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Nonreciprocal surface magnetoelastic dynamics
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Motivated by recent experiments, we investigate the nonreciprocal magnetoelastic interaction between the
surface acoustic phonons of dielectric nonmagnetic substrates and magnons of proximity nanomagnets. The
magnetization dynamics exerts rotating forces at the edges of the nanomagnet that causes the nonreciprocal
interaction with surface phonons due to its rotation-momentum locking. This coupling induces the nonreciprocity
of the surface phonon transmission and a nearly complete phonon diode effect by several (tens of) magnetic
nanowires of high (ordinary) magnetic quality. Phase-sensitive microwave transmission is also nonreciprocal that
can pick up clear signals of the coherent phonons excited by magnetization dynamics. Nonreciprocal pumping
of phonons by precessing magnetization is predicted using Landauer-Biittiker formalism.

DOI: 10.1103/PhysRevB.102.134417

I. INTRODUCTION

Efficient transfer of spin information among different en-
tities is the prerequisite to achieve long-range spin transport
in spintronics [1,2]. The spin diffusion length can be of mi-
crometers in two-dimensional electron gas [3] and even longer
in graphene [4,5]. Long-wavelength dipolar spin waves in
the magnetic insulator—yttrium iron garnet (YIG)—can even
travel over centimeters [6], but they suffer from a low group
velocity; exchange spin waves have a large group velocity
but their lifetime is shorter [7-10]. Recent studies showed
that bulk phonons in the insulator gadolinium gallium garnet
(GGQG) can couple two YIG magnetic layers over millime-
ters [11-14], raising the possibility of using phonon currents
to transfer spin information in nonmagnetic insulators. The
surface (Rayleigh) acoustic waves (SAWs), known as excel-
lent sources to pump spin waves via acoustic spin pumping
[15-21], can propagate a longer distance with a larger group
velocity [22,23] and thus is promising to transport spin infor-
mation.

Very recently, the nonreciprocal surface phonon trans-
missions were observed when the phonons pass through
the ultrathin extended ferromagnetic films in proximity to
the piezoelectric substrate [24,25] and are explained by
the magnetorotation or/and magnetoelastic couplings [26].
These indicate that the interaction between magnons and
surface phonons is nonreciprocal (or chiral when empha-
sizing the symmetry), i.e., the magnons in the magnets
can dominantly couple the traveling surface phonon prop-
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agating in one direction. The inverse process of acoustic
pumping—the nonreciprocal pumping of phonon by magneti-
zation dynamics—has not yet been experimentally reported
and was theoretically considered by us [27]. There, inter-
ference with dynamical phase shift 7 between two remote
magnetic nanowires that couples with the phonon reciprocally
is responsible rather than a direct nonreciprocal magnon-
phonon coupling in the presence of one magnet [27].

Magnons hold chirality by their anticlockwise rotation and
are revealed recently to be able to nonreciprocally couple
with various quasiparticles or devices. The long-range dipolar
interaction emitted from the excited nanomagnet can chirally
couple with the traveling magnons of extended films as its
rotation direction is locked to its momentum [28-32]. The
microwaves show polarization-momentum locking when con-
fined by the waveguide [33-36], cavity [37,38], or antenna
[39-41], which were employed to realize the nonreciprocal
magnon-photon coupling. With chiral coupling, the unidi-
rectional traveling waves are excited by the nearby magnet
in half-space [30-32]. The evanescent dipolar field or mi-
crowaves can realize noncontact (and chiral) spin pumping
to the nearby conductors [42]. The traveling waves mediate
a long-range nonreciprocal interaction between remote mag-
nets and the spin accumulates at the edge of magnets by
the non-Hermitian skin effect [43—45]. Interference effect in
nonreciprocal systems can directionally amplify or trap the
traveling waves [46,47].

The surface acoustic waves exhibit rotation-momentum
locking as well [23,48], from which their nonreciprocal cou-
pling with magnons may be understood universally. In this
work we study the surface magnetoelastic coupling in the spin
mechanical system and formulate the nonreciprocal dynamics
[31,36,42] via the Green function method [49-52]. Rather
than considering the extended magnetic film in which the
edge effect is marginal [24-26], we focus on the thin nano-
magnets with dominant edge effect. We show the uniform
magnetization dynamics exerts rotating forces at the edges of
the nanomagnet that causes the nonreciprocal interaction by
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FIG. 1. Magnetic nanowires on top of a dielectric substrate. A
strong magnetic field is applied to change the magnetization direc-
tion, parametrized by the angle ¢ relative to the wire direction. With
a precessing magnetization, rotating forces emerge at the left and
right edges of the nanowire (illustrated by F, , at the right edge). The
orange and red thick arrows indicate the nonreciprocal propagation
of the SAWs.

the rotation-momentum locking of surface phonons. As the
magnons dominantly couple with surface phonon propagating
in one direction, the surface phonon transmission is nonrecip-
rocal. We also propose to detect the nonreciprocal coupling
by the phase-sensitive microwave transmission [30,32]: the
microwaves can excite the magnetization of one magnet that
pumps the unidirectional phonon propagation, which can in
turn excite another magnet, above which the signal is picked
up by the radiated microwaves. This method can detect clear
signals of the excited coherent phonons and their group ve-
locity. With the nonreciprocal magnetoelastic coupling, we
predict the unidirectional pumping of phonons by ferromag-
netic resonance (FMR).

This paper is organized as follows. We model and calculate
the coupling between magnon and surface phonon in Sec. II.
In Secs. III and IV the phonon and microwave transmissions
are addressed. The directional pumping effect is discussed by
the Landauer-Biittiker formalism in Sec. V. We summarize
and discuss the results in Sec. VI.

