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Abstract

In wet-lab experiments [NYT00, TTS+10], the slime mold Physarum polycephalum has
demonstrated its ability to solve shortest path problems and to design efficient networks, see
Figure 1 for illustrations. Physarum polycephalum is a slime mold in the Mycetozoa group.
For the shortest path problem, a mathematical model for the evolution of the slime was
proposed in [TKN07] and its biological relevance was argued. The model was shown to solve
shortest path problems, first in computer simulations and then by mathematical proof. It
was later shown that the slime mold dynamics can solve more general linear programs and
that many variants of the dynamics have similar convergence behavior. In this paper, we
introduce a dynamics for the network design problem. We formulate network design as the
problem of constructing a network that efficiently supports a multi-commodity flow problem.
We investigate the dynamics in computer simulations and analytically. The simulations show
that the dynamics is able to construct efficient and elegant networks. In the theoretical part
we show that the dynamics minimizes an objective combining the cost of the network and the
cost of routing the demands through the network. We also give alternative characterization of
the optimum solution.
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1 Introduction

In wet-lab experiments [NYT00, TTS+10], the slime mold Physarum polycephalum was shown
to solve shortest path problems and to design efficient networks, see Figure 1 for illustrations.
Physarum polycephalum is a slime mold in the Mycetozoa group [BD97]. Its cells can grow to
considerable size (of a human hand) and it can form networks.

Figure 1: The figure on the left shows the shortest path experiment. It is reprinted from [NYT00].
The edges of a graph were uniformly covered with Physarum (subfigure (a)) and food in the form
of oat-meal was provided at the locations labeled AG in subfigure (b). After a while the slime
retracted to the shortest path connecting the two food source (subfigure (c)). The underlying
graph is shown in (d).
The figure on the right shows the network design experiment. It is reprinted from [TTS+10]. Food
was provided at many places (the larger dots in the picture) and the slime was constrained to live
in an area that looks similar to the greater Tokyo region. The large dot in the center corresponds
to Tokyo and the empty region below it corresponds to Tokyo bay. The slime formed a network
connecting the food sources. The two graphs on the right compare the network built by the slime
with the railroad network in the Tokyo region.

A theoretical explanation is available for the shortest path problem. In [TKN07] a mathematical
model in the form of a coupled system of differential equations was given for modeling the evolution
of the slime, the biological relevance of the model was argued, and the model was shown to solve
shortest path problems in computer simulations. Proofs that the model solves shortest path
problems can be found in [BMV12, Bon13, KKM20]. The Physarum dynamics is also able to solve
more general linear programs [SV16a, SV16b, IJNT11, KKM20].

Tero, Kobayashi and Nakagaki [TKN07] model the slime network as an electrical network
G = (V,E) with time varying resistors. Each edge e of the network has a fixed positive length ce
and a time-varying diameter xe(t). In this paper, we will refer to ce as the cost of the edge and to
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xe as the capacity of the edge. The resistance of e at time t is then re(t) = ce/xe(t). Let s0 and s1
be two fixed vertices in the network. One unit of current is sent from s0 to s1. Let qe(t) be the
current flowing across e. Then the capacity of e evolves according to the differential equation

ẋe =
d

dt
xe(t) = |qe| − xe for all e ∈ E.

As is customary, we write ẋ for the derivative with respect to time and drop the time-argument of
x and q. Tero et al. showed in computer simulations that a discretization of the model converges to
the shortest path connecting the source and the sink, i.e., xe(∞) = 1 for the edges on the shortest
path and xe(∞) = 0 for the other edges. This assumes that the shortest path is unique. Bonifaci
et al. [BMV12] proved convergence. In the limit t→∞ (in equilibrium), we have xe = |qe| for all
e, i.e., the electrical flow through an edge is equal to the capacity of the edge.

No theoretical explanation is yet available for the network design experiment, i.e., there is
no biologically plausible model1 that constructs in computer simulations networks similar to the
networks constructed by Physarum Polycephalum. We introduce a model that generalizes the model
in [TKN07], analyze its theoretical properties, in particular show convergence of the dynamics
and characterize the limit for t→∞, and show in computer experiments that it constructs nice
networks. We do not argue biological plausibility.

The shortest path problem can be viewed as a network design problem. Given two vertices in a
graph, the goal is to construct the cheapest network connecting the given vertices. The solution is
the shortest path connecting the given vertices. The shortest path problem can also be viewed as a
minimum cost flow problem. We want to send one unit of flow between the given vertices and the
cost of sending a certain amount across an edge is equal to the cost of the edge times the amount
sent. The solution is the shortest path connecting the given vertices.

Networks are designed for a particular purpose. For this paper, the purpose is multi-commodity
flow. Suppose that we have many pairs of vertices between which we want to send flow. We want to
construct a network that satisfies the many demands in an economical way. Economical could mean
many things: minimum cost of the network (that’s the Steiner tree problem), shortest realization
of each demand (then the network is the union of the shortest paths), or something in the middle,
i.e., some combination of total cost of the network and the cost of routing the demands in the
network. We assume that there is some benefit in sharing a connection, i.e., the cost of sending
one unit each of two commodities across an edge is lower than two times the cost of sending one
unit of one commodity across the edge.

Our model for the multi-commodity network design problem is inspired by the Physarum model
for the shortest path problem. Let A ∈ Rn×m be an arbitrary real matrix2 and let b1 to bk in Rn
be k right-hand sides for the linear system Af = b.

Assumption 1. We assume bi ∈ ImA for 1 ≤ i ≤ k, i.e., the linear systems Af = bi are feasible.

We refer to the columns of A as edges and the rows of A as nodes, use e, e′ to index columns
and v and w to index rows of A. The e-th column of A is denoted Ae. Each edge e has a positive
cost ce and a (time-varying) capacity xe(t). We refer to xe/ce as the conductivity of e and to
re = ce/xe as the resistance of e. For a solution f of Af = bi, we use

Ex(f) =

{∑
e ref

2
e if supp f ⊆ suppx,

∞ if supp f 6⊆ suppx.

1Since Steiner trees are well approximated by Minimum Spanning Trees (MST), there are compact linear programs
for the MST problem, and the Physarum dynamics can solve LPs, in a sense, we know already that the Physarum
dynamics can be used to construct a good network. We are searching for a model that doesn’t go through such an
”unnatural” reductions and whose only variables are those representing the flows on the edges.

