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I. LINEARISATION AND EXTENSION TO WIRE GEOMETRY

We consider a slab of non-magnetic elastic body with thickness Lz and width Lx, on which a slab of ferromagnetic with
thickness d � Lz and width w is attached. Both are assumed infinitely extended in the y direction and dynamics uniform in y
is considered. Our model is based on the phenomenological total free energy E = W + F + I where W, F are the magnetic and
elastic energies respectively and I is the interaction energy betweenM and u. We take

W =

∫
dr

{
−µ0M · (H + h) −

A
2
n · ∇2n +

µ0M2
s

8π

∫
dr′ (n · ∇)

(
n′ · ∇′

) 1
|r − r′|

}
, (S.1)

F = ρ

∫
dr

c2
P − 2c2

S

2

(
εxx + εyy + εzz

)2
+ c2

S

(
ε2

xx + ε2
yy + ε2

zz + 2ε2
xy + 2ε2

yz + 2ε2
zx

) , (S.2)

I =

∫
dr

[
b1

(
εxxn2

x + εyyn2
y + εzzn2

z

)
+ 2b2

(
εxynxny + εyznynz + εzxnznx

)
+µ0M2

s

{
(1 − N⊥) nx

(
nzωzx + nyωyx

)
+ N⊥nz

(
nxωxz + nyωyz

)} ]
, (S.3)

where N⊥ = w/(w + d) is the demagnetising factor of the magnetic slab. In the main text, we focused on the case of an infinite
film Lx = w→ ∞. Here we also include another limiting case of narrow wire w � Lx as the two cases can readily be discussed
in parallel (see Fig. S1).

We begin by writing down the linearised version of Eqs. (1) and (2) in the main text, which are derived from the free energy
functional above by a variational principle:(

−H‖ + iαω/µ0|γ| iω/µ0 |γ|
−iω/µ0 |γ| −H⊥ + iαω/µ0|γ|

) (
n‖
n⊥

)
= −

γ

|γ|
(h + heff) , (S.4)

ρ

(ω2 + c2
S∇

2
)
u +

(
c2

P − c2
S

) ∂x
0
∂z

 (∂xux + ∂zuz)

 = −f − feff , (S.5)
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FIG. S1. Schematics of the film geometry (left) and wire geometry (right) considered in the supplementary materials.

where the normalised spin vector n has been expanded as

n ≈

cos θ
sin θ

0


1 − n2

‖
+ n2

⊥

2

 + n‖

− sin θ
cos θ

0

 + n⊥

00
1

 , (S.6)

and the Fourier transform in time has been applied. The internal fields H‖,⊥ take different forms for the film and wire:

H‖ =

H − A
µ0 Ms

∂2
x + Ms (1 − Nk) sin2 θ film

H |cos (θ − φ)| + Ms (1 − N⊥) sin2 θ wire
, H⊥ =

H − A
µ0 Ms

∂2
x + MsNk film

H |cos (θ − φ)| + MsN⊥ wire
. (S.7)

Note N⊥ = 1 for film by definition, and for wire in general φ , θ due to the in-plane shape anisotropy. The linearised effective
forces are given by

heff = −
γ/|γ|

µ0Ms

−2b1εxx cos φ sin φ +
{
2b2εxy − (1 − N⊥)ωxy

} (
cos2 φ − sin2 φ

)
2b2

(
εzx cos φ + εzy sin φ

)
− N⊥ωzy sin φ − (2N⊥ − 1)ωzx cos φ

 , (S.8)

feff = ∂̂x


−2b1n‖ cos φ sin φ{

b2 + µ0M2
s (1 − N⊥) /2

}
n‖

(
cos2 φ − sin2 φ

){
b2 − µ0M2

s (2N⊥ − 1) /2
}

n⊥ cos φ

 + ∂̂z


{
b2 + µ0M2

s (2N⊥ − 1) /2
}

cos φ(
b2 + µ0M2

s N⊥/2
)

sin φ
0

 n⊥, (S.9)

where ∂̂x = ∂x − δ (x − w/2) + δ (x + w/2). The delta functions in feff = −δI/δu arise from the boundary terms when taking the
variation of I with respect to u. Therefore, omitting them would lead to non-conservation of energy at the boundaries. Although
they could have been regarded as additional boundary conditions, that would have resulted in discussing modifications to the
spatial profile of SAWs. As this task appears to be complicated if not intractable, and distracts attentions from the essential
physics, we opt for an approximation scheme established in Ref. 6 of the main text.

