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Abstract
Williams and J. Fraser have recently argued that effective field theory methods enable
scientific realists to make more reliable ontological commitments in quantum field
theory (QFT) than those commonly made. In this paper, I show that the interpretative
relevance of these methods extends beyond the specific context of QFT by identifying
common structural features shared by effective theories across physics. In particular, I
argue that effective theories are best characterized by the fact that they contain intrin-
sic empirical limitations, and I extract from their structure one central interpretative
constraint for making more reliable ontological commitments in different subfields of
physics. While this is in principle good news, this constraint still raises a challenge
for scientific realists in some contexts, and I bring the point home by focusing on
Williams’s and J. Fraser’s defense of selective realism in QFT.

Keywords Effective theories · Effective field theories · Renormalization group ·
Scientific realism · Selective realism · Infinite idealizations

1 Introduction

There is a deeply entrenched strategy in philosophy of physics about how to interpret
our best theories in realist terms. Philosophers usually start by pretending that the
theory at stake is complete, true andfinal, even if it is knownnot to be true in all respects.
Then, they eliminate its redundant parts by implementing sophisticated constraints on
its structure. And eventually, they draw from the resulting theory some putatively
complete picture of the world. The goal, ultimately, is to identify a definite set of

B Sébastien Rivat
srivat@mpiwg-berlin.mpg.de

1 Max Planck Institute for the History of Science, Boltzmannstraße 22, 14195 Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-020-02852-4&domain=pdf
http://orcid.org/0000-0001-8500-0170


Synthese

unobservable entities or structures, whether they are fundamental or not, and thereby
lay the ground for explaining the success of the theory in realist terms.1

As it turns out, this strategy somewhat falls apart in the case of ourmost fundamental
and empirically successful theories. We do not yet know whether realistic quantum
field theories (QFTs) can be consistently defined across all scales and thereforewhether
we can even consistently speculate about the possible worlds in which these theories
are exactly true. Wallace (2006, esp. Sect. 3.3; 2011), Williams (2019b), and J. Fraser
(2018, 2020) have proposed a more modest and cautious strategy in response, which
is also better suited to the limited success of current and past theories. They enjoin
philosophers to identify the ontological commitments necessary to explain the success
of our best QFTs in the limited regimes where they are known to be reliable and not
in the regimes where they are likely to break down.

The crucial part of Wallace, Williams and J. Fraser’s proposal resides in the set of
techniques they employ to implement this new strategy, namely, effective field theory
(EFT) methods (including the Wilsonian renormalization group). Broadly speaking,
these methods have been developed in QFT to treat phenomena at different scales
separately, and they becamepopular in physics in large part because of their remarkable
heuristic, computational and predictive power. More crucially for interpreters, the
QFTs constructed by using these methods, i.e., EFTs, are intrinsically restricted to
some limited range of distance scales. The physics within this range can even be
shown in typical cases to be largely independent of the specific details of the short-
distance physics. And this has led Williams and J. Fraser, in particular, to argue that
EFTs provide a more perspicuous and reliable interpretative standpoint to identify
unobservable entities or structures in the appropriate regimes, even if realistic QFTs
are ultimately shown to be consistent across all scales.

This paper has two closely related aims. The first is to show that the interpretative
relevance of EFT methods extends beyond the specific context of QFT. Given that
most if not all known physical systems exhibit distinct scales in most circumstances,
it should come as no surprise that the EFT paradigm has been successfully imple-
mented in most areas of contemporary physics during the last decades.2 Yet, we might
still wonder whether the theories constructed by using EFT methods share distinctive
structural features that might help us make more reliable ontological commitments in
different subfields of physics. I will first argue that effective theories are best charac-
terized in general by the fact that they contain intrinsic empirical limitations, i.e., their
structure incorporates a robust specification of the scales at which they are likely to
be empirically inaccurate before we probe these scales in experiments. This contrasts
with the usual situation where the empirical limitations of a theory are found only by
a direct confrontation with experimental data obtained at the relevant scale. Then, I

1 For a critical discussion of this traditional interpretative strategy, including references in the literature,
see Ruetsche (2011, Chap. 1) and Williams (2019b).
2 For references to the extension of EFT methods outside condensed matter and particle physics, see, e.g.,
Endlich et al. (2011), Dubovsky et al. (2012), and Gripaios and Sutherland (2015) for fluid dynamics;
Donoghue (1995) and Burgess (2004) for General Relativity; Goldberger and Rothstein (2006) and Porto
(2016) for post-Newtonian gravitation; Baumann and McAllister (2015, Chap. 2) and Burgess (2017) for
inflationary cosmology; Polchinski and Strominger (1991) andHellerman et al. (2014) for low-energy string
theories; Baumann and Green (2012) and Kaplan (2016, esp. Sect. 8.4.3) for advanced topics relevant to
quantum gravity.
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will briefly present and justify the realist account of effective theories which follows
the most naturally from this characterization. I will call it the “Standard Effective
Account” and show that the structure of an effective theory forces us to restrict our
commitments to entities or structures which can be specified within the limited range
where the theory is likely to remain empirically reliable.

The second aim is to assess whether Wallace, Williams and J. Fraser’s strategy
enables scientific realists to fulfill their explanatory duties. Starting with the tradi-
tional form of scientific realism (cf. Psillos 1999, pp. xvii–xix), I will first give a
concrete example of the restrictions we face if we treat our best current theories as
effective theories.3 We may think, for instance, that we have good reasons to take
the descriptions of continuum fields in the effective versions of the Standard Model
of particle physics and General Relativity to be approximately true and therefore to
commit to the existence of those entities, i.e., of continuous systems with an infinite
number of degrees of freedom. I will argue that on the Standard Effective Account,
we cannot reliably make such ontological commitments. And my point here is not
so much to claim that infinite physical systems are beyond our ken—in a way, we
have known this for a long time—but rather to illustrate how the structure of effective
theories imposes clear-cut restrictions on one’s ontological commitments.

I will then argue that, in some specific theoretical contexts including classical and
quantum field theory, these restrictions still raise a challenge for more refined forms
of scientific realism. To bring the point home, I will focus on Williams’s (2019b)
and J. Fraser’s (2018, 2020) defense of selective realism in QFT and, expanding on
Ruetsche’s (2018, 2020) discussion, show that the candidates which look at first sight
the most appealing for making ontological commitments in the appropriate regimes—
namely, correlations, particles, and lattice fields—fail in other important respects.
The best candidates that do not suffer from the same issues appear to be continuum
fields, with the proviso that they are approximately similar to large distance scale
features of the world. But, again, selective realists cannot take the descriptions of
continuum fields to be approximately true simpliciter, which leaves them with no
obvious candidate for offering a genuine defense of the realist cause. I will conclude
briefly with a more radical suggestion to circumvent this issue: namely, to modify the
standard semantic tenet of scientific realism endorsed by selective realists (e.g., Psillos
1999; Chakravartty 2007) and index (approximate) truth to physical scales.

The paper is organized as follows. Section 2 presents two distinct examples of
effective theories. Section 3 argues on the basis of these examples that effective theories
are best characterized by the fact that they contain intrinsic empirical limitations.
Section 4 presents the Standard Effective Account. Section 5 shows that traditional
scientific realists cannot, as amatter of principle, commit to the existence of the infinite
systems specified by a literal interpretation of our best current effective theories.

3 Of course, this requires assuming that we do not yet have some decisive evidence that we have hit a true,
final and complete theory in physics or some complete theory providing an approximately true description of
the world in all respects. We also need to assume that effective theories display sufficiently many theoretical
virtues to be even considered candidates for making approximately true claims about the world (see Wells
2012, Chap. 5, for a discussion related to this point). We do not need, however, to deny the existence of a
final theory, which is implicit in the traditional scenario of an infinite “tower” of EFTs, where each theory
of an endless series of EFTs describes phenomena within a limited range of energy scales.

123



Synthese

Section 6 extends the discussion to Williams’s and J. Fraser’s defense of selective
realism.

2 Two examples of effective theories

Philosophers have not paid much attention to the diversity of effective theories across
physics (e.g., Cao and Schweber 1993; Hartmann 2001; Bain 2013); and when they
treat the particular case of EFTs in particle and condensed matter physics as a new
paradigm for understanding physical theories, they often remain too elusive or attribute
too much importance to parochial features absent in other types of effective theories.
For instance, it is common to characterize effective theories as theories that directly
incorporate into their mathematical structure the imprint of their breakdown at some
non-trivial finite physical scale (e.g., Bain 2013, p. 1; Williams 2019a, p. 2; 2019b,
pp. 6, 7, 9, 10, 13). But seldom is it specified whether, in the general case, effective
theories display somemathematical singularity, become physicallymeaningless,make
inconsistent predictions, or become merely empirically inaccurate at that scale.4 In
order to give a sufficiently comprehensive and informative characterization, I will thus
first present two different kinds of effective theories and examine, in particular, the
way in which they “break down” at some scale.5

Example 1 Consider first the mathematically most simple formulation of the Newto-
nian gravitational theory for a body of massm1 interacting with another body of mass
m2:

m1
d2r

dt2
= −m1

m2G

r2
(1)

with r the relative distance between the centers of mass of the two bodies and G the
gravitational constant.

