observe the process 4

in real time, especially regarding vocabulary from religion or technology, since words are 5

often transferred along with other cultural practices or innovations. While it took 6

scientists a long time to find out that languages constantly change [2], it was already 7

clear in ancient times that languages acquire lexical material from their neighbors [3], as 8

evidenced in Plato’s Kratylos dialog (409d-10a) [4] where Socrates discusses the problem 9

that lexical borrowings impose on studies in word etymology. Nonetheless, the process 10

is still regarded as one of the outstanding problems in historical linguistics, as it needs 11

to “infer or determine shared traits among two or more languages, and then determine 12

conflicts in these traits, taking geographical closeness and borrowability into 13

account” [5]. 14

Discrimination between inherited and borrowed words (also called “loanwords”) is 15

crucial for the successful application of both the comparative method in historical 16

linguistics [2], which seeks to identify genetically related languages and reconstruct their 17

ancestral stages which are not recorded in written sources, and in phylogenetic 18

reconstruction, which seeks to identify the most plausible phylogenies (often represented 19

by a family tree) by which languages in a given language family evolved into their 20

current shape [6]. Native speakers are often assumed to be remarkably efficient in such 21

discrimination task [7, 8]. 22
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Similar to linguists [9], laypeople use an arsenal of different methods to detect 23

borrowed words. When multilingual speakers observe that words denoting similar 24

concepts sound alike in otherwise different languages, they may conclude that the 25

similarity is due to borrowing. Even when the donor language of a word is not known, 26

speakers may detect recent borrowings in their native language due to specific 27

phonological or phonotactic characteristics. In many Hmong-Mien languages, for 28

example, some Chinese words are borrowed with a very specific tone that only occurs in 29

Chinese words [10]. Similarly, it is easy for German speakers to identify job as a loan 30

from English, since only in borrowed words the grapheme j is pronounced as [dZ] in 31

German. Apart from specific sounds and tones, evidence for borrowings may include 32

peculiar constructions, specific phonotactic elements (such as certain consonant clusters 33

or vowel combinations), unusual stress patterns [11,12], or even specific semantics. 34

However, already upon entering the language, speakers adapt borrowed words to the 35

phonological conditions of the recipient language, and the more time has passed since a 36

word was first borrowed, the harder it is to detect it from its external characteristics 37

alone [13]. This process, called nativization, “provides a direct window for studying how 38

acoustic cues are categorized in terms of the distinctive features” relevant to phonology 39

and phonotactics of the native speaker [14, p. 1]. 40

Despite the obvious limitations of speakers’ intuition about inherited and borrowed 41

material in their native languages, it seems worthwhile to test to what degree 42

automated borrowing detection in linguistics could be based on monolingual data alone. 43

Assuming that the major source of native speakers’ intuition regarding their native 44

languages’ lexicons lies in phonology and phonotactics, we can use computational 45

approaches to model phonology and phonotactics derived from annotated wordlists of a 46

given language and then calculate to which degree a word resembles a typically 47

inherited or a typically borrowed word. 48

To model phonology and phonotactics of a language, we make use of different lexical 49

language models. Assuming that a language model refers to “any system trained only on 50

the task of string prediction, whether it operates over characters, words or sentences, 51

and sequentially or not” [15], our lexical language models are specific cases of language 52

models derived from lexical data typically provided in the form of a wordlist, with 53

words being represented by phonetic transcriptions. Having trained lexical language 54
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models for inherited and borrowed words with the help of a given annotated wordlist 55

representing a given language variety in a supervised learning setting, we can then try 56

to measure to which degree words that were not used to train a given model can be 57

classified as either being inherited or borrowed. 58

In this study, we test how well three different lexical language models – one 59

non-sequential model based on a support vector machine, and two sequential models, 60

one based on Markov chains and one based on recurrent neural networks – perform in 61

detecting borrowed words. We apply our models to the World Loanword Database [16], 62

a large, cross-linguistic sample of wordlists in which borrowed words are annotated, 63

which we considerably improved by adding harmonized phonetic transcriptions instead 64

of the original orthographic representations of word forms. 65

Results in many cases are unsatisfying for borrowings attested in wordlists from the 66

World Loanword Database, but become more promising when there is a significant ratio 67

of borrowings, and even more so when borrowings come predominantly from a single 68

donor language. The recurrent neural network performs marginally better than the 69

Markov chain method in the case of borrowing from wordlists (where the support vector 70

machine method fares poorly), and marginally better than the support vector machine 71

in the extreme case of simulated significant borrowing from a single donor (where the 72

Markov chain method fares less ably). A review of the distributions of differences 73

between inherited and borrowed word entropies, the basis for Markov chain and 74

recurrent neural network methods, indicates further opportunities for improvement and 75

innovation. 76

State of the art 77

Although the detection of borrowed words is one of the major tasks in historical 78

language comparison, the classical, non-computational techniques which linguists use to 79

identify borrowings have never been properly formalized or explicitly described [9]. 80

Similar to native speakers, who employ specific kinds of evidence (phonological, 81

phonotactic, or semantic), classical linguists extensively use proxies to assess whether or 82

not a given word has been borrowed. Apart from direct evidence, derived from the 83

documentation of the same language at different times, these proxies include 84
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(a) conflicts with genealogical explanations (e.g., similar words between otherwise 85

unrelated languages), (b) conflicts within the borrowed traits (irregular sound 86

correspondence patterns in seemingly cognate words in related languages), and 87

(c) distributional properties of shared traits (specific semantics of a group of words in a 88

given language) [9]. While most of the evidence linguists employ to detect borrowed 89

words is based on the comparison of several languages, conflicts in phonology and 90

phonotactics are also routinely used for borrowing detection, specifically when dealing 91

with recent borrowing events. 92

Similar to the prevalence of multilingual approaches to borrowing detection in 93

classical historical linguistics, most recent attempts to detect borrowings automatically 94

have also been based on comparative rather than monolingual evidence. Various authors 95

have tried to detect borrowings by searching for phylogenetic conflicts [17–23]. Other 96

approaches identify similar words in unrelated languages [24–26]. Occasionally, authors 97

have tried to detect borrowings by relying on the idea that some words can be more 98

easily borrowed, because of the meanings they express [27]. While the detection of 99

words borrowed between unrelated languages seems to work relatively well [26], all other 100

approaches that have been proposed in the past, have never been rigorously tested. 101

In contrast to multilingual approaches to borrowing detection, monolingual 102

approaches in which borrowings are identified by relying on the (annotated) data of one 103

language alone, have been rarely applied so far, and the rare exceptions we know of, 104

where scholars have tried to model native speakers’ borrowing detection competence 105

computationally, involve very particular settings for individual languages, as opposed to 106

generic approaches that could be generally applied [28,29]. 107

Although – to our knowledge – language models have not yet been used to identify 108

borrowings in exclusively monolingual wordlists, the idea to use lexical language models 109

for specific tasks in comparative linguistics is not new. Language identification, for 110

example, which seeks to identify the natural language in which a given document is 111

written [30], shows certain similarities with the task of monolingual borrowing detection. 112

Distinguishing foreign words within a paragraph or sentence is similar to the problem of 113

detecting recently borrowed words in a wordlist. 114
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Materials and methods 115

Materials 116

We use the multilingual wordlist collection provided by the World Loanword Database 117

(WOLD) [16], which we modified by adding harmonized phonetic transcriptions. Each 118

of the 41 wordlists in this collection provides translation equivalents for 1,460 distinct 119

concepts (see the Concepticon resource for details on this concept list [31]). Since 120

translations may lack or one concept may have been represented by more than one word 121

form, the resulting wordlists comprise between 956 and 2,558 word forms. While word 122

forms were provided in orthographic form or phonological transcriptions in the original 123

data, we added phonetic transcriptions which follow the unified Broad IPA transcription 124

system proposed by the Cross-Linguistic Transcription Systems reference catalog [32,33] 125

with the help of orthography profiles [34]. Orthography profiles can be best thought of 126

as a specific look-up table, which allows to convert transcriptions from one orthography 127

into another one (compare the presentation in Wu et al. [35] for details). Each word 128

form is given a so-called borrowed score, indicating the rating of a linguistic expert that 129

the item was borrowed on a five-point scale. To make sure that we only consider 130

clear-cut borrowings in our tests, we treated as borrowed only the words which were 131

labeled as clearly borrowed. 132

The derived database with phonetic transcriptions for all 41 wordlists was curated 133

with the help of the CLDFBench toolkit [36], which allows for a convenient, test-based 134

data curation workflow in which the resulting dataset is offered in the formats 135

recommended by the Cross-Linguistic Data Formats initiative (CLDF, 136

https://cldf.clld.org [37]). These format specifications have proven very useful in 137

the past, as they allow not only for a quick aggregation of data from different 138

sources [38], but also for their convenient integration in computational workflows [35]. 139

For testing purposes, we created an additional German wordlist, taken from an 140

etymological dictionary of German [39], with phonetic transcriptions added with 141

modifications from the CELEX database [40]. While the enhanced WOLD database has 142

been curated on GitHub (https://github.com/lexibank/wold) and archived with 143

Zenodo [41], the German wordlist is available as part of the software package we wrote 144

for monolingual borrowing detection, curated on GitHub. 145
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Lexical language models 146