II. MODE EXPANSION

We expand the full solutions of Eqs. (S.4) and (S.5) in terms of the individual solutions for Eq. (S.4) with heff = 0 and
Eq. (S.5) with feff . In doing so for n‖,⊥, we assume the film is sufficiently thin, i.e. (d/2π)2 < A/µ0M2

s , so that the spin wave
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modes are quantised along the thickness direction and all but the lowest frequency band may be disregarded. For YIG, the
condition translates to roughly d < 100 nm. For films, the in-plane wavenumber k is a conserved quantity, which makes it
possible to focus on one spin wave mode only in the expansion. For wires, if w � 100 nm, many spin wave modes with different
k have to be retained in the expansion. To avoid this complication, we also assume w < 100 nm so that the expansion contains
only the Kittel mode.

The expansion ofu is common to the film and wire geometries. We impose the free-surface boundary conditions
(
c2

P − 2c2
S

)
εxx+

c2
S εzz = 0, εxz = εyz = 0 at z = d/2, while the limit Lz → ∞ is understood in order to ignore the boundary conditions on that

surface. Lx is also assumed large so that Fourier transform in x is meaningful. There are four types of modes: a longitudinal
mode (primary wave) vP,k,kz with velocity cP, two transverse modes (secondary wave) vS ,k,kz ,vT,k,kz with velocity cS , and one
surface (Rayleigh) mode vR,k with velocity cR. Note that the bulk modes (P,S,T) have the additional label kz > 0 and the surface
sound velocity cR is determined by solving(

cR

cS

)3

− 8
(

cR

cS

)2

+ 8

3 − 2
(

cS

cP

)2
 cR

cS
− 16

1 −
(

cS

cP

)2
 = 0. (S.10)

The general deformation u satisfying the free-surface boundary conditions can be expanded as

u =
∑

k

∑kz

(
βP,k,kzvP,k,kz + βS ,k,kzvS ,k,kz + βT,k,kzvT,k,kz

)
+ βR,kvR,k

 eikx, (S.11)

where the coefficients βP,k,kz , βS ,k,kz , βT,k,kz , βR,k are the amplitudes of respective modes to be determined, and the mode functions
read

vP,k,kz = AP
+

 1
0

kz/k

 eikz(z−d/2) + AP
−

 1
0
−kz/k

 e−ikz(z−d/2) + AS

−i(kS /k) sin kS (z − d/2)
0

cos kS (z − d/2)

 , (S.12)

vS ,k,kz =
1

NS

−(kz/k) cos kz (z − d/2)
0

i sin kz (z − d/2)

 , vR,k,kz =
1

NT

01
0

 cos kz

(
z −

d
2

)
, (S.13)

vR,k =
1

NR


(
1 − ξ2

S

) {
eκP(z−d/2) −

(
1 − ξ2

S

)
eκS (z−d/2)

}
0

−i
√

1 − ξ2
P

{(
1 − ξ2

S

)
eκP(z−d/2) − eκS (z−d/2)

}
sgn (k)

 . (S.14)