There are two distinct ways to construct an effective version of this theory. Since
we already know its closest successor, i.e., classical General Relativity, we can simply
follow the “top-down” strategy: namely, we appropriately restrict the range of parame-
ters of the more comprehensive theory and eliminate its theoretical constituents which
do not contribute significantly to predictions within this range. For instance, we can
derive Eq. (1) with additional correction terms encoding relativistic effects by imple-
menting weak-gravity and low-velocity restrictions on the simplest solutions to the
equations of classical General Relativity (see, e.g., Poisson and Will 2014, for more
details).

We can also pretend that we do not yet know the more comprehensive theory and
follow the “bottom-up” strategy. We first identify a limited range where we think that

4 Other overly broad characterizations include “approximate theories” (e.g., Castellani 2002, p. 263;
Ruetsche 2020, p. 298), “non-fundamental theories” (e.g., Egg et al. 2017, p. 455), and “phenomenological
theories” (e.g., Huggett and Weingard 1995, p. 189; Butterfield and Bouatta 2014, p. 65).
5 For simplicity, I will understand ‘theory’ in its specific sense throughout the paper, that is to say, as given
by a specific action, a Lagrangian or a Hamiltonian—or even more simply by equations of motion.
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the theory provides reliable information. For instance, wemay suspect from the infinite
value ofm1m2G/r2 in the limit r → 0 thatEq. (1) becomesmathematically inadequate
for describing the gravitational interaction between arbitrarily small bodies moving
arbitrarily close to one another. Or we may have already found that the theory makes
slightly inaccurate predictions when the gravitational force m1m2G/r2 becomes too
strong. Then, we restrict the range of the theory by introducing some arbitrary limiting
scale, namely, a short-distance scale r0 in this case. And finally, we include all the
possible terms depending on r0/r which are allowed by the symmetries of the theory,
with one arbitrary coefficient for each new term. As we perform these steps, we do
not need to know anything about the value or the underlying meaning of the limiting
scale, namely, that r0 turns out to be the Schwarzschild radius 2m2G/c2 of the body
of mass m2, with c the speed of light. The value of the additional coefficients and r0
is ultimately determined by means of experimental inputs, at least for a finite number
of them.6

Now, whether we follow the top-down or the bottom-up strategy, the resulting
effective theory takes the following form:

m1
d2r

dt2
= −m1

m2G

r2

(
1 + a1

r0
r

+ a2
(r0
r

)2 + a3
(r0
r

)3 + · · ·
)

(2)

with a1, a2, a3, etc. some arbitrary coefficients. The most complete version of Eq. (2)
includes an infinite number of terms which depend on r0/r and leave the equation
invariant under Galilean symmetry transformations (i.e., translations in space and
time, spatial rotations, and velocity boosts). We can also define an effective theory by
means of a finite number of terms and fix the value of their coefficients by means of
experiments.7

How should we interpret the scale r0 if we take the structure of these effective
theories at face value? Suppose for the sake of the argument that we are interested
in predicting the value of the acceleration d2r/dt2 in Eq. (2). The first thing to note
is that the contributions of higher-order terms (r0/r)n to predictions are negligible
for r � r0 and very large for r � r0. If we include increasingly many higher-
order terms in Eq. (2), the predictions remain overall the same for r � r0 and become
increasingly large around and below r0. And if we include an infinite number of terms,
the resulting expansion

∑
i ai (r0/r)

i takes an infinite value for r0/r ≥ 1. Hence, if we
simply look at the mathematical structure of the family of effective theories associated
with Eq. (2), we find that their predictions display a sharp pattern of variation around
the characteristic scale r0, which remains robust as we add or remove higher-order
terms.

6 In general, we also need to assume that the dimensionless constants of the theory are of order 1 to get a
first estimate of the limiting scale, i.e., we need to endorse the “naturalness” principle ai = O(1) in Eq. (2)
below.
7 For more details about the first-order relativistic and quantum corrections to the non-relativistic gravita-
tional potential, see, e.g., Donoghue (1995), Burgess (2004), and Blanchet (2014). Note that, in some cases,
existing empirical measurements (or some other reason) may require us to break some of the symmetries
of the original equation.
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At first sight, this predictive pattern does not appear to tell us much about r0 since
the expansions

∑N
i ai (r0/r)i for finite N are mathematically well-defined across

all distance scales (except for the trivial scale r = 0). Yet, if we consider these
finite expansions in relation to one another, we learn that we can always add small
correction terms of increasing order in r0/r in any given expansion and adjust their
coefficients if we want to improve its predictive accuracy for r � r0. And if we
consider these finite expansions in relation to the limiting case of the infinite expansion,
we also learn that they ultimately become mathematically ill-defined at r0 when we
add increasingly many such terms. In short, if we try to make any of these finite
expansions as predictively accurate as possible for r � r0, we end up with theories
making infinite predictions at r0 and below, i.e., with theories which, as a matter of
principle, cannot be empirically accurate for 0 < r ≤ r0. And this, in turn, provides
at least preliminary reasons to believe that the pattern of variation around r0 does not
simply reflect some notable qualitative physical change but rather signals that these
finite expansions are likely to become unreliable around r0.

Now, this interpretation is grounded in the experimental profile of existing theories
displaying the same predictive pattern. If, for simplicity, we use Eq. (2) as an example,
the experimental pattern takes the following form.We start with some effective theory
definedbymeans of afinite expansion andfix its parameters bymeans of experiments at
large distance scales r . At shorter distance scales, however, we find small experimental
discrepancies and decide to add new terms to compensate for them. Yet, as we probe
even shorter distance scales, the effective theory with the additional terms becomes all
the more quickly empirically inaccurate and we need, at least in principle, to introduce
new terms if we want to maintain its predictive power and accuracy. In practice,
physicists directly look for a new theory in situations like this. If we were to keep up
with the original theory and probe phenomena closer and closer to r0, however, we
would need to introduce an infinite number of terms. Since all these terms are equally
important at r0, we would not be able to select a finite number of them in order to make
approximate predictions. And since we cannot in practice make an infinite number of
measurements to fix the value of an infinite number of arbitrary coefficients, the theory
would lose its predictive power. Hence, according to this pattern, r0 corresponds to
the maximal predictive limit of the family of effective theories associated with Eq. (2).
For the infinite expansion, r0 corresponds both to a characteristic scale where the
theory becomes mathematically ill-defined and predictively powerless. For the finite
expansions, the demarcation is not as vivid and sharp; but, overall, the corresponding
effective theories make empirically accurate predictions for r � r0 and empirically
inaccurate ones for r � r0.

Note that the same argument does not apply to the original Newtonian theory in
Eq. (1) despite its divergent behavior at r = 0. If we leave aside the apparent physical
impossibility of the situation characterized by r = 0, we still face the issue that the lim-
iting scale r = 0 is experimentally trivial from the perspective of classical Newtonian
gravitation. Even if we can, in principle, probe the system down to arbitrarily short
distances in this context, we can only gain experimental information about finite-size
effects resulting from the gravitational interaction between two bodies at some finite
distance from one another. In the case of effective theories, the situation is different
because there is no physical principle or experimental constraint which indicates that
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the regime specified by r ≤ r0 is either experimentally inaccessible or trivial. The
infinite expansion becomes deficient at r0. But nothing in the theory suggests that we
cannot use bodies to probe distance scales within 0 < r ≤ r0 compared, say, to string
theory where we cannot use strings in scattering processes to probe distances shorter
than the string scale (see, e.g., Hossenfelder 2013, Sect. 3.2, for a discussion).8

Example 2 Consider now a standard example of QFT, the φ4-theory. The theory
describes a simple quantum field, i.e., a continuum of smoothly coupled individ-
ual quantum systems over space–time with each system characterized by only one
degree of freedom. In a somewhat analogous way as in Eq. (1), the original dynamical
equation is given by:

∂μ∂μφ(x) + m2φ(x) = −λφ3(x) (3)

where φ(x) is a real-valued variable describing a possible configuration of the field
over space–time, ∂μ the analog of d/dt in the four-dimensional Minkowski space–
time, m a mass parameter, and λ a self-coupling parameter. This equation contains no
explicit intrinsic limitation, which suggests that there is a priori no reason to believe
that the theory fails to apply at arbitrarily large and short distances (or, equivalently,
at arbitrarily low and high energies). The trouble comes when we try to compute
predictions. Typically, in QFT, this is done by evaluating the correlations between
some initial and final field configuration states characterizing some scattering pro-
cess, where these states describe, roughly speaking, the particles that we prepare
and detect in experiments. Calculating these correlations requires, in turn, including
the contributions from all the possible transitions between these states and therefore
summing over all the possible intermediary field configuration states. If we do that,
however, the high-energy configurations of the field, i.e., the configurations which
vary rapidly over short-distance scales, give rise to infinite probabilistic predictions,
which is inconsistent.

As of today, the only way to solve this issue in realistic QFTs is to modify the
structure of the theory by means of “renormalization” methods.9 In the case of the φ4-
theory, for instance, we can smoothly lower the contributions of the high-energy field
configurations φ̃(k) over some high-energy cut-off Λ by using a new field variable
φΛ(x) with exponentially decreasing contributions above Λ:

φΛ(x) ∝
∫

d4keikx (e−k/Λφ̃(k)) (4)

Similarly to Example 1, the value of the limiting scale Λ is not fixed at this stage. Yet,
the QFT case is special. If we keep a finite cut-off, we can make the predictions of the
theory Λ-independent by absorbing Λ-dependent terms into its parameters, at least

8 Note, moreover, that we cannot define some non-trivial limiting distance scale r0 by using only m1, m2,
and G in Eq. (1). By dimensional analysis, we would need to introduce a new arbitrary velocity scale c and
therefore modify the structure of the original theory.
9 See, e.g., Butterfield andBouatta (2015),Williams (2019a), andRivat (2019) for introductory discussions.
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for a finite range of values ofΛ. But this requires including all the possible interaction
terms allowed by the symmetries of the theory:

∂μ∂μφΛ(x) + m2(Λ)φΛ(x) = −λ(Λ)φ3
Λ(x) − g5(Λ)φ5

Λ(x) − g7(Λ)φ7
Λ(x) − ...(5)

where the gi ’s are new arbitrary coupling parameters depending on Λ. If we have
appropriate experimental inputs, we can define an effective theory by means of a finite
number of interaction terms, fix their parameters, and estimate the value of Λ (as in
Example 1).