II. NONRECIPROCAL MAGNON-PHONON INTERACTION

We consider magnetic nanowires of width w and thick-
ness d (&K w) on top of dielectric substrates as illustrated
in Fig. 1, focusing on both the magnetoelastic and magne-
torotation couplings between them. The dielectric substrate is
assumed to be semi-infinite; it is usually not magnetic, since
nonmagnetic substrates are used in the recent experiments,
which can be GGG [13], MgO [24], or Pt [25]. We assume
the thickness d [O(10 nm)] is much smaller than the decay
length or wavelength A of the SAWs (>100 nm), while the
width w is comparable to A. Experimentally, such a geometry
with thin cobalt or nickel nanowires on top of a thin YIG
film was used to realize the pumping of short-wavelength
spin waves [30,32,53]. We restrict the magnetization to be
parallel to the substrate surface but allow an angle between
it and the nanowire Z direction [24]. To this end, we assume
a sufficiently strong magnetic field —HyZ' is applied, with
an angle ¢ between z' and the wire z direction, to saturate
and control the direction of the wire magnetization with an
equilibrium component ~ — M2’ and transverse components
myX +myy (see the Appendix). Since the spins of elec-

tron are opposite to the magnetization, the spins are (nearly)
parallel to Z'.

In our configuration only the SAWs couple efficiently with
the nanomagnets by their surface nature in that sufficiently
thin nanowire does not affect the substrate strongly and their
interaction can be treated perturbatively. We employ the quan-
tum description that allows us to study the dynamics by
Green function technique but also explain our findings by
classical picture The Hamiltonian consists of the elastic H.,
magnetic Hm, and their coupling H.. In the Appendix we
quantize H, = Zk an)kb by in terms of phonon operator by
with k =k, and Hm = ha)K,Bl /3, with ,3, being the magnon
operator in the /th nanomagnet. Here w; and wg are the
frequencies of the phonon of momentum k and Kittel magnon,
respectively. H, = ﬁc(‘” + ﬁc(b) is contributed by the magne-
toelastic coupling (@) and magnetorotation coupling (b), as
addressed below.

A. Magnetoelastic coupling

The magnetoelastic coupling Hamiltonian generally de-
pends on the crystal symmetry of the material [54]. Here we
adopt the simplest form that describes a wide class of material
[11,24,25,55,56], which may be written as [11,54,55]

= —/dr<BZM i+ B ZMM 8”) (D

i#j

where B) and B, are the magnetoelastic constants, and &;; =
(0ju; + 9;u;)/2 denotes the strain tensor in terms of the
displacement field u;(r). For the Rayleigh SAWs propagat-
ing perpendicular to the wire with momentum K || §, there
only exists (ux(x,y), uy(x,y)) and only &, &y, and &, are
nonvanishing. The Hamiltonian can be linearized when the
temperature is far below the Curie temperature. Considering
the coupling to the uniform Kittel mode in the nanowire,
Eq. (1) is linearized to be

A 2 sin
Ao == | dr(By cos pmyey, + Bimye.y)
s
2 sin ¢ cos ¢
= ByLdmy (uy| 54y, — tty]-24y,)
S
sin ¢
—+ BlLde’ (ux|%+y[ MX|_*+)’I) (2)

N

where y; is the center coordinate of the /th nanomagnet and
L is the length of the nanowire. Here we have assumed that
the nanowire is sufficiently thin such that the displacements at
its top and bottom surface are identical and hence have no net
contribution to the magnetoelastic coupling.

Classically we obtain the forces by F; ,(r) = §H,/Su, ,(r)
[11,27], of the Ith nanowire at the right edge (y = w/2 + y;)

Fyly=24y, = 2sing cos B Ldmy /M;,
Fly=s.1y, = Sin @B, Ldmy /M, 3)
and at the left edge (y = —w/2 + y;)
Eyly=—u 4y, = —2singcos B Ldmy /M,
Fily——u 4y, = —singB, Ldmy /M. )
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The generated forces are opposite at the two edges of the
wires. There are generally both x and y components in the
forces that are rotating when the magnetization m, and m,
rotate (Fig. 1). Although they are not circularly polarized even
when the magnetization are, the elliptically polarized forces
bring chirality in the mechanics. When ¢ = /2 (¢ = 0)
with the magnetization perpendicular (parallel) to the wire,
the force becomes linearly polarized (vanish), recovering our
previous results [27]. Since the rotation direction of the SAWs
is locked to their momenta [see Eq. (Al)], we expect the
coupling between magnon and phonon is nonreciprocal.

We note that although in the classical description, the total
free energy Eq. (2) and the total forces depend on the length
of the wire L, the excited SAW amplitude is independent of
L since only the force density, i.e., the stress, plays a role
[11]. A detailed description of the forces and how they excite
the SAWs, for the perpendicular configuration, are given in
our previous work [27]. We showed there that the forces arise
at the left and right boundaries of a wire and exert the stress
on the dielectric substrate that excite the SAWs. The excited
SAWSs then propagate away from the regions of the wires.
Here we focus on the quantum description that recovers and
extends the results from classical treatment.

B. Magnetorotation coupling

Magnetocrystalline and shape anisotropies can contribute
to the magnetorotation coupling in terms of antisymmetric
tensor w;; = (9;u; — d;u;)/2 [57,58]. Here we consider the
uniaxial anisotropy, for simplicity. The coupling between
magnon and surface phonon generally depends on the uniaxial
direction relative to the wire Z direction. It vanishes when the
easy axis is along the wire since wy, and w,, vanish for SAWs
propagating along the ¥ direction.

