
ar
X

iv
:2

00
3.

07
10

4v
2

 [
cs

.D
S]

 2
0

A
pr

 2
02

0

Faster Minimization of Tardy Processing

Time on a Single Machine

Karl Bringmann1⋆, Nick Fischer1⋆, Danny Hermelin3, Dvir Shabtay3,
and Philip Wellnitz2

1 Saarland University and Max Planck Institute for Informatics, Saarbrücken, Germany
bringmann@cs.uni-saarland.de, nfischer@mpi-inf.mpg.de

2 Max Planck Institute for Informatics, Saarbrücken, Germany
wellnitz@mpi-inf.mpg.de

3 Department of Industrial Engineering and Management,
Ben-Gurion University of the Negev, Beersheba, Israel

{hermelin,dvirs}@bgu.ac.il

Abstract. This paper is concerned with the 1||
∑

pjUj problem, the problem of minimizing
the total processing time of tardy jobs on a single machine. This is not only a fundamental
scheduling problem, but also a very important problem from a theoretical point of view as
it generalizes the Subset Sum problem and is closely related to the 0/1-Knapsack problem.
The problem is well-known to be NP-hard, but only in a weak sense, meaning it admits
pseudo-polynomial time algorithms. The fastest known pseudo-polynomial time algorithm
for the problem is the famous Lawler and Moore algorithm which runs in O(P · n) time,
where P is the total processing time of all n jobs in the input. This algorithm has been
developed in the late 60s, and has yet to be improved to date.
In this paper we develop two new algorithms for 1||

∑
pjUj , each improving on Lawler and

Moore’s algorithm in a different scenario:

– Our first algorithm runs in Õ(P 7/4) time1, and outperforms Lawler and Moore’s algo-
rithm in instances where n = ω̃(P 3/4).

– Our second algorithm runs in Õ(min{P · D#, P + D}) time, where D# is the number
of different due dates in the instance, and D is the sum of all different due dates. This
algorithm improves on Lawler and Moore’s algorithm when n = ω̃(D#) or n = ω̃(D/P).
Further, it extends the known Õ(P) algorithm for the single due date special case of
1||

∑
pjUj in a natural way.

Both algorithms rely on basic primitive operations between sets of integers and vectors of
integers for the speedup in their running times. The second algorithm relies on fast polyno-
mial multiplication as its main engine, while for the first algorithm we define a new “skewed”
version of (max,min)-convolution which is interesting in its own right.

1 Introduction

In this paper we consider the problem of minimizing the total processing times of tardy
jobs on a single machine. In this problem we are given a set of n jobs J = {1, . . . , n},
where each job j has a processing time pj ∈ N and a due date dj ∈ N. A schedule σ for J is
a permutation σ : {1, . . . , n} → {1, . . . , n}. In a given schedule σ, the completion time Cj

of a job j under σ is given by Cj =
∑

σ(i)≤σ(j) pi, that is, the total processing time of jobs
preceding j in σ (including j itself). Job j is tardy in σ if Cj > dj , and early otherwise. Our
goal is find a schedule with minimum total processing time of tardy jobs. If we assign a
binary indicator variable Uj to each job j, where Uj = 1 if j is tardy and otherwise Uj = 0,

⋆ This work is part of the project TIPEA that has received funding from the European Research Council
(ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement
No. 850979).

1 Throughout the paper we use Õ(·) to suppress logarithmic factors.

http://arxiv.org/abs/2003.07104v2

our objective function can be written as
∑

pjUj . In the standard three field notation for
scheduling problems of Graham [5], this problem is denoted as the 1||

∑

pjUj problem (the
1 in the first field indicates a single machine model, and the empty second field indicates
there are no additional constraints).

The 1||
∑

pjUj problem is a very natural and fundamental scheduling problem, which
models a very basic scheduling scenario. As it includes Subset Sum as a special case
(see below), the 1||

∑

pjUj problem is NP-hard. However, it is only hard in the weak
sense, meaning it admits pseudo-polynomial time algorithms. The focus of this paper is
on developing fast pseudo-polynomial time algorithms for 1||

∑

pjUj, improving in several
settings on the best previously known solution from the late 60s. Before we describe our
results, we discuss the previously known state of the art of the problem, and describe how
our results fit into this line of research.

1.1 State of the Art

A famous generalization of the 1||
∑

pjUj problem is the 1||
∑

wjUj problem. Here, each
job j also has a weight wj in addition to its processing time pj and due date dj , and the goal
is to minimize the total weight (as opposed to total processing times) of tardy jobs. This
problem has already been studied in the 60s, and even appeared in Karp’s fundamental
paper from 1972 [6]. The classical algorithm of Lawler and Moore [10] for the problem is
one of the earliest and most prominent examples of pseudo-polynomial algorithms, and
it is to date the fastest known algorithm even for the special case of 1||

∑

pjUj. Letting
P =

∑

j∈J pj , their result can be stated as follows:

Theorem 1 ([10]). 1||
∑

wjUj and 1||
∑

pjUj can both be solved in O(P · n) time.