The predictive pattern in this example is overall similar to the one displayed in
the previous example. Once we fix the parameters of the theory, we can show that
the higher-order interaction terms gi (Λ)φi

Λ in Eq. (5) contribute to predictions by
increasing powers of (E/Λ), with E the characteristic energy scale of the scattering
process considered. Yet, there is one crucial difference: the predictions of the theory
typically become inconsistent for energies E close to and aboveΛwhether we include
a finite or an infinite number of interaction terms in Eq. (5). Hence, if we take the
structure of effective QFTs at face value, Λ is naturally interpreted as the scale at
which the theory is likely to make inconsistent and a fortiori empirically inaccurate
predictions.10

3 What is an effective theory?

Now that we are equipped with two different examples, let us look at some options
for characterizing what is so distinctive about effective theories. I will argue that the
structure of an effective theory is best characterized by the fact that it incorporates
a robust specification of the scales at which it is likely to be empirically inaccurate
(assuming, in particular, that we have appropriate experimental inputs at some other
scales to fix its free parameters).

Characterization 1A first option is to characterize an effective theory as a low-energy
limit of amore complete theory—even if this more complete theory is not fully known,
which means that an effective theory is a particular realization of a given theory over
a restricted range of energy scales. This relational characterization fits well with high-
energy physicists’ general description of EFTs (e.g., Burgess and Moore 2006, pp. xi,
456) and with the top-down Wilsonian procedure for deriving an EFT by eliminating
high-energy field configurations.

To give a concrete example, suppose that the φ4-theory is a low-energy realization
of a more complete theory including a light scalar field φ(x) of mass m and a heavy
scalar fieldψ(x) ofmassM , withm � M .We can derive effective theories as follows.
First, we eliminate, or “integrate out”, the heavy field variableψ(x) in the high-energy
theory (or, more precisely, in its functional path integral Z). This gives rise to exotic
terms depending on the variable φ(x) such as φ(x)(−∂μ∂μ + M2)−1φ(x). Assuming
that the characteristic energy E of the scattering processes of interest is much smaller

10 As it turns out, the φ4-theory is even more special: the perturbatively renormalized coupling λ(Λ)

diverges at some finite high-energy scale, i.e., it displays a “Landau pole” singularity.
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than the mass of the heavy field, i.e., E � M , we can expand these exotic terms
into an infinite series of polynomial terms depending only on the variable φ(x), its
derivatives, and some inverse power of M . Schematically,

Z =
∫

D[φ]D[ψ]ei
∫
d4x

[
1
2 (∂μφ)2−m2

2 φ2− λ
4! φ4+ 1

2 (∂μψ)2− M2
2 ψ2− g

4 φ2ψ2
]

�⇒ Z =
∫

D[φ]ei
∫
d4x

[
1
2 (∂μφ)2−m2

2 φ2− λ
4! φ4− g6

M2 φ6− g8
M4 φ8−···

] (6)

with the appropriate coupling parameters g and gi .11 The structure of the effective
theory is fully specified by the restrictions imposed on the high-energy theory with
the appropriate low-energy assumption. In particular, since the contributions of the
interaction terms (gi/Mi−4)φi give rise to inconsistent predictions close to M , the
high-energy theory provides a natural high-energy cut-off for renormalizing the effec-
tive theory, namely, the mass of the heavy field. We can also define effective theories
by restricting the series to some finite order in 1/M and obtain the original φ4-theory
by taking the limit M → ∞.

The main issue with Characterization 1 is that it is either too broad or too narrow
depending on how we understand it. If we take it to apply to any theory which is,
in principle, derivable from a more complete theory in its low-energy limit, even
indirectly, we may have reasons to suspect that it applies to all empirically successful
theories built up so far. However, if we do not specify the structure of the high-
energy theory or provide the specific details of the derivation, we will be left with a
characterization which is overly vague and which, in particular, does not help us to
circumscribe specific structural features common to effective theories. And to make
the matter even worse, some standard cases of EFTs do not seem to have any high-
energy completion and therefore to be even derivable, as a matter of principle, from a
high-energy theory (see, e.g., Adams et al. 2006, for a discussion).

Inversely, if we take this characterization to apply only to theories which are explic-
itly related to a more comprehensive theory by means of some energy parameter or
mass scale, as in Eq. (6), we will leave out many standard cases of effective theo-
ries, including Example 1. In general, the types of limiting scales and power counting
schemes underlying the structure of effective theories, i.e., the rules for evaluating how
the contributions to predictions of the different parts of an effective theory vary with
some parameter, can be extremely diverse. Examples 1 and 2 illustrate this variety of
scales. Example 1 provides a simple velocity power counting scheme when applied
to a system of two bodies with the same mass m1 and orbital radius r . In the non-
relativistic regime, the virial theorem holds (v2 ∼ Gm1/r ∼ r0/r ), which means that
the interaction terms in Eq. (2) contribute to predictions by increasing powers of the
characteristic velocity v of the system. And it is more appropriate in this case to speak
of a low-velocity realization of a more complete theory.

11 See, e.g., Baumann and McAllister (2015, Sect. 2.1.1) and Petrov and Blechman (2016, Sect. 4.1) for
more details.
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Characterization 2 A more promising strategy might be to look for some abstract
feature internal to the mathematical structure of an effective theory.12 Suppose for
instance that we take an effective theory to be a theory which, while remaining math-
ematically well-defined over some limited range of parameters, becomes ill-defined
at some non-trivial finite scale. This characterization fits well with the most complete
versions of the effective theories presented in Examples 1 and 2 (e.g.,

∑
i ai (r0/r)

i ).
It also fits well with the attitude sometimes expressed in the philosophical literature
according to which the framework of EFTs provides a general, efficient, and “oppor-
tunistic” way of solving the mathematical issues of QFTs (see, e.g., Butterfield 2014,
Sect. V.2.2; Butterfield and Bouatta 2015, Sect. 3.1.3). Indeed, the very idea of intro-
ducing and keeping a finite cut-off is vindicated by the pathological behavior of QFTs
at high energies (cf. Example 2). And even if we attempt to cure QFTs of their math-
ematical difficulties with renormalization methods, some paradigmatic cases like the
φ4-theory and Quantum Electrodynamics (QED), the quantum theory of the electro-
magnetic force, are likely to remain mathematically ill-defined at some large yet finite
energy, i.e., to display a Landau pole singularity. If we want to define these pathologi-
cal cases of QFTs consistently, they leave us with no choice but to restrict their range
of parameters, and this suggests that EFT methods were meant to be applied to these
sorts of theories.

Once again, however, this characterization excludes simple cases of effective the-
ories and therefore appears to be too restrictive. For instance, the effective theories
defined by means of a finite number of terms in Example 1 remain mathematically
well-defined across all distance scales (except at the trivial scale r = 0) and therefore
do not fall under Characterization 2. Agreed, being mathematically ill-defined at some
non-trivial finite scale is presumably a sufficient condition for a theory to be charac-
terized as effective (provided we introduce some cut-off); but these simple examples
of classical point-particle effective theories show that this condition is not necessary.

Characterization 3 A third option, the one I favor, is to characterize effective theories
by the fact that they contain intrinsic empirical limitations. Namely: an effective theory
incorporates into its structure a robust specification of the ranges of scales where it is
likely to be empirically inaccurate. There are four essential ingredients here:

1. The mathematical structure of the theory contains some non-trivial finite scale
(“intrinsic limiting scale” or “cut-off”);

2. It is possible to include increasingly many terms depending on this limiting scale
which are consistent with the core principles governing the structure of the theory,
with one arbitrary coefficient for each new term introduced;

3. These terms are systematically organized according to the importance of their
contributions to predictions below and above the limiting scale (“power counting
scheme”);

12 Appealing to a particular mathematical structure does not seem to give an adequate trade-off between
generality and informativeness. The closest we can probably get to Examples 1 and 2 and standard cases of
effective theories is to characterize the structure of effective theories in terms of Taylor (or Laurent) series
in some parameter (or truncations thereof). But even then, this solution excludes exotic cases of effective
theories with non-polynomial interaction terms in the field variables (see, e.g., Gripaios 2015, Sect. 5, for
some models including such terms).
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4. As we include increasingly many such terms, the predictions derived from the
theory remain approximately the same, say, below the limiting scale and become
increasingly large around and above this scale (“robustness”).

The predictive pattern is well illustrated by Examples 1 and 2, although it does not
essentially depend on the particular details of their mathematical formulation, and, in
general, the interpretation in terms of intrinsic empirical limitations is grounded in
the experimental profile of existing theories displaying the same predictive pattern.
Note as well that Characterization 3 does not imply that the mathematical structure of
an effective theory delineates by itself the scales at which its predictions are likely to
break down. We usually need to have experimental inputs in some accessible regime
and assume that the dimensionless constants of the theory are of order one if we want
to estimate the value of the limiting scale. Similarly, adding a list of provisos of the
form ‘For velocities much smaller than the speed of light’ or ‘r � r0’ in the preamble
of the theory is not sufficient: Characterization 3 requires the theory to have the imprint
of its probable predictive failure directly written in its mathematical structure.