2The reader may want to think of A as the node-arc incidence matrix of a connected undirected graph G with
n nodes and m edges, i.e., for each e = (u, v) ∈ E, the column Ae has an entry +1 in position u and entry −1

in position v; the orientation of the edge is arbitrary, but fixed. We have k different source-sink pairs (s
(1)
i , s

(2)
i ),

1 ≤ i ≤ k. Let bi ∈ Rn be the vector with entry +1 in position s
(1)
i and entry −1 in position s

(2)
i . All other entries

of bi are zero. Since G is assumed to be connected, the linear system Af = bi has a solution for all i.
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to denote the energy of f with respect to x. Let qi(x) ∈ Rm or simply qi be the minimum energy
solution3 of Af = bi with respect to x. The minimum energy solution (see Section 3 for details)
is induced by node potentials pi ∈ Rn with components pvi such that for each edge e = (u, v),
qei = xe

ce
(pvi− pui) = xeA

T
e pi/ce or more compactly qi = XC−1AT pi, where X and C are diagonal

matrices in Rm×m with entries xe and ce, respectively. The node potentials satisfy the equations
AXC−1AT pi = bi. We use L(x) to denote the matrix AXC−1AT . Let Λei = ATe pi/ce. Then
qei = xeΛei. We summarize the notation:

c ∈ Rm, vector of edge costs, c > 0, C = diag(x),

x ∈ Rm, vector of edge capacities, x ≥ 0, X = diag(x),

A ∈ Rn×m, constraint matrix, elements Ave,

u, v, w ∈ [n],

e, e′ ∈ [m],

Ae = e-th column of A,

i, j ∈ [k],

B ∈ Rn×k, matrix of right hand sides, elements Bvi,

Bi or bi = i-th column of B,

L(x) = AXC−1AT , Laplacian matrix,

Q ∈ Rm×k, matrix of electrical flows, elements Qei, AQ = B,

qi or Qi = i-th column of Q,

Qe = e-th row of Q,

P ∈ Rn×k, matrix of node potentials, elements Pvi, L(x)P = B,

pi or Pi = i-th column of P ,

Pv = v-th row of P ,

Λ ∈ Rm×k, matrix of normalized potential drops, elements Λei, Λei = ATe pi/ce,

Λe = e-th row of Λ

The trace of a matrix is the sum of its diagonal elements. Thus Tr(BTP ) =
∑
i b
T
i pi. In the case

of Q and P it will always be clear from the index (i or e in the case of Q and v or i in the case of
P ), where we refer to a row or column.

In the multi-commodity flow setting, we have many right hand sides and the solution qi realizes
the i-th demand bi. We let the vector Qe of values Qei for any edge e determine the capacity of an
edge and study different ways of combining the individual solutions, in particular, one-norm and

3Continuation of Footnote 2: We view the graph as an electrical network where edge e has resistance re = ce/xe.
Let qi ∈ Rm with components qei be the electrical flow realizing the demand bi, i.e., Aqi = bi. It is well known
that the electrical flow is the minimum energy solution to Afi = bi and that electrical flows are induced by node
potentials pi ∈ Rn with components pvi such that for each edge e = (u, v), qei = xe

ce
(pvi − pui) = xeAT

e pi/ce.

Λei = AT
e pi/ce = (pvi − pui)/ce is the normalized potential drop across the edge e; normalized = potential drop per

unit of length.
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two-norm4. This leads to the following dynamics:

ẋe = −xe +
∑
i

|qei| = xe

(
−1 +

∑
i

|qei|
xe

)
= xe

(
−1 +

∑
i

|Λei|

)
= xe(||Λe||1 − 1), (1)

ẋe = −xe +

√∑
i

q2ei = xe

√∑
i

(
qei
xe

)2

− 1

 = xe

(√∑
i
Λ2
ei − 1

)
= xe(||Λe||2 − 1). (2)

In (1), we form the one-norm ||Λe||1 of the different normalized potential drops across any edge e,
and in (2), we from the two-norm ||Λe||2, and in (2). For k = 1, the one-norm and the two-norm
dynamics coincide. The results of this paper suggest that the two-norm dynamics is the appropriate
generalization to larger k.

The following generalized Physarum dynamics introduced in [Bon16] subsumes the two-norm
dynamics as a special case. For each e ∈ E, let ge be a non-negative, increasing and differentiable
function with ge(1) = 1:

ẋe = xe (ge (||Λe||2)− 1) . (3)

The two-norm dynamics is a special cases with ge(z) = 1 + (z − 1). Other examples are ge(z) =
1 + de (z − 1) and ge(z) = 1 + de

(
z2 − 1

)
where de > 0 is the “reactivity” [KKM20] of edge e,

ge(z) = zµe for some µe > 0 or ge(z) = (1 + αe)z
µe/(1 + αez

µe) for some µe, αe > 0.
The right hand sides of (1) to (3) are defined for any

x ∈ Ω =
{
x ∈ Rm≥0 : for all i there is a solution fi to Af = bi with supp fi ⊆ suppx

}
.

In the analytical part of the paper, we ask and answer the following questions for the generalized
Physarum dynamics. We have little to say about the one-norm dynamics.

• Does the dynamics have a solution x(t) with t ∈ [0,∞)?

• Does the dynamics converge?

• What are the fixed points and the limit points of the dynamics?

• What does the dynamics optimize?

• How can we characterize the limit points?

In the experimental part of the paper, we perform computer and pencil-and-paper simulations of
the dynamics and address the following questions:

• How strong are the sharing effects of the dynamics? How far deviate individual flows from
their shortest realization in order to benefit from sharing edges with other flows?

• Does the dynamics generate “nice” networks?

Existence: Solutions with domain [0,∞) exist for the generalized Physarum dynamics.

Theorem 1. Let x(0) ∈ Rm>0. The generalized Physarum dynamics has a solution t 7→ x(t) ∈ Rm>0

for t ∈ [0,∞).

4Continuation of Footnote 2: In the setting of Footnote 2, the qi’s are flows in the network G. The fact that flows
from different demand pairs on the same edge do not cancel each other (not even partially) seems a bit strange at
the microscopic level. After all, physically, only the cytoplasm is being transported. How does an edge ”distinguish”
between the cytoplasm of pair i and the cytoplasm of pair i′? When k=1, clearly this was not an issue.

However, the flow of cytoplasm is in reality a shuttle-flow, going back and forth between source and sink, and
changing directions with some frequency. Aggregating flow using norms makes sense if we assume that the source-sink
oscillations happen with uncorrelated frequencies. In that case, the power of two linearly combined signals is indeed
the sum of the powers of the two signals, since the power of A+B is the power of A plus the power of B plus twice
the covariance of A and B (which is zero for uncorrelated A and B).
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Cost and Energy Dissipation of a Capacity Vector: The cost of a capacity vector x is
defined as

C(x) = cTx =
∑
e

cexe.

The energy dissipation for a single demand b induced by a capacity vector x is defined as

min
f ; Af=b

Ex(f) =
∑
e

req
2
e = bT p = pTL(x)p,

where q is the minimum energy solution of Af = b with respect to x and p is the corresponding
node potential. We will show the second equality in Section 3. The last equality follows from
L(x)p = b. The energy dissipation E(x) for a set of k demands b1, . . . , bk is the sum of the energy
dissipations for the individual demands, i.e.,

E(x) =
∑
i

bTi pi = PTL(x)P,

where pi is the node potential with respect to the minimum energy solution qi to the i-th demand.