Note that as we assume that all processing times are integers, we have n ≤ P , and
so the running time of the algorithm in Theorem 1 can be bounded by O(P 2). In fact, it
makes perfect sense to analyze the time complexity of a pseudo-polynomial time algorithm
for either problems in terms of P , as P directly corresponds to the total input length when
integers are encoded in unary. Observe that while the case of n = P (all jobs have unit
processing times) essentially reduces to sorting, there are several non-trivial cases where
n is smaller than P yet still quite significant in the O(P · n) term of Theorem 1. The
fundamental question this paper addresses is:

“Can we obtain algorithms with running times O(P 2−ε), for any fixed ε > 0,
for either 1||

∑

wjUj or 1||
∑

pjUj ?”

For 1||
∑

wjUj there is some evidence that the answer to this question should be
no. Karp [6] observed that the special case of the 1||

∑

wjUj problem where all jobs
have the same due date d, the 1|dj = d|

∑

wjUj problem, is essentially equivalent to
the classical 0/1-Knapsack problem. Cygan et al. [4] and Künnemann et al. [9] studied
the (min,+)-Convolution problem (see Section 2), and conjectured that the (min,+)-
convolution between two vectors of length n cannot be computed in Õ(n2−ε) time, for
any ε > 0. Under this (min,+)-Convolution Conjecture, they obtained lower bounds for
several Knapsack related problems. In our terms, their result can be stated as follows:

Theorem 2 ([4, 9]). There is no Õ(P 2−ε) time algorithm for the 1|dj = d|
∑

wjUj prob-
lem, for any ε > 0, unless the (min,+)-Convolution Conjecture is false. In particular,
1||

∑

wjUj has no such algorithm under this conjecture.

Analogous to the situation with 1||
∑

wjUj , the special case of 1||
∑

pjUj where all
jobs have the same due date d (the 1|dj = d|

∑

pjUj problem) is equivalent to the classical

Subset Sum problem. Recently, there has been significant improvements for Subset Sum
resulting in algorithms with Õ(T + n) running times [2, 7], where n is number of integers
in the instance and T is the target. Due to the equivalence between the two problems, this
yields the following result for the 1|dj = d|

∑

pjUj problem:

Theorem 3 ([2, 7]). 1|dj = d|
∑

pjUj can be solved in Õ(P) time.

On the other hand, due to equivalence of 1|dj = d|
∑

pjUj and Subset Sum, we also
know that Theorem 3 above cannot be significantly improved unless the Strong Exponen-
tial Time Hypothesis (SETH) fails. Specifically, combining a recent reduction from k-SAT
to Subset Sum [1] with the equivalence of Subset Sum and 1|dj = d|

∑

pjUj , yields the
following:

Theorem 4 ([1]). There is no Õ(P 1−ε) time algorithm for the 1|dj = d|
∑

pjUj problem,
for any ε > 0, unless SETH fails.

Nevertheless, Theorem 4 still leaves quite a big gap for the true time complexity of
1||

∑

pjUj , as it can potentially be anywhere between the Õ(P) time known already for
the special case of 1|dj = d|

∑

pjUj (Theorem 3), and the O(Pn) = O(P 2) time of Lawler
and Moore’s algorithm (Theorem 1). This is the starting point of our paper.

1.2 Our Results

The main contribution of this paper is two new pseudo-polynomial time algorithms for
1||

∑

pjUj , each improving on Lawler and Moore’s algorithm in a different sense. Our
algorithms take a different approach to that of Lawler and Moore in that they rely on fast
operators between sets and vectors of numbers.

Our first algorithm improves Theorem 1 in case there are sufficiently many jobs in
the instance compared to the total processing time. More precisely, our algorithm has a
running time of Õ(P 7/4), and so it is faster than Lawler and Moore’s algorithm in case
n = ω̃(P 3/4).

Theorem 5. 1||
∑

pjUj can be solved in Õ(P 7/4) time.

The algorithm in Theorem 5 uses a new kind of convolution which we coined “Skewed
Convolution” and is interesting in its own right. In fact, one of the main technical contri-
butions of this paper is a fast algorithm for the (max,min)-Skewed-Convolution problem
(see definition in Section 2).

Our second algorithm for 1||
∑

pjUj improves Theorem 1 in case there are not too many
different due dates in the problem instance; that is, D# = |{dj : j ∈ J}| is relatively small
when compared to n. This is actually a very natural assumption, for instance in cases
where delivery costs are high and products are batched to only few shipments. Let D
denote the sum of the different due dates in our instance. Then our second result can be
stated as follows:

Theorem 6. 1||
∑

pjUj can all be solved in Õ(min{P ·D#, P +D}) time.

The algorithm in Theorem 6 uses basic operations between sets of numbers, such as the
sumset operation (see Section 2) as basic primitives for its computation, and ultimately
relies on fast polynomial multiplication for its speedup. It should be noted that Theorem 6
includes the Õ(P) result of Theorem 3 for 1|dj = d|

∑

pjUj as a special case where D# = 1
or D = d.