We introduced the notations

kS =

√√
c2

Pk2
z +

(
c2

P − c2
S

)
k2

c2
S

, ξ2
S =

c2
R

2c2
T

, ξ2
P =

c2
R

c2
P

, κP,S = |k|

√
1 −

c2
R

c2
P,S

, (S.15)

and the coefficients AP
±, A

S for the longitudinal mode satisfy

c2
S kkz

(
AP

+ − AP
−

)
=

{
c2

Pk2
z +

(
c2

P − 2c2
S

)
k2

}
AS , (S.16)

c2
S

{
c2

Pk2
z +

(
c2

P − 2c2
S

)
k2

} (
AP

+ + AP
−

)
= 2

[
c2

P

(
c2

P − 2c2
S

)
k2

z +

{(
c2

P − 2c2
S

)2
− 2c4

S

}
k2

}
AS . (S.17)

We further normalise the mode functions by

1
Lz

∫ d/2

−Lz−d/2
dz

∣∣∣vµ∣∣∣2 = 1, µ = (P, k, kz) , (S , k, kz) , (T, k, kz) , (R, k) . (S.18)

In the limit Lz → ∞, this amounts to

|NS |
2 =

k2 + k2
z

2k2 , |NT |
2 =

1
2
, |NR|

2 =
1
|k| Lz


(
1 − ξ2

S

)2 (
2 − ξ2

P

)
2
√

1 − ξ2
P

+

(
1 − ξ2

S

)4
+ 1 − ξ2

P

2
√

1 − 2ξ2
S

− 2
(
1 − ξ2

S

) (
1 − ξ2

S

)2
+ 1 − ξ2

P√
1 − ξ2

P +

√
1 − 2ξ2

S

 .
(S.19)

The behaviour |NR|
2 → 0 as Lz → ∞ is not unphysical: The spurious Lz dependence turns out to disappear in the final expressions

for observable quantities, as demonstrated shortly. The normalisation of vP,k,kz similarly fixes AP
±, A

S , and although they are too
tedious to be written down here, they converge to constants of order unity for Lz → ∞ like the other bulk modes.
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Let εµi j = {∂ j(vµ)i + ∂i(vµ) j}/2, ω
µ
i j = {∂ j(vµ)i − ∂i(vµ) j}/2 be the strain and rotation tensor components of the eigenmodes

labelled by µ = (P, k, kz), (S , k, kz), (T, k, kz), (R, k). Substituting Eq. (S.11) into Eq. (S.8) yields

heff = −
γ/|γ|

µ0Ms

∑
µ

βµ

−2b1ε
µ
xx cos φ sin φ +

{
2b2ε

µ
xy − (1 − N⊥)ωµxy

} (
cos2 φ − sin2 φ

)
2b2

(
ε
µ
zx cos φ + ε

µ
zy sin φ

)
− N⊥ω

µ
zy sin φ − (2N⊥ − 1)ωµzx cos φ

 eikx. (S.20)

Now in Eq. (S.4), we are allowed to take spatial averaging in z under the thin film approximation. For wires, we also average
over the wire width by integrating over x. For films, we instead decompose it into the Fourier components labelled by k. These
operations eliminate all the spatial dependences (Eq. (S.7) is in fact valid only after these operations), yielding

(
−H‖ iω/µ0|γ|

−iω/µ0|γ| −H⊥

) (
n‖
n⊥

)
= −

γ

|γ|
h +

1
µ0Ms

(k fixed for films)∑
µ

(
aµ
bµ

)
βµ, (S.21)

where the effective coupling constants aµ, bµ for each mode µ are defined by

aµ =
1
d

∫ d/2

−d/2
dz

[
−2b1ε

µ
xx cos φ sin φ +

{
2b2ε

µ
xy − (1 − N⊥)ωµxy

} (
cos2 φ − sin2 φ

)]
×

1 film
sinc (kw/2) wire

, (S.22)

bµ =
1
d

∫ d/2

−d/2
dz

{
2b2

(
ε
µ
zx cos φ + ε

µ
zy sin φ

)
− N⊥ω

µ
zy sin φ − (2N⊥ − 1)ωµzx cos φ

}
×

1 film
sinc (kw/2) wire

. (S.23)

Note that aR,k, bR,k are in general larger by a factor of
√
|k| Lz than a(P,S ,T ),k,kz , b(P,S ,T ),k,kz due to the normalisation constants (S.19).