Fixed Points: The fixed points of a dynamics are the points x with ẋe = 0 for all e. We use
F1 and Fg to denote the fixed points (also called equilibrium points) of the one-norm and the
generalized dynamics.

Lemma 1 (The fixed points of the one-norm dynamics). x ∈ F1 iff for all e either xe = 0 or
||Λe||1 = 1. The latter condition is equivalent to ||Qe||1 = xe and equivalent to ||Λe||1 = ce.

Lemma 2 (The fixed points of the generalized Physarum dynamics). x ∈ Fg iff for all e either
xe = 0 or ||Λe||2 = 1. The latter condition can be expressed equivalently by ||ATe P ||2 = ce and also
by xe = ||Qe||2. Further, for every x ∈ Fg we have x ≥ 0, AQ = B, and

Tr(BTP ) = E(x) = C(x) = cTx,

i.e., for fixed points of the generalized Physarum dynamics the cost equals the energy dissipation.

Convergence: Let

L(x) =
1

2
(C(x) + E(x)) =

1

2
(cTx+

∑
i

bTi pi).

We show in Section 6 that the function L is a Lyapunov function for the generalized Physarum
dynamics, i.e, d

dtL(x(t)) = 〈∇L, ẋ〉 ≤ 0 for all t and 〈∇L, ẋ〉 = 0 if and only if x ∈ Fg. In the case
k = 1, L is also a Lyapunov function for the one-norm dynamics as shown in [KKM20]. Let

V = {x : 〈∇L, ẋ〉 = 0 } .

What do the Dynamics Optimize? We do not know for the one-norm dynamics. The gener-
alized Physarum dynamics minimizes L.

Theorem 2. Fg = V and the generalized Physarum dynamics converges to V. Moreover, if the
set Fg is finite and any two points in Fg have distinct values of L, the dynamics x(t) converges to
x∗ = argminx∈Rm

≥0
L(x).

Further Properties of the Lyapunov Minimum: The minimum of the Lyapunov function
can also be characterized in alternative ways.

Theorem 3. The following quantities MinQ, MaxP, and MinL are equal.

MinQ = min
Q∈Rm×k

{∑
e

ce||Qe||2 : AQ = B

}
, (4)

MaxP = max
P∈Rn×k

{
Tr(BTP ) : ||ATe P ||2 ≤ ce for all e

}
, (5)

MinL = min
x∈Rm

≥0

L(x). (6)

6



Moreover, there are optimizers Q∗, R∗ and x∗ such that

x∗e = ||Q∗e||2 for all e,

L(x∗)P ∗ = B,

Q∗ = X∗C−1ATP ∗.

Case Studies: We performed three case studies, two small and the third inspired by the wet-lab
experiment by [TKN07]. The first example (Section 2.1 can be treated analytically, we consider a
ring with three nodes with a demand of one between any pair of nodes. We will see that a solution
using all three edges is superior to a solution using only two edges. Also, we see confirmed that for
fixed points of the two-norm dynamics the cost of the network and the total energy dissipation is
the same. The second example (Section 2.2) concerns flow in the Bow-Tie graph shown in Figure 3.
We will investigate the incentive for sharing links. In this example, the demands can share a link
at the cost of increasing the distance between the terminals. We will see that sharing pays off
provided that the detour is not to big. The third example 2.3 is based on the example in [TKN07].
We will see that the dynamics forms nice networks.

Organization of the Paper: In Section 2, we report about paper-and-pencil and computer
experiments. The analytical part starts with Section 3. We review basic facts about electrical flows.
In subsequent sections, we prove the existence of a solution defined for t ∈ [0,∞), characterize
the fixed points, prove that L is Lyapunov function, derive further properties of the Lyapunov
minimum, show convergence to the Lyapunov minimum, and finally make a connection to mirror
descent.

2 Case Studies

2.1 Multi-commodity Flow in a Ring

Consider a graph consisting of three vertices a, b, and c and three edges connecting them into a
3-cycle. All edges have cost one and we have a demand of one between any pair of nodes. An
equilibrium uses either two edges or three edges.

2.1.1 Two Edge Solution

We will see below that, for each of the dynamics, the solution is symmetric, i.e., both edges have
the same capacity in equilibrium, say z. The flow across both edges is two. For each demand, the
potential drop on each edge is 1/z. So the total energy spent is E = 2/z + 2 · 1/z = 4/z and the
total cost C = 2z. Thus C + E = 4/z + 2z.

One-Norm Dynamics: The current across each edge is 2 and hence z = 2 for each of the existing
edges. Thus C = cT z = 4, E =

∑
i b
T
i pi = 4/z = 2, and C + E = 6.

Two-Norm Dynamics The current across each edge is 1 + 1 and hence z =
√

2. Thus C =
cT z = 2

√
2, E =

∑
i b
T
i pi = 4/

√
2 = 2

√
2 and C + E = 4

√
2. Note that C = 2

√
2 = E . This is not a

coincidence as we show in Lemma 7.

Optimum: We have C + E = 4/z + 2z. The optimum is attained for z =
√

2. Note that this
corresponds to the equilibrium of the two-norm. This is not a coincidence as we show in Theorem 4.

2.1.2 Three Edge Solution

We will see below that, for each of the dynamics, the solution is symmetric, i.e., all edges have
the same capacity in equilibrium, say z, and hence the same resistance 1/z. Then C = 3z. Each
demand is routed partly the short way and partly the long way. Since the long way has twice the
resistance, the amount routed the short way is twice the amount routed the long way, i.e., 2/3 of
each demand is routed the short way and 1/3 is routed the long way.

7
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Figure 2: The top and the bottom horizontal edge have cost 10, the middle horizontal edge has
cost L, and all other edges have cost 1. We are sending one unit between nodes 0 and 1 and one
unit between nodes 4 and 5.

For each demand, let ∆ be the potential drop between source and sink. The total energy spent
is 3∆. The potential drop ∆ must be such that it can drive a current of 2/3 across a wire of
conductance z. Thus ∆ = 2/(3z). We obtain C + E = 3z + 2/z.

One-Norm Dynamics: z is equal to the total current flowing across an edge and hence z =
2/3 + 2 · 1/3 = 4/3 and ∆ = 1/2. So C = cT z = 4, E =

∑
i bipi = 3/2, and C + E = 11/2. This is

better than for the two-edge equilibrium.

Two-Norm Dynamics For each edge, we have one flow of value 2/3 and two flows of value 1/3
and hence z2 = 4/9 + 2 · 1/9 = 6/9. Thus z =

√
2/3. ∆ must be such that it can drive a current

of 2/3 across a wire of conductance
√

2/3 and hence ∆ =
√

2/3.