1.3 Roadmap

The paper is organized as follows. In Section 2 we discuss all the basic primitives that
are used by our algorithms, including some basic properties that are essential for the
algorithms. We then present our second algorithm in Section 3, followed by our first
algorithm in Section 4. Section 5 describes our fast algorithm for the skewed version of
(max,min)-convolution, and is the main technical part of the paper. Finally, we conclude
with some remarks and open problems in Section 6.

2 Preliminaries

In the following we discuss the basic primitives and binary operators between sets/vectors
of integers that will be used in our algorithms. In general, we will use the letters X and Y
to denote sets of non-negative integers (where order is irrelevant), and the letters A and
B to denote vectors of non-negative integers.

Sumsets The most basic operation used in our algorithms is computing the sumset of two
sets of non-negative integers:

Definition 7 (Sumsets). Given two sets of non-negative integers X1 and X2, the sumset
of X1 and X2, denoted X1 ⊕X2, is defined by

X1 ⊕X2 = {x1 + x2 : x1 ∈ X1, x2 ∈ X2}.

Clearly, the sumsetX1⊕X2 can be computed in O(|X1|·|X2|) time. However, in certain
cases we can do better using fast polynomial multiplication. Consider the two polynomials
p1[α] =

∑

x∈X1
αx and p2[β] =

∑

x∈X2
βx. Then the exponents of all terms in p1 · p2 with

non-zero coefficients correspond to elements in the sumset X1 ⊕ X2. Since multiplying
two polynomials of maximum degree d can be done in O(d log d) time [3], we have the
following:

Lemma 8. Given two sets of non-negative integers X1,X2 ⊆ {0, . . . , P}, one can compute
the sumset X1 ⊕X2 in O(P logP) time.

Set of all Subset Sums Given set of non-negative integers X, we will frequently be using
the set of all sums generated by subsets of X:

Definition 9 (Subset Sums). For a given set of non-negative integers X, define the set
of all subset sums S(X) as the set of integers given by

S(X) =
{

∑

x∈Y

x : Y ⊆ X
}

.

Here, we always assume that 0 ∈ S(X) (as it is the sum of the empty set).

We can use Lemma 8 above to compute S(X) from X rather efficiently: First, split
X into two sets X1 and X2 of roughly equal size. Then recursively compute S(X1) and
S(X2). Finally, compute S(X) = S(X1)⊕S(X2) via Lemma 8. The entire algorithm runs
in Õ(

∑

x∈X x) time.

Lemma 10 ([7]). Given a set of non-negative integers X, with P =
∑

x∈X x, one can

compute S(X) in Õ(P) time.

Convolutions Given two vectors A = (A[i])ni=0, B = (B[j])nj=0, the (◦, •)-Convolution

problem for binary operators ◦ and • is to compute a vector C = (C[k])2nk=0 with

C[k] = ©i+j=kA[i] •B[j].

A prominent example of a convolution problem is (min,+)-Convolution discussed above;
another similarly prominent example is (max,min)-Convolution which can be solved in
Õ(n3/2) time [8]. For our purposes, it is convenient to look at a skewed variant of this
problem:

Definition 11 (Skewed Convolution). Given two vectors A = (A[i])ni=0, B = (B[j])nj=0,
we define the (max,min)-Skewed-Convolution problem to be the problem of computing the
vector C = (C[k])2nk=0 where the kth entry in C equals

C[k] = max
i+j=k

min{A[i], B[j] + k}

for each k ∈ {0, . . . , 2n}.

The main technical result of this paper is an algorithm for (max,min)-Skewed-Convolution
that is significantly faster than the naive O(n2) time algorithm.

Theorem 12. The (max,min)-Skewed-Convolution problem for vectors of length n can
be solved in Õ(n7/4) time.

3 Algorithm via Sumsets and Subset Sums

In the following section, we provide a proof of Theorem 6 by presenting an algorithm for
1||

∑

pjUj running in Õ(min{P · D#, P + D}) time. Recall that J = {1, . . . , n} denotes
our input set of jobs, and pj and dj respectively denote the processing time and due date
of job j ∈ {1, . . . , n}. Our goal is to determine the minimum total processing time of tardy
jobs in any schedule for J . Throughout the section we let d(1) < · · · < d(D#) denote the
D# ≤ n different due dates of the jobs in J .

A key observation for the 1||
∑

pjUj problem, used already by Lawler and Moore,
is that any instance of the problem always has an optimal schedule of a specific type,
namely an Earliest Due Date schedule. An Earliest Due Date (EDD) schedule is a schedule
π : J → {1, . . . , n} such that

– any early job precedes all late jobs in π, and
– any early job precedes all early jobs with later due dates.

In other words, in an EDD schedule all early jobs are scheduled before all tardy jobs, and
all early jobs are scheduled in non-decreasing order of due dates.

Lemma 13 ([10]). Any 1||
∑

pjUj instance has an optimal schedule which is EDD.