This occurs due to the fact that the relative weight of the acoustic wave overlapping with the magnetic film is much greater
for the surface modes than for the bulk modes. It motivates us to neglect the couplings to the bulk modes, which is ultimately
justified by the results of the numerical simulations.

The mode decomposition of Eq. (S.5) is carried out by multiplying it by v†µe−ikx from left and integrate over the the whole
volume −Lx/2 < x < Lx/2,−Lz − d/2 < z < d/2. Using the orthonormality of the mode functions, only the term proportional to
βµ survives on the left-hand-side. On the right-hand-side, noting n‖,⊥ are nonzero only inside the region occupied by the magnet
−w/2 < x < w/2,−d/2 < z < d/2, we obtain

1
Lx

∫ Lx/2

−Lx/2
dx

1
Lz

∫ d/2

−Lz−d/2
dz v†µ · feffe−ikx

=
1
Lx

∫ w/2

−w/2
dx

e−ikx

Lz

∫ d/2

−d/2
dz v†µ ·

∂̂x


−2b1n‖ cos φ sin φ{

b2 + µ0M2
s (1 − N⊥) /2

}
n‖

(
cos2 φ − sin2 φ

){
b2 − µ0M2

s (2N⊥ − 1) /2
}

n⊥ cos φ

 + ∂̂z


{
b2 + µ0M2

s (2N⊥ − 1) /2
}

cos φ(
b2 + µ0M2

s N⊥/2
)

sin φ
0

 n⊥


= −

1
Lx

∫ w/2

−w/2
dx

1
Lz

∫ d/2

−d/2
dz

{
∂x

(
v†µe−ikx

)}
·


−2b1n‖ cos φ sin φ{

b2 + µ0M2
s (1 − N⊥) /2

}
n‖

(
cos2 φ − sin2 φ

){
b2 − µ0M2

s (2N⊥ − 1) /2
}

n⊥ cos φ


−

1
Lx

∫ w/2

−w/2
dx

1
Lz

∫ d/2

−d/2
dz

{
∂z

(
v†µe−ikx

)}
·


{
b2 + µ0M2

s (2N⊥ − 1) /2
}

cos φ(
b2 + µ0M2

s N⊥/2
)

sin φ
0

 n⊥ = −
w
Lx

d
Lz

(
aµn‖ + bµn⊥

)
. (S.24)

Note that in the second equality, were it not for the boundary delta functions in ˆ∂x,z, we would have had additional surface terms,
and consequently the result could not have been written solely in terms of aµ, bµ. Therefore, Eq. (S.5) reduces to

ρ
(
ω2 − ω2

µ + i
ω

τ

)
βµ = − fµ +

w
Lx

d
Lz

(
aµn‖ + bµn⊥

)
, fµ =

1
Lx

∫ Lx/2

−Lx/2
dx

1
Lz

∫ d/2

−d/2
dz v†µ · fe−ikx, (S.25)

where the mode frequency ωµ is given by ω2
P,k,kz

= c2
P

(
k2 + k2

z

)
, ω2

(S ,T ),k,kz
= c2

S

(
k2 + k2

z

)
, ω2

R,k = c2
Rk2, and the acoustic damping

1/τ has been added by hand. Retaining only the surface mode and specialising in the film geometry, we derive Eq. (3) in the
main text.
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III. RAYLEIGH SAW AMPLITUDE

For the film geometry, by discarding the bulk acoustic waves, the problem reduces to that of one spin wave mode and one
acoustic wave mode with a common wavenumber k: n‖

n⊥
βR,k

 = −χk (ω)

(γ/|γ|)h‖k
(γ/|γ|)h⊥k

fR,k

 , χk (ω) =


−H‖ + iαω/µ0|γ| iω/µ0|γ| −aR,k/µ0Ms
−iω/µ0|γ| −H⊥ + iαω/µ0|γ| −bR,k/µ0Ms

−daR,k/Lz −dbR,k/Lz ρ
(
ω2 − c2

Rk2 + iω/τ
)