For the purpose of testing how well borrowed words in a wordlist can be detected 147

through language-internal information alone, we employ three different lexical models 148

which reflect unique characteristics of cues that native speakers could take into account 149

when identifying borrowings in their native tongue. The Bag of Sounds method 150

represents words internally as a set of the sounds of which they consist, the Markov 151

Model represents words by their sound n-grams, and the Neural Network represents 152

words in the form of sequences of learned vector representations of sounds. 153

We perform borrowing detection on each wordlist individually, modeling word 154

expectedness with Bag of Sounds, Markov Model [42], and Neural Network [43] 155

methods. The Bag of Sounds is a baseline method, which uses a support vector machine 156

to directly detect borrowings based only on the set of sounds. The Markov Model and 157

Neural Network produce sequential sound segment probability estimates, which we 158

transform into word entropies and use to predict borrowed words. The Markov Model 159

serves as the standard approach and the Neural Network as an improved alternative to 160

borrowing detection with entropy methods. The Markov Model and Neural Network 161

methods focus on phonotactics, while the Bag of Sounds method focuses on phonology. 162

Bag of Sounds 163

Since the word forms in our data are available as harmonized phonetic transcriptions, it 164

is straightforward to represent each word form in a given language as a vector indicating 165

the presence and absence of distinct sound segments. Since the order of these sound 166

segments is not important, and neither is their frequency considered, this vector can be 167

thought of as a simple bag of sounds, in which the sounds making up a given word form 168

are represented as a set. The task of distinguishing borrowed from inherited words can 169

then be pursued with the help of a support vector machine with a linear kernel [44,45]. 170

The support vector machine identifies the plane which optimally separates native from 171

borrowed words based on the set of sound segments. The Bag of Sounds method does 172

not consider the order or the frequency of elements in a given sound sequence, and we 173

did not expect it to perform extraordinarily well in all languages in our sample. The 174

advantage of the model is that it is simple and fast in application. It also provides a 175
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baseline for those cases where peculiar sounds provide enough information to identify a 176

given borrowed word. 177

Markov Model 178

An n− 1 order Markov Model, emits a sound segment with probability dependent on 179

the n− 1 previous sound segments (an n-gram model). It transforms the product of 180

sound segment probabilities estimated by the Markov Model method into word 181

entropies which are then used in borrowing detection. 182

We use a second order Markov Model (emission probability dependent on the 183

previous 2 segments – a tri-gram model) from the Natural Language Toolkit 184

(NLTK) [46]. The second order Markov Model is local with longer range effects 185

resulting from the second order probabilistic process. 186

We can approximate the probability of a sequence of sound segments by the product 187

of the second order conditional probabilities: 188

P (cn1 ) ≈
n∏

k=1

P (ck|ck−1
k−2).

We transform word probabilities to a per sound segment word entropy, 189

H(w) = −(1/N) logP (cn1 ),

which typically exhibits a smooth distribution with moderate right skew for wordlists. 190

The second order model with a sound segment vocabulary size V requires V 3
191

probability parameters for sound segment emission probabilities conditioned on the 192

previous two sound segments. 193

With wordlists of just 1,000 to 2,500 word forms and a typical sound segment 194

vocabulary size of V ≈ 50, estimating 503 = 125, 000 parameters by maximum 195

likelihood would cause sparse parameter estimation with problems of both undefined 196

conditional probabilities and overfitting. We use interpolated Kneser-Ney smoothing to 197

accommodate unseen tri-grams, reduce overfitting, and reduce the number of estimated 198

parameters to less than the V 3 required under maximum-likelihood. 199
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Recurrent Neural Network 200

Recurrent Neural Networks provide word length order conditioning via the recurrent 201

layer with memory. Word probabilities are expected to be better estimated, i.e., better 202

approximating human performance, than for the Markov Model. 203

Conditional character probabilities are estimated based on all earlier sound segments

of the current word:

P (cn|cn−1
1 ) = f(cn−1, ..., c1).

We can approximate the probability of a sequence of segments as the product of the 204

segment probabilities: 205

P (cn1 ) ≈
n∏

k=1

P (ck|ck−1
1 ).

Word probabilities are again transformed to a per sound segment word entropy. 206

H(w) = −(1/n) logP (cn1 ).

The challenge and advantage of the recurrent Neural Network method is in the 207

estimation of the conditional sound segment probabilities, with the function 208

f(cn−1, ..., c1), using a more complex architecture but with fewer parameters (figure 1b) 209

than the second order Markov model. Sparse indicator vectors, ck, representing sound 210

segments are transformed into dense real input vectors, xk. In the recurrent layer, input 211

vectors, xk, and prior hidden state vectors, hk−1, are linearly transformed and passed 212

through a tanh activation function to produce current hidden state, hk, and output, ok, 213

vectors. Resulting output vectors are linearly transformed in a dense output layer of 214

logits, y, representing possible output segments. The softmax activation function 215

transforms logit values yk into sound segment probability estimates, 216

P̂ (cn|cn−1, ...c1) = eycn /
∑
k

eyk .

While the recurrent Neural Network model requires a high baseline number of 217

parameters given its embedding length and recurrent layer length, the growth in number 218

of parameters is just linear with the vocabulary size. As a result, the number of 219
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# Architecture parameters
embedding_len = 32
rnn_output_len = 32
rnn_cell_type = GRU
rnn_levels = 1

# Regulation parameters
embedding_dropout = 0.0
recurrent_l2 = 0.001
rnn_activity_l2 = 0.0
recurrent_dropout = 0.0
rnn_output_dropout = 0.2
merge_embedding_dropout = 0.2

# Model fitting parameters
epochs = 45
learning_rate = 0.01
learning_rate_decay_factor = 0.95  
val_split = 0.0

(a) Recurrent neural network
configuration n i y a t<s>

n i y a t </s>

Input vectors, x

Hidden state, h

Output vector, y

softmax

tanh

(b) Recurrent neural network - lexical model architecture
Fig 1. Recurrent neural network - lexical model

parameters in the Neural Network is on the order of 10,000, and this does not change 220

much with the vocabulary size. Furthermore, the number of parameters does not 221

increase with word length in sound segments even though the conditioning is on all 222

previous sound segments. 223

We implement our recurrent Neural Network in Tensor-Flow 2.2 [47] and 224

parameterize the model to permit ready changes in architecture, regulation, and fitting 225

parameters during experimentation. The configuration used in this study is shown in 226

figure 1a. Neural network models, even with just thousands of parameters, may suffer 227

from substantial variance between training and test due to overfitting, especially when 228

the amount of training data is comparatively small as in this case. We apply methods of 229

dropout and l2 regulation to reduce overfitting. 230

Decision procedures 231

Models are trained on labeled data and then used to predict whether unlabeled test 232

words are inherited or borrowed. For the Bag of Sounds method, we train a model to 233

distinguish borrowed from inherited words directly from sound segments. For the 234

Markov Model and Neural Network methods, we fit models based on inherited and 235

borrowed words separately, estimate word entropies on test data using both models, and 236

designate the word as inherited or borrowed depending on which model has the lesser 237

entropy. 238
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We assume that for a model trained on inherited words, the entropy estimates for 239

unobserved inherited words will be less than for borrowed words. Similarly, for a model 240

trained on borrowed words, entropy estimates for unobserved borrowed words will be 241

less than for inherited words. The choice of the model with the lesser entropy can be 242

expressed as the difference of entropies compared to a critical value, in this case zero: 243

borrowed = (entropy(w)native − entropy(w)borrowed) > 0.

Assessing detection performance 244

We assess detection performance using precision, recall, and harmonic mean (F1 score),

as well as accuracy measures based on frequency counts of borrowing detection by true

borrowing status as defined in table 1. Following [48], precision is the proportion of true

positive borrowings out of all detected positives,

precision = tp/(tp+ fp),

recall is the proportion of true positive borrowings out of all borrowings,

recall = tp/(tp+ fn),

F1 score is the harmonic mean of precision and recall, and

F1 = (2 ∗ precision ∗ recall)/(precision+ recall),

accuracy is the proportion of all detections that are correct,

accuracy = (tp+ tn)/(tp+ fp+ fn+ tn).

We consider F1, since it combines both precision and recall, as the primary measure. 245

Accuracy does not specifically focus on borrowing detection and is of secondary 246

importance. 247
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Borrowing True borrowing status
Detection Borrowed Inherited
Positive tp=true positive fp=false positive
Negative fn=false negative tn=true negative

Table 1. Frequency counts of borrowing detection by true borrowing status.