Now, the advantage of this option is twofold. First, Characterization 3 is neither too
restrictive nor too permissive. In particular, it applies to Examples 1 and 2 and standard
cases of classical and quantum effective theories. It also excludes standard cases of
theories putatively applicable across all scales such as the Newtonian theory defined in
Eq. (1) and the perturbatively renormalizable version of Quantum Chromodynamics
(QCD), the quantum theory of the strong force.13 As explained in Sect. 2, if we
take such theories at face value, their structure does not explicitly delineate non-
trivial experimental regimes where their predictions are likely to break down. Of
course, we may impose a finite cut-off on the perturbatively renormalizable version
of QCD because we suspect that QCD is likely to be empirically inaccurate at very
high energies, and include higher-order interaction terms into the theory. We may
also exploit the hierarchy of scales exhibited by the different masses of the quarks in
QCD and define a low-energy theory of the light quarks u, d and s with some cut-off
because we suspect that it is easier to compute low-energy predictions if we eliminate
irrelevant high-energy degrees of freedom. In both cases, however, we will be dealing
with a different kind of theory, strictly speaking: namely, an effective theory which
falls under Characterization 3.

Second, the characterization is also informative. Most remarkably, it offers a sharp
distinction between two kinds of theories (or models): (i) theories with intrinsic empir-
ical limitations, i.e., which already contain in their structure information about where
they are likely to make inaccurate predictions before we probe the relevant scales in
experiments; and (ii) theories with extrinsic empirical limitations, i.e., which are found
to make inaccurate predictions only by a direct confrontation with experimental data
obtained at the relevant scale. As we will see in the next section, the structure of an
effective theory also gives good reasons to believe that it provides reliable ontological
guidance only within a limited part of the world.

13 This supposes that we set aside potential trouble at low energies and assume that the theory is sufficiently
mathematically well-defined at arbitrarily high energies.
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4 The Standard Effective Account

So far, I have argued that effective theories are best characterized by the fact that
they contain intrinsic empirical limitations, but I have not said anything yet about
their representational achievements. Suppose then that some effective theory is found
to make accurate predictions within some regime and that its predictions are likely
to break down at some scale beyond this regime. The most straightforward realist
explanation in this case is to take the theory to accurately represent a limited part of
the world and misrepresent, or fail to represent, other parts. Since this explanation fits
wellwith the set of commitments shared by philosopherswho explicitly defend a realist
interpretation of EFTs, I will be relatively brief in this section. I will clarify the idea that
the domain of applicability of effective theories is intrinsically limited bymeans of four
common claims made about EFTs, briefly justify them by relying on general features
of effective theories, call the resulting account the “Standard Effective Account”, and
extract one central interpretative constraint from it. This is, of course, not to say that
these philosophers agree on everything. There are indeed substantive interpretative
disagreements in the literature on EFTs. But I will ignore those disagreements and
restrict myself to extending the four common claims beyond the context of QFT.

The first difficulty here is that the term ‘domain of applicability’ is ambiguous.
We could arguably take it to refer to the universe of discourse or interpretation of the
theory, to the set of phenomena accounted for by the theory, to the range of variables
specifying the possible physical states of the systemdescribed by the theory, or perhaps
even to the range over which the theory is mathematically well-defined. If we keep in
mind that the target of the theory is the actual world, the following notions should be
sufficiently neutral and adequate for clarifying the Standard Effective Account. (i) The
“domain of applicability” of a theory is the set of concrete physical objects—entities,
structures, properties, quantities, states, phenomena, dispositions, and so on—that the
theory accurately represents. The domain of applicability of a theory is not necessarily
identical to its putative domain of applicability, i.e., to the set of putative physical
objects specifiedby a literal interpretation of the theory.14 (ii) The “domain of empirical
validity” of a theory is the range of physical parameters over which its predictions are
likely to remain accurate. If we have good reasons to believe that we have found a final
theory, this domain ranges over all physically possible scales. Otherwise, if we do not
have any means to estimate the empirical limitations of the theory in advance as in
the case of effective theories or any evidence that the theory will remain empirically
accurate in new regimes, this domain reduces to the range over which the theory has
been found to be empirically accurate.

Then, the Standard Effective Account can be spelled out in terms of the four fol-
lowing claims:

1. The domain restriction claim: The domain of applicability of an effective theory
is restricted by the limits of its domain of empirical validity (cf., e.g., Cao and
Schweber 1993, p. 76; Castellani 2002, p. 260; Wallace 2006, Sects. 3.2, 3.3;
Schweber 2015, p. 60; J. Fraser 2018, p. 1173; Williams 2019b, p. 13).

14 By ‘literal’ I mean that the physically meaningful descriptions of the theory are understood in their
standard sense and taken to be either true or false.
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To take the simplest case of physical object, the domain restriction claim states that an
effective theory accurately represents some concrete entity only if its core properties
can be specified within the limited range where the theory is likely to remain empiri-
cally accurate. By ‘core property’ I mean that the property is constitutive of the identity
of the entity (e.g., an infinite number of degrees of freedom for a continuum field).
Now recall that if we have appropriate experimental inputs, say, at large distances, we
can estimate the value of the limiting scale of an effective theory, say, a short-distance
cut-off scale. And even if we have not yet probed phenomena close to this scale in
experiments, the structure of the theory already gives us good reasons to believe that its
predictions are inaccurate beyond this scale. As a realist, it is standard to assume that
if a theory accurately represents the entities characterizing a specific domain, it also
makes accurate predictions in this domain. Hence, the standard realist explanation of
the probable predictive failure of an effective theory beyond its limiting scale is that
the theory is likely to misrepresent, or fail to represent, the entities characterizing the
corresponding domain (assuming here that there are such entities). And this means
that the structure of an effective theory prevents us from remaining agnostic about its
putative representational success beyond its limiting scale. We also have good rea-
sons to think that the theory provides unreliable information about physical properties
beyond this scale and therefore fails to give an accurate picture of the entities which
are individuated by such properties.

In Example 2, for instance, the imposition of the smooth cut-off in Eq. (4) does
not eliminate any degree of freedom in the original theory. On the face of it, then, the
effective theory represents a putative continuum field with one degree of freedom at
every point of space–time and therefore attributes core properties to its target system
within any arbitrarily small region of space–time. At the same time, the pathological
predictions of the theory around and beyond Λ also give very good reasons to believe
that the theory misrepresents the structure of matter at arbitrarily short distances and
therefore that it does not accurately represent a putative continuumfield, strictly speak-
ing. According to the domain restriction claim, however, it is perfectly possible for the
theory to accurately represent, say, a real physical pattern of characteristic size larger
than 1/Λ (see Sects. 5, 6 for a discussion).

2. The new physics claim: The structure of an effective theory strongly suggests that
the theory misrepresents or fails to represent some putative physical objects (cf.,
e.g., Robinson 1992, p. 394; Cao and Schweber 1993, p. 76; Wallace 2006, Sects.
3.2, 3.3; J. Fraser 2018, p. 1173; Williams 2019b).

This claim is best supported by examining the relation between successive effective
theories, or even the relation between an effective theory and some putatively fun-
damental theory. If we take effective theories in isolation, however, we can still give
some support to this claim by relying on their structure. Consider Example 2 again.
The effective version of the φ4-theory with a smooth cut-off is mathematically well-
defined at any point of space–time (at least according to physicists’ standards) and
does not contain any physical principle or constraint implying that the range beyondΛ

is physically forbidden. To take again the simplest case of physical object, the theory
thus appears to allow for the existence of concrete entities at arbitrarily short distances.
Yet, as already emphasized, the theory also makes inconsistent predictions beyond Λ.
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Taken together, these two features strongly suggest that the theory is deficient in some
way or another rather than that the world contains some physical limit at the scale Λ.
And the best realist explanation, in this case, is that the theory does not include the
appropriate theoretical constituents which would give rise to consistent predictions
at short-distance scales and therefore that the theory either misrepresents or fails to
represent putative entities at these scales instead of specifying, say, the fundamental
graininess of space–time.15

3. The approximate truth claim: Effective theories offer approximately accurate rep-
resentations in their domain of empirical validity (cf., e.g., Castellani 2002, p. 260;
J. Fraser 2018, p. 1173; Williams 2019b, Sect. 3).

The approximate truth claim states that an effective theory provides some accurate
representations of unobservable physical objects specifiable within the limited range
where the theory is likely to remain empirically accurate—or, at least, that we can
construct such representations by modifying the original structure of the theory.16

Again, the argument is relatively standard for the realist: (i) the best explanation for the
predictive success of the theory within some regime is that the theory is approximately
true; (ii) the probable predictive failure of the theory beyond its limiting scale gives
good reasons to take only the descriptions below this scale to be approximately true. In
Example 2, for instance, we should expect the descriptions of the dynamical properties
of the field to be approximately true if they are restricted to scales lower than Λ. We
can also impose limits at large distances by introducing a low-energy cut-off. And
one way to construct a model satisfying this restricted set of descriptions is to replace
the standard Minkowski space–time with a space-time lattice of finite extent (a sharp
low-energy cut-off) and non-zero spacing (a sharp high-energy cut-off) and represent
the quantum field in terms of a lattice field defined by assigning a variable φ(x)
to each point of the space–time lattice. As we will see in Sect. 5, the approximate
truth claim does not mean that, in its standard formulation, an effective theory always
accurately represents the putative objects specified by a literal interpretation of its
core descriptions. And in Sect. 6, we will see that the approximate truth claim sits in
tension with other realist requirements in the context of QFT.