Hence C = cT z = 3 ·
√

2/3 =
√

6 and E =
∑
i bipi = 3 ·

√
2/3 =

√
6. Note that again we have

the same value for the cost C and the total energy spent E . For the sum, we obtain C + E = 2
√

6.
This is better than the two-edge equilibrium.

Optimum: For a general value of z, we have C + E = 3z + 2/z. This is minimized for z =
√

2/3,
i.e., the equilibrium of the two-norm is equal to the minimum combined cost solution.

2.1.3 Computer Simulations

Table 1 shows the results of a typical simulation. For the simulation we discretized the differential
equation and applied an Euler forward scheme.

the final z-values of
the three edges

two-norm dynamics 0.8160 0.8167 0.8166
one-norm dynamics 1.331 1.327 1.342

Table 1: The initial z-values were chosen randomly between 1/1000 and 1. In all cases, the system
converged to the 3-edge equilibrium. Note that 0.82 ≈

√
2/3 and 1.33 ≈ 4/3.

2.2 The Bow-Tie Graph

Consider the graph shown in Figure 2; we refer to this graph as a bow-tie. The edge costs are
as shown and we are sending one unit each between nodes 0 and 1 and nodes 4 and 5, i.e.,
b0 = (1,−1, 0, 0, 0, 0) and b1 = (0, 0, 0, 0, 1,−1). For each pair the direct path connecting the pair
has length 10, the path using the middle edge has length L + 2 and the path using the edge
connecting the other pair has length 14. Figures 3 and 4 show the results of a simulation. Initial
x-values were chosen randomly in the interval [1, 10]. We observe:

• For L ≤ 8, both dynamics generate essentially the same solution. All flow is essentially routed
through the middle edge.
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Figure 3: Simulation of the Bow-Tie Graph: The plot depicts the quantities q
(1)
b , q

(1)
m , and q

(1)
t (=

the split-up of the flow from node 0 to node 1 across the three horizontal edges bottom, middle, and
top) and xm (= the capacity of the middle edge) as a function of L in the range [8, 10.3]. For L < 8,
the quantifies are as for L = 8 and for L > 10.3, the quantities are as for L = 10.3. For q(2) the
flow across the middle edge is the same and the flow across the other edges is reversed. For all L,

q
(1)
b +q

(1)
m +q

(1)
t = 1. (1) The image on the left show q

(1)
b and q

(1)
t . (2) The image on the right shows

the capacity xm and the flow q
(1)
m across the middle edge. We have xm =

√
2(q

(1)
m )2 =

√
2 · q(1)m in

the case of the two-norm and xm = 2q
(1)
m in the case of the one-norm.

L 6.5 6.8 7.1 7.4 7.7 8.0 8.3 8.6 8.9 9.2 9.5 9.8
C 13.2 13.6 14.0 14.5 14.9 15.3 15.7 16.1 16.4 16.6 16.7 16.7
E 13.2 13.6 14.0 14.5 14.9 15.3 15.7 16.1 16.4 16.6 16.7 16.7

Figure 4: . Simulation results for the two-norm dynamics for the bow-tie graph. The cost C = cTx
and the energy E =

∑
i b
T
i pi for the limit states for different values of L. Note that C = L always.

• For the two-norm dynamics: For L < 8.5, the sharing effect is strong and basically all flow is
routed through the middle edge. Starting at L = 8.5, the top and the bottom edge are also
used. For L ≥ 10, only the top and the bottom edge are used.

• For the one-norm dynamics: Starting at L = 8.05, the top and the bottom edge are also used.
For L ≥ 10.3, only the top and the bottom edge are used.

• For the two-norm dynamics, the cost C and the dissipated energy E are equal in the limit;
see Figure 4.

2.3 A Case Study Inspired by [TTS+10]

In [TTS+10] the slime molds ability to construct elegant networks in investigated. The slime
is allowed to grow in a region that is shaped according to the greater Tokyo region and food
is provided at many different places. Figure 1 shows the results of the wet-lab experiment and
compares a network constructed by the slime to the railroad network around Tokyo. The paper
also reports about a computer experiment. Repeatedly a pair of food sources was chosen at random
and a step of the shortest path dynamics was executed. Figure 4 in [TTS+10] shows the results

9



of the computer experiment. No details are given in the paper and also the positions of the food
sources are not given in detail.

We tried to repeat the experiment with the two-norm dynamics. For this purpose, we digitized
the boundary of the Greater Tokyo region in the form of a polygonal region and overlayed a regular
grid in which each node is connected to its up to eight neighbors (north, northwest, west, southwest,
south, southeast, east, northeast) inside the region. The edge lengths are 1 for the horizontal and
vertical edges and 1.41 for the diagonal edges. We perturbed the edge lengths slightly by adding
r · 0.05 for a random integer r ∈ [−3, 3] so as to avoid many equal length path. We chose the
terminals in two different ways.

First choice: We chose the largest 25 cities cities Greater Tokyo region according to Wikipedia
and generated 140 demands. Each city was connected to all other cities whose distance is
below a certain threshold. For the threshold we chose about 1/2 times the diameter of the
region. The left side of Figure 5 shows the input and Figure 6 shows the output of a computer
simulation.

Second choice: We mimicked the choice of sites used in [TTS+10]. We generated 282 demands
again between any pair of sites whose distance is below a certain threshold. The demands
are 1, except if one of the terminals corresponds to Tokyo. Then the demand is seven; this is
as in [TTS+10]. The right side of Figure 5 shows the input and Figure 7 shows the output of
a computer simulation.

Figure 5: The polygonal region on the left is a digitization of the Greater Tokyo Region. The
red dots indicate major cities. We set up 140 demands. For each red city, we created a demand
of one unit to any other red city within a certain distance threshold. The threshold is about
1/2 the distance between the topmost and the bottommost red point. The region on the right is
approximately the right lower quadrant of the region on the left. For the placement of the terminals
we tried to copy the placement shown in Figure 1. We set up 282 demands, again between cities
below a certain distance threshold. The demands are one, except if one of the terminals corresponds
to Tokyo. Then the demand is seven; this is as in [TTS+10].

3 Preliminaries

We recall the definition of energy dissipation and cost. For a capacity vector x ∈ Rm≥0 and a vector
f ∈ Rm with supp(f) ⊆ supp(x), we use

Ex(f) =

{∑
e(ce/xe)f

2
e if supp f ⊆ suppx,

∞ if supp f 6⊆ suppx.