Experiments and studies 248

We run several experiments and studies as follows. First, we simulate detection of recent 249

borrowings by artificially seeding wordlists with various proportions of words from a 250

foreign language and then apply borrowing detection methods to test detection 251

performance. Second, we test borrowed word detection more realistically by using 252

wordlists without alteration and performing a 10-fold cross validation of borrowed word 253

detection. Third, we perform correlation analysis to diagnose real world performance as 254

a function of phonological variables of the wordlists. Fourth, we stratify language 255

wordlists by number of borrowed words and presence of a dominant donor language and 256

analyze the 10-fold cross validation of borrowed word detection by strata. Last, we 257

examine entropy distributions for a few exemplary wordlists, and see how the entropy 258

method works. 259

Implementation 260

Methods for borrowing detection and evaluation have been implemented in the form of 261

a Python package and is available along with supplemental information accompanying 262

this study at https://osf.io/69ak5/. The Python package contains the code, access 263

to data, and examples that replicate all studies here presented and illustrate how to 264

perform new analyses. 265

Results 266

Detection of artificially seeded borrowings 267

To simulate a situation in which foreign words have recently entered a language without 268

being modified by loanword nativization processes, we designed an experiment in which 269

the wordlists in our base datasets were artificially mixed with words from another 270

wordlist which was not part of the original WOLD collection. The idea to use 271
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“artificially seeded” borrowings instead of borrowings attested in actual language was 272

originally proposed for evaluating methods for lateral gene transfer detection in 273

biology [49], and later tested on linguistic data in order to assess the power of 274

phylogenetic methods for borrowing detection across multiple languages [22]. The 275

advantage of this procedure is that it creates simulated data without requiring the 276

efforts of detailed simulation experiments. 277

Artificial borrowings were seeded into a wordlist in three steps. We first removed all 278

borrowed words from the wordlist to guarantee that no recent borrowings from other 279

languages could influence the results. We then added inherited words from the 280

additional German list, which we created for testing purposes. Here, we tested three 281

different proportions of borrowed words, 5%, 10%, and 20%, in order to allow to 282

compare different degrees of contact. In a final step, we then split the resulting wordlist 283

into a training and a test set (reserving 80% of the data for training and 20% for 284

testing) and ran the three methods for monolingual borrowing detection, Bag of Sounds, 285

Markov Model, and Neural Network. 286

The results of this experiment are given in Table 2, where the borrowing detection 287

results are provided in form of precision, recall, and F1 scores for the three different 288

borrowing rates. Fig 2 presents a plot for 5% and 10% borrowing rates. Accuracy 289

results, not shown, were all above 0.95 and varied little over methods and rates. 290

Individual results indicating the scores achieved by method and borrowing rate for each 291

language are provided as supporting information in S1 Seeded borrowings. 292

Method Rate% Prec. Recall F1
Bag of Sounds 5 0.80 1.00 0.88
Markov Model 5 0.96 0.67 0.76
Neural Network 5 0.97 0.84 0.90
Bag of Sounds 10 0.87 0.99 0.92
Markov Model 10 0.96 0.87 0.91
Neural Network 10 0.97 0.93 0.95
Bag of Sounds 20 0.91 0.99 0.94
Markov Model 20 0.97 0.94 0.95
Neural Network 20 0.99 0.97 0.98

Table 2. Borrowing detection results for artificially seeded borrowings, averaged from
all datasets for all three methods and three different borrowing rates.

As can be seen from the results, all methods perform well when artificially seeded 293

borrowings amount to 20%. With a borrowing rate of 10%, all methods still achieve F1 294
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Bag of Sounds Markov Model Neural Network
Lexical Language Model
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Fig 2. Borrowing detection results for borrowing rates of 5% (left) and 10% (right) in
the experiment on artificially seeded borrowings.

scores of more than 0.90, with the Bag of Sounds showing the lowest precision and the 295

Markov Model showing the lowest recall. When borrowings only amount to 5%, we can 296

observe the same trend of low precision for the Bag of Sounds and low recall for the 297

Markov Model. However, while the Bag of Sounds still comes close to the performance 298

of the Neural Network with respect to the F1 score (0.88 vs. 0.90), the Markov Model 299

shows a drastic drop here, resulting from the dramatic loss in recall (0.67). 300

Cross validation of borrowing detection on real language data 301

Our experiment on artificially seeded borrowings was simulating an ideal situation of 302

language contact in which new words were recently introduced into a given language 303

without being adjusted to the recipient language’s target phonology. While this 304

experiment provided high scores in our evaluation experiment, the experiment does not 305

allow us to estimate how well the three borrowing detection methods will perform when 306

being exposed to “real” data. For this reason, we designed a second experiment on the 307

WOLD data in their original form. Given that the wordlists are quite small, while 308

specifically Markov Model and Neural Network language models tend to require larger 309

amounts of data, we used cross validation techniques, in which the data are repeatedly 310

partitioned into training and test data and evaluation results are measured for each trial 311

and later summarized. We employed ten-fold cross validation for this experiment, where 312

each word list was partitioned into 10 parts, and over 10 successive trials, one part was 313

successively designated the test set while the remaining nine parts were designated the 314

training set. This resulted in 10 separate estimates of borrowing detection performance, 315

with each word appearing once in test sets and nine times in training sets. 316
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Table 3 shows the averages and standard deviations of results (precision, recall, F1 317

score, accuracy) of this experiment for each of our three methods. Fig 3 summarizes the 318

averaged results. Individual results indicating the scores achieved by method for each 319

language are provided as supporting information in S2 Cross validation. 320

Method Statistic Prec. Recall F1 Acc.
Bag of Sounds Mean 0.286 0.578 0.349 0.843

Language SD 0.250 0.287 0.268 0.081
Pooled SD 0.078 0.226 0.088 0.030

Markov Model Mean 0.678 0.521 0.578 0.828
Language SD 0.136 0.181 0.170 0.060
Pooled SD 0.114 0.088 0.082 0.034

Neural Network Mean 0.697 0.546 0.603 0.844
Language SD 0.164 0.191 0.181 0.062
Pooled SD 0.100 0.082 0.072 0.030

Table 3. Results of the cross validation experiment, for each method over all languages.

Bag of Sounds Markov Model Neural Network
Lexical Language Model

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Sc
or

e

0.29

0.68 0.7

0.58
0.52 0.55

0.35

0.58 0.6

0.84 0.83 0.84
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Fig 3. Results of the cross validation experiment, averaged for each model over all
languages in our sample.

As can be seen from the table and the figure, the Neural Network marginally 321

outperforms the Markov Model, while both the Neural Network and the Markov Model 322

clearly outperform the Bag of Sounds. The strength of the entropy-based methods lies 323

in their high precision, while the Bag of Sounds shows the highest recall, but an 324

extremely low precision. 325

When examining the individual results achieved by each method for each individual 326

language in our sample, one can find a rather huge variation in the results, ranging from 327

results which one may consider as satisfying (such as the performance of the Neural 328

August 31, 2020 15/39



Network on Zinacantán Tzotzil with an F1 score of 0.81) up to extremely bad results 329

(such as the performance of all methods on Mandarin Chinese, with F1 scores below 330

0.02). The reasons for the underwhelming results on Mandarin Chinese are twofold. On 331

the one hand, the language barely borrows words directly, but rather resorts to loan 332

translation, by which new concepts are rendered with the help of the lexical material in 333

the target language. As a result, Mandarin has the lowest amount of direct borrowings 334

in our sample. On the other hand, Mandarin Chinese (as well as all Chinese dialects 335

and many languages from Southeast Asia) has an extremely restricted syllable structure 336

that makes it impossible to render most foreign words truthfully [50]. As a result, words 337

are usually directly adjusted to Chinese phonotactics when being borrowed and also 338

written with existing Chinese characters, which again further masks their foreign 339

origin [51]. However, this very specific situation also makes it also difficult if not 340

impossible for most Mandarin Chinese speakers to identify borrowings when considering 341

phonotactic criteria alone. 342

Factors that influence borrowing detection performance 343

Given that the performance of our supervised borrowing detection methods varied 344

substantially, ranging from poor performance with F1 scores below 0.5, average 345

performance with F1 scores between 0.5 and 0.8, and acceptable performance with F1 346

scores above 0.8, we ran two tests to assess to which degree certain factors might 347

influence the borrowing detection methods. 348

In concrete, we computed specific characteristics of each language variety in our 349

sample and then checked to which degree these characteristics correlated with the test 350

performance. As characteristics, we chose the proportion of borrowed words in a given 351

language wordlist, the proportion of unique sounds inside borrowed words, and the 352

proportion of unique sounds in inherited words. Statistical analysis, correlational study, 353

matrix plots, and regression, were performed with Minitab® Statistical Software [52]. 354

The correlation results, based on all wordlists in our sample taken from the WOLD 355

database, are reported in Table 4, and accompanied by detailed plots in Figs 4, 5, and 6. 356

As can be seen from the correlations and the plots, there is a positive correlation 357

between the proportion of borrowed words and the evaluation scores for all tests. The 358
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Bag of Sounds Markov Model Neural Network
Proportion of Prec. Recall F1 Prec. Recall F1 Prec. Recall F1
Borrowed words 0.584 0.337 0.539 0.387 0.736 0.654 0.399 0.690 0.600
Borrowed sounds 0.185 0.345 0.199 0.345 0.274 0.297 0.377 0.268 0.301
Inherited sounds -0.006 -0.010 -0.004 0.035 -0.330 -0.263 -0.075 -0.178 -0.148
Table 4. Correlations between phonological factors and performance of borrowing

detection methods.

effect of proportion of borrowed words appears non-linear for the entropy methods, 359

where less than 5% borrowings has much worse borrowing detection than expected in 360

the linear correlation plot from Figs 5, and 6. For the other factors, the proportion of 361

sounds occurring exclusively in borrowed words, and the proportion of sounds occurring 362

exclusively in inherited words, the results are less clear. While we observe a moderate 363

correlation between the proportion of exclusively borrowed sounds with the recall for 364

the Bag of Sounds, there is a higher correlation with the precision for the other two 365

methods. 366

Fig 4. Determining factors that influence the performance of the Bag of Sounds.