4. The stability claim: The representations of an effective theory specified within its
domain of empirical validity are likely to remain approximately accurate under
theory-change (cf., e.g., Cao and Schweber 1993, Sects. 4.1, 4.3; Wallace 2006,
Sects. 3.2, 3.3; J. Fraser 2018, Sects. 3, 4; Williams 2019b, Sect. 3).

Here the challenge is that a future higher-level or same-level theory might undermine
the putative representational achievements of our best effective theories. As we will

15 Note that the scale at which the predictions of an effective theory break down does not need to be exactly
the same as the scale at which the new physics kicks in. For a discussion about the intricate link between
violations of perturbative unitarity and the onset of new physics in the context of QFT, see, e.g., Aydemir
et al. (2012) and Calmet and Casadio (2014).
16 I will set aside issues related to the nature of scientific representation and use interchangeably “approx-
imately accurate representation” and “approximately true description”, assuming that a description is
approximately true relative to the actual world if it is satisfied by some model that provides an approx-
imately accurate representation of some actual target system.
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briefly see inSect. 6,Williams (2019b) and J. Fraser (2018, 2020) rely on themachinery
of EFTs, including Wilsonian renormalization group (RG) methods, to defend the
stability claim in the context of QFT. If we move outside of this context, we can still
gain some support for this claim by focusing on the role of higher-order terms in
effective theories.

Consider Example 1 and suppose that the predictions of the effective Newtonian
theory with a few lowest-order terms are accurate at large distances r � r0. If we
discover a radically new and more comprehensive theory that makes slightly better
predictions than the effective theory at large distances, we can always add higher-order
terms to compensate for these empirical discrepancies. This move is, of course, largely
ad hoc. But it shows that the higher-order terms can be used to encode the contributions
of new physics at large distances according to their relevance and thus suggests that
these terms do not simply correspond to arbitrary modifications of the theory, with no
physical significance whatsoever. The ability of higher-order terms to stand for fine-
grained features of new physics is also supported by explicit derivations of effective
theories frommore comprehensive ones (see, e.g., Eq. (6) above). And, in general, the
structure of an effective theory is such that we can parametrize the contributions of
any type of new physics at large distances up to an arbitrarily high degree of precision
by adding increasingly many terms depending only on the degrees of freedom of the
original theory. In the Newtonian case, we can even include such terms by preserving
all the core principles of the original theory (e.g., Galilean invariance).

Now, the crucial point is that the contributions of the higher-order terms become
increasingly negligible at large distances r � r0, nomatter what the new physics looks
like. And insofar as these higher-order terms are assumed to stand for fine-grained
features of new physics, this shows that the descriptions of the effective theory which
are relevant at large distances are largely insensitive to the particular details of the new
physics. This new physics affects at most the value of the parameters of the lowest-
order terms. At the scale r0, by contrast, the core principles of the effective theory do
not even allow us to give an approximately true description of the dynamical behavior
of the system and we have no choice but to look for a new theory.

Of course, this argument is far from fully ensuring that the theoretical content of
some effective theory will not be found to be radically incompatible with the the-
oretical content of some future theory, even within its domain of empirical validity
(see Ruetsche 2018; J. Fraser 2020, p. 288, for a similar worry). One might also raise
legitimate doubts about the ability of the higher-order terms to adequately encode the
entirety of the new physics relevant at large distances. Giving a full response to these
worries goes beyond the scope of this paper. If we leave them aside, the previous
argument still goes some way toward giving us confidence in the robustness of the
theoretical content of the effective theory within its domain of empirical validity.

To summarize, the Standard Effective Account takes effective theories to make
approximately true and stable claims about a limited part of the world beyond which
it is reasonable to expect to discover (or beyond which we have already discovered)
new entities or structures. Although more work needs to be done in order to give a full
defense of these features, they suggest nonetheless that effective theories provide us
with a reliable epistemic standpoint to identify unobservable entities or structures
in the regimes where our best theories are known to be successful. This extends
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Williams and J. Fraser’s recent claim beyond the context of QFT and provides a
further response to philosophers who deem EFTs unfit for interpretative purposes
(e.g., D. Fraser 2009, 2011; Kuhlmann 2010). And if we are to interpret effective
theories in realist terms, their structure provides us with one central constraint for
making more reliable ontological commitments than those commonly made across
physics: namely,we should only commit to the existenceof concrete physical objects—
entities, structures, properties, quantities, states, phenomena, dispositions, and so on—
specifiable within the domain of empirical validity of the theory. Beyond this domain,
the structure of effective theories gives us good reasons to believe that they fail to
represent, or misrepresent, physical objects.

5 A challenge for the traditional realist

I will now illustrate how effective theories force the traditional scientific realist to be
more selective about her ontological commitments than she might think she has good
reasons to be.

Suppose for the sake of the argument that our realist feels unmoved by the tradi-
tional constructive empiricist concerns about unobservables and underdetermination
(van Fraassen 1980), the pessimistic meta-induction argument (Laudan 1981), and the
more recent problem of unconceived alternatives (Stanford 2006). Yet, impressed by
the new dogma of effective theories, our realist concedes that our best current theo-
ries are best understood and formulated as effective theories and agrees to endorse the
account developed in Sects. 3 and 4. She examines the standard formulation of our best
effective theories (e.g., the Standard Model Effective Field Theory), either eliminates
or disregards their artifactual mathematical structures (e.g., gauge redundancies), and,
after interpreting the remaining core theoretical descriptions in their literal sense as
she has always done, finds out that our best effective theories represent putative infi-
nite entities and structures, including continuum quantum fields and their infinitary
symmetry structure. She also takes the remarkable empirical and explanatory success
of these theories to be a good enough reason to commit to those entities and structures.
But of course, knowing that our best effective theories might be superseded one day,
perhaps by some advanced type of effective string theory or maybe even by some
final theory, she is ready to grant that these putative entities and structures are only
approximately similar to more fundamental ones.

I will argue in what follows that, on the Standard Effective Account, our realist
is actually not warranted in taking the representations of these putative entities and
structures to be even approximately accurate and cannot, therefore, reliably commit
to their existence. Three important remarks are in order. (i) For simplicity, and in
line with the traditional form of scientific realism, I will restrict myself to concrete
entities, i.e., continuum fields in this case. I should emphasize, however, that a similar
argument could bemade for their infinitary symmetry structure andmore generally for
physical objects whose core features are specified well-beyond the limits of empirical
validity of the effective theory of interest. (ii) I will assume that standard mathematical
means of comparison (e.g., measure, cardinality, isomorphisms, etc.) provide reliable
standards of relative similarity and accuracy as it is usually assumed in the literature
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(e.g., da Costa and French 2003; Weisberg 2013, Chap. 8). So, for instance, I take two
distinct finite sets of degrees of freedom of the same type to be much more similar
to one another than either of them is to an infinite set of degrees of freedom of the
same type. (iii) I will first rely on a general notion of similarity and then use the
model-theoretic account of similarity to make the argument more concrete.17

How should we evaluate the representation of a continuum field in a given effective
theory then? Recall from the approximate truth claim that, for each effective theory,
we can at least construct one accurate representation of its target system specified
within its domain of empirical validity. In the φ4-theory case, for instance, we can
represent the target system in terms of a lattice field defined by assigning one degree
of freedom to each point of a space–time lattice of finite size and non-zero spac-
ing. Of course, in the same way as we do not need to reduce a massive body to its
point-like center of mass, we do not need to assume that the target system in the
φ4-theory literally takes the form of a “grid”. A representation is approximately accu-
rate if the putative entities specified by the representation are approximately similar
to real ones. A representation which only ignores, omits, or abstracts away irrele-
vant features of the target system does not necessarily provide false information—the
only thing we can be certain of is that it provides partial information about the target
system.

Now, suppose that for the effective theory of interest, we are also able to represent
the target system in terms of a continuum field. For instance, in Example 2, we can
decrease the lattice spacing, increase the size of the lattice, and attribute a new degree
of freedom to every newly added space–time point in the set specifying the elementary
structure of the lattice. However, according to the domain restriction claim, the more
we replace, add, or distort features of the target system in sufficiently small regions of
space–time, i.e., the more we take into account descriptions assigning properties to the
target system beyond the limits of empirical validity of the effective theory, the more
the theory provides false information about the target system. In the limit, the lattice
field is replaced by a continuum field with an infinite number of degrees of freedom,
one at every point of space–time, and the resulting representation provides us with an
infinite amount of false information about the target system in arbitrarily small regions
of space–time compared to the original lattice representation. The Standard Effective
Account thus does not only suggest that the representation of the putative continuum
field is strictly inaccurate—and hence best understood as an infinite idealization. It
also gives us principled reasons to believe that this representation is not even close to
being approximately accurate.