The D#-many due dates in our instance partition the input set of job J in a natural
manner: Define Ji = {j : dj = d(i)} for each i ∈ {1, . . . ,D#}. Furthermore, let Xi =
{pj : j ∈ Ji} the processing-times of job in Ji. According to Lemma 13 above, we can
restrict our attention to EDD schedules. Constructing such a schedule corresponds to
choosing a subset Ei ⊆ Ji for each due date d(i) such that

∑

j∈Eℓ,ℓ≤i pj ≤ d(i) holds for
each i ∈ {1, . . . ,D#}. Moreover, the optimal EDD schedule maximizes the total sum of
processing times in all selected Ei’s.

Our algorithm is given in Algorithm 1. It successively computes sets S1, . . . , SD#
,

where set Si corresponds to the set of jobs J1 ∪ · · · ∪Ji. In particular, Si includes the total

processing-time of any possible set-family of early jobs {E1, . . . , Ei}. Thus, each x ∈ Si

corresponds to the total processing time of early jobs in a subset of J1 ∪ · · · ∪ Ji. The
maximum value x ∈ SD#

therefore corresponds to the maximum total processing time of
early jobs in any schedule for J . Thus, the algorithm terminates by returning the optimal
total weight of tardy jobs P − x.

Algorithm 1 SumsetScheduler(J)

1: Let d(1) < . . . < d(D#) denote the different due dates of jobs in J .
2: Compute Xi = {pj : dj = d(i)} for each i ∈ {1, . . . ,D#}.
3: Compute S(X1), . . . ,S(XD#

).
4: Let S0 = ∅.
5: for i = 1, . . . ,D# do

– Compute Si = Si−1 ⊕ S(Xi).
– Remove any x ∈ Si with x > d(i).

6: Return P − x, where x is the maximum value in SD#
.

Correctness of our algorithm follows immediately from the definitions of sumsets and
subset sums, and from the fact that we prune out elements x ∈ Si with x > d(i) at each
step of the algorithm. This is stated more formally in the lemma below.

Lemma 14. Let i ∈ {1, . . . ,D#}, and let Si be the set of integers at the end of the second
step of 5(i). Then x ∈ Si if and only if there are sets of jobs E1 ⊆ J1, . . . , Ei ⊆ Ji such
that

–
∑

j∈
⋃i

ℓ=1 Eℓ
pj = x, and

–
∑

j∈Eℓ,ℓ≤i0
pj ≤ d(i0) holds for each i0 ∈ {1, . . . , i}.

Proof. The proof is by induction on i. For i = 1, note that S1 = S(X1) \ {x : x > d(1)}
at the end of step 5(1). Since S(X1) includes the total processing time of any subset of
jobs in J1, the first condition of the lemma holds. Since {x : x > d(1)} includes all integers
violating the second condition of the lemma, the second condition holds.

Let i > 1, and assume the lemma holds for i − 1. Consider some x ∈ Si at the end of
the second step of 5(i). Then by Definition 7, we have x = x1+x2 for some x1 ∈ Si−1 and
x2 ∈ S(Xi) due the first step of 5(i). By definition of S(Xi), there is some Ei ⊆ Ji with
total processing time x2. By our inductive hypothesis there is E1 ⊆ J1, . . . , Ei−1 ⊆ Ji−1

such that
∑

j∈
⋃i

ℓ=1 Eℓ
pj = x1, and

∑

j∈Eℓ,ℓ≤i0
pj ≤ d(i0) holds for each i0 ∈ {1, . . . , i − 1}.

Furthermore, by the second step of 5(i), we know that
∑

j∈Eℓ,ℓ≤i pj = x ≤ d(i). Thus,
E1, . . . , Ei satisfy both conditions of the lemma.

Let us next analyze the time complexity of the SumsetScheduler algorithm. Steps 1
and 2 can be both performed in Õ(n) = Õ(P) time. Next observe that step 3 can be
done in total Õ(P) time using Lemma 10, as X2, . . . ,XD#

is a partition of the set of all
processing times of J , and these all sum up to P . Next, according to Lemma 8, each sumset
operation at step 5 can be done in time proportional to the largest element in the two
sets, which is always at most P . Thus, since we perform at most D# sumset operations,
the merging step requires Õ(D# · P) time, which gives us the total running time of the
algorithm above.

Another way to analyze the running time of SumsetScheduler is to observe that the
maximum element participating in the ith sumset is bounded by d(i+1). It follows that we

can write the running time of the merging step as Õ(D), where D =
∑D#

i=1 d
(i). Thus, we

have just shown that 1||
∑

pjUj can be solved in Õ(min{D# ·P,D+P}) time, completing
the proof of Theorem 6.

4 Algorithm via Fast Skewed Convolutions

We next present our Õ(P 7/4) time algorithm for 1||
∑

pjUj, providing a proof of Theo-
rem 5. As in the previous section, we let d(1) < · · · < d(D#) denote the D# ≤ n different
due dates of the input jobs J , and Ji = {j : dj = d(i)} and Xi = {pj : j ∈ Ji} as in
Section 3 for each i ∈ {1, . . . ,D#}.