In order to further investigate the influence of the three factors on the borrowing 367

detection performance, we further analyzed them by fitting a multiple regression model 368

to them. Our major goal was to check whether exclusively borrowed and exclusively 369

inherited sound proportions can help us explain the methods’ performance beyond the 370

overall proportion of borrowed words in each wordlist. By fitting a full second order 371

regression model to predict F1 scores from our three factors, using Minitab’s forward 372

information criteria for model selection, we found that all three phonological variables 373

contribute to explain the F1 scores for the borrowing detection performance for the 374
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Fig 5. Determining factors that influence the performance of the Markov Model.

Fig 6. Determining factors that influence the performance of the Neural Network.

Markov Model and the Neural Network, while only the proportion of borrowed words 375

seems to be the dominant factor for the Bag of Sounds. 376

Method Regression model R2

Bag of Sounds F1 = −0.040 + 1.53bw + 0.76ns 29.9%
Markov Model F1 = 0.141 + 2.66bw + 2.05bs− 3.38bw2 − 5.05bs2 48.8%

Neural Network F1 = 0.032 + 3.12bw + 2.43bs+ 0.43ns− 3.93bw2 − 6.35bs2 49.9%
Table 5. Regression analysis of factors that influence borrowing detection

performance as reflected in F1 scores.

Borrowings from a single donor in intensive contact situations 377

Testing our lexical language models on the WOLD data in their entirety could be 378

considered as unfair to the methods, given that we know well that monolingual evidence 379
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for borrowing in phonotactics may get lost easily and that the WOLD database was 380

never restricted to recent borrowings alone. Another problem of the data is that the 381

distinction between inherited words on the one hand and borrowings on the other hand 382

is as well a simplifying assumption, since we know that in intensive contact situations 383

borrowings come from a specific donor language. As a result, it seems to be justified to 384

test the three methods for monolingual borrowing detection with the help of more 385

specific experiments in which the task consists in the detection of borrowings when 386

there is a single or dominant language donor, i.e., intensive contact, versus the case 387

when no language donor dominates. 388

To test whether our methods show an improved performance when there is a 389

dominant language donor as opposed to detecting borrowed words per se, we first 390

created two subsets of the WOLD database, one containing languages with 300 and 391

more borrowed words (17 language varieties), and one containing languages with 100 392

and more borrowed words (37 language varieties). We then searched for “dominant 393

donor languages” in all wordlists in each sample, with dominant donor languages being 394

defined as those donor languages (as identified in the WOLD database) that would 395

account for two-thirds of all borrowings identified for a given language variety. For our 396

sample of language varieties with 300 and more borrowings, this yielded a partition of 397

the data into 8 language varieties for which a dominant donor could be identified and 9 398

for which none could be found. For the sample of language varieties with 100 and more 399

borrowings, the partition yielded 20 language varieties with a dominant donor and 17 400

without. We were able to apply results of the 10-fold cross validation study for these 401

two subsets of the data, which we had previously applied to all language varieties in the 402

WOLD database. In order to test whether the observed differences between dominant 403

donor and no dominant donor categories were significantly different, we also performed 404

randomization resampling tests of 5,000 iterations each, using Student’s independent t 405

statistic with unequal variances as our test statistic. We report p-values from the 406

empirical distribution of t statistics calculated under the hypothesis of no difference due 407

to dominant donor, i.e., dominant and no dominant categories are exchangeable. 408

As can be seen from the results in Table 6, the performance of all borrowing 409

detection methods improves when the vast majority of the borrowings come from a 410

single donor language. The performance also improves, as we saw previously, with more 411

August 31, 2020 19/39



borrowed words. While performing worse than the other two methods, the Bag of 412

Sounds method shows a strong increase in performance, which is mostly owed to a 413

strong increase in precision, when most borrowings come from a single donor language. 414

Borrowed Method Donor Precision p< Recall p< F1 p<
= 300 Bag of Sounds Dominant (8) 0.536 .0300 0.739 .0200 0.588 .0400

No dominant (9) 0.308 0.672 0.390
Markov Model Dominant 0.785 .0030 0.722 .0020 0.749 .0030

No dominant 0.672 0.585 0.622
Neural Network Dominant 0.810 .0002 0.722 .0070 0.760 .0030

No dominant 0.690 0.606 0.642
= 100 Bag of Sounds Dominant (20) 0.418 .0030 0.737 .0020 0.490 .0010

No dominant (17) 0.192 0.498 0.252
Markov Model Dominant 0.762 .0002 0.600 .0300 0.661 .0060

No dominant 0.639 0.505 0.558
Neural Network Dominant 0.787 .0002 0.619 .0200 0.685 .0060

No dominant 0.655 0.523 0.567
Table 6. 10-fold cross validation - dominant versus no dominant donor.

Comparing entropy distributions to investigate the performance 415

of the Markov Model and Neural Network methods 416

The Markov Model and the Neural Network methods estimate word entropy on a per 417

sound basis given the inherited or borrowed words on which they are trained. Models 418

trained on inherited words should estimate lower entropies for inherited words, and 419

models trained on borrowed words should estimate lower entropies for borrowed words. 420

However, since words are borrowed over time and potentially also from various donor 421

languages, using a single language model for borrowed words is not always optimal. 422

Our decision procedure for the Markov Model and the Neural Network methods 423

requires the comparison of competing entropies for a given word, the entropy of the 424

lexical language model derived from inherited words and the entropy of the lexical 425

language model derived from borrowed words. If the difference between the entropies is 426

greater than zero, we designate the word as borrowed, and if it is smaller than or equal 427

to zero, we designate the word as inherited. 428

In order to investigate the discriminative force of this procedure, it is useful to 429

compare entropy difference distributions of inherited and borrowed words for a given 430

language variety. The distributions for training and test data from the English wordlist 431

in the WOLD database are shown in Fig 7. While there is a certain overlap between 432

entropy difference distributions for inherited and borrowed words, the problem of 433
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discriminating between them based on entropy differences seems tractable, and we can 434

assume that improvements in entropy estimation would have an immediate benefit on 435

prediction. 436

(a) Training entropy deltas (b) Testing entropy deltas
Fig 7. Distribution of entropy differences – training (85%) and testing (15%)

data for English – Neural Network method.

Since both the Markov Model and the Neural Network performed considerably well 437

on Imbabura Quechua, a Quechua language spoken in parts of Ecuador, Columbia, and 438

Northern Peru, with an F1 score above 0.8, it is not surprising that we find a good 439

separation between the entropy difference distributions for inherited and borrowed 440

words, as shown in Fig 8. 441

(a) Training entropy deltas (b) Testing entropy deltas
Fig 8. Distribution of entropy differences – training (85%) and testing (15%)

data for Imbabura Quechua – Neural Network method.

Neither method performed very well on Oroqen, a Northern Tungusic language 442

spoken in the Mongolian region of the People’s Republic of China, with F1 scores below 443

0.36. Consequently, as can be seen in Fig 9 the entropy difference distributions for 444

inherited and borrowed words are not well separated. 445

This strong relationship between the distribution of entropy differences and 446
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(a) Training entropy deltas (b) Testing entropy deltas
Fig 9. Distribution of entropy differences – training (85%) and testing (15%)

data for Oroqen – Neural Network method.

borrowing detection, indicates a tactic for improving monolingual lexical borrowing 447

detection – increase the separation of difference distributions for inherited versus 448

borrowed words. An examination of our sample cases reveals: 1. English and Imbabura 449

Quechua, even though there were substantial borrowings, have reduced separation 450

between inherited and borrowed word difference distributions for testing, resulting in 451

reduced discriminative power, and 2. Oroqen, with few borrowings, has almost no 452

separation between inherited and borrowed word distributions for testing, resulting in 453

little discriminative power. Identification of problems permits trying to solve them, such 454

as through improved controls for training of Neural Networks, and by obtaining more 455

borrowings, real or simulated, for training. 456

Discussion 457

Artificially seeded borrowings 458

In our experiment on artificially seeded borrowings, we used a very straightforward 459

approach to simulate data that would reflect a situation of very close and intensive 460

language contact during which a larger amount of words are being transferred without 461

being further altered in their phonology or phonotactics. While all methods performed 462

well when the proportion of artificially borrowed words was high, they developed 463

specific problems when the proportion of borrowings was decreased. 464

While the Bag of Sounds outperformed the other two methods regarding recall, the 465

Markov Model and the Neural Network outperformed the Bag of Sounds method in 466
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precision. Since the core strategy of the Bag of Sounds lexical language model is to 467

identify borrowed words by their specific sounds, while the order of sounds itself is 468

ignored, it is not surprising that the method performs better in identifying artificially 469

seeded borrowings, i.e., better recall, since the direct transfer of words from one wordlist 470

to another wordlist, as it was done in our experiment, will always introduce a larger 471

number of sounds which were not present in the recipient wordlist prior to the transfer. 472