17 I doubt that the argument actually depends on one’s favored account of similarity if we assess whether
the representation of a continuum field itself (and not some finite representation thereof) is similar to the
representation of a lattice field of finite extent. In the contrast-account, for instance, we need to evaluate the
amount of properties shared by two representations and subtract the properties that differ between them,
with specific weights assigned depending on whether the property is deemed more or less relevant (see,
e.g., Weisberg 2013, Chap. 8, for a recent defense of this account). If we want to compare different fields
themselves (and not simply their configurations), the number and type of their degrees of freedom appear
to be essential, which means that, according to the contrast-account, two lattice fields of the same type
with different spacing are much more similar to one another than either of them is to the corresponding
continuum field (cf. below). I would like to thank an anonymous referee for pressing me on this point.
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We can make the argument more concrete by relying on a specific notion of sim-
ilarity. According to the model-theoretic (or structuralist) account, for instance, two
representations, or mathematical structures in this case, are similar to one another
if they are isomorphic to one another, i.e., roughly speaking, if the two mathemat-
ical structures have the same number of elements and the same structural relations
between their elements. Obviously, a mathematical structure with an infinite number
of elements—an infinite representation in short—is not isomorphic to a finite one; but
few philosophers actually think that the traditional notion of isomorphism provides
an adequate standard of accuracy and the problem is to define an adequate notion
of “approximate isomorphism”. da Costa and French (2003) suggest the notion of
“partial isomorphism” (or “partial homomorphism”): briefly put, two mathematical
structures M1 and M2 are partially isomorphic to one another if there is some map-
ping from the elements of M1 to the elements of M2 which preserves the substructures
(and absence thereof) holding between the elements in M1 and which does not say
anything specific if we do not know whether some substructure holds or not between
the elements in M1 (see, e.g., da Costa and French 2003; Bueno and French 2011, for
more details).

Clearly, it is essential that the two representations have important chunks of sub-
structures in common for them to be approximately similar to one another. In this case,
two finite representations are always much more partially isomorphic (or homomor-
phic) to one another than either of them is to the corresponding infinite representation.
It is non-trivial to give a precise account of degrees of partial isomorphism (or homo-
morphism) and Iwill restrictmyself to giving an intuitive picture. In Fig. 1, for instance,
the two lattice fields at the top have, respectively, 64 and 49 elements and share a large
part of their spatial structure. We could also specify the substructures which are not
preserved (e.g., the substructure associated with the local rotational symmetry trans-
formations of the elements that leave the lattice invariant) and the substructures for
which we do not know whether they are preserved (e.g., the substructure associated
with some relations not apparent in the pictures). In contrast, the continuum field
depicted in the top right-hand corner has infinitely many more elements than the two
lattice fields and infinitely many spatial relations not reflected in the spatial structure
of the two lattice fields. Agreed, the patterns of the continuum field might represent
well some patterns of the lattice fields (see Fig. 1, bottom). But this does not affect the
conclusion that the two lattice fields themselves are much more similar to one another
than either of them is to the continuum field.

Let me conclude this section with two comments before extending the discussion
to Williams’s and J. Fraser’s defense of selective realism in QFT. First, the argument
above applies to the standard formulation of our best effective theories, and therefore
offers a concrete challenge to the traditional scientific realist insofar as he is willing to
make ontological commitments by interpreting the central parts of our most successful
theories in their literal sense. Second, the argument crucially relies on the structure of
effective theories. If we have external reasons to believe that our best theories at a given
time are likely to be empirically inaccurate at some scale, we might still believe that
these theories give approximately true descriptions of more fundamental entities and
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Fig. 1 Schematic representations of a lattice field and a continuum field, with Λ a sharp cut-off. The two
figures in the top left-hand corner represent, respectively, a finite set of points separated by a characteristic
distance 1/Λ and a finite set of blocks of characteristic size 1/Λ. The figure in the top right-hand corner
represents a continuum of points. The bottom figures represent, respectively, a lattice field configuration
and its continuum counterpart

structures. For instance, we might believe that a low-energy continuum field theory
provides an approximately accurate representation of the continuum field described
by amore fundamental high-energy theory. The structure of effective theories prevents
us from holding such beliefs, no matter what the new high-energy physics looks like.

6 Effective field theories and selective realism

We have seen that effective theories force us to adopt a differentiated attitude towards
the entities and structures that we can reliably admit in the realist inventory. In partic-
ular, we cannot admit entities if their core properties are specified in regimes where
the predictions of the effective theory of interest are likely to break down. Yet, these
restrictions leave, in principle, ample space for making reliable and distinctively real-
ist ontological commitments. In the Newtonian case, for instance, we can commit to
the existence of sufficiently large massive bodies of center of mass xi (t) orbiting at
sufficiently large distances from each another and moving at sufficiently low veloci-
ties, including black holes which, I take it, qualify as unobservables according to van
Fraassen’s original distinction (e.g., van Fraassen 1980, pp. 13–19). I will now argue
that, in some specific theoretical contexts including classical and quantum field the-
ory, the restrictions imposed by the structure of effective theories still raise a challenge
for more refined forms of scientific realism. To bring the point home, I will focus on
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Williams’s (2019b) and J. Fraser’s (2018, 2020) defense of selective realism in the
context of QFT.18

The strategy of the selective realist is to defend the realist cause by conceding
that our best theories do not get everything right and isolating their parts which both
play an essential role in their explanatory and empirical success and are likely to
be preserved under theory-change (see, e.g., Psillos 1999; Chakravartty 2007). Upon
entering the realm of QFTs, the selective realist counts herself doubly fortunate, at
least at first sight. First, she can use EFT methods to formulate and interpret our best
current theories in a more epistemically reliable way. She has, in particular, efficient
tools for evaluating the contributions of a theory in different regimes and eliminating,
or “integrating out”, its theoretical constituents which are irrelevant in the regimes she
is interested in. Second, she can also use the resources of renormalization theory and,
in particular, theWilsonian RG in order to analyze the scale-dependent structure of our
best EFTs and increase her confidence in the robustness of their low-energy theoretical
descriptions. It is beyond the scope of this paper to give a detailed account ofWilsonian
RG methods (for a recent review, see Williams 2019a). Here, I will restrict myself to
discussing the interpretative constraints that Williams and J. Fraser extract from EFT
and RG methods and evaluating the success of their selective strategy.19

How, then, should we separate the theoretical descriptions of our best current EFTs
if we want to implement the selective realist strategy? Since the structure of an EFT
gives us good reasons to believe that its predictions break down at some high-energy
scale, we should first restrict our attention to the parts of the theory which describe its
low-energy content:

1. Isolate theoretical descriptions which are specified within the limited range of
scales where the theory is likely to remain reliable (see, e.g., Williams 2019b, p.
13).

As already discussed in Sect. 4, constraint 1 purely follows from the structure of
effective theories.

Some of these low-energy descriptionsmight still depend significantly on irrelevant
parts of the theory or involve representational artifacts (e.g., the specific type of cut-off
in Eq. (4)).We need, therefore, to introduce further constraints if we want to isolate the
parts of the theorywhich play an essential role in its explanatory and predictive success
and which accomplish genuine representational work. Williams and J. Fraser remain
somewhat ambiguous here. They highlight various ways in which EFT andWilsonian
RGmethods allow us to gain confidence in the “robustness” of the low-energy content
of EFTs. Yet, they also appear to put emphasis on two different robustness criteria.
Williams seems to be more concerned with the relative insensitivity of the low-energy
physics to the high-energy physics:

[...] it is one of the essential virtues of the RG that it provides a tool for determin-
ing how changes in the structure of the theory at the scale of the short-distance

18 I will leave asideWallace’s account insofar as he is primarily concerned with defending the foundational
and interpretative relevance of cut-off Lagrangian QFTs in Wallace (2006, 2011) and not scientific realism
strictly speaking (or, more precisely, structural realism).
19 See also Ruetsche (2018, 2020), Rosaler and Harlander (2019, Sect. 5.6), and Rivat and Grinbaum
(2020).
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breakdown affect physics at longer distances where the theory is empirically
reliable. What the RG shows is that the ‘fundamental’ short-distance structure
with which standard interpreters are so concerned is largely irrelevant to the
physical content of an EFT in the domain where we have any reason to consider
it empirically reliable (Williams 2019b, p. 16)

J. Fraser, by contrast, puts emphasis on a more general type of invariance, which
includes the mathematical invariance of the low-energy descriptions of the theory
under different parametrizations and other representational artifacts introduced when
renormalizing the theory (e.g., J. Fraser 2020, pp. 286–7; 2018, p. 1172; see also
Ruetsche 2018, pp. 11–2; 2020, pp. 305–6; Rosaler and Harlander 2019, Sect. 5.6).

Despite important overlaps, as we will see below, I think that it is crucial to dis-
tinguish between two main interpretative constraints to account for Williams’s and J.
Fraser’s slightly different outlooks and for the variety of ways in which the low-energy
content of an EFT amenable to RG methods is robust:

2. Isolate theoretical descriptions which are largely independent of high-energy
physics.

3. Isolate theoretical descriptions which are invariant under RG-transformations and
independent of specific choices of renormalization methods.

Constraint 2 is mainly derived from the structure of effective theories, although RG
methods often allow us to refine the analysis. As we saw above, part of what makes
an effective theory distinctive is that its descriptions which are significant within a
specific regime are largely independent of its descriptions which are significant within
a different regime (e.g., lower- vs. higher-order interaction terms in Examples 1 and 2;
light vs. heavy field dynamics in Eq. (6)). In particular, it is usually possible to modify
the high-energy content of an EFT without affecting much its low-energy content,
including its low-energy predictions (e.g., by adding higher-order interaction terms
in Examples 1 and 2). We can also usually show that different high-energy theories
reduce to the same low-energy theory, or at least to similar ones (e.g., we can add a third
heavy scalar field in Eq. (6) and obtain a similar low-energy theory after integrating
out the two heavy fields and making appropriate approximations). In all these cases,
the crucial point is that the low-energy content of the theory is robust under variations
of its high-energy content. And, in general, the bulk of the low-energy content of the
effective theory depends only on a finite number of free parameters (see Examples 1,
2).