We first consider the perpendicular anisotropy with the
easy axis along the X direction [24], yielding the Hamiltonian
A® = _2K / dArM,.(v)[Myw,, (r) + M, (r)]

c - M? x yWyx zWzx s
where K| is contributed by the uniaxial anisotropy field. This
Hamiltonian is linearized to be

Y = K sin wmx,(@ux — 8uy>

¢ M; dy ox
sin ¢
= M KlLdmx’(ux|%+y/ _ux|7%+y/)’ (5)

N

contributing a force perpendicular to the substrate surface at
the edge of the nanowire. Comparing with Eq. (2), we con-
clude that including the perpendicular anisotropy here shifts
B, to B, = B, + K;. We then similarly address the case with
the easy axis along the ¥ direction. We find B, =B, —K,.

C. Coupling Hamiltonian

The polarization of the rotating forces follows that of the
Kittel magnon. The Kittel mode is linearly polarized under
the weak applied magnetic field and the induced force is not
rotating. As only a circularly polarized magnon favors the
nonreciprocity, we assume that a large magnetic field Hy is
applied such that the magnon is circularly polarized in the thin

wire (see the Appendix). By substituting the magnetization
operator Eq. (A14) and displacement-field operator Eq. (A2)
into Egs. (2) and (5), the coupling Hamiltonian becomes

Ho=1h) » aik)pb+He., ©)
l k

with the coupling constant

gLy =ising v ‘/isin (lﬂ)eik”’é
kl Mpc, V w 2 d

_ 1+
x | By — cos ¢B)sgn(k) p . 7

Here —y is the gyromagnetic ratio of electron; p and ¢, are
the density of the dielectric substrate and the group velocity
of the surface phonon, respectively; &p, a, and b, given by
Egs. (A6) and (A7), are determined by elastic properties. The
coupling constant depends on the sign of momentum and
generally show the nonreciprocity with g | # |g—|. We see
that the coupling tends to vanish when ¢ = 0, while when
¢ = 1 /2, there is no chirality as |gx | = |g— | [27]. Consid-
ering ¢ € (0, w/2), the complete chirality arises when B, =
cos ¢.B| (1 + b*)/a such that g = 0, implying the critical
angles ¢, satisfy

Bl a
By 1+

®)

cos @, =

As the critical angle is only determined by the basic material
parameters and is not related to geometry parameters and
the wave number of the phonons, it is fixed with the chosen
material. This allows us to choose optimal material for appli-
cations. Such conclusion agrees with the classical description
in which the rotating force |Fy| = |F,[(1 + b*)/(2a) matches
the phonon chirality. Without the magnetoelastic coupling, the
magnetorotation coupling itself cannot cause nonreciprocity
in the thin wire configuration.

The nonreciprocity is sensitive to the relative magnitude
of B, and Bj, which are usually extracted experimen-
tally. When the elastic substrate is GGG, a/(1 + b*) = 0.76
[27]. For the cobalt nanowire, B, ~ —9.2 x 10° J/m? and
By~ 7.7 x 100 J/m3; for the nickel nanowire, B, ~ B =
1.3x 107 J /m3 [56]. All these two materials can achieve
a complete nonreciprocity with cos ¢, ~ £a/(1 + b*). Nev-
ertheless, complete nonreciprocity cannot be achieved for
YIG|GGG with a small anisotropy since B, ~ 2B = 6.96 x
10°7 /m3 [11] leads to cos ¢, > 1. Therefore, magnetoelastic
coupling may not always promise a complete nonreciprocity,
different from the couplings of magnon with other quasiparti-
cles [31,36,42].

In Fig. 2 we illustrate the dependence of the normal-
ized coupling strength on the angle ¢ for a Ni nanowire on
the GGG substrate. We adopt Ni nanowire of magnetization
woM; = 0.5 T, width w = 250 nm, and thickness d = 30 nm
[28,30,53]. The velocity of surface phonon ¢, = 3271.78 m/s
in GGG. In the calculation, the FMR is fixed to be 27 x
20 GHz by tuning the magnetic field around poHp =1 T.
Complete nonreciprocity arises at the critical angles ¢, ~
0.737 and 1.277 with g_ = 0.
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g0 | 2 ] to [. It is calculated to be [50-52]

70 | £k (G (@], = (@ — @)8u — T (@), (10)
< 60r . where &g = wg —iagwg with the Gilbert damping
= 50 | | parametrized by the Gilbert coefficient og, and X is
E the self-energy matrix of magnons due to their collective

gy g
g 40 1 interactions with phonons with elements
N
e 30 1 . «
o0 8k 18k 1
o Ti(w) = _ 11
20! ] (@) ;w_wk, i (11)
10 | The Green function is the basis for calculating the coherent
0 0 0‘ 5 ‘1 1‘ 5 > and incoherent dynamics below.
) : When 5, — 0,4 for the high-quality elastic substrate such
¢ (1) as GGG, these elements are calculated to be

FIG. 2. Dependence on angle ¢ of the coupling strength g4 for
Ni nanowire on GGG substrate. Complete nonreciprocity arises at the
critical angles ¢. ~ 0.737 and 1.277 with g_; = 0. The material
parameters are given in the text.

III. PHONON DIODE EFFECT

The nonreciprocal couplings are detectable by transmis-
sion spectra of phonon as the scattering cross section, for
the phonon with opposite momenta, can be different, i.e., a
diode effect for surface acoustic phonon [24,25]. The phonon
transmission should be tunable by the number of proximity
nanomagnet. Therefore, not restricting to one nanomagnet, we
generally calculate the phonon scattering matrix in the pres-
ence of N parallel magnetic nanowires by using the scattering
theory (Sec. IIT A) [51,59,60]. The distance of the neighboring
wires is assumed to be much larger than the wire width such
that the dipolar interaction between wires can be safely disre-
garded. In this case, every wire can be treated to be isolated.
With many wires, the magnons in different wires interact with
each other through virtual exchange of surface phonon; they
form collective modes. We show that the phonon reflection are
determined by these collective modes (Sec. III B).