Cross validation of borrowing detection methods 473

In our 10-fold cross validation experiment, which was carried out on the full wordlist 474

data as provided by the WOLD database, we tried to check to what degree the methods 475

would be able to detect borrowings in a more realistic setting. 476

Here, the Neural Network performed marginally better than the Markov Model. A 477

major factor favoring the Neural Network seems to be that it includes conditional 478

dependencies from all previous sound segments, without having to explicitly estimate 479

numerous extra parameters for this dependency. 480

Both the Markov Model and the Neural Network methods performed much better 481

than Bag of Sounds. Similar to the previous experiment, the Bag of Sounds method 482

showed a high recall, but suffered from a low precision as well. So while the Bag of 483

Sounds suspects considerably many words of being borrowings, it does not necessarily 484

always pick the right ones and shows a rather high rate of false positives (as can be seen 485

from the low rates of precision). In contrast, the Markov Model and the Neural Network 486

methods show a lower recall, but also a much higher precision. They are therefore much 487

more conservative than the Bag of Sounds method. When the overall proportion of 488

borrowed words in wordlists is small, all models perform poorly. This is not necessarily 489

surprising, since low borrowing proportions make it difficult to learn the phonotactics or 490

phonology of borrowed words (if these can be identified after all), and it is also not clear 491

to which degree native speakers would be able to identify borrowed words in the 492

respective languages. 493
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Factors determining borrowing detection performance 494

Given the disappointing results of our cross validation study, we tried to determine the 495

major factors that might influence the performance of the monolingual borrowing 496

detection methods. Besides selecting the proportion of borrowings as one potentially 497

important factor, we also chose the number of sounds uniquely attested in borrowed 498

words and the number of sounds uniquely attested in inherited words as potential 499

factors. Our assumption was that the latter two factors should have some effect on the 500

performance of the Bag of Sounds, given that this method explicitly deals with sounds, 501

while ignoring all phonotactic aspects. While the effect of the proportion of borrowed 502

words was remarkable, showing a strong linear increase in performance for all methods 503

when the proportion of borrowed words was 5% and more, the impact of the 504

proportions of sounds occurring exclusively in borrowed words and sounds occurring 505

exclusively in inherited words was much lower than we would have expected, especially 506

for the Bag of Sounds method. However, what we may have overestimated was that – 507

even if a given language has many sounds occurring exclusively in borrowed words – this 508

does not mean that these sounds need to occur in each and every borrowed word. Thus, 509

while the presence of specific sounds may be a powerful indicator of a borrowing or an 510

inherited word, this evidence may be too sparse in comparison with the full lexicon of a 511

given language. 512

Detecting borrowings from a single donor language 513

Since we create lexical language models for borrowed and inherited words, it is 514

straightforward to question why our basic approach would treat all borrowed words as if 515

they represented a single donor language. While it may hold for specific contact 516

situations that a given language is heavily influence by one single, dominant donor 517

language, it is also possible that borrowings form distinct layers in the lexicon of a given 518

language, reflecting borrowings from different donor languages and different times. If 519

the majority of the borrowings attested in a given language stem from a single donor, 520

however, we would assume that our lexical language model approaches to monolingual 521

borrowing detection would perform better, since the donor language which we access 522

through the recipient language would provide a much more coherent picture than would 523
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a mix of words from different donor languages. 524

We therefore systematically tested whether the performance of our methods would 525

increase for those wordlists in our sample for which a dominant donor language could be 526

identified. Our assumption, that the methods should show an increased performance for 527

languages with a dominant donor language were largely confirmed, as reflected in 528

substantially increased F1 scores of ≈ 0.75 for the Markov Model and the Neural 529

Network methods in cases of high contact with more than 300 borrowings. While we 530

still consider the overall performance of the monolingual borrowing detection 531

disappointing, this experiment reflects the importance of having a consistent sample of 532

the donor language when dealing with monolingual borrowing detection. 533

Comparing entropy distributions 534

Our final evaluation was intended to demonstrate how the Markov Model and Neural 535

Network methods discriminate between inherited and borrowed words. We showed how 536

plots of the distribution of entropy differences between competing inherited and 537

borrowed word models served to explain borrowing detection results. When comparing 538

the distributions of entropy differences, we found that in those cases where the 539

proportion of borrowings was small, the discriminative force of the word entropy 540

differences seemed to drop drastically for testing. Even when borrowings for training 541

seemed adequate we saw a reduction in discriminative force for testing due to reduced 542

separation of inherited and borrowed word entropy difference distributions. This 543

provided additional evidence that monolingual borrowing detection heavily depends on 544

the presence of a large enough proportion of borrowed words, and also that modest 545

improvements might be possible with improved training controls. 546

Conclusion 547

We presented three supervised methods for the detection of borrowings in monolingual 548

wordlists. These methods are based on lexical language models which are intended to 549

model specific aspects of phonology and phonotactics in the lexicon of spoken languages. 550

Assuming that phonological and phonotactic properties of words in the lexicon of a 551

spoken language can provide enough clues to identify borrowings by language-internal 552

August 31, 2020 25/39



comparison of words alone, we designed workflows in which the lexical language models 553

could be trained with monolingual wordlists in which borrowings are annotated and 554

then used to detect borrowings when being confronted with so far unobserved words. 555

While tests on artificially seeded borrowings showed promising results, tests on real 556

wordlists taken from the WOLD database revealed a rather disappointing performance 557

for all three methods. Consecutive attempts to identify the potential reasons for this 558

mediocre performance revealed two main factors that considerably influence how well 559

the methods performed, namely (1) the amount of borrowings in a given language 560

variety, (2) the uniformity of the borrowings in a given language variety (as reflected in 561

the presence of a dominant donor language). While first factor reflects the importance 562

of having enough training data when working in supervised learning frameworks, the 563

second factor reflects the very specific linguistic conditions of monolingual borrowing 564

detection. Assuming that speakers who can identify borrowings in their native language 565

make use of primarily phonological and phonotactic clues, it seems that the salient 566

factor lies not only in the properties of the inherited words, but also in the specific 567

properties of the borrowed words, which can be much better identified when they come 568

from a uniform sample. 569

While our results do not recommend any of the three methods represented here as a 570

replacement for previously proposed methods for borrowing detection, we believe that 571

the methods we created offer a valuable and promising base for further exploration, and 572

we are even convinced that they may be useful in some current applications. The 573

recurrent Neural Network method offers more promise, both for its marginally better 574

detection performance than the Markov Model, and for its opportunities for 575

improvement via better control in training or leading edge algorithms. Given that we 576

know that our methods rely heavily on a sufficiently large sample of training data, our 577

methods may be useful for those studies in which borrowed words or sentences need to 578

be identified in large amounts of data, preferably in situations where borrowings are 579

considerably young. Here, especially, larger linguistic corpora could be analyzed and 580

tagged for inherited and borrowed words. Our methods might also be attractive for 581

scholars working on code switching, where multilingual language users switch between 582

different varieties based on sociolinguistic contexts. 583

Additionally, we think that – given that by now no single method for borrowing 584
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detection has been proposed that exhibits satisfactory performance – our methods add 585

to the growing pool of automated approaches to borrowing detection which could ideally 586

be later combined into an integrated workflow in which evidence from multiple sources 587

can be combined to form a unified picture of language contact. 588

Last not least, we also emphasize that it is very well possible to further improve our 589

methods: 1. Our comparison of distributions of entropy differences suggests improved 590

control of Neural Network training is possible. 2. Improved detection for dominant 591

donors suggests that using multiple donor models instead of just one borrowing model 592

might offer better detection results. While improving our current methods will result in 593

better borrowing detection, there is much more to this problem than individual 594

monolingual wordlists. Minimally what is needed are more integrated approaches that 595

also take into account multilingual and cross-linguistic information for a proper 596

automated borrowing detection. We hope that the software library which implements 597

all three approaches and which we supplement with this study will make it easy for us 598

and our colleagues to build and improve upon, and use to further explore borrowed 599

word detection. 600
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Supporting information