10



Figure 6: An output of a simulation of the two-norm dynamics on the left instance in Figure 5.
The graph in the upper left corner shows the initial graph. Each node is connected to its up to
8 neighbors. The length of the horizontal and vertical edges is approximately 1, the length of
the diagonals is approximately 1.41. All capacities are 0.5 initially and the capacity of an edge is
indicated by its thickness. The following figures show the state after 1950 and 4875 iterations. For
the situation after 4875 iterations, we also show the reduced graph where we iteratively removed
nodes of degree one (which are not terminals). The numbers inside the nodes are unique identifiers;
they have no meaning beyond this.

to denote the energy dissipation of f with respect to x. Strictly speaking we should sum only over
the e in suppx. We use the convention 02/0 = 0 to justify summing over all edges e. Further, we
use

C(f) =
∑
e

ce|fe| = cT |f |

to denote the cost of f . Note that

Ex(x) =
∑
e

(ce/xe)x
2
e =

∑
e

cexe = C(x).

We use R to denote the diagonal matrix with entries ce/xe. Energy-minimizing solutions are

11



Figure 7: An output of a simulation of the two-norm dynamics on the right instance in Figure 5.
The graph in the upper left corner shows the initial graph. Each node is connected to its up to
8 neighbors. The length of the horizontal and vertical edges is approximately 1, the length of
the diagonals is approximately 1.41. All capacities are 0.5 initially and the capacity of an edge is
indicated by its thickness. The figure on the right show the state after 16000 iterations where we
iteratively removed nodes of degree one.

induced by node potentials p ∈ Rn according to the following equations:

b = Aq, (7)

q = R−1AT p, (8)

AR−1AT p = b. (9)

We give a short justification why the equations above characterize the energy minimizing solution to
the linear system. The energy minimizing solution q minimizes the quadratic function

∑
e(ce/xe)q

2
e

subject to the constraints Aq = b and supp(q) ⊆ supp(x). The KKT conditions (see [BV04,
Subsection 5.5]) state that at the optimum, the gradient of the objective is a linear combination of
the gradients of the constraints, i.e.,

2(ce/xe)qe =
∑
i

piAi,e for all e ∈ supp(x)

for some vector p ∈ Rn and qe = 0 for e 6∈ supp(x). Absorbing the factor 2 into p yields equation
(8). Substitution of (8) into (7) gives (9). The energy-minimizing solution is unique. It exists if
and only if b ∈ ImA. Node potentials p are not unique, but the values of bT p and pTL(x)p do not
depend on the node potential.

Lemma 3. Assume x > 0. Then KerL(x) = KerAT and ImL(x) = ImA. The values bT p, bTL(x)p
and q = XC−1AT p do not depend on the particular solution of L(x)p = b.

Proof. Clearly, KerAT ⊆ KerL(x). So assume z ∈ KerL(x). Then L(x)z = 0 and hence zTL(x)z =
0. Let D1/2 be the diagonal matrix with entries

√
xe/ce. Then

0 = zTL(x)z = zTAD1/2D1/2AT z = ||D1/2AT z||22

and hence D1/2AT z = 0 and further 0 = AT z. So z ∈ KerAT .
Clearly, ImL(x) ⊆ ImA. So assume b 6∈ ImL(x). Then the rank of the matrix obtained by

augmenting L(x) by the column b is larger than the rank of L(x) (Rouché-Capelli theorem) and
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hence there is a vector r such that rT b 6= 0 and rTL(x) = 0. Since L(x) is symmetric, L(x)r = 0
and hence r ∈ KerL(x) = KerAT . So 0 = AT r = (rTA)T . Thus r also proves b 6∈ ImA.

Let p and p̄ be node potentials. Then L(x)p = b = L(x)p̄ and hence p̄− p ∈ KerL(x). Then

bT p̄ = bT p+ bT (p̄− p) = bT p+ pTL(x)T (p̄− p) = bT p+ pTL(x)(p̄− p) = bT p

and
XC−1AT p̄ = XC−1AT p+XC−1AT (p̄− p) = XC−1AT p.

Finally, bT p = pTL(x)p.

For the arc-node incidence matrix A of a connected graph, the kernel KerAT consists of the
all-ones vector in Rn. We can make the node potential unique by requiring pv = 0 for some fixed
node v, i.e., by grounding node v.

Lemma 4. Let ` be the dimension of KerAT and let K ∈ Rn×` be a matrix whose columns form
a basis of KerAT . Let V ′ ⊆ [n] with |V ′| = ` be such that the submatrix of K with rows selected
by V ′ is nonsingular. Then the solution p to L(x)p = b with pv = 0 for all v ∈ V ′ is unique, i.e.
“grounding all nodes in V ′ makes the potential unique”.

Proof. Observe first that such a solution exists. Let p be an arbitrary solution to L(x)p = b. Then
there is a vector λ ∈ R` such that (Kλ)v = pv for all v ∈ V ′ and hence p−Kλ is the desired node
potential. Assume now that we have two solutions p and p′ with pv = p′v for all v ∈ V ′. Then
p− p′ ∈ KerL(x) = KerAT and (p− p′)v = 0 for all v ∈ V ′. Since p− p′ ∈ KerAT there is a λ ∈ R`
such that p− p′ = Kλ. Then (Kλ)v = 0 for all v ∈ V ′. Since the columns of K are independent,
this implies λ = 0 and hence p = p′.

The next Lemma gives alternative expressions for the energy Ex(q) of the minimum energy
solution.

Lemma 5. Ex(q) =
∑
e(ce/xe)q

2
e = bT p = pTL(x)p, where p is any solution of (9).

Proof. This holds since

Ex(q) = qTRq = pTAR−1RR−1AT p = pTAR−1AT p = pTL(x)p = pT b.

Finally, we recapitulate a bound on the components of q established in [SV16b] and slightly
improved form in [BBK+19, Lemma 3.3].

Lemma 6. Let D be the maximum absolute value of a square submatrix of A. Then |qe| ≤ D||b||1
for every e ∈ [m].

4 Existence of a Solution

We prove Theorem 1. The right-hand side (3) is locally Lipschitz-continuous in x. The function ge
is locally Lipschitz by assumption, the qi’s are infinitely often differentiable rational functions in
the xe and hence locally Lipschitz. Furthermore, locally Lipschitz-continuous functions are closed
under additions and multiplications. Thus x(t) is defined and unique for t ∈ [0, t0) for some t0.

Since ge is non-negative, we have ẋe ≥ −x and thus xe ≥ xe(0)e−t. Hence, x(t) > 0 for all
t. By assumption bi ∈ ImA for all i, and hence whenever x(t) > 0, we have solutions qi with
supp(qi) ⊆ supp(x).

In Section 6, we will show that L is a Lyapunov function for the dynamics (3). Thus

cTx ≤ L(x) ≤ L(x(0))

and hence x stays in a bounded domain.
It now follows from general results about the solutions of ordinary differential equations [Har02,

Corollary 3.2] that t0 =∞.
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5 Fixed Points

A point x is a fixed point iff ẋ = 0. We use Fg for the set of fixed points of (3).