A. Phonon scattering matrix

The scattering amplitude between state |k) to state |k') is
calculated by the T matrix [51,59,60]
Tex = (K'|T'1k)
*
= e + P %:gk',[GN,ll/ (0 )grr, )
where 7y is the damping broadening of phonon. The summa-
tion on the magnet index {/ = 1,2, ..., N} implies that the
scattering from state |k) to state |k) experiences all possible
scattering paths such that the phonon transmission results
from the net interference. Note that the magnets are not iso-
lated as they interact with each other via the exchange of
phonons. Also, different from the static scatters, the magnets
are dynamical such that they absorb and emit the phonons.
All these dynamics is encoded in the magnon Green function
Gyl that stands for the propagator of magnon from wire [’

i .
Zu(@) = =5~ (I8l” + lg-4.11°) = =iTi(@),
r
i_ ey —vs .
Yia(w) = _C_gk*,lg;t*,l/elk*lyl wrl — —iTrur (),
r
i 5 v —v .
Y (w) = _C_g—k*.zgik*,zfelk*bl W= =il (o), (12)
r

where k, = w/c, +iny/c, — w/c, and g ; = gr e . The
diagonal elements Xj(w;) represent the broadening of
magnons modes by pumping phonons. While the off-diagonal
self-energies X,y (wy) imply that the magnets interact with
each other mediated by the surface phonons. Thus, the
magnon Green function is represented by Gy(w) = [w —

’HN(a))]fl, where the matrix

Hy(w) = ax

() ' 21(w) I vi(w)
g 12(w) I (w) ' v (@)
Frinv(@) Troy(w) Iy(w)
(13)

is interpreted by a non-Hermitian Hamiltonian that describes
the dissipatively coupled magnons [27,32,36,46]. Note that
the coupling constant I'(w) still depends on the frequency.
Then from Eq. (9), the T matrix becomes

Tik = Sux + MGy () M] (14)

wp — wp + 11
with My = (gr.1- - gr.N)-

When propagating through magnetic nanowire arrays, the
surface phonon of momentum & is scattered between different
states, and the transmitted waves (assuming k > 0)

lim () = ) (IK) T

y—>—+o0 o
and reflected waves
. _ N,
Jim () = ;Mk YTk

at a position far away from the magnetic wires are determined
by the 7 matrix. Supposing an initial plane wave ¢, with the
transmitted and reflected waves ¥, (y) and v, (y), the elements
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FIG. 3. Absolute value of the phonon transmission |S,; (wy )| [(2) and (c)] and |S12(wy )| [(b) and (d)] with respect to the field direction ¢ and
the magnon frequency wk of one Ni nanowire, around the phonon frequency w;, = 2w x 20 GHz. We take a small and large Gilbert dampings
ag =5 x 107* [(a) and (b)] and 5 x 1073 [(c) and (d)], respectively. The material parameters are given in the text.

of the phonon scattering matrix are given by [51,59,60]
ikD r T
Sat@) = ¢ (1 = —MiGy@)M]).

Sii(ap) = —CiMikGNmk)M,f. (15)

where D is the propagation length of the SAWs. The uni-
tarity of the scattering matrix is guaranteed by |S»;(k)|> +
IS11(k)|> =1 when ag — 0. Nevertheless, the unitarity is
broken when there exists magnon damping «.

The experiments [24,25] are typically performed with
one magnet. We thus first calculate the scattering matrix
of phonon in the presence of a single magnetic wire in
the following [59-63]. In this situation, the magnon Green
function is given by Gy—i1(w) = 1/[w — wx — L(w)] with
magnon self-energy X(w) =), lgw >/ (w — wp + ing) =
—i(|gk]® + 1g—«|*)/(2¢,). We obtain the scattering matrix,

kD ! lgx|?
k) =e""(1—-— - ,
¢r Wi — wx + idgwg — X(wy)
l' k
Stk = —— it .
¢r wp — wg +iagwg — L(wy)

(16)

It is seen that when the magnon-phonon coupling is complete
nonreciprocal, we always have Sj;(k) = 0 no matter g, = 0
or g_; = 0; there is no reflection. Nevertheless, the trans-
mission of phonon with opposite momenta depends on the

nonreciprocity. At the resonance with w; = wk,

e*t, when g =0,
SZl(k) == {&-eikL, when gk = O’ (17)
where
2agox — lgl*/cr
_ 2agwx — |gkl”/c (18)

- 2awk + |gil?/c,

modulates the amplitude of the transmitted waves. Generally,
& <1 as ag > 0, implying a suppression of transmission.
Nevertheless, a negative o, i.e., a gain [64—67], can amplify
the phonons as |£] > 1. When g; = 0, the nanomagnet is not
excited at all and the propagating SAWs of momentum k only
accumulate a propagation phase kD. While when g_; =0,
the SAWs are first absorbed and then emitted by the nano-
magnet, resulting in a double dissipative phase shift 7 /2.
This can be observed by a wire with a high magnetic quality
2ugwk < |gkl?/cr leading to £ = €™, i.e., without amplitude
suppression but a pure phase shift. When 2agwx — |gx|?/c;
the transmission tends to be zero and the energy accumulates
in the magnet [46]. Finally, when 20wy > |gi|*/c,, € — 1
and the modulation vanishes and the phonon diode effect is
very small.