S1 Seeded borrowings Detection results by language for seeded

borrowings

Recurrent neural net Markov model Bag of sounds
Language Prec. Recall F1 Acc. Prec. Recall F1 Acc. Prec. Recall F1 Acc.
Archi 0.89 0.53 0.67 0.96 1.00 0.39 0.56 0.95 0.71 1.00 0.83 0.98
Bezhta 1.00 0.80 0.89 0.99 1.00 0.41 0.58 0.93 0.75 1.00 0.86 0.99
Ceq Wong 1.00 1.00 1.00 1.00 1.00 0.23 0.38 0.76 0.83 1.00 0.91 0.99
Dutch 0.71 0.71 0.71 0.97 0.94 0.60 0.73 0.96 0.67 1.00 0.80 0.98
English 0.86 0.75 0.80 0.98 0.89 0.24 0.37 0.86 0.80 1.00 0.89 0.99
Gawwada 0.93 0.82 0.87 0.98 1.00 0.54 0.70 0.95 0.73 1.00 0.84 0.99
Gurindji 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 1.00 0.96 0.99
Hausa 1.00 0.85 0.92 0.99 1.00 0.83 0.91 0.99 0.71 1.00 0.83 0.98
Hawaiian 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Hup 0.88 1.00 0.93 1.00 1.00 0.31 0.48 0.95 0.86 1.00 0.92 1.00
Imbabura Quechua 1.00 1.00 1.00 1.00 0.89 0.89 0.89 0.99 0.89 1.00 0.94 0.99
Indonesian 1.00 0.95 0.97 1.00 0.92 0.92 0.92 0.99 0.92 1.00 0.96 1.00
Iraqw 1.00 0.83 0.91 0.99 0.93 0.81 0.87 0.98 0.80 1.00 0.89 0.99
Japanese 1.00 1.00 1.00 1.00 1.00 0.81 0.89 0.99 1.00 1.00 1.00 1.00
Kali’na 1.00 1.00 1.00 1.00 0.94 1.00 0.97 1.00 0.93 1.00 0.96 1.00
Kanuri 1.00 0.93 0.96 1.00 0.88 0.70 0.78 0.99 0.76 1.00 0.87 0.99
Ket 1.00 0.73 0.85 0.98 0.93 0.57 0.70 0.95 0.79 1.00 0.88 0.99
Kildin Saami 1.00 0.81 0.90 0.99 1.00 0.45 0.62 0.96 0.86 1.00 0.92 0.99
Lower Sorbian 1.00 0.87 0.93 0.99 0.92 0.57 0.71 0.97 0.71 1.00 0.83 0.98
Malagasy 1.00 1.00 1.00 1.00 1.00 0.88 0.93 0.99 1.00 1.00 1.00 1.00
Manange 1.00 0.79 0.88 0.99 0.88 0.41 0.56 0.90 0.82 1.00 0.90 0.99
Mandarin Chinese 1.00 0.94 0.97 1.00 1.00 0.91 0.95 1.00 0.74 1.00 0.85 0.99
Mapudungun 1.00 1.00 1.00 1.00 1.00 0.38 0.55 0.96 0.91 1.00 0.95 1.00
Old High German 0.82 0.60 0.69 0.97 1.00 0.54 0.70 0.96 0.81 1.00 0.90 0.99
Oroqen 1.00 0.47 0.64 0.96 1.00 0.48 0.65 0.94 0.41 1.00 0.58 0.96
Otomi 1.00 0.90 0.95 1.00 0.97 0.88 0.92 0.99 0.78 1.00 0.88 0.99
Q’eqchi’ 0.94 0.70 0.80 0.98 0.94 0.62 0.74 0.97 0.71 1.00 0.83 0.99
Romanian 0.86 0.63 0.73 0.97 0.86 0.60 0.71 0.97 0.58 1.00 0.73 0.97
Sakha 1.00 0.83 0.91 0.98 1.00 0.68 0.81 0.98 0.71 1.00 0.83 0.98
Saramaccan 1.00 0.67 0.80 0.98 1.00 0.81 0.90 0.98 0.55 1.00 0.71 0.97
Selice Romani 1.00 1.00 1.00 1.00 0.89 0.33 0.48 0.89 0.71 1.00 0.83 0.99
Seychelles Creole 1.00 0.88 0.93 0.99 0.90 0.76 0.83 0.98 0.78 1.00 0.88 0.99
Swahili 1.00 0.93 0.97 1.00 1.00 0.90 0.95 0.99 0.91 1.00 0.95 1.00
Takia 1.00 0.80 0.89 0.99 0.82 0.47 0.60 0.94 0.91 1.00 0.95 1.00
Tarifiyt Berber 1.00 0.64 0.78 0.97 1.00 0.39 0.56 0.94 0.56 1.00 0.71 0.98
Thai 1.00 0.84 0.91 0.99 0.86 0.86 0.86 0.99 0.76 1.00 0.87 0.99
Vietnamese 1.00 0.63 0.77 0.97 1.00 0.50 0.67 0.97 0.77 1.00 0.87 0.99
White Hmong 1.00 0.85 0.92 0.99 1.00 1.00 1.00 1.00 0.95 1.00 0.97 1.00
Wichí 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.82 1.00 0.90 0.99
Yaqui 1.00 1.00 1.00 1.00 1.00 0.95 0.97 1.00 0.93 1.00 0.96 1.00
Zinacantán Tzotzil 1.00 0.92 0.96 1.00 0.91 0.77 0.83 0.98 0.91 1.00 0.95 1.00
Mean over languages 0.97 0.84 0.90 0.99 0.96 0.67 0.76 0.96 0.80 1.00 0.88 0.99

Table 7. Fake words - 5% borrowing - metrics by language.
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Recurrent neural net Markov model Bag of sounds
Language Prec Recall F1 Acc. Prec. Recall F1 Acc. Prec. Recall F1 Acc.
Archi 0.95 0.95 0.95 0.99 0.95 0.58 0.72 0.94 0.86 0.95 0.90 0.98
Bezhta 1.00 0.85 0.92 0.98 0.95 0.76 0.84 0.97 0.87 1.00 0.93 0.99
Ceq Wong 1.00 0.90 0.95 0.99 0.92 0.57 0.71 0.93 0.78 1.00 0.88 0.99
Dutch 0.82 0.78 0.79 0.94 0.86 0.71 0.77 0.95 0.72 0.95 0.82 0.97
English 1.00 0.83 0.91 0.98 0.88 0.70 0.78 0.94 0.75 1.00 0.86 0.99
Gawwada 0.96 0.92 0.94 0.99 0.96 0.74 0.83 0.96 0.86 1.00 0.92 0.99
Gurindji 1.00 0.96 0.98 0.99 1.00 1.00 1.00 1.00 0.89 1.00 0.94 0.99
Hausa 1.00 1.00 1.00 1.00 1.00 0.91 0.95 0.99 0.87 1.00 0.93 0.99
Hawaiian 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.98 1.00
Hup 1.00 0.92 0.96 0.99 0.96 0.85 0.90 0.98 0.84 1.00 0.91 0.99
Imbabura Quechua 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 0.98 1.00
Indonesian 1.00 1.00 1.00 1.00 0.95 0.95 0.95 0.99 0.88 1.00 0.94 0.99
Iraqw 1.00 0.96 0.98 1.00 0.96 0.79 0.87 0.97 0.91 1.00 0.95 0.99
Japanese 1.00 1.00 1.00 1.00 1.00 0.94 0.97 0.99 1.00 1.00 1.00 1.00
Kali’na 1.00 1.00 1.00 1.00 0.93 0.97 0.95 0.99 0.93 1.00 0.97 0.99
Kanuri 0.97 1.00 0.98 1.00 0.97 0.97 0.97 0.99 0.86 0.96 0.91 0.98
Ket 0.89 0.86 0.87 0.97 1.00 0.81 0.90 0.98 0.75 0.96 0.84 0.96
Kildin Saami 0.97 0.91 0.94 0.98 0.97 0.78 0.86 0.96 0.71 0.95 0.82 0.97
Lower Sorbian 0.93 0.96 0.95 0.99 1.00 0.97 0.99 1.00 0.88 1.00 0.94 0.99
Malagasy 1.00 1.00 1.00 1.00 1.00 0.94 0.97 0.99 0.85 1.00 0.92 0.98
Manange 0.96 1.00 0.98 1.00 1.00 0.82 0.90 0.98 0.96 1.00 0.98 1.00
Mandarin Chinese 0.98 0.98 0.98 1.00 1.00 0.98 0.99 1.00 0.89 1.00 0.94 0.99
Mapudungun 1.00 0.90 0.95 0.99 1.00 0.96 0.98 1.00 0.95 1.00 0.98 1.00
Old High German 0.85 0.71 0.77 0.96 0.81 0.84 0.82 0.97 0.86 0.95 0.90 0.98
Oroqen 0.89 0.86 0.87 0.97 1.00 0.70 0.82 0.96 0.55 1.00 0.71 0.96
Otomi 1.00 0.98 0.99 1.00 0.98 0.98 0.98 1.00 0.94 0.98 0.96 0.99
Q’eqchi’ 0.96 0.90 0.92 0.98 0.97 0.94 0.95 0.99 0.95 1.00 0.97 0.99
Romanian 0.96 0.83 0.89 0.98 0.97 0.85 0.91 0.97 0.86 1.00 0.93 0.99
Sakha 0.90 0.96 0.93 0.98 0.92 0.83 0.87 0.97 0.80 1.00 0.89 0.99
Saramaccan 1.00 0.87 0.93 0.98 1.00 0.94 0.97 0.99 0.93 1.00 0.97 0.99
Selice Romani 0.94 0.88 0.91 0.98 0.84 0.94 0.89 0.98 0.80 1.00 0.89 0.98
Seychelles Creole 0.95 0.91 0.93 0.99 0.95 0.84 0.89 0.98 0.95 1.00 0.97 1.00
Swahili 0.97 1.00 0.99 1.00 1.00 0.97 0.98 1.00 0.92 0.96 0.94 0.99
Takia 1.00 0.80 0.89 0.98 0.93 0.93 0.93 0.98 0.95 1.00 0.97 1.00
Tarifiyt Berber 0.94 0.94 0.94 0.99 0.95 0.74 0.83 0.96 0.85 1.00 0.92 0.98
Thai 0.95 0.82 0.88 0.97 0.97 0.85 0.91 0.98 0.67 0.96 0.79 0.97
Vietnamese 0.97 1.00 0.99 1.00 1.00 0.97 0.98 1.00 0.90 1.00 0.95 0.99
White Hmong 1.00 1.00 1.00 1.00 1.00 0.96 0.98 1.00 0.92 1.00 0.96 0.99
Wichí 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Yaqui 0.95 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.91 1.00 0.96 0.99
Zinacantán Tzotzil 1.00 0.97 0.98 1.00 0.90 0.78 0.84 0.97 0.80 1.00 0.89 0.98
Mean over languages 0.97 0.93 0.95 0.99 0.96 0.87 0.91 0.98 0.87 0.99 0.92 0.99