Lemma 7 (The fixed points of the generalized Physarum dynamics). x ∈ Fg iff for all e either
xe = 0 or ||Λe||2 = 1. The latter condition is equivalent to xe = ||Qe||2 or ||ATe P ||2 = ce. For x ∈ Fg,
C(x) = E(x).

Proof. We have ẋ = 0 iff we have xe = 0 or ge(||Λe||2) = 1 for all e. Since ge is increasing and
ge(1) = 1, the latter condition is tantamount to ||Λe||2 = 1 which expands to

∑
i(A

T
e pi)

2 = c2e.
Multiplying both sides by (xe/ce)

2 yields x2e =
∑
i q

2
ei.

For x ∈ Fg, we have

E(x) =
∑
e

∑
i

ce
xe
q2ei =

∑
e

ce
xe
· x2e =

∑
e

cexe = C(x).

6 Lyapunov Function

Let

L(x) =
1

2

(
cTx+

k∑
i=1

bTi pi

)
.

We will show that L is a Lyapunov function for the dynamics (3). The function L was introduced
in [FDCP18]. For k = 1, [FCP18] shows that L is a Lyapunov function for the one-norm dynamics
and [KKM20] shows that this holds true also for the generalized Physarum dynamics. The
calculations below generalize the calculations in these papers. They are similar to the calculations
in [Bon19, Lemma 2.6].

Lemma 8 (Gradient of L). For all e ∈ E,

∂

∂xe
L(x) =

ce
2

(1− ||Λe||22). (10)

Proof. Recall L(x) = AXC−1AT . Let e ∈ [m] be arbitrary. Then ∂
∂xe

L(x) = 1
ce
AeA

T
e . From

L(x)p = b and ∂
∂xe

b = 0, we obtain

0 =
∂

∂xe
L(x)p =

∂L(x)

∂xe
p+ L(x)

∂p

∂xe

and thus

L(x)
∂p

∂xe
= − 1

ce
AeA

T
e p.

Hence, we have

∂

∂xe
bT p = bT

∂p

∂xe
= pTL(x)

∂p

∂xe
= − 1

ce
pTAeA

T
e p = −ce

(
ATe p

ce

)2

,

and more generally,

∂

∂xe

∑
i

bTi pi = −ce
∑
i

(
ATe pi
ce

)2

= −ce||Λe||22.

The claim follows.
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Theorem 4. The function L : Ω 7→ R is a Lyapunov function for the dynamics (3), i.e.,
d
dtL(x(t)) ≤ 0 for all t. Let

V = {x ∈ Ω : 〈∇L(x), ẋ〉 } .

Then V = Fg.

Proof. Since d
dtL(x(t)) = 〈∇L(x), ẋ〉, we obtain

d

dt
L(x(t)) =

∑
e

ce
2

(1− ||Λe||22) · xe(ge(||Λe||2)− 1) ≤ 0,

where the inequality holds since ge(||Λe||2) − 1 and ||Λe||2 − 1 have the same sign, as ge is a
non-negative and increasing function with ge(1) = 1.

We have equality if and only if for all e either xe = 0 or Λe = 1. Thus x ∈ V if and only if
x ∈ Fg.

7 Further Properties of the Lyapunov Minimum

We give two alternative characterizations for the minimum of the Lyapunov function. This
extends [FCP18, Proposition 2] from k = 1 to arbitrary k.

Theorem 5. The following quantities MinQ, MaxP, and MinL are equal.

MinQ = min
Q∈Rm×k

{∑
e

ce||Qe||2 : AQ = B

}
, (11)

MaxP = max
P∈Rn×k

{
Tr[BTP ] : ||ATe P ||2 ≤ ce for all e

}
, (12)

MinL = min
x∈Rm

≥0

L(x). (13)

Moreover, there are optimizers Q∗, P ∗ and x∗ such that

x∗e = ||Q∗e||2 for all e,

L(x∗)P ∗ = B,

Q∗ = X∗C−1ATP ∗.

It is instructive to interpret the theorem for the case k = 1, A the node-arc incidence matrix of
a directed graph, and b a vector with one entry +1 and one entry −1 and all other entries equal to
zero. Then MinQ = minq∈Rm {

∑
e ce|qe| : Aq = b } is the minimum cost of a flow realizing b in

the underlying undirected network and MaxP = maxp∈Rn

{
bT p : |pv − pu| ≤ ce for all e = (u, v)

}
is the maximum distance between the two nodes designated by b for any distance function on
the nodes satisfying the length constraints imposed by c. Clearly, MinQ = MaxP . The third
characterization via MinL = minx≥0 L(x) is non-standard. Note that L(x) = (cTx+ bT p)/2, where
p are node potentials driving a current of 1 between the nodes designated by b in the network
with edge resistances ce/xe. Then bT p is the potential difference between the two designated nodes
which, since the driven current is one, is the effective resistance between the two designated nodes.
In Lemma 8, we determined ∂

∂xe
L(x) = ce

2 (1− ||Λe||22), i.e., the minimizer x∗ of L(x) must satisfy

x∗e 6= 0⇒ |ATe p∗| = ce, where p∗ are node potentials corresponding to x∗. Note that for an edge
e = (u, v), |Aep∗| = |p∗v − p∗u| is the potential drop on e. Orient all edges such that potential drops
are positive and consider any path W (W for Weg) in supp(x∗) connecting the two designated
nodes. Then

bT p∗ =
∑
e∈W

ATe p
∗ =

∑
e∈W

ce,

since the potential difference between the two designated nodes is the sum of the potential drops
along W . Thus any two paths in supp(x∗) connecting the two designated nodes must have the
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same cost and hence (assuming that any two such paths have distinct cost) supp(x∗) contains a
single path connecting the two designated nodes. In fact, supp(x∗) is equal to such a path. Now∑
e∈W cexe +

∑
e∈W ce/xe =

∑
e∈W (cexe + ce/xe) is minimized for xe = 1 for all e ∈W and then

is equal to twice the cost of W . Of course, the cost of W is minimized for the shortest undirected
path connecting the two designated nodes.

Lemma 9. Let Q∗ be a minimizer of (11) and let x∗ be defined by x∗e = ||Q∗e||2 for all e. Then x∗ ∈
Fg. Moreover, there is a potential matrix P ∈ Rn×k such that L(x∗)P = B and Q = X∗C−1ATP ,∑
e ce||Qe||2 = Tr[BTP ] = L(x∗), and ||ATe P ||2 ≤ ce for all e. The objective values of (11) to (13)

satisfy MinL ≤ MinQ ≤ MaxP.