In Fig. 3 we plot the absolute value of the phonon transmis-
sion |S21(wy)| and |S12(wy )| with respect to the field direction
¢ and the magnon frequency wg of one (e.g, Ni) nanowire,
around the phonon frequency w; = 27 x 20 GHz. We take a
small and large Gilbert dampings og = 5 x 10~* [Figs. 3(a)
and 3(b)] and 5 x 1073 [Figs. 3(c) and 3(d)], respectively,
to illustrate effects of different magnetic qualities. The other
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material parameters are the same as those in Fig. 2. With
both Gilbert dampings, the phonon transmission shows a dip
around the critical angles (e.g., ¢, =~ 0.737 and 1.277 with
g-x) = 0) and resonance frequency wg = wy. Around these
angles and frequencies, |Si2(w)| # |S21(w)|, demonstrating
the nonreciprocity and phonon diode effect [24,25]. The en-
ergy range for the diode effect is broadened by a large Gilbert
damping, but the magnitude is significantly suppressed, sug-
gesting a need to improve the magnetic quality for a clear
experimental observation and application when one magnet
is employed. As the magnon damping breaks the unitarity of
the phonon scattering matrix, the phonon suffers from the “re-
sistivity” when passing through the magnets. If this resistivity
is enhanced by the number of magnets, we expect that the
diode effect can be enhanced when there are many magnets,
as studied in the following subsection.

B. Phonon resistivity by collective magnon modes

Although the phonon is assumed to have a small damping
here, the magnon damping can be large. The conversion of
phonon to magnon then suffers from a large damping that
brings a resistivity. Experimentally, this can correspond to a
short propagation length for phonon that scales with the num-
ber of magnet. To this end we generally calculate the phonon
transmission through many (identical) magnetic wires.

We express the phonon scattering matrix by the collective
modes of magnons via the eigenvectors of the non-Hermitian
Hamiltonian Hy(wy) [36]. Assuming the right eigenvec-
tors of Hy(wy) are Y, with corresponding eigenvalue v,
Hy ()Y = v, Here ¢ = {1, ..., N} labels the collective
modes. We also define the right eigenvectors ¢, of H,Tv(wk)
with corresponding eigenvalue v;. The eigenvectors satisfy

the orthonormal conditions with w; ¢ = 8, and ¢;1/f¢/ =
8¢¢ [36]. Thus, the magnon (retarded) Green function is
found to be

1

w—v;

Gr(@) = Yo} (19)
¢

which is determined by the collective modes of the wires.
Therefore, the net effect of many wires is not a simple
summation of that of a single wire, which would bring a
modulation factor £V, but may lead to different features. The
phonon transmission can thus demonstrate the existence and
information of the collective mode of many magnetic wires.
Many properties of the collective mode were addressed in our
previous works [36,46].

We numerically diagonalize the non-Hermitian Hamil-
tonian and calculate the phonon transmission through a
magnetic array with distance § between the neighboring wires.
Such an array was commonly employed to excite short-
wavelength spin waves on top of a magnetic film [30,53].
By taking § = 3.2 /k and the other parameters in the last
subsection, we show the improvement of the diode effect
by many magnetic wires. Figure 4 is a plot of the phonon
transmission | S, (wy )| at the critical angles with |S12(wi)| = 1
when the damping of magnetic wire is large with ag = 5 X
1073, Although the transmission is still very large with one
magnetic wire, it tends to be zero rapidly with tens of wires.

3 -2 -1 0 1 2 3
Wk~ (GHz)

FIG. 4. Dependence on magnet number N of the phonon trans-
mission |S;(wy)| for Ni nanowire on GGG substrate. The damping
of wire is chosen to be relatively large with ag =5 x 1073, The
direction of the magnetic field is chosen to be at the critical angle
such that |S1,(wy )| = 1. The dashed arrows indicate the evolution of
the half-width of the spectra with the increase of the wire number.
The other material parameters are given in the text.

The frequency window of the filtering also increases with the
increase of the wire number, i.e., a broadband nonreciprocity,
as indicated by the dashed arrows in the figure, implying
the advantage of many-wire configuration. The suppression
of the phonon transmission is not as rapid as &V law with
the increase of magnet number, indicating that it is the col-
lective modes that play roles in the filtering. Note that the
phonon reflection is zero in this complete nonreciprocal case,
implying that the phonons are damped by exciting the magnon
collective modes as the total number of magnon and phonon
is conserved in the linear regime.

IV. PHASE-SENSITIVE MICROWAVE TRANSMISSION

The phase-sensitive microwave scattering matrix is also an
efficient way to detect the nonreciprocity [30,32]. We again
formulate a general case with N parallel magnetic wires. We
consider the microwave excites the ith wire and the radiated
microwave is read out above the jth wire. Such a setup was
realized experimentally with two wires by narrow striplines
on top of the wires [32]. Following our previous works
[27,30,36], the equation of motion of the magnons augmented
by the microwave input leads to [62,63]

—iwB(w) = —ify(0)B(w) — \/KPa(®), (20)

where B = (Bl, ,32, e, BN)T and «,, is the dissipative damp-
ing of magnon by microwave radiation, which we assume to
be much smaller than the intrinsic Gilbert damping. 2, is
the input of microwave photon in which we assume the ith
wire is excited by the local active stripline and the element
is (Py); = 8;iPin. The local input microwaves, actually, excite
all the magnetic wires as they are coupled through virtual
exchange of the surface phonons. These excited wires can
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radiate out the microwaves that can be detected by the passive
stripline. We monitor the microwave at the jth wire with the
photon output [31,62,63]

Pin(@)81j + /KB (@)

The magnon excitation at the jth wire is represented by
magnon Green function from Eq. (20),

Bi(®) = i /K[ Gn ()] jiPin(@).