Table 8. Fake words - 10% borrowing - metrics by language.
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Recurrent neural net Markov model Bag of sounds
Language Prec. Recall F1 Acc. Prec. Recall F1 Acc. Prec. Recall F1 Acc.
Archi 0.98 0.98 0.98 0.99 0.96 0.94 0.95 0.98 0.88 0.93 0.91 0.96
Bezhta 0.98 0.97 0.97 0.99 0.96 0.96 0.96 0.98 0.96 0.96 0.96 0.98
Ceq Wong 0.97 0.85 0.91 0.96 0.94 0.91 0.92 0.97 0.89 1.00 0.94 0.98
Dutch 0.88 0.77 0.82 0.92 0.83 0.78 0.81 0.91 0.78 1.00 0.88 0.96
English 0.93 0.89 0.91 0.97 1.00 0.80 0.89 0.96 0.83 1.00 0.91 0.97
Gawwada 0.97 1.00 0.98 0.99 0.95 0.93 0.94 0.98 0.93 1.00 0.96 0.98
Gurindji 1.00 0.98 0.99 1.00 1.00 0.97 0.99 1.00 0.92 1.00 0.96 0.98
Hausa 0.98 1.00 0.99 1.00 0.98 0.98 0.98 0.99 0.93 0.99 0.96 0.98
Hawaiian 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00 0.99 1.00 0.99 1.00
Hup 1.00 1.00 1.00 1.00 0.98 0.98 0.98 0.99 0.82 1.00 0.90 0.97
Imbabura Quechua 1.00 1.00 1.00 1.00 0.97 1.00 0.99 1.00 0.93 1.00 0.96 0.99
Indonesian 1.00 1.00 1.00 1.00 0.97 0.97 0.97 0.99 0.97 1.00 0.99 0.99
Iraqw 0.96 0.96 0.96 0.99 0.96 0.96 0.96 0.99 0.88 1.00 0.94 0.98
Japanese 1.00 1.00 1.00 1.00 0.99 0.97 0.98 0.99 0.94 1.00 0.97 0.99
Kali’na 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00 0.96 1.00 0.98 0.99
Kanuri 0.98 0.98 0.98 0.99 0.98 1.00 0.99 1.00 0.90 1.00 0.95 0.98
Ket 1.00 1.00 1.00 1.00 0.95 0.90 0.92 0.97 0.93 0.98 0.95 0.98
Kildin Saami 1.00 0.96 0.98 0.99 0.91 0.84 0.87 0.95 0.92 0.98 0.95 0.98
Lower Sorbian 1.00 0.99 0.99 1.00 0.98 0.96 0.97 0.99 0.92 1.00 0.96 0.98
Malagasy 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.98 0.99
Manange 1.00 0.98 0.99 1.00 1.00 0.89 0.94 0.98 0.92 1.00 0.96 0.98
Mandarin Chinese 1.00 0.97 0.98 0.99 1.00 0.98 0.99 1.00 0.93 1.00 0.96 0.98
Mapudungun 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 0.96 0.98 0.97 0.99
Old High German 0.96 0.82 0.89 0.96 0.91 0.81 0.86 0.95 0.89 0.94 0.92 0.97
Oroqen 1.00 0.98 0.99 1.00 0.86 0.85 0.85 0.94 0.67 0.92 0.78 0.93
Otomi 0.99 0.97 0.98 0.99 1.00 0.99 1.00 1.00 0.91 0.98 0.95 0.98
Q’eqchi’ 1.00 0.97 0.98 0.99 0.99 0.95 0.97 0.99 0.90 1.00 0.95 0.98
Romanian 0.94 0.93 0.93 0.97 0.90 0.90 0.90 0.96 0.85 0.92 0.88 0.96
Sakha 0.98 0.97 0.98 0.99 0.96 0.94 0.95 0.98 0.81 1.00 0.89 0.96
Saramaccan 1.00 0.94 0.97 0.99 1.00 0.96 0.98 0.99 0.90 0.93 0.92 0.98
Selice Romani 1.00 0.95 0.97 0.99 1.00 0.87 0.93 0.97 0.91 1.00 0.95 0.98
Seychelles Creole 0.99 0.99 0.99 1.00 0.96 0.93 0.95 0.98 0.89 1.00 0.94 0.98
Swahili 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.89 0.98 0.94 0.98
Takia 0.96 0.96 0.96 0.98 1.00 0.89 0.94 0.98 0.91 1.00 0.95 0.98
Tarifiyt Berber 1.00 0.98 0.99 1.00 0.91 0.89 0.90 0.96 0.94 0.92 0.93 0.98
Thai 0.98 0.94 0.96 0.98 0.96 0.88 0.92 0.97 0.88 1.00 0.94 0.98
Vietnamese 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.96 1.00 0.98 0.99
White Hmong 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Wichí 1.00 0.96 0.98 0.99 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00
Yaqui 0.99 1.00 0.99 1.00 0.98 0.98 0.98 0.99 0.94 1.00 0.97 0.99
Zinacantán Tzotzil 1.00 0.98 0.99 1.00 0.98 1.00 0.99 1.00 0.91 1.00 0.96 0.98
Mean over languages 0.99 0.97 0.98 0.99 0.97 0.94 0.95 0.98 0.91 0.99 0.94 0.98

Table 9. Fake words - 20% borrowing - metrics by language.
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S2 Cross validation Detection results by language for 10-fold cross