For a consecutive subset of indices I = {i0, i0+1, . . . , i1}, with i0, . . . , i1 ∈ {1, . . . ,D#},
we define a vector M(I), whereM(I)[x] equals the latest (that is, maximum) time point x0
for which there is a subset of the jobs in

⋃

i∈I Ji with total processing time equal to x that
can all be scheduled early in an EDD schedule starting at x0. If no such subset of jobs
exists, we define M(I)[x] = +∞.

For a singleton set I = {i}, the vector M(I) is easy to compute once we have computed
the set S(Xi):

M({i})[x] =

{

d(i) − x if x ∈ S(Xi) and x ≤ d(i),

+∞ otherwise.
(1)

For larger sets of indices, we have the following lemma.

Lemma 15. Let I1 = {i0, i0 + 1, . . . , i1} and I2 = {i1 + 1, i1 + 2, . . . , i2} be any two sets
of consecutive indices with i0, . . . , i1, . . . , i2 ∈ {1, . . . ,D#}. Then for any value x we have:

M(I1 ∪ I2)[x] = max
x1+x2=x

min{M(I1)[x1],M(I2)[x2]− x1}.

Proof. Let I = I1 ∪ I2. Then M(I)[x] is the latest time point after which a subset of
jobs J∗ ⊆

⋃

i∈I Ji of total processing time x can be scheduled early in an EDD schedule.
Let x1 and x2 be the total processing times of jobs in J∗

1 = J∗ ∩
(
⋃

i∈I1
Ji
)

and J∗
2 =

J∗ ∩
(
⋃

i∈I2
Ji
)

, respectively. Then x = x1 + x2. Clearly, M(I)[x] ≤ M(I1)[x1], since we
have to start scheduling the jobs in J∗

1 at time M(I1)[x1] by latest. Similarly, it holds
that M(I)[x] ≤ M(I2)[x2]− x1 since the jobs in J∗

2 are scheduled at latest at M(I2)[x2]
and the jobs in J∗

1 have to be processed before that time point in an EDD schedule. In
combination, we have shown that LHS ≤ RHS in the equation of the lemma.

To prove that LHS ≥ RHS, we construct a feasible schedule for jobs in
⋃

i∈I Ji starting
at RHS. Let x1 and x2 be the two values with x1+x2 = x that maximize RHS. Then there
is a schedule which schedules some jobs J∗

1 ⊆
⋃

i∈I1
Ji of total processing time x1 beginning

at time min{M(I1)[x1],M(I2)[x2]−x1} ≤ M(I1)[x1], followed by a another subset of jobs
J∗
2 ⊆

⋃

i∈I2
Ji of total processing time x2 starting at time min{M(I1)[x1],M(I2)[x2] −

x1}+x1 ≤ M(I2)[x2]. This is a feasible schedule starting at time RHS for a subset of jobs
in

⋃

i∈I Ji which has total processing time x.

Note that the equation given in Lemma 15 is close but not precisely the equation
defined in Definition 11 for the (min,max)-Skewed-Convolution problem. Nevertheless,
the next lemma shows that we can easily translate between these two concepts.

Lemma 16. Let A and B be two integer vectors of P entries each. Given an algorithm for
computing the (max,min)-Skewed-Convolution of A and B in T (P) time, we can compute
in T (P) +O(P) time the vector C = A⊗B defined by

C[x] = max
x1+x2=x

min{A[x1], B[x2]− x1}.

Proof. Given A and B, construct two auxiliary vectors A0 and B0 defined by A0[x] =
B[x]+x and B0[x] = A[x] for each entry x. Compute the (max,min)-Skewed-Convolution
of A0 and B0, and let C0 denote the resulting vector. We claim that the vector C defined
by C[x] = C0[x]− x equals A⊗B. Indeed, we have

C0[x]− x = max
x1+x2=x

min{A0[x1], B0[x2] + x} − x

= max
x1+x2=x

min{A0[x1]− x,B0[x2]}

= max
x1+x2=x

min{B[x1] + x1 − x,A[x2]}

= max
x1+x2=x

min{B[x1]− x2, A[x2]}

= max
x1+x2=x

min{A[x1], B[x2]− x1},

where in the third step we expanded the definition of A0 and B0 and in the last step we
used the symmetry of x1 and x2.

We are now in position to describe our algorithm called ConvScheduler which is de-
picted in Algorithm 2. The algorithm first computes the subset sums S(X1), . . . ,S(XD#

),
and the set of vectors M = {M1, . . . ,MD#

}. Following this, it iteratively combines every
two consecutive vectors in M by using the ⊗ operation. The algorithm terminates when
M = {M1}, where at this stage M1 corresponds to the entire set of input jobs J . It then
returns P − x, where x is the maximum value with M1[x] < ∞; by definition, this corre-
sponds to a schedule for J with P −x total processing time of tardy jobs. For convenience
of presentation, we assume that D# is a power of 2.