When j =i, we obtain the microwave reflection at the ith
wire,

Pou(w) = [©2))

(22)

Sii(@) = Pou(@)/Pin(®) = 1 — ik, [Gy ()]

- Z [w; (@) [¢; @)

which reads out the diagonal term of the magnon Green
function. While when j # i, we obtain the microwave trans-
mission from the ith wire to the jth one,

S/‘,‘(a)) = _iKp[GN(a))] ji
Ve @), 18] @)

=—il{ —_—
pZ w— v ’

r=1

(23)

(24)

which is expressed by the off-diagonal term of the magnon
Green function. Therefore, an ergodic detection of all the
microwave reflection and transmission can give the whole
magnon Green function, whose inverse gives all the terms of
the magnon Hamiltonian that contains rich information.

The simplest experimental setup employs two identical
wires [31,32], in which case the magnon Green function reads

1
[w — ax + iT1(0)]? + Tr12(0) L 21 (@)

—il'g 12(w)

Gr(w) =

=il o1(w)
w—aog +il'(w)

). (25)

Accordingly, the microwave reflection and transmission read
iKp[w - &)K + lF](CL))]
[@ — @k + il (@))? + TL21(@) g 12(w)
r

BN/ L) . (26)
[w — @k +iT'1(0)]* + T2 (o) 'k 12(@)
recovering our previous results [30-32]. We are particularly
interested in the resonant situation with w = wg. Recalling

Tr2(w) = (lgi,1?/c,)e®P2=211/er | the real part of the mi-
crowave transmission with complete nonreciprocity 'z ;3 = 0

reads
2k,T —
ol (@) sin (wlyz yl'), 27)
[agw + T(w)]? cr
which oscillates with the microwave frequency. The frequency
difference between two neighboring peak of Re[Sy(w)] is

(28)

which is sensitive to the wire distance and phonon group
velocity.

The microwave transmission with two-wire setup was stud-
ied in our previous works [30-32]. Here the Green function

Sin(@)=1-

S1(w) = —

Re[$51(w)] =

Aw =2me. /|y, — yil,

0.02
0.015
0.01
0.005

Re(Sy1(m))

-0.005

-0.01

_0015 I I I I I
-400 -200 0 200

(m-0¢)/(21) (MHz)

FIG. 5. Real part of the microwave transmission between the
nanowires at the left and right edges at the resonant condition wg =
. We adopt different number of Ni nanowires N = {2, 5, 10} on
top of GGG and tune the magnetic field to the complete chirality
with Sjy(w) = 0. The damping of wire is chosen to be relatively
large with g = 5 x 1073, The other material parameters are given in
the text.

formalism allows us to study the influence of the middle wires
on the microwave transmission. We find relation Eq. (28) is
very robust even when the middle wires are added, while the
amplitude of the microwave transmission is suppressed by
the middle wires. We plot the real part of the transmission
amplitude in Fig. 5 as a function of microwave frequency
close to wyp = 2w x 20 GHz. We tune the nanowire Kittel
mode to be resonant to the microwave frequency. In the calcu-
lation we take width w = 250 nm and thickness d = 30 nm
for the Ni nanowires on top of GGG. The distance between
the two wires at the left and right edges is R = 20 um. The
intrinsic magnetic damping is chosen as «,, = 5 x 10~ and
the radiative damping «, = 2w x 10 MHz. We observe the
oscillation of the microwave transmission (real part) with re-
spect to the microwave frequency, which is robust to the added
middle wires. We note that the transmission does not vanish
at the nodes as it becomes purely imaginary. The calculated
frequency difference between the neighboring peaks (dips)
Aw = 21 x 164 MHz, agreeing well with Eq. (28).

The experiment [13] observed the oscillation of the mi-
crowave reflection with respect to the microwave frequency
in the YIG|GGG|YIG sandwiched structure. There, the forth
and back of the phonons between the two YIG layers are
responsible. Here the calculated oscillation in our transverse
structure has a different physical origin. On one hand, the
oscillation appears in the microwave transmission rather than
reflection. On the other hand, the coupling is chiral and the
excited phonon is unidirectional rather than a back and forth
motion.

V. NONRECIPROCAL PHONON PUMPING

In the presence of the nonreciprocal magnetoelastic cou-
pling, the injected phonon from a precessing magnetization
that travels with group velocity ¢, forms opposite currents at
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the two sides of the nanowires, i.e., a chiral pumping effect
that was considered recently in magnonics and photonics in
the presence of one to many magnets [28—31,35,36,42]. In this
part we extend the formalism in terms of the Green function to
calculate the chiral phonon pumping and make a connection
to the phonon scattering matrix.

As the group velocity of surface phonon does not depend
on the momentum, the current I; z in the Xy direction is
solely determined by the total injection rate Pg;, for the left-
and right-moving phonons with

Ir; = Pryrcy. (29)

The corresponding phonon injection rate depends on the
nonequilibrium distributions and can be generally calculated
by Landauer-Biittiker formula [49-52]. The injection rates

read
Pray = %< |:1‘?, Z ,31‘,81:|>
I

:—2Re(2 > gZ,;Gfk(H)) (30)

I k>0(<0)
which is evaluated by the Green functions
Gii(t, 1) = —ilbytHB (1))
and
G (t.1") = —=i(Bi (b (1)),

The “lesser” Green function can be calculated by invoking the
time-ordered Green function

G (t, 1) = —if(t — t)WBi)bi (1)) — i6(t' — )b, (tHBi(1)),

which evolves according to the coupled Hamiltonian A..:

. 8 / /
(—ims — )Gttt = s Gyt GD

where we define the time-ordered Green function for the Kittel
magnons

(1) = —i0(t — ) BB ()
—i0(t" = t)(BBi(t)).
Then through the operator —id/dt’ — w; = [g}((t’)]’l, we ex-

press

Gitt.t) = Y [ dngua Gt nGian.r). (2
.