−1

. (S.26)

Note that we used a different notation for the coupling constants aR,k = g‖ cos φ, bR,k = g⊥ cos φ in the main text, primarily to
tidy up the notations and facilitate the angular dependence analysis. We are interested in the amplitude of the Rayleigh SAW βR,k

generated by some external magnetic fields h‖,⊥k or mechanical forces fR,k. Since the generalised susceptibility matrix is 3-by-3,
it can be readily computed. We obtain

det χk (ω)

 n‖
n⊥
βR,k

 =


{
(H⊥ − iαω/µ0|γ|) h‖k + (iω/µ0|γ|)h⊥k

}
ρ
(
ω2 − c2

Rk2 + iω/τ
)
γ/|γ|{(

H‖ − iαω/µ0|γ|
)

h⊥k − (iω/µ0|γ|)h
‖

k

}
ρ
(
ω2 − c2

Rk2 + iω/τ
)
γ/|γ|{(

1 + α2
)
ω2/µ2

0γ
2 − H‖H⊥ + i

(
H‖ + H⊥

)
αω/µ0|γ|

}
fR,k

 (S.27)

+


d
∣∣∣bR,k

∣∣∣2 /Lzµ0Ms −dbR,kaR,k/Lzµ0Ms
1

µ0 Ms

{(
H⊥ − iαω

µ0 |γ|

)
aR,k +

iωbR,k

µ0 |γ|

}
−daR,kbR,k/Lzµ0Ms d

∣∣∣aR,k

∣∣∣2 /Lzµ0Ms
−1
µ0 Ms

{(
H‖ − iαω

µ0 |γ|

)
bR,k −

iω
µ0 |γ|

aR,k

}
d
Lz

{(
H⊥ − iαω

µ0 |γ|

)
aR,k −

iω
µ0 |γ|

bR,k

}
− d

Lz

{(
H‖ − iαω

µ0 |γ|

)
bR,k −

iω
µ0 |γ|

aR,k

}
0


γh‖k/|γ|
γh⊥k /|γ|

fR,k

 ,
where

1
det χk (ω)

= ρ

H‖H⊥ −
(
1 + α2

) ω2

µ2
0γ

2
−

(
H‖ + H⊥

) iαω
µ0|γ|

 (
ω2 − c2

Rk2 + i
ω

τ

)
+

d
Lz

1
µ0Ms

{(
H⊥ −

iαω
µ0|γ|

) ∣∣∣aR,k

∣∣∣2 +

(
H‖ −

iαω
µ0|γ|

) ∣∣∣bR,k

∣∣∣2 +
iω
µ0|γ|

(
aR,kbR,k − bR,kaR,k

)}
. (S.28)

Setting fR,k = 0 yields Eq. (6) of the main text.
In the wire geometry, the problem does not reduce to a 3-by-3 matrix inversion since the Kittel mode couples to multiple

Rayleigh SAW modes with k in the range of roughly |k| . 2π/w. Nevertheless, the response of the system against a purely
magnetic driving, i.e. fR,k = 0, is still computable analytically. For this purpose, we introduce the vector notation βR =

(βR,k1 , βR,k2 , · · · )
T ,aR = (aR,k1 , aR,k2 , · · · ), bR = (bR,k1 , bR,k2 , · · · ). The linearised equations of motion (S.4), (S.5) under the mode

expansion for the wire geometry are written as n‖
n⊥
βR

 = −
γ

|γ|

−H‖ + iαω/µ0|γ| iω/µ0|γ| −aR/µ0Ms
−iω/µ0|γ| −H⊥ + iαω/µ0|γ| −bR/µ0Ms

−wda†R/LxLz −wdb†R/LxLz G (ω)−1


−1 h‖

h⊥

0

 , (S.29)

where

G (ω)−1 = ρ


ω2 − c2

Rk2
1 + iω/τ 0 · · ·

0 ω2 − c2
Rk2

2 + iω/τ
. . .