Algorithm 2 ConvScheduler(J)

1: Let d(1) < . . . < d(D#) denote the different due dates of jobs in J .
2: Compute Xi = {pj : dj = d(i)} for each i ∈ {1, . . . ,D#}.
3: Compute S(X1), . . . ,S(XD#

).
4: Compute M = {M1 = M(1), . . . ,MD#

= M(D#)}.
5: while |M| > 1 do

– Compute Mi = M2i−1 ⊗M2i for each i ∈ {1, . . . , |M|/2}.

6: Return P − x, where x is the maximum value with M1[x] < ∞.

Correctness of this algorithm follows directly from Lemma 15. To analyze its time
complexity, observe that steps 1–4 can be done in Õ(P) time (using Lemma 10). Step 5
is performed O(logD#) = O(logP) times, and each step requires a total of Õ(P 7/4) time
according to Theorem 12, as the total sizes of all vectors at each step is O(P). Finally,
step 6 requires O(P) time. Summing up, this gives us a total running time of Õ(P 7/4),
and completes the proof of Theorem 5 (apart from the proof of Theorem 12).

5 Fast Skewed Convolutions

In the following section we present our algorithm for (max,min)-Skewed-Convolution, and
provide a proof for Theorem 12. Let A = (A[i])ni=0 and B = (B[j])nj=0 denote the input
vectors for the problem throughout the section.

We begin by first defining the problem slightly more generally, in order to facilitate our
recursive strategy later on. For this, for each integer ℓ ∈ {0, . . . , log n}, let Aℓ = ⌊A/2ℓ⌋

and Bℓ = ⌊B/2ℓ⌋, where rounding is done component-wise. We will compute vectors
Cℓ = (Cℓ[k])2nk=0 defined by:

Cℓ[k] = max
i+j=k

min{Aℓ[i], Bℓ[j] + ⌊k/2ℓ⌋}.

Observe that a solution for ℓ = 0 yields a solution to the original (max,min)-Skewed-
Convolution problem, and for ℓ ≥ log 2n the problem degenerates to (max,min)-Convolution.

We next define a particular kind of additive approximation of vectors Cℓ. We say
that a vector Dℓ is a good approximation of Cℓ if Cℓ[k] − 2 ≤ Dℓ[k] ≤ Cℓ[k] for each
k ∈ {0, . . . , 2n}. Now, the main technical part of our algorithm is encapsulated in the
following lemma.

Lemma 17. There is an algorithm that computes Cℓ in Õ(n7/4) time, given Aℓ, Bℓ, and
a good approximation Dℓ of Cℓ.

We postpone the proof of Lemma 17 for now, and instead show that it directly yields
our desired algorithm for (max,min)-Skewed-Convolution:

Proof (of Theorem 12). In order to compute C = C0, we perform an (inverse) induction
on ℓ: As mentioned before, if ℓ ≥ log 2n, then we can neglect the “+ ⌊k/2ℓ⌋” term and
compute Cℓ in Õ(n3/2) = Õ(n7/4) time using a single (max,min)-Convolution computa-
tion [8].

For the inductive step, let ℓ < log 2n and assume that we have already computed Cℓ+1.
We construct the vector Dℓ = 2Cℓ+1, and argue that it is a good approximation of Cℓ.
Indeed, for each entry k, on the one hand, we have:

Dℓ[k] = 2Cℓ+1[k] = 2 · max
i+j=k

min{⌊Aℓ[i]/2⌋, ⌊Bℓ[j]/2⌋ + ⌊k/2ℓ+1⌋}

≤ max
i+j=k

min{Aℓ[i], Bℓ[j] + ⌊k/2ℓ⌋} = Cℓ[k];

and on the other hand, we have:

Dℓ[k] = 2Cℓ+1[k] = 2 · max
i+j=k

min{⌊Aℓ[i]/2⌋, ⌊Bℓ[j]/2⌋ + ⌊k/2ℓ+1⌋}

≥ max
i+j=k

min{Aℓ[i]− 1, Bℓ[j] + ⌊k/2ℓ⌋ − 2} ≥ Cℓ[k]− 2.

Thus, usingDℓ we can apply Lemma 17 above to obtain Cℓ in Õ(n7/4) time. Since there are
O(log n) inductive steps overall, this is also the overall time complexity of the algorithm.