validation on WOLD wordlists

Recurrent neural net Markov model Bag of Sounds
Language Prec. Recall F1 Acc Prec. Recall F1 Acc Prec. Recall F1 Acc Native
Archi 0.747 0.603 0.664 0.840 0.740 0.530 0.615 0.803 0.249 0.687 0.359 0.814 0.786
Bezhta 0.799 0.759 0.778 0.863 0.770 0.704 0.735 0.834 0.689 0.757 0.720 0.840 0.701
Ceq Wong 0.770 0.710 0.736 0.818 0.690 0.619 0.650 0.753 0.581 0.649 0.610 0.754 0.667
Dutch 0.625 0.492 0.545 0.807 0.557 0.432 0.484 0.778 0.010 0.200 0.019 0.815 0.814
English 0.651 0.624 0.637 0.716 0.630 0.601 0.613 0.696 0.510 0.685 0.584 0.720 0.614
Gawwada 0.661 0.367 0.457 0.864 0.590 0.357 0.438 0.862 0.179 0.603 0.254 0.916 0.909
Gurindji 0.428 0.232 0.291 0.753 0.525 0.301 0.376 0.796 0.000 0.000 0.000 0.875 0.875
Hausa 0.654 0.527 0.579 0.813 0.702 0.520 0.595 0.814 0.288 0.664 0.395 0.830 0.802
Hawaiian 0.783 0.430 0.554 0.797 0.727 0.475 0.572 0.826 0.022 0.400 0.041 0.843 0.839
Hup 0.869 0.629 0.727 0.936 0.807 0.527 0.625 0.903 0.464 0.908 0.593 0.939 0.899
Imbabura Quechua 0.861 0.780 0.816 0.892 0.859 0.791 0.821 0.897 0.615 0.762 0.676 0.839 0.720
Indonesian 0.689 0.619 0.651 0.778 0.657 0.608 0.630 0.768 0.265 0.636 0.371 0.732 0.698
Iraqw 0.787 0.560 0.647 0.894 0.690 0.459 0.545 0.855 0.377 0.760 0.493 0.901 0.870
Japanese 0.822 0.723 0.767 0.853 0.767 0.703 0.733 0.835 0.413 0.680 0.513 0.768 0.704
Kali’na 0.714 0.506 0.590 0.857 0.660 0.537 0.589 0.868 0.208 0.967 0.335 0.885 0.855
Kanuri 0.635 0.444 0.518 0.794 0.598 0.429 0.493 0.788 0.055 0.683 0.101 0.830 0.823
Ket 0.779 0.470 0.582 0.906 0.683 0.402 0.486 0.885 0.207 0.750 0.315 0.930 0.916
Kildin Saami 0.560 0.454 0.497 0.790 0.562 0.403 0.469 0.758 0.003 0.050 0.006 0.805 0.810
Lower Sorbian 0.744 0.605 0.664 0.856 0.713 0.602 0.649 0.849 0.215 0.752 0.328 0.831 0.803
Malagasy 0.602 0.373 0.452 0.821 0.559 0.365 0.437 0.821 0.000 0.000 0.000 0.875 0.875
Manange 0.593 0.293 0.380 0.881 0.638 0.274 0.360 0.859 0.045 0.300 0.079 0.937 0.935
Mandarin Chinese 0.050 0.006 0.011 0.955 0.190 0.008 0.016 0.811 0.000 0.000 0.000 0.993 0.993
Mapudungun 0.816 0.664 0.727 0.879 0.801 0.636 0.707 0.868 0.534 0.832 0.645 0.885 0.800
Old High German 0.351 0.189 0.241 0.887 0.450 0.176 0.246 0.860 0.000 0.000 0.000 0.947 0.947
Oroqen 0.530 0.271 0.354 0.857 0.497 0.267 0.342 0.856 0.054 0.350 0.091 0.925 0.922
Otomi 0.908 0.709 0.793 0.954 0.929 0.629 0.749 0.939 0.673 0.854 0.751 0.957 0.902
Q’eqchi’ 0.852 0.651 0.733 0.935 0.820 0.597 0.689 0.923 0.540 0.816 0.647 0.939 0.895
Romanian 0.724 0.698 0.710 0.764 0.716 0.668 0.690 0.743 0.412 0.623 0.493 0.663 0.600
Sakha 0.632 0.599 0.610 0.800 0.620 0.543 0.577 0.782 0.196 0.595 0.290 0.766 0.751
Saramaccan 0.622 0.589 0.603 0.714 0.632 0.596 0.611 0.718 0.089 0.669 0.149 0.652 0.645
Selice Romani 0.872 0.905 0.888 0.874 0.875 0.878 0.876 0.859 0.829 0.746 0.784 0.740 0.427
Seychelles Creole 0.568 0.272 0.364 0.828 0.606 0.323 0.420 0.854 0.000 0.000 0.000 0.911 0.911
Swahili 0.783 0.680 0.723 0.857 0.700 0.623 0.658 0.825 0.536 0.786 0.635 0.851 0.758
Takia 0.808 0.618 0.697 0.839 0.762 0.617 0.680 0.834 0.047 0.700 0.087 0.780 0.768
Tarifiyt Berber 0.764 0.795 0.778 0.788 0.765 0.772 0.768 0.774 0.695 0.773 0.731 0.750 0.511
Thai 0.655 0.526 0.581 0.799 0.622 0.450 0.521 0.754 0.104 0.630 0.175 0.794 0.785
Vietnamese 0.668 0.463 0.544 0.795 0.579 0.411 0.477 0.770 0.101 0.601 0.166 0.821 0.817
White Hmong 0.597 0.373 0.457 0.785 0.607 0.354 0.443 0.767 0.025 0.400 0.046 0.846 0.845
Wichí 0.873 0.705 0.773 0.931 0.848 0.729 0.781 0.935 0.518 0.698 0.583 0.900 0.857
Yaqui 0.819 0.736 0.773 0.885 0.839 0.764 0.798 0.897 0.567 0.794 0.658 0.861 0.760
Zinacantán Tzotzil 0.906 0.751 0.815 0.940 0.836 0.675 0.744 0.919 0.430 0.935 0.584 0.913 0.857
Mean over languages 0.697 0.546 0.603 0.844 0.678 0.521 0.578 0.828 0.286 0.578 0.349 0.843 0.797

Table 10. 10-fold cross-validation by language - Means.
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Recurrent neural net Markov model Bag of Sounds
Language Prec. Recall F1 Acc. Prec. Recall F1 Acc. Prec. Recall F1 Acc.
Archi 0.073 0.071 0.052 0.029 0.107 0.093 0.087 0.045 0.078 0.099 0.084 0.031
Bezhta 0.052 0.035 0.035 0.030 0.037 0.054 0.040 0.029 0.045 0.070 0.044 0.033
Ceq Wong 0.044 0.104 0.072 0.047 0.115 0.089 0.089 0.066 0.083 0.085 0.072 0.053
Dutch 0.149 0.105 0.103 0.051 0.076 0.069 0.061 0.042 0.016 0.350 0.031 0.030
English 0.046 0.051 0.042 0.021 0.062 0.073 0.055 0.043 0.029 0.047 0.024 0.018
Gawwada 0.177 0.093 0.080 0.042 0.101 0.107 0.100 0.029 0.158 0.379 0.201 0.021
Gurindji 0.170 0.094 0.099 0.046 0.234 0.126 0.151 0.031 0.000 0.000 0.000 0.036
Hausa 0.081 0.066 0.048 0.028 0.079 0.095 0.086 0.033 0.098 0.138 0.109 0.036
Hawaiian 0.064 0.054 0.057 0.032 0.086 0.077 0.078 0.037 0.031 0.516 0.057 0.030
Hup 0.122 0.086 0.089 0.019 0.138 0.158 0.120 0.035 0.170 0.102 0.151 0.024
Imbabura Quechua 0.065 0.046 0.035 0.022 0.053 0.062 0.037 0.018 0.107 0.092 0.084 0.037
Indonesian 0.035 0.061 0.045 0.029 0.058 0.059 0.047 0.034 0.067 0.085 0.078 0.041
Iraqw 0.155 0.146 0.134 0.031 0.134 0.091 0.095 0.025 0.093 0.126 0.080 0.022
Japanese 0.041 0.060 0.034 0.022 0.045 0.017 0.021 0.022 0.068 0.092 0.076 0.047
Kali’na 0.095 0.087 0.084 0.029 0.087 0.122 0.104 0.035 0.084 0.105 0.118 0.027
Kanuri 0.089 0.071 0.060 0.041 0.126 0.077 0.085 0.038 0.039 0.328 0.068 0.024
Ket 0.107 0.099 0.100 0.023 0.150 0.178 0.148 0.033 0.132 0.362 0.180 0.023
Kildin Saami 0.093 0.099 0.087 0.024 0.042 0.038 0.036 0.043 0.010 0.158 0.019 0.028
Lower Sorbian 0.089 0.084 0.072 0.031 0.103 0.059 0.062 0.035 0.084 0.110 0.106 0.041
Malagasy 0.137 0.095 0.083 0.035 0.087 0.097 0.089 0.035 0.000 0.000 0.000 0.020
Manange 0.162 0.126 0.137 0.026 0.176 0.140 0.143 0.038 0.073 0.483 0.127 0.025
Mandarin Chinese 0.158 0.019 0.033 0.019 0.341 0.014 0.026 0.041 0.000 0.000 0.000 0.007
Mapudungun 0.105 0.105 0.087 0.040 0.092 0.103 0.089 0.037 0.092 0.124 0.085 0.027
Old High German 0.156 0.060 0.078 0.023 0.147 0.066 0.081 0.024 0.000 0.000 0.000 0.025
Oroqen 0.137 0.091 0.101 0.035 0.173 0.103 0.117 0.031 0.078 0.474 0.130 0.021
Otomi 0.074 0.112 0.091 0.019 0.057 0.059 0.048 0.016 0.090 0.054 0.069 0.011
Q’eqchi’ 0.076 0.101 0.075 0.023 0.073 0.094 0.084 0.020 0.106 0.114 0.104 0.018
Romanian 0.028 0.037 0.022 0.019 0.037 0.045 0.031 0.030 0.056 0.060 0.038 0.030
Sakha 0.073 0.074 0.047 0.029 0.112 0.116 0.110 0.035 0.069 0.154 0.088 0.027
Saramaccan 0.074 0.093 0.080 0.037 0.069 0.058 0.053 0.044 0.048 0.224 0.068 0.044
Selice Romani 0.022 0.029 0.017 0.019 0.021 0.031 0.018 0.019 0.042 0.033 0.026 0.025
Seychelles Creole 0.089 0.048 0.046 0.025 0.114 0.048 0.064 0.016 0.000 0.000 0.000 0.031
Swahili 0.072 0.089 0.057 0.020 0.074 0.054 0.057 0.027 0.061 0.070 0.051 0.028
Takia 0.059 0.070 0.044 0.019 0.081 0.090 0.084 0.056 0.046 0.483 0.082 0.033
Tarifiyt Berber 0.054 0.042 0.033 0.029 0.039 0.045 0.031 0.033 0.053 0.062 0.045 0.042
Thai 0.055 0.052 0.038 0.018 0.069 0.045 0.045 0.030 0.054 0.091 0.077 0.019
Vietnamese 0.073 0.064 0.053 0.030 0.095 0.119 0.110 0.035 0.061 0.262 0.095 0.035
White Hmong 0.139 0.073 0.091 0.031 0.150 0.101 0.110 0.038 0.043 0.516 0.076 0.038
Wichí 0.103 0.123 0.090 0.024 0.048 0.089 0.060 0.016 0.150 0.129 0.129 0.024
Yaqui 0.067 0.069 0.054 0.031 0.046 0.066 0.035 0.024 0.072 0.069 0.053 0.018
Zinacantán Tzotzil 0.060 0.097 0.041 0.021 0.060 0.098 0.077 0.025 0.102 0.093 0.102 0.028
Pooled std. dev. 0.100 0.082 0.072 0.030 0.114 0.088 0.082 0.034 0.078 0.226 0.088 0.030

Table 11. 10-fold cross-validation by language - Standard Deviations.
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