...
. . .

. . .

 . (S.30)

The inverse yields(
n‖
n⊥

)
= −

γ

|γ|

{(
−H‖ + iαω/µ0|γ| iω/µ0|γ|
−iω/µ0|γ| −H⊥ + iαω/µ0|γ|

)
−

wd
LxLz

1
µ0Ms

(
aRG (ω)a†R aRG (ω) b†R
bRG (ω)a†R bRG (ω) b†R

)}−1 (
h‖

h⊥

)
, (S.31)

βR = −
wd

LxLz
G (ω)

(
a†Rn‖ + b†Rn⊥

)
⇒ βR,k = −

wd
LxLz

1
ρ

aR,kn‖ + bR,kn⊥
ω2 − c2

Rk2 + iω/τ
. (S.32)

Note that the second term in the curly braces in Eq. (S.31) can be considered a self-energy for the Kittel mode arising from the
coupling to the Rayleigh SAWs, which can be computed by evaluating the summation over k:(

aRG (ω)a†R aRG (ω) b†R
bRG (ω)a†R bRG (ω) b†R

)
=

1
ρ

∑
k

1
ω2 − c2

Rk2 + iω/τ

 ∣∣∣aR,k

∣∣∣2 aR,kbR,k

bR,kaR,k

∣∣∣bR,k

∣∣∣2
 . (S.33)
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The net effects of the self-energy are to shift the Kittel mode resonance frequency and to broaden the resonance, but only by a
small amount proportional to w/Lx � 1. Note that another small factor d/Lz is compensated by the factor |k| Lz arising from the
normalisation constant NR in aR,k, bR,k. Hence, we can ignore the self-energy in the leading order approximation, and obtain

βR,k ≈ −
γ

|γ|

wd
LxLz

ρ (
ω2 − c2

Rk2 + iω/τ
) H‖H⊥ −

(
1 + α2

) ω2

µ2
0γ

2
− i

(
H‖ + H⊥

) αω

µ0 |γ|


−1

×

[{(
H⊥ −

iαω
µ0 |γ|

)
aR,k −

iω
µ0 |γ|

bR,k

}
h‖ +

{(
H‖ −

iαω
µ0 |γ|

)
bR,k +

iω
µ0 |γ|

aR,k

}
h⊥

]
, (S.34)

which is identical to Eq. (6) in the main text for the film geometry, apart from the appearance of the factor w/Lx in the effective
coupling constants aR,k, bR,k and the overall amplitudes.

The total displacement field u is given by the sum over k: u =
∑

k βR,kvR,keikx. To estimate the order of magnitude of the
signal, we calculate u at the surface z = d/2, averaged over t and x:

|u|2 =
∑

k

∣∣∣βR,k

∣∣∣2 ∣∣∣vR,k

∣∣∣2 =
∑

k

∣∣∣βR,k

∣∣∣2 (
1 − ξ2

S

)2
+

(
1 − ξ2

P

)
|NR|

2 ξ4
S . (S.35)

We can again observe that the dependence on Lz drops out by L−2
z coming from the prefactor in Eq. (S.34) cancelling a factor of

Lz from the squares of aR,k, bR,k and another from |NR|
−2. For the film geometry, only one value of k resonant at ω is important.

Assuming the double resonance, we have

βR,k ≈ −
γ

|γ|

d
Lz

τ

iρω
iµ0 |γ|

αω
(
H‖ + H⊥

) {(
H⊥aR,k −

iω
µ0 |γ|

bR,k

)
h‖ +

(
H‖bR,k +

iω
µ0 |γ|

aR,k

)
h⊥

}
≈ −

d
Lz

τ

ρω

µ0γ

αω

(
aR,k − ibR,k

) (
h‖k + ih⊥k

)
.