It remains to prove Lemma 17. Recall that we are given Aℓ, Bℓ, and Dℓ, and our goal
is to compute the vector Cℓ in Õ(n7/4) time. We construct two vectors Lℓ and Rℓ with 2n
entries each, defined by

Lℓ[k] = max

{

Aℓ[i0] :
Aℓ[i0] ≤ Bℓ[k − i0] + ⌊k/2ℓ⌋ and

Dℓ[k] ≤ Aℓ[i0] ≤ Dℓ[k] + 2

}

,

and

Rℓ[k] = max

{

Bℓ[j0] + ⌊k/2ℓ⌋ :
Bℓ[j0] + ⌊k/2ℓ⌋ ≤ Aℓ[k − j0] and

Dℓ[k] ≤ Bℓ[j0] + ⌊k/2ℓ⌋ ≤ Dℓ[k] + 2

}

for k ∈ {0, . . . , 2n}. That is, Lℓ[k] and Rℓ[k] respectively capture the largest value attained
as the left-hand side or right-hand side of the inner min-operation in Cℓ[k], as long as that
value lies in the feasible region approximated by Dℓ[k]. Since Dℓ is a good approximation,
the following lemma is immediate from the definitions:

Lemma 18. Cℓ[k] = max{Lℓ[k], Rℓ[k]} for each k ∈ {0, . . . , 2n}.

According to Lemma 18, it suffices to compute Lℓ and Rℓ. We focus on computing Lℓ

as the algorithm for computing Rℓ follows after applying minor modifications.
Let 0 < δ < 1 be a fixed constant to be determined later. We say that an index

k ∈ {0, . . . , n} is light if

|{i : Dℓ[k] ≤ Aℓ[i] ≤ Dℓ[k] + 2}| ≤ nδ.

Informally, k is light if the number of candidate entries Aℓ[i] which can equal Cℓ[k] is
relatively small (recall that Dℓ[k] ≤ Cℓ[k] ≤ Dℓ[k] + 2, as Dℓ is a good approximation
of Cℓ). If k is not light then we say that it is heavy.

Our algorithm for computing Lℓ proceeds in three main steps: In the first step it
handles all light indices, in the second step it sparsifies the input vector, and in the third
step it handles all heavy indices:

– Light indices: We begin by iterating over all light indices k ∈ {0, . . . , 2n}. For each
light index k, we iterate over all entries Aℓ[i] satisfying Dℓ[k] ≤ Aℓ[i] ≤ Dℓ[k] + 2, and
set Lℓ[k] to be the maximum Aℓ[i] among those entries with Aℓ[i] ≤ Bℓ[k− i]+ ⌊k/2ℓ⌋.
Note that after this step, we have

Lℓ[k] = max{Aℓ[i0] : A
ℓ[i0] ≤ Bℓ[k − i0] + ⌊k/2ℓ⌋ and Dℓ[k] ≤ Aℓ[i0] ≤ Dℓ[k] + 2}

for each light index k.

– Sparsification step: After dealing with the light indices, several entries of Aℓ become
redundant. Consider an entry Aℓ[i] for which |{i0 : A

ℓ[i]−2 ≤ Aℓ[i0] ≤ Aℓ[i]+2}| ≤ nδ.
Then all indices k for which Lℓ[k] might equal Aℓ[i] must be light, and are therefore
already dealt with in the previous step. Consequently, it is safe to replace Aℓ[i] by −∞
so that Aℓ[i] no longer plays a role in the remaining computation.

– Heavy indices: After the sparsification step Aℓ contains few distinct values. Thus, our
approach is to fix any such value v and detect whether Lℓ[k] ≥ v. To that end, we trans-
late the problem into an instance of (max,min)-Convolution: Let (Aℓ

v[i])
n
i=0 be an be

an indicator-like vector defined by Aℓ
v[i] = +∞ if Aℓ[i] = v, and otherwise Aℓ

v[i] = −∞.
We next compute the vector Lℓ

v defined by Lℓ
v[k] = ⌊k/2ℓ⌋+maxi+j=k min{Aℓ

v [i], B
ℓ[j]}

using a single computation of (max,min)-Convolution.
We choose

Lℓ[k] = max{v : Lℓ
v[k] ≥ v and Dℓ[k] ≤ v ≤ Dℓ[k] + 2}

for any heavy index k and claim that Lℓ[k] equals max{Aℓ[i0] : A
ℓ[i0] ≤ Bℓ[k − i0] +

⌊k/2ℓ⌋}. On the one hand, if Lℓ
v[k] ≥ v then there are indices i and j with i + j = k

for which Aℓ[i] = v and Bℓ[j] + ⌊k/2ℓ⌋ ≥ Aℓ[i] = v. Thus, the computed value Lℓ[k] is
not greater than

Lℓ[k] ≤ max{Aℓ[i0] : A
ℓ[i0] ≤ Bℓ[k − i0] + ⌊k/2ℓ⌋ and Dℓ[k] ≤ Aℓ[i0] ≤ Dℓ[k] + 2}.

On the other hand, for all values v for which Aℓ[i] = v for some i ∈ {0, . . . , n}, we
have if v = Aℓ[i] ≤ Bℓ[k − i] + ⌊k/2ℓ⌋ then Aℓ

v [i] = −∞, which in turn implies that
Aℓ

v[i] ≥ Bℓ[k − i] + ⌊k/2ℓ⌋ ≥ Aℓ[i] = v. Thus, our selection of Lℓ[k] is also at least as
large as

Lℓ[k] ≥ max{Aℓ[i0] : A
ℓ[i0] ≤ Bℓ[k − i0] + ⌊k/2ℓ⌋ and Dℓ[k] ≤ Aℓ[i0] ≤ Dℓ[k] + 2},

and hence, these two values must be equal.