Proof. We start by slightly reformulating the minimization problem (11). This is necessary since
the function Qe 7→ ||Qe||2 is not differentiable for Qe = 0 and hence the KKT-conditions cannot be
applied. We formulate equivalently:

min
∑
e

cexe subject to AQ = B, x2e ≥ ||Qe||22, xe ≥ 0 for all e,

with variables Q ∈ Rm×k and x ∈ Rm. Let Q∗ and x∗ be an optimal solution. Then clearly
x∗e = ||Q∗e||2 for all e. Using the Lagrange multipliers P ∈ Rn×k for the equations AQ = B, and
α ∈ Rm≥0 and β ∈ Rm≥0 for the inequalities, the KKT conditions [BV04, Subsection 5.5] become

ce − 2αexe − βe = 0 for all e, (14)

PTi Ae + 2αeQ
∗
e,i = 0 for all e and i, (15)

αe(x
2
e − ||Q∗e||22) = 0 for all e, (16)

βexe = 0 for all e. (17)

Here the first two conditions state that at the optimum, the gradient of the objective with respect
to the variables xe and Qei must be linear combinations of the gradients of the active constraints
and the last two conditions are complementary slackness (= a Lagrange multiplier can only be
non-zero if the constraint is tight). We also have the feasibility constraints

AQ∗i = bi for all i, (18)

x∗e ≥ 0 and x∗e ≥ ||Qe||2 for all e. (19)

Separating the two terms in (15), squaring and summing over i, and using (15) and (14), we
obtain

||ATe P ||22 =
∑
i

(PTi Ae)
2 = 4α2

e||Q∗e||22 = 4α2
e(x
∗
e)

2 = (ce − βe)2 ≤ c2e,

where the last inequality uses βe = 0 if xe > 0 by (17) and βe = ce if xe = 0 by (14).
If Q∗e 6= 0, then x∗e 6= 0 and hence βe = 0 and ce = 2αex

∗
e or 2αe = ce/x

∗
e. In particular, αe 6= 0

and hence (15) implies

Q∗e,i =
1

2αe

∑
v

Pv,iAv,e =
x∗e
ce
ATe Pi. (20)

This equation also holds if Q∗e = 0 and hence x∗e = 0. Multiplying by Ae from the left and summing
over e yields

bi = AQ∗i =
∑
e

Ae
x∗e
ce
ATe Pi = AX∗C−1ATPi. (21)

Thus Pi is a potential for the i-th problem with respect to x∗ and, by (20) Q∗i is the corresponding
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electrical flow. Thus x∗ ∈ Fg by Lemma 2. Moreover,∑
i

PTi bi =
∑
i

PTi AQ
∗
i

=
∑
i,v,e

Pv,iAv,eQ
∗
e,i

=
∑

i,v,e, Qe 6=0

Pv,iAv,eQ
∗
e,i

=
∑

i,e, Qe 6=0

ce
Q∗e,iQ

∗
e,i

||Q∗e||2

=
∑
e

ce||Q∗e||2.

Here the fourth equality comes from (20) and x∗e 6= 0 if Q∗e 6= 0; note that∑
v

AvePvi = ATe Pi =
ce
x∗e
Q∗ei = ce

Q∗ei
||Q∗e||2

.

We conclude that P is a feasible solution to (12). Thus MaxP ≥ MinQ .
Since x∗ ∈ Fg, L(x∗) = cTx∗ = Tr[PTL(x∗)P ]. Also, x∗e = ||Q∗e||2 by definition of x∗. Thus∑

e

ce||Q∗e||2 = cTx∗ = L(x∗)

and hence MinL ≤ MinQ .

Lemma 10. MaxP ≤ MinL.

Proof. The constraint ||ATe P ||2 ≤ ce in (12) can be equivalently written as

ce
2

(
|| 1
ce
ATe P ||22 − 1

)
≤ 0.

Then the Lagrange dual with non-negative multipliers xe is an upper bound for MaxP , i.e,

MaxP ≤ inf
x≥0

sup
P

∑
i

bTi Pi −
∑
e

xece
2

(
|| 1
ce
ATe P ||22 − 1

)
.

The inner supremum can be reformulated as

sup
P

∑
i

bTi Pi −
1

2

∑
i

PTi L(x)Pi +
1

2
cTx, (22)

since (xe/ce)
∑
i(A

T
e Pi)

2 =
∑
i P

T
i Ae(xe/ce)A

T
e Pi. Only the first two terms in (22) depend on P .

We want to determine the maximizer5P (x). Taking partial derivatives with respect to the vectors
Pi leads to the system

AXC−1A · Pi(x) = bi for all i,

i.e. Pi(x) is a solution to L(x)Pi(x) = bi for each i. Since∑
i

bTi Pi(x) = Tr[BTP (x)] = Tr[P (x)TL(x)P (x)] =
∑
i

Pi(x)TL(x)Pi(x)

substituting into (22) yields

sup
P

∑
i

bTi Pi −
1

2

∑
i

PTi L(x)Pi +
1

2
cTx =

1

2

(
Tr[BTP (x)] + cTx

)
= L(x).

5In the proof of Lemma 3, we have seen that L(x) = AD1/2D1/2AT and hence bTi Pi − PT
i L[x]Pi = bTi Pi −

||D1/2ATPi||22. Thus the maximizer is a finite point.
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Lemma 11. Let x∗ ∈ Rm≥0 be a minimizer of L(x). Then x∗ ∈ Fg. Let P be a solution to

L(x)P = B and let Q = X∗C−1ATP . Then
∑
e ce||Qe||2 = L(x∗) and hence MinQ ≤ MinL.

Proof. Since L(x(t)) is a Lyapunov function of the generalized Physarum dynamics we have x∗ ∈ V .
Since V = Fg, x∗ is a fixed point and hence for all e, either x∗e = 0 or Λe = 1. Since x∗ is a fixed
point, we have L(x∗) = cTx∗ = Tr[PTL(x∗)P ] and x∗e = ||Qe||2 for all e. Thus∑

e

ce||Qe||2 = cTx∗ = L(x∗)

and hence MinQ ≤ MinL.

8 Convergence to the Lyapunov Minimizer

We show that the dynamics converges to the minimizer x∗ of the Lyapunov function under the
assumption that the set of fixed points of the dynamics is a discrete set.

Assumption 2 (Discrete Set of Fixed Points). Fg is a finite set of points. For any two points in
Fg, the values of L are distinct.

Theorem 6. Let x∗ = argminx≥0 L(x). Under the additional assumption 2, the generalized
Physarum dynamics x(t) converges to x∗.

Proof. Since L(x(t)) is non-increasing and non-negative, the dynamics x(t) converges to the set
V. By Theorem 4, V = Fg. Since Fg is assumed to be a finite set and any two fixed points have
distinct values of L, there is a fixed point x̂ = limt→∞ x(t). Assume for the sake of a contradiction,
L(x̂) > L(x∗). Let P (t) be the node potential corresponding to x(t) and let P̂ be the potential
corresponding to x̂; recall that node potentials are unique. Since P (t) is a continuous function of

x(t), P (t)→ P̂ as t→∞. Let Ê =
{
e : ||ATe P̂ ||2 ≤ ce

}
⊆ E and consider the following chain of

inequalities:

max
P

{
Tr[BTP ] : ||AeP ||2 ≤ ce for all e ∈ Ê

}
≥ Tr[BT P̂ ]

= L(x̂)

> L(x?)

