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We present a general formslism for the description of an axisym-
metric plasms eguilibrium. This is s model for the steady operas-
tion of a Tokamak device. We use the hydromagnetic equations ta-
king into account effects such as tensorial resistivity snd fi-
nite thermal conductivity. The reformulstion of this set leads
to an equivalent set,including the generslisation to toroidal
geometry of the Bennett-Finch relation,and an expression for the
resistive plaesma loss which shows explicitly the effect of the
discharge current. This mathematically concise presentation of
the full resistive equilibrium problem is appropriate to practi-
cal calculations. As an example we consider a steady state on
the resistive time scale and for the casse of small inverse as-
pect-ratio calculate the plasme displacement, and the radisl
distributions of all equilibrium quantities.

To describe the stationary staste of & Tokamak plasma, we use the
following MHD equations in M.K.S. units and standsrd notation

rotB «B = . p . 1)

dwB=0 " (2)
EryB-mg ; E--Vp-537s (3)

diwpy = Q (4)

divegy = 4k} - plvy + danr(kVT) + Qg ()

m-nl- (m,~ BB/ (&)

The expression for E follows from the assumption that there is
no time variation of B in the plasms region. U is the ring volt-
age, § the angle about the axis of symmeiry and e the specific
internal energy. To complete the system we add the idesl gas
equation of state. We assume that the temperature T is constant
along field lines. We imagine that the plssma is enclosed in an
ideally conducting conteiner.

The following observations should be made:

(1) We consider a stationary state, by which is meant that the
time variation is slow enough to neglect all partial deriva-
tives with respect to time.

(2) The plasma losses due to ion-electron collisions, as descri-
bed by the resistivity m are balanced by & plasma source Q.

(3) In the stationary state under investigation, plasmz flows
ere retained but are such that inertia effects are negligi-
ble.

The usual description of an axisymmetric situation is carried out

with the use of cylindrical coordinetes. The introduction of flux

functions lesds to a more elegant and convenient description(1].

We employ for B and j the fluxes the "long" and "short" way,

where each flux is evaluated in the sppropriate direction bet-

ween the magnetic axis and & megnetic surface. We casll the mag-
netic fluxes the long and the short way F and G respectively.

The corresponding fluxes of j, the currents, we call I and J. By

their definition, the equations used and the assumption on T,

®,G,I,J,T, p and @ are surface quantities. The labeling of msg-

netic surfaces can be done in terms of any one of these, we usu-
ally emplpy the poloidal magnetic flux G and denote derivatives
with respect to this variable by a dot.

A straightforward analysis revesls that the basic equations can

be rewritten in the follnying form
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(7) is tne fundamental equilibrium egustion. (&) is Onhm's law
in the flux formulation and (9) is the differentisl form of the
Bennett-Pinch relstion in the toroidal csse. Trke last twe egus-
tions express mass and energy bslance. The quantities needed to
explain this system we list irn the following lines
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R is the distance from the 2xis of éymmatry. We note that the
determinaticn of the six quentities G,A ,I,p, T &nd g from (7)
to (12) determines the flows, so that the velocity v consists
of two parts
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(1) ¥, which is calculable from G, A and ¢, end (Z) the remain-
ing part, which is divergencefree and everywnere tangent to the mag-
netic surfaces. This part depends on srbitrary surface guant:-
ties yg and {f; , which come from the integration of two magnetic
differential equations.

(10) is the expression for the resistive plasme loss and is ma-
de up of three different terms:

(1) the so called "Classicsl Diffusion" term iovolving j,,

(2) the correction due to toroidicity, first derived by Ffirsch
and Schliiter[2]. By Schwarz's ipequality this term can quite
generally be shown to be always positive,

(3) a new term, involving the rin, voltage and always negative.

The structure of the derived set of equations suggests the fol-
lowing procedure for en approximate determination of 2ll equili-
brium quentities. Leaving for a moment the equilibrium eguation
(7) out of discussion, closer investigation of the remaining re-
lztions shows that the prescription of eny family of nested to-
roidal surfaces G=const. ellows the celculation of the surface
quantities I, J, p, ol and T by ordimary differential equations.
However the question now 1s do the solutions so found, satisfy
the equilibrium condition! Certeinly they de not on average
violate the equilibrium condition, because (9) is (7) averaged
over & magnetic surface. But this does not svoid local viola-
tion of eaguation (7).

What is possible and what we propose, is to choose & family of
surfaces, in other words & coordinate system, which anticipates
the expected geometry of the magnetic surfaces and which is
provided with largely arbitrary built-in functions. After sol-
ving for the surface quantities we can use the built-in func-—
tions to modify shape and position of the magnetic surfaces in
such a manner that the approximation with respect to the equi-
librium equation is as good as possible.

As an example we have done this for a large amspect-ratio torus
and for the special csse of no mass and energy sources.

The results will be presented.
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