The time-contoured Green function shares the same Feynman
rule as the time-ordered one, which allows us to use Langreth
theorem [52] to obtain the lesser Green function (in the fre-
quency space)

Gi@) = gur[Gl (@G (@) + GG (@)].  (33)
l!
Thus, the pumping rate is calculated to be

dw
Pray = =2 Z Z/ ERe[g;lGlrl/(w)gk,l’glj(60)

k>0(<0) I’

+ 8.,G(@)grr Gf (®)]. (34)

With complete nonreciprocity, one of Pg and P vanishes,
indicating that the pumped phonon flows unidirectionally in
half of the elastic substrate.

For the phonon, the lesser’ and advanced Green func-
tions are given by G~ (w) = 2mif (w)d(w — ), with f(w) =
1/(e®/®*sT) — 1) being the Bose-Einstein distribution at tem-
perature 7', and G{(w) = 1/(w — wy — iny), respectively. The
retarded Green function of magnons Gj(w) is given by
Eq. (19), while the advanced Green function Gj(w) =
G}/ (w). These two Green function defines the spectra function
A(w) = i[Gy (@) — G (w)], and, from fluctuation-dissipation
theorem, we have [52]

Gr(w) = iF () A (w)

= —F(0)[Gy(0) — Gy ()] (35)

nw
where F(w) parametrizes the magnon nonequilibrium
distribution. Accordingly, we can demonstrate Z(w) =
> &Gl (w)gr,r is purely imaginary as Z*(w) = —Z(w).
The phonon injection rates then read

Pray = Z ZRe[igzlG]r[/(wk)gk,l/]

k>0(<0) II'

X [F(wr) — fwp)]
- Z Z Re[ig; Gy (@i)gr.r ] f (@)

k>0(<0) II'

— > Religi Gii(@)ger|F (). (36)

k>0(<0) 11’

At the thermal equilibrium, F(wy) = f(wy) and Pry van-
ishes. The injection rate is closely related to the phonon
transmission as ), ig*,;lGZ’l,(a)k Vg = ¢r[1 — Sz1(wy)] from
Eq. (15).

Usually, the injection rate with one magnetic nanowire
is not large, and we may envision the injection rate can be
improved with many nanowires. Therefore, we are partic-
ularly interested in the scaling relation with respect to the
number of the nanowire. To this end, we adopt, for simplicity,
a monochromatic microwave of frequency wg to resonantly
excite the magnetic wires and F(wy) — f(wy) + 6 f8(wx —
wk ), with which Eq. (36) is reduced to

Pray = (1/cr)Tra)S S 37

where

1 . % r r¥
Te=5— ; Refig} ,[Gy(wx) — Gy (wi)]gr,.r ).

1
T = 5— ) Refighy ,[Giy(@x) - G (@x)]e-r.r} (38)
I

Again, we employ the Ni nanowire on top of GGG with the
same parameters as in Figs. 4 and 5 and tune the magnetic
field to the critical angle such that 7; = 0. Figure 6 shows the
approximate linear scaling of Tz with respect to the nanowire
number, suggesting an large injection rate with a nanowire
array of high magnetic quality.
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FIG. 6. Scaling of 7T with respect to the nanowire number with
different magnetic qualities. We tune the magnetic field to the critical
angle such that 7; = 0. The material parameters are indicated and
given in the text.

VI. DISCUSSION AND SUMMARY

In conclusion, we formulate the nonreciprocal phonon
transmission by acoustic pumping of magnon and its inverse
process, the chiral pumping of phonon by ferromagnetic reso-
nance. The model device we consider is one to many magnetic
nanowires on top of a high-quality acoustic insulator rather
than the extended magnetic film. We employ nanowire with
thickness much smaller than the wavelength of the SAWs, in
which situation the effect from the shear strain on the upper
and lower surface cancels, different from that of thick films
[19,68]. Therefore, in the wire setup the nonreciprocity comes
from the edge effect that is sensitive to the wire width and
is strong when the wire width is comparable to the SAW
wavelength. Both processes, associated with the phonon diode
effect and unidirectional phonon current in half-space, have
high efficiency when the magnetic quality of the wire is high,
but the efficiency is significantly enhanced by increasing the
number of wire that allows us to use material with ordi-
nary magnetic quality to realize similar functionalities. The
microwave transmission mediated by two remote magnetic
wires that interact by virtual exchange of phonons is phase
sensitive and hence can be used to detect, e.g., the phonon
group velocity and wire distance, which could be a unique
way to measure the coherent phonon propagation.

The nonreciprocal magnon-phonon interaction comes from
the chirality of magnon and rotation-momentum locking of
surface phonon. Classically, we calculate the rotating forces at
the edge of nanomagnet and show its relation with the magnon
chirality. We use a quantum formalism and employ the Green
function method to universally describe the chiral dynamics
between magnon and other quasiparticles including photon
[35,36], other magnon [28-31], electron [42], and phonon.
We demonstrate the non-Hermitian interaction between wires
lead to the collective motion of magnons that has influence on
the phonon diode effect, microwave transmission, and chiral
phonon pumping.