Constraint 3, by contrast, arises specifically from a RG analysis. In general, a
theory can be renormalized in many different ways, and the specific renormalization
method chosen usually requires us to introduce some arbitrary scale parameter (e.g.,
the parameter Λ in Example 2) and use some particular scheme to absorb the terms
depending on this parameter (e.g., a mass-dependent renormalization scheme). Thus,
constraint 3 requires us to isolate theoretical descriptions which are invariant under
different renormalization methods and choices of scales (cf., Williams 2019b, p. 12;
J. Fraser 2018, p. 1172; 2020, pp. 286–7).

We can, in fact, look at this constraint in two distinct ways. (i) If we consider some
fixed high-energy theory, we can derive a series of low-energy theories by successively
integrating out high-energy field configurations in their path integral formulation. In
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this case, constraint 3 is best understood as requiring us to isolate invariant theoretical
descriptions in the series of low-energy theories. (ii) If we consider some low-energy
theory with parameters fixed by means of experimental inputs, we can show that this
theory and its parameters remain unaffected by changes in the high-energy theory from
which it is originally derived, i.e., the so-called “bare” theory (cf. Wallace 2006, p. 49;
2011, p. 6; Williams 2019b, p. 12; J. Fraser 2018, p. 1172; 2020, pp. 286–7). In this
case, constraint 3 is best understood as requiring us to isolate theoretical descriptions
which are not affected by changes in the value of the high-energy cut-off and in the
parametrization of the high-energy theory.

Now, in addition to adopting constraints 1–3, the selective realist also needs to
make sure that she is offering a genuine defense of the realist cause. First, in order to
give a sufficiently informative and non-ambiguous explanation of the success of the
theory, she needs to isolate a definite set of unobservable entities or structures with
clear identity conditions—say, in the case of entities, with a well-specified set of core
properties that distinguish them from other entities, whether they are fundamental or
not. For instance, in the Newtonian case, we might identify a system by means of
its position, its velocity, its mass, and its dynamical behavior. If we simply give a
functional characterization of the system by means of its mass, for instance, we are
likely to pick out very different types of entities and leave the target of our commitments
indeterminate. Likewise, in the QFT case, we might identify a system by means of the
type and number of its degrees of freedom, its mass, its self-interacting parameters,
and its dynamical behavior. If we simply specify the system bymeans of its dynamical
behavior and its mass, for instance, there is still some ambiguity as to whether we pick
out a lattice or a continuum field. Contrary to what Williams (2019b, p. 15) suggests,
to simply “extract reliable ontological information” does not suffice (see also J. Fraser
2020, pp. 286–7). The selective realist needs to give a sufficiently comprehensive
account of a definite set of entities or structures in order to fulfill her explanatory
duties.

Second, the selective realist needs to give a literal interpretation of some privi-
leged parts of the theory, as it is often assumed in the literature (e.g., Psillos 1999;
Chakravartty 2007). In the Newtonian case, for instance, the selective realist can take
the theory to literally describe a black hole with a center of mass specified by the posi-
tion x(t) and which interacts gravitationally with other bodies. The gravitational force
can be interpreted as a concrete structure, i.e., as a variable relation with a specific
strength depending on the relative position and the masses of the bodies. Although
Williams and J. Fraser do not givemuch detail about their preferred version of selective
realism, they both seem to endorse this semantic constraint, i.e., that the privileged
set of descriptions that we take be trustworthy should be understood in their standard
sense and taken to be approximately true or false simpliciter.20 In the same vein, the
selective realist should avoid modifying too much the original mathematical struc-
ture of the theory or engaging into any other form of post hoc interpretative practice.

20 At the very least, this seems to be implicit in the central question underlying Williams’s and J. Fraser’s
interpretative stance—“given that this theory provides an approximately true description of our world, what
is our world approximately like?” (Williams 2019b, p. 2). Reference to particular physical scales seems to
be included in the properties of the target system (see, e.g., J. Fraser’s reference to the “bulk properties” of
a fluid when he illustrates the idea of large distance features of the world in 2018, p. 1173).
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Otherwise, she will fail to take the original theory at face value and explain its explana-
tory and predictive success in its own terms. This is well illustrated, for instance, by
attempts to draw conclusions about the ontological content of our best current QFTs
based on their putative algebraic reformulation, despite the fact that they have not yet
been successfully formulated in algebraic terms.21

The difficulty now is that it is not clear what the selective realist should com-
mit to if she endorses these constraints in the case of our best current EFTs, as it
has been acknowledged by J. Fraser (2018, p. 1172; 2020, p. 289). I will expand
on Ruetsche’s recent discussion in (2018, 2020) by looking at the most obvious
candidates—correlations, particles, and lattices—and argue that they do not allow
us to meet constraints 1–3 or make distinctively realist ontological commitments.

Correlations J. Fraser proposes to focus on low-energy correlation functions:

[...] a preliminary strategy is to point to correlation functions over distances
much longer than the cutoff scale as appropriate targets for realist commitment.
These quantities are preserved by the renormalization group coarse-graining
transformation and encode the long distance structure of a QFT model. They are
also directly connected to its successful predictions—you cannot vary the long
distance correlation functions of a theory without drastically affecting its low
energy scattering cross sections (2018, p. 1172)

We face several issues here. First, it is not clear how we should interpret correlation
functions. In the standard QFT framework, they correspond to vacuum expectation
values of time-ordered products of field operators at different space–time points. The
simplest textbook interpretation in the simple case of two field operators φ̂(x) and φ̂(y)
is to take the expectation value 〈0|T {φ̂(x)φ̂(y)}|0〉 to measure the probability (once
squared) that a particle is created at some earlier point x , propagates, and is annihilated
at some later point y (assuming x0 < y0). This interpretation is controversial, in large
part because of the difficulties associated with the interpretation of quantum fields and
particles in interacting QFTs. The crucial point here is that however we interpret these
entities (I discuss the two cases below), we need to commit to something more than
correlations if we follow this standard textbook interpretation. Likewise, if we interpret
correlation functions more generally as standing for the degrees of co-variation or
coordination between two variables at two distinct points, we need to commit to
something more than degrees of co-variation (I discuss the case of physical degrees
of freedom below).

Wemight opt for amoreminimal interpretation of correlation functions as encoding
structural physical information independently of the physical objects or variables they
relate. In the case of EFTs, we can interpret correlation functions as encoding the
correlations of the target system at sufficiently large distances, where ‘correlation’
refers to a set of numbers characterizing the degree of correlation between two space–
time points or regions. If we take this route, however, the empiricist might raise doubts
about the distinctively realist character of these commitments and, instead of rejecting
themaltogether as she usually does, simply re-appropriate themas her own asRuetsche

21 See, e.g., D. Fraser (2008) for such an attempt and Williams (2019b) for a criticism, emphasizing the
importance of paying attention to how QFTs are successfully implemented in practice.
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(2020, pp. 306–7) rightly notes. It turns out that the framework of QFT even gives
her good reasons to do so. Typically, in high energy physics, we summarize empirical
information about the correlations between the initial andfinal states of some scattering
process in a mathematical object called the S-matrix, and the S-matrix can be derived
by taking the appropriate asymptotic limit of a sum over all the possible correlations
between initial and final states by means of the LSZ reduction formula (see, e.g.,
Schwartz 2013, Sect. 6.1). If we take the effects of a field disturbance to be in principle
detectable in any sufficiently large region of space–time, nothing seems to prevent the
empiricist fromunderstanding the numbers specifiedby correlation functions as simply
summarizing the empirical information that would be gathered about the correlations
between two states of the system if we were to make measurements in this space–time
region.

Even if the structural realist finds a way of avoiding this empiricist re-appropriation,
she still faces one important issue. Strictly speaking, correlation functions in QFT are
not RG-invariant in the general case contrary to what J. Fraser claims. If we implement
a coarse-graining procedure by integrating out high-energy field configurations, for
instance, the different correlation functions obtained at low energies are multiplied by
“wave function normalization” factors. In general, these multiplicative factors depend
on other variables, such as the couplings of the theory. And so it does not appear
that there is an invariant and therefore unambiguous characterization of the degree of
correlation between two distinct space–time points since it depends on the way we
parametrize the low-energy theory. By contrast, S-matrix elements are invariant under
these different parametrizations. Similarly, the path integral used to generate the set
of correlation functions is also invariant under different coarse-graining procedures.
Yet, it seems to be even more difficult to interpret the S-matrix and the path integral in
distinctively realist terms compared to correlation functions. And, again, the empiricist
might simply re-interpret the S-matrix and the path integral as bookkeeping devices
for all the possible empirical information that we could gather about the correlations
between initial and final states of the system in sufficiently large space–time regions.