= max
P

{
Tr[BTP ] : ||AeP ||2 ≤ ce for all e ∈ E

}
,

where the first inequality follows by the definition of Ê, the first equality follows from Lemma 2, the
strict inequality holds by assumption and the last equality follows from Theorem 5. We conclude
that Ê is a proper subset of E.

Let e ∈ E\Ê be arbitrary. Then ||ATe P̂ ||2 > ce and hence there are t0 > 0 and ε > 0 such that
for every t ≥ t0 we have

‖Λe(t)‖2 =
‖ATe P (t)‖2

ce
> 1 + ε.

Since ge is an increasing function with ge(1) = 1, there is α > 0 such that

ge (‖Λe(t)‖2) ≥ ge (1 + ε) = 1 + α.

Then, for the generalized dynamics we have

ẋe(t) = xe(t) · (ge(‖Λe(t)‖2)− 1) ≥ xe(t) · (ge(1 + ε)− 1) ≥ αxe(t).

Further, by Gronwall’s Lemma, it follows that

xe(t) ≥ xe(t0) · eαt,
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and thus
x̂e = lim

t→∞
xe(t) ≥ xe(t0) · lim

t→∞
eαt = +∞.

This is a contradiction to the fact that x̂e is bounded.
Finally, if L(x(t)) converges to minx≥0 L(x) and the minimizer x∗ of L is unique, then x(t)

must converge to x∗.

We conjecture that x(t) always converges to some minimizer of L. If there are several minimizers
of L, the limit depends on the initial configuration and the function g. Consider the following
simple example. We have a network with two nodes connected by two links of the same cost, k = 1
and the goal is to send one unit between the two nodes. Let x1 and x2 be the capacities of the two
links, respectively. For g(z) = z, any combination (x1, x2) with x1 + x2 = 1 is a fixed point.

9 A Connection to Mirror Descent

We show that the mirror descent dynamics on the Lyapunov function L is equal to a variant of the
non-uniform squared Physarum dynamics.

Lemma 12. The dynamics
d

dt
xe(t) =

ce
2
xe(t)

(
||Λe||22 − 1

)
is equivalent to the mirror descent dynamics on the Lyapunov function L.

Proof. By Lemma 8, we have for every index e ∈ E that

∂

∂xe
L(x) =

ce
2

(1− ||Λe||22). (23)

On the other hand, the mirror descent dynamics on the Lyapunov function L is given by

d

dt
xe(t) = −xe(t)

∂

∂xe
L(xe(t))

(23)
=

ce
2
· xe(t)(||Λe||22 − 1).

As is [Bon19], we can use the connection to mirror descent to estimate the speed of convergence
of the Physarum dynamics to the Lyapunov minimum; [Bon19] builds up on [ABB04, Wil18].

For a differentiable function f in m variables, the Bregman divergence Df is a function in 2m
variables defined by the equation

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 ,

i.e., as the difference of the function value at x and the value at x of the tangent plane to f at y.
Clearly, if f is convex, Df is non-negative.

Lemma 13. Let h : Rm≥0 → R be defined by

h(x) =
∑
e

xe lnxe −
∑
e

xe.

Then h is convex on Rm≥0, Dh is non-negative, and

Dh(x, y) =
∑
e

xe lnxe −
∑
e

xe ln ye −
∑
e

xe +
∑
e

ye,
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Proof. The function h is convex in xe (partial derivative lnxe and second partial derivative 1/xe).
For its Bregman divergence Dh, we compute

Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉
=

∑
e

xe lnxe −
∑
e

xe − (
∑
e

ye ln ye −
∑
e

ye)−
∑
e

(xe − ye) ln ye

=
∑
e

xe lnxe −
∑
e

xe ln ye −
∑
e

xe +
∑
e

ye.

So Dh is the relative entropy function.

Fact 1. [Bon19, Lemma 2.2] L is convex.

Theorem 7. Let x∗ be the global minimizer of L(x). For the dynamics ẋe = (ce/2) · xe(||Λe||22− 1),
we have

L(x(t)) ≤ L(x∗) +
1

t
Dh(x∗, x(0)).

for all t ≥ 0. In particular,
lim
t→∞

L(x(t)) = L(x∗).

Proof. According to (23) we have

∂

∂xe
L(x) =

ce
2

(
1− ||Λe||22

)
and ẋe = xe

(
ge(||Λe||22)− 1

)
.

The time derivative of Dh(x∗, x(t)) is given by

d

dt
Dh(x∗, x) =

d

dt

m∑
e=1

x∗e lnx∗e −
d

dt

∑
e

x∗e lnxe −
d

dt

∑
e

x∗e +
d

dt

∑
e

xe

=

m∑
e=1

x∗e

(
− 1

xe
· d
dt
xe

)
+
∑
e

d

dt
xe

=
∑
e

(xe − xe∗)
ce
2

(||Λe||22 − 1)

= −〈(x− x∗),∇L(x(t))〉.

We now consider the function

H(t) = Dh(x∗, x(t)) + t [L(x(t))− L(x∗)]

Since d
dtL(x) ≤ 0, by Lemma 4, and DL(x∗, x) ≥ 0 for all x, we obtain

d

dt
H(t) = −〈∇L(x(t)), x(t)− x∗〉+ L(x(t))− L(x∗) + t · d

dt
L(x(t))

≤ − [L(x∗)− L(x(t))− 〈∇L(x), x∗ − x(t)〉]
= −DL(x∗, x(t))

≤ 0.

Hence H(t) ≤ H(0) for all t ≥ 0 and therefore

Dh(x∗, x(t)) + t [L(x(t))− L(x∗)] ≤ Dh(x∗, x(0)) + 0 [L(x(0))− L(x∗)] .

and further (using Dh(x∗, x(t)) ≥ 0)

L(x(t)) ≤ L(x∗) +
1

t
Dh(x∗, x(0)).
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10 Conclusions

We proposed a variant of the Physarum dynamics suitable for network design. We exhibited a
Lyapunov function for the dynamics, proved convergence of the dynamics, and gave alternative
characterizations for the minimum of the Lyapunov function. In the experiment part, we showed
that the dynamics captures the positive effect of sharing links and is able to construct nice networks.

Many questions remain open. We do not claim any biological plausibility for our proposal. It
would be very interesting to define a dynamics which is biologically plausible. We used an Euler
discretization of the dynamics for the experiments in Section 2. The resulting algorithm is quite
slow. The Lyapunov function L is a convex function and hence the tool box of convex optimization
is available for computing its minimum. Does this lead to a practical algorithm for network design?
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