This completes the description of our algorithm. As we argued its correctness above,
what remains is to analyze its time complexity. Note that we can determine in O(log n)
time whether an index k is light or heavy, by first sorting the values in Aℓ. For each light
index k, determining Lℓ[k] can be done in O(nδ) time (on the sorted Aℓ), giving us a total
of Õ(n1+δ) time for the first step. For the second step, we can determine whether a given
entry Aℓ[i] can be replaced with −∞ in O(log n) time, giving us a total of Õ(n) time for
this step.

Consider then the final step of the algorithm. Observe that after exhausting the sparsi-
fication step, Aℓ contains at most O(n1−δ) many distinct values: For any surviving value v,
there is another (perhaps different) value v′ of difference at most 2 from v that occurs at
least nδ times in Aℓ, and so there can only be at most O(n1−δ) such distinct values. Thus,
the running time of this step is dominated by the running time of O(n1−δ) (max,min)-
Convolution computations, each requiring Õ(n3/2) time using the algorithm of [8], giving
us a total of Õ(n5/2−δ) time for this step.

Thus, the running time of our algorithm is dominated by the Õ(n1+δ) running time of
its first step, and the Õ(n5/2−δ) running time of its last step. Choosing δ = 3/4 gives us
Õ(n7/4) time for both steps, which is the time promised by Lemma 17. Thus, Lemma 17
holds.

6 Discussion and Open Problems

In this paper we presented two algorithms for the 1||
∑

pjUj problem; the first running in
Õ(P 7/4) time, and the second running in Õ(min{P ·D#, P +D}) time. Both algorithms
provide the first improvements over the classical Lawler and Moore algorithm in 50 years,
and use more sophisticated tools such as polynomial multiplication and fast convolutions.
Moreover, both algorithms are very easy to implement given a standard ready made FFT
implementation for fast polynomial multiplication. Nevertheless, there are still a few ways
which our results can be improved or extended:

– Multiple machines: A natural extension of the 1||
∑

pjUj problem is to the setting of
multiple parallel machines, the Pm||

∑

pjUj. Lawler and Moore’s algorithm can be
used to solve Pm||

∑

pjUj in O(Pm · n) time, where m is the number of machines.
A priori, there is no reason to believe that this cannot be improved to Õ(Pm), or
even better. It is not hard to extend the algorithm in Theorem 6 to an algorithm
with running time Õ(Pm ·D#) for the m parallel machine setting, by using m-variate
polynomials for implementing sumsets in Lemma 8. However, a similar extension for
the algorithm in Theorem 5 is far less direct.

– Even faster skewed convolutions: We have no indication that our algorithm for (max,min)-
Skewed-Convolution is the fastest possible. It would interesting to see whether one can
improve its time complexity, say to Õ(P 3/2). Naturally, any such improvement would
directly improve Theorem 5.

Conversely, one could try to obtain some sort of lower bound for the problem,
possibly in the same vein as Theorem 2. Improving the time complexity beyond
Õ(P 3/2) seems difficult as this would directly imply an improvement to the (max,min)-
Convolution problem. Indeed, let A, B be a given (max,min)-Convolution instance
and construct vectors A0, B0 with A0[i] = N · A[i] and B0[j] = N · B[j] for N =
2n + 1. If C0 is the (max,min)-Skewed-Convolution of A0 and B0 (that is, C0[k] =
maxi+j=k min{A0[i], B0[j] + k}), then the vector C with C[k] = ⌊C0[k]/N⌋ is the
(max,min)-Convolution of A and B.

– Other scheduling problems: Finally, it will be interesting to see other scheduling prob-
lems where the techniques used in this paper can be applied. A good first place to start
might be to look at other problems which directly generalize Subset Sum.

References

1. Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower bounds for
subset sum and bicriteria path. Proc. of of the 30th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 41–57, 2019.

2. Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In Proc. of of the
28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1073–1084, 2017.

3. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

4. Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems equivalent to
(min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1–14:25, 2019.

5. Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathe-
matics, 17(2):416–429, 1969.

6. Richard M. Karp. Reducibility among combinatorial problems. In Complexity of computer computa-
tions, pages 85–103. Springer, 1972.

7. Konstantinos Koiliaris and Chao Xu. A faster pseudopolynomial time algorithm for subset sum. In
Proc. of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1062–1072,
2017.

8. Sambasiva R. Kosaraju. Efficient tree pattern matching. In Proc. of the 30th annual symposium on
Foundations Of Computer Science (FOCS), pages 178–183, 1989.

9. Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained complexity of
one-dimensional dynamic programming. In Proc. of the 44th International Colloquium on Automata,
Languages, and Programming (ICALP), pages 21:1–21:15, 2017.

10. Eugene L. Lawler and James M. Moore. A functional equation and its application to resource allocation
and sequencing problems. Management Science, 16(1):77–84, 1969.