(S.36)
Plugging in the numbers |k| = 1.5 × 107 rad/m, d = 50 nm, ρω2 = 5 × 1024 J/m5, ω/µ0|γ| = 2 × 105 A/m, b1 = 3.5 × 105 J/m3,
b2 = 2b1, we estimate

|u|2 ∼
(
τω

α

)2
× 10−24 ×


∣∣∣h‖ + ih⊥

∣∣∣
105A/m

2

[m2]. (S.37)

The prefactor comes form the resonant enhancement and can be as large as τω/α > 106 for YIG/GGG heterostructures. The
value of

∣∣∣h‖k + ih⊥k
∣∣∣ is limited by requiring the spin wave amplitude determined by Eq. (S.27) to remain in the linear regime∣∣∣n‖, n⊥∣∣∣ . 10−2. For α = 10−3, we need

∣∣∣h‖k + ih⊥k
∣∣∣ . 1 A/m. This leads to the attainable mean square displacement of order 10

pm. Referring to Eq. (S.21), βµ = 1 pm translates to an effective magnetic field of order 10−4 A/m, which is sufficient to trigger a
secondary spin wave resonance near the detector CPW in Fig. 2(b) in the main text. Note that a similar experiment of magnetic
driving and detection of acoustic waves was successfully carried out in Ref. 8 in the main text, albeit in a different geometry.
Therefore, we believe the SAWs generated by spin wave resonances are also detectable in a suitably designed experimental
setup.

IV. NUMERICAL SIMULATION

We perform numerical simulations of the YIG/GGG heterostructures by COMSOL Multiphysics which solves partial differ-
ential equations based on finite elements method. The geometry for the simulations is plotted in Fig. S2 where the YIG film and
GGG film are separately established and simulated in a 2D model (x-z plane) and the y direction is assumed to be uniform.

The dynamics of normalised magnetisation m = M/Ms = (mx,my,mz) and the dynamics of lattice displacement vector
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Boundary 1

Boundary 2

Boundary 3

YIG

GGG

x

z

FIG. S2. Geometry of YIG/GGG heterostructures for numerical simulation. A magnetic YIG film with thickness 50mm is attached on the
GGG substrate with thickness 1000mm.

u = (ux, uy, uz) inside the YIG film are described by hybrid equations Eq. (S.38) with ∇ = (∂/∂x, ∂/∂z)