Magnetization dynamics can control the propagation of
surface phonon in gigahertz frequency, much higher than
the electric control in megahertz frequency [69,70]. Re-
placing the magnetic nanowire by the various nanomagnet
configurations such as the nanodisks is an interesting ex-
tension. As addressed in the text, the gain by a negative
Gilbert damping [64—67] can add amplification functionality
on the basis of the nonreciprocity that could be useful in the
future applications in the logic device. An inserted heavy
metal between the nanomagnet and acoustic insulator may
induce the Dzyaloshinskii-Moriya interaction that influences
the nonreciprocity as well, which could be a possibility to
improve the magnetoelasitic nonreciprocity [25,71,72].
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APPENDIX: HAMILTONIAN A, AND H,,

Here we address the Hamiltonian H, and H,, used in the
main text. From the equation of motion, the SAW eigenmodes
propagating in the ¥ direction of an isotropic elastic half-space
(x < 0) read [23,27,48]

X 2k2 sX iky
Yy = f]<ﬂk<€q - me‘ )ek“,

ksz—s . e‘”) L
s

where ¢ =,/k*—k} and s= k>—k} with k =
wr/ /(A +2u) and k; = wi+/p /10 being the wave vectors

for longitudinal and transverse bulk waves, respectively. Here
@ and A are the elastic Lamé constants, w; = c¢,|k| represents
the eigenfrequency of Rayleigh SAWs with velocity ¢,, and
¢, 1s a normalization constant. The opposite relative phase
of the displacement field Arg(v,/v¥«)|x—0 = =i for left- and
right-propagating waves indicates the rotation-momentum
locking of SAWs. The displacement field (4, #,) is quantized
by the eigenmodes ¥ (k) and phonon operators by (¢),

W, = ik (e‘” — (A1)

a0y, 1) = Y [P, 3, Obe(t) + ¥ (x, 3, B (A2)

k

The mode amplitudes ¢ are then normalized to recover the
elastic Hamiltonian of Rayleigh SAWs with

Ao=p / drid(ez,n =Y hodlb, (A3
k

leading to the normalization condition

h
2pLwy

0
/ dx (9 + 9 ) = (A4)

134417-9



TAO YU

PHYSICAL REVIEW B 102, 134417 (2020)

’i"

!

z

/
S\

FIG. 7. Configuration of equilibrium magnetization under an ap-
plied magnetic field of general direction.
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We then obtain the normalization factor

11+ P
=k 2a(1 — )\ oLe, o

where the factor

a(l =¥ (1+a?
& = ’
145

(AS5)

2a(a —2b)\ A
a T bﬂ—%ﬂ)) - (A9

with dimensionless material constants
a=q/lkl =1 (c/a),
b=s/lkl=1-7

Here ¢, = n/u/p and ¢; = /(A +2u)/p are, respectively,

the sound velocities of the surface and longitudinal bulk
waves.

For the magnetic nanowire, we focus on the case with a
large applied magnetic field Hy to saturate the magnetization
along the 7' axis (see Fig. 1). In the wire {xyz} coordinate,
My = My, My = My COS @ + my sing, and m, = —my sing +
my cos ¢. Focusing on the Kittel magnon,

(AT)

Ho = 110 / dr (n%ero + %Nxxmf n %Nyymf), (A8)
where p is the vacuum permeability, and N, >~ w/(d + w)
and N,, >~ d/(d + w) are the demagnetization constants with
the nanowire width w and thickness d [29,46]. Here the de-
magnetization factors are treated to be uniform across the
wire by disregarding their spatial variation at the edges of
nanowires. With the magnetic field applied opposite to the 2’
direction (Fig. 1 in the main text), the magnetization is not
parallel to the applied magnetic field due to the demagnetiza-
tion field. We thus assume that the magnetization is opposite
to the 7z’ direction, with an angle 6 with respect to the —2’
direction, as shown in Fig. 7. The free-energy density in the

static situation reads

fn = —1oMHy c0s 0 + 5 110Ny, [M, sin(p — 0)]>. (A9)
The minimum of the free energy df,,/d6 = 0 leads to
0 = N,y sin ¢ cos 9 M /Hj, (A10)

when Hjy > M., which is the situation we focus on. With
knowing the static configuration, the effective magnetic field
in the dynamical situation reads

H. = —Hycos0Z — Hysin 0y — Nymy X'
— Nyy(my cos @' + m sing’)(§' cos ¢’ + Z'sin¢")
~ [—Hy — N,y (my sin ¢ cos ¢ — M sin* ¢)]Z
— Nymy X' — Nyymy cos® ¢f, (Al1)

in which ¢’ = ¢ — 6 and we have used Eq. (A10) in the
second step. With this magnetic field, the Landau-Lifshitz

equation dm/dt = —puoym x Hgg leads to
dmy 2 .2
Il —oy (—Hy — MNy, cos” ¢ + Ny, M; sin” ¢)m,,
dmy L2
7 = —uoy (Hy — NyxMy — NyyMs sin” p)my, (A12)
from which we can find the Kittel frequency
wk = 1oy /[Ho + MsNyy cos(2¢)]
%/ (Ho + Ny, — Ny, M, sin” )
~ oy Ho, (A13)

which generally exists when Hy > M;.

Our simple nanowire configuration is different from
surface-modulated magnonic crystals or ferromagnetic
nanogratings, where the Kittel mode is reported to exist in
a region of magnetization direction with ¢ < /3 [73-75].
In the latter cases, the demagnetization field could develop a
more complicated distribution due to the special geometry of
magnetizations.

The transverse magnetization is then quantized by the
Kittel-magnon operator B(t) with wave function My yy (T):

1, (r) = —/2y AM [, (£)B (1) + i (1) BT ()],

The magnon amplitudes 7. , satisfy the normalization con-
dition [28]

(A14)

~ ~ ~ % ~ i
/dr[mx« (r)my, (r) —my (r)iny(r)] = —3 (A15)
With alarge Hy > M, the magnon is circularly polarized with
iy = iy such that

1 . i

My > ———, iy ¥ ———,

(A16)
2/Lwd 2v/Lwd

and H,, = liwg BT B with frequency wk =~ poy Ho.
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