ParticlesAnother option, perhaps more likely to enable us to make distinctively realist
ontological commitments, is to focus on particles, such as protons, neutrons, gluons,
and photons (see, e.g., Williams 2019b, pp. 20, 22). The concept of particle in inter-
acting QFTs which involve an infinite number of degrees of freedom is controversial
(see, e.g., Teller 1995; Bain 2000; D. Fraser 2008; Ruetsche 2011). In the modern
understanding of QFT, it is common to understand particles in terms of patterns of
excitations in the fields (as it is rightly noted by Wallace 2006, 2019, Sect. 4, for
instance). This understanding is robust whether we deal with the perturbative or exact,
non-interacting or interacting formulation of a QFTwith an infinite or finite number of
degrees of freedom (ignoring the mathematical issues inherent in realistic continuum
QFTs). And, to be more precise, we can interpret particles in terms of sufficiently
well-behaved and localized patterns in the field configurations in regimes where the
interactions described by the theory are sufficiently weak.

Again, themain issue here is that neither field configurations nor energy-momentum
states are RG-invariant. In general, RG-transformations mix both field operators and
the states of different kinds of particles with one another. The only notion of “particle”
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that does not suffer from these issues is the one specified by the asymptotic states in
the non-interacting version of the theory. But insofar as we seek a realist interpretation
of interacting QFTs, we cannot simply restrict our commitments to the free particles
that we prepare and detect in experiments. And even if we were to take this extreme
route and leave aside potential empiricist re-appropriations, we would still not be able
to commit to the existence of particles such as quarks and gluons insofar as the quark
and gluon fields do not have asymptotic elementary particle states.

Lattice fields A third option is to focus on low-energy degrees of freedom (e.g., as
represented by the field operators associated with the variables φ̃(k) for k � Λ in
Example 2). Agreed, many of the properties associated with these degrees of freedom
do vary under RG-transformations, including coupling parameters and the specific
form of the variables used to specify these degrees of freedom (which depends, in
particular, on howwe separate low- and high-energy degrees of freedom). Yet, whether
we integrate out a large or a small range of high-energy field configurations, the
number of degrees of freedom at sufficiently low energies remains exactly invariant.
We could, therefore, consider them to be an appropriate target for the selective realist,
as Williams sometimes seems to suggest (2019b, pp. 13; 14–5). The main issue here
is that this might not be enough for the realist. We can interpret a degree of freedom as
a determinable dynamical property of some system. However, without a specification
of the low-energy system, any appeal to low-energy degrees of freedom will remain
too indeterminate for the realist and therefore undermine her attempt to provide a
sufficiently informative and unambiguous explanation of the success of the theory.
After all, these degrees of freedom could perfectly stand for the properties of radically
different low-energy systems. They could be, for instance, the degrees of freedom of
low-energy lattice fields with different types of spatial structures.

In order to avoid the issue of underdetermination at low energies, we can perhaps
isolate a privileged set of low-energy lattice fields for our best current EFTs. If we
put a given EFT on a lattice of finite size and spacing, we can indeed integrate out
high-energy degrees of freedom, obtain low-energy lattices, and eventually derive
empirically equivalent low-energypredictionswhichdonot significantly dependon the
details of the short-distance physics and on the way we eliminate high-energy degrees
of freedom (cf. Wallace 2006, pp. 48–50). In addition, these low-energy lattices are
well-specified within the limited range of energy scales where the EFT of interest is
likely to remain reliable, and they do appear to enable us to make distinctively realist
ontological commitments.

Yet, we still face a severe issue of underdetermination both at low and high energies.
If we formulate an EFT on a lattice and interpret its low-energy descriptions in their
literal sense, the RG coarse-graining transformations appear to force us to commit
to the existence of different lattice fields at different low-energy scales. We might
solve this issue by claiming that these lattice fields are more or less coarse-grained
partial instantiations of the same high-energy lattice field. If we fix any of the low-
energy lattice representations, however, RG methods allow us to change the high-
energy lattice representation without affecting the low-energy lattice one. And this
introduces some pernicious form of underdetermination about what the low-energy
lattice representations are supposed to stand for.
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There are two additional points that make the matter even worse. First, if we start
with a given latticefield,we can implement a specific type of coarse-grainingprocedure
that defines a lattice field with a different number of degrees of freedom but with
the same lattice spacing. We simply need to rescale the original lattice spacing and
adjust the parameters of the theory after having integrated out high-energy degrees of
freedom.And the two lattice field representations are, of course, empirically equivalent
(see, e.g., Hollowood 2013, Sect. 1.2, for a simple explanation of this specific way
of implementing RG-transformations). Second, the specific form of the low-energy
lattices depends on the type of coarse-graining procedure we implement in the first
place. We might separate low- and high-energy degrees of freedom in very different
ways, or define new low-energy degrees of freedom by averaging over high-energy
ones in a particular way. In each case, the procedure yields a different set of low-energy
lattices. And overall, then, it appears that low-energy lattices do not allow us to satisfy
constraint 3.

Now, if we are to make distinctively realist ontological commitments about enti-
ties or structures in the case of our best current EFTs and maintain Williams’s and
J. Fraser’s robustness constraints, continuum quantum fields appear to be ideal can-
didates. Assuming that we do not latticize the theory, we may either take a smooth
cut-off or a sharp cut-off (in which case we eliminate high-energy states of the field),
and keep higher-order interaction terms or eliminate them (depending on the desired
accuracy). Either way, the theory describes a RG-invariant continuous system with
an infinite number of degrees of freedom, at least for a finite range of scales. If we
keep all the degrees of freedom in the theory, we do not face the issues encountered
with lattices. And if we do not focus on the specific values of the properties of the
continuum field, such as the value of its mass, the strength of its interactions, or the
value of its field configurations on space–time, we also avoid the issues encountered
with correlation functions and particles.

The main issue here comes from the domain restriction claim.22 On the face of
it, we are committing to entities with core properties specified in regimes where the
predictions of the EFT of interest are likely to break down, and this should be a
good enough reason not to make such commitments (as Williams and J. Fraser would
probably agree). In response, wemight insist that we are committing to the existence of
continuum quantum fields insofar as they are approximately similar to large distance
scale features of the world. If we wish to endorse the literalness constraint, however,
we cannot make such a claim. As we saw in Sect. 5, if we take the descriptions of
a continuum quantum field itself at face value, i.e., as being either (approximately)
true or false, we are forced to attribute degrees of freedom to some putative entity in
arbitrarily small regions of space–time, and the structure of effective theories gives us
reasonable grounds not to commit to the existence of such entities.

We might also try to escape the difficulty by taking the representation of the puta-
tive continuum field to contain a finite part that does the appropriate representational
work at large distances, say, a finite representation of a lattice field. The issue here is
that any specification of such finite representation involves a particular specification

22 Another set of issues that I will not discuss here is related to the existence of empirically equivalent field
representations (for a discussion about Borchers classes, for instance, see Haag 1996, Sect. II.5.5; Wallace
2006, Sects. 2.2, 3.3).
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of an arbitrary lattice spacing, or at least of a finite number of degrees of freedom, and
therefore brings us back to the issues discussed above. The best RG-invariant repre-
sentations of putative entities in our best current EFTs appear to be the representations
of continuous systems with an infinite number of degrees of freedom. And we cannot
simply embed these representations in finite ones without losing their representational
value altogether.

7 Conclusion

I will briefly conclude with a more radical suggestion to defend the realist cause in
the case of our best current EFTs. To summarize the main points of the paper first, we
have seen that the structure of effective theories across physics is best characterized
by the fact that they contain intrinsic empirical limitations. In a slogan: effective
theories “predict” their own predictive failure at some scale. We have also seen that
themost straightforward realist explanation of this predictive pattern is to take effective
theories to accurately represent limited parts of the world, which provides one central
constraint for the sort of entities and structures that a realist might reliably include in
his inventory if he takes effective theories seriously. I gave one concrete example of
the sort of entities that the traditional scientific realist cannot commit to if he interprets
the core descriptions of effective theories in literal terms: namely, he cannot commit to
the existence of continuum fields since their individuating properties are specified in
regimes where the predictions of the theory are likely to break down. Yet, the domain
of empirical validity of an effective theory leaves, at least in principle, enough space
for the realist to commit to the existence of unobservable entities or structures (as
we have seen in the Newtonian case). As I have argued in the last section, this is not
always straightforward. In particular, the structure of our best current EFTs is such
that it is not clear what we should commit to if we want to make distinctively realist
ontological commitments and avoid making these commitments depend on irrelevant
or artifactual features.

I suspect that many of us still entertain the hope of a robust form of scientific real-
ism that does not totally fail to adhere to its original letter and which is concerned
with explaining the success of our best theories in their own terms. In the case of our
best current EFTs, a potential candidate for making distinctively realist ontological
commitments appears to be continuum quantum fields. And if we want to commit to
the existence of such entities at low energies, one potential solution is to modify the
traditional semantic tenet of scientific realism (but keep its ontological and episte-
mological tenets as summarized in, e.g., Psillos 1999, p. xvii). Instead of taking the
descriptions of a continuum field at face value, that is, as being either (approximately)
true or false, we need to take them to be (approximately) true or false relative to a
specific range of physical scales. That is, when we speak about a continuum field with
properties assigned at every point of space–time, we are not literally making the claim
that the field has properties at arbitrarily short distances simpliciter. We are making
a claim about the structure of matter at large distances. And the descriptions of an
effective theory are approximately true or false relative to these scales up until we
discover that the theory breaks down at some limiting scale, in which case we need to
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work with a new theory. If the new theory is effective, we will be again making claims
relative to a specific range of physical scales. This strategy requires us to modify one
of the central tenets of scientific realism usually endorsed by selective realists. But it
might enable us to explain the success of our best theories in their own terms.
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