∂mx

∂t
= − γ(myHeff

z − mzHeff
y ) + γ

2b1

µ0Ms

(
mymz

∂uz

∂z

)
+ γ

b2

µ0Ms

[
m2

y
∂uy

∂z
+ mxmy

(
∂uz

∂x
+
∂ux

∂z

)
− mzmx

∂uy

∂x
− m2

z
∂uy

∂z

]
,

∂my

∂t
= − γ(mzHeff

x − mxHeff
z ) + γ

2b1

µ0Ms

[
mzmx

(
∂ux

∂x
−
∂uz

∂z

)]
+ γ

b2

µ0Ms

[
mymz

∂uy

∂x
+ m2

z

(
∂uz

∂x
+
∂ux

∂z

)
− mymx

∂uy

∂z
− m2

x

(
∂uz

∂x
+
∂ux

∂z

)]
,

∂mz

∂t
= − γ(mxHeff

y − myHeff
x ) + γ

2b1

µ0Ms

[
mxmy

(
−
∂ux

∂x

)]
+ γ

b2

µ0Ms

[
m2

x
∂uy

∂x
+ mzmx

∂uy

∂z
− m2

y
∂uy

∂x
− mzmy

(
∂uz

∂x
+
∂ux

∂z

)]
,

ρYIG
∂2ux

∂t2 + η
∂ux

∂t
=µYIG∇

2ux + (λYIG + µYIG)
(
∂2ux

∂x2 +
∂2uz

∂x∂z

)
+ 2b1mx

∂mx

∂x
+ b2

(
∂mz

∂z
mx +

∂mx

∂z
mz

)
,

ρYIG
∂2uy

∂t2 + η
∂uy

∂t
=µYIG∇

2uy + b2

(
∂mx

∂x
my +

∂my

∂x
mx +

∂my

∂z
mz +

∂mz

∂z
my

)
,

ρYIG
∂2uz

∂t2 + η
∂uz

∂t
=µYIG∇

2uz + (λYIG + µYIG)
(
∂2ux

∂z∂x
+
∂2uz

∂z2

)
+ 2b1mz

∂mz

∂z
+ b2

(
∂mz

∂x
mx +

∂mx

∂x
mz

)
.

(S.38)

Here the first three equations are Landau-Lifshitz-Gilbert equations in the presence of magneto-elastic coupling. The effective
fieldHeff = (Heff

x ,Heff
y ,Heff

z ) = A∇2m−Msmzẑ + H cos θ x̂+ H sin θ ŷ +hext includes exchange interaction, effective hard-axis
anisotropy induced by demagnetising field, static external magnetic field with in-plane angle θ and excitation field for generating
spin waves. The last three equations of Eq. S.38 are the equations of motion for elastic waves, where ρ is the mass density and
µ, λ are Lamé constants. The velocities of elastic waves are determined by Lamé constants with the relations cP =

√
(2µ + λ)/ρ

and cS =
√
µ/ρ. The damping of elastic waves is taken into account phenomenologically via the friction term η∂u/∂t. Since

there is no magnetisation in the GGG substrate, the dynamics of elastic waves is governed by the equations of motion without
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magnetic forces 

ρGGG
∂2ux

∂t2 + η
∂ux

∂t
=µGGG∇

2ux + (λGGG + µGGG)
(
∂2ux

∂x2 +
∂2uz

∂x∂z

)
,

ρGGG
∂2uy

∂t2 + η
∂uy

∂t
=µGGG∇

2uy,

ρGGG
∂2uz

∂t2 + η
∂uz

∂t
=µGGG∇

2uz + (λGGG + µGGG)
(
∂2ux

∂z∂x
+
∂2uz

∂z2

)
.

(S.39)

Due to the presence of magnetisation inside the YIG film, extra force terms are required on the boundary 1 and 2 respectively,

f =


∓b2mxmz

∓b2mymz

∓b1m2
z

 , − for boundary 1 and + for boundary 2. (S.40)

The inclusion of these boundary forces corresponds to the delta function in Eq. (S.9) in the analytical formalism above. The
free-surfacel boundary condition is applied on the top surface (boundary 1 in Fig. S2). The lattice displacement on the bottom
boundary (boundary 3 in Fig. S2) is constrained with u = 0. Regions x > 1000 nm, x < −1000 nm and x < −500 nm are
manually set as high-damping regions with η = 5 × 1014 N·s/m4 and α = 0.2 to avoid wave reflections from the boundaries.

In the numerical simulation, we apply a magnetic field pulse at the central region of the magnetic film (width 50 nm) hext =

10[mT] sin(2π f0t)ẑ with duration t = 1/ f0 and f0 = 5 GHz is the Kittel mode frequency. The elastic waves are generated due to

the magneto-elastic coupling and the signals
√

u2
x + u2

z are extracted at the coordinates (x, z) = (±900, 0) nm and are integrated
over time for 1ns, representing the transmission intensity. The angular dependence of transmission is plotted in Fig. S3 where
the in-plane angle θ is swept from 0 to 180 degrees. It can be seen that the transmission is reciprocal when θ = 0 and θ = π, while
it demonstrates maximum non-reciprocity at θ ∼ 0.36. The signals do not reach zero at the angles of maximum non-reciprocity
presumably because of the bulk elastic waves induced by the pulse, which are neglected in the analytical calculations.

FIG. S3. Angular dependence of SAW transmission intensity integrated in time for 1 ns. The blue (red) curve is for -k (+k) case.


