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Supplementary Text

Section S1: Determination of the NV-YIG distance

The distance x0 between the YIG surface and the NV sensing layer is an important parameter

for the reconstruction of spin-wave amplitude from the detected field (Fig. 2 of the main text).

We determined x0 by sending a DC current IDC through the stripline and characterizing the

resulting magnetic field BDC(x0, y) using the NV sensing layer. This field causes spatially

dependent shifts in the NV ESR frequencies (Fig. S1 A-B) from which we can extract x0 as

described next. Considering an infinitely thin stripline of width w with its center at x = y = 0,



the stripline field is given by

BDC(x0, y) =
µ0IDC
2πw

(
1

2
ln

(
x20 + (y + w/2)2

x20 + (y − w/2)2

)
x̂ + arctan

(
wx0

x20 + y2 − (w/2)2

)
ŷ

)
(1)

To facilitate the analysis of the ESR spectra, we also applied a small bias field B0 to in-

crease the splitting of the 8 ESR transitions of the 4 NV families. From the total field B =

B0 + BDC , we calculate the ESR frequencies for the 4 NV families by diagonalizing the

NV spin Hamiltonian H = DS2
z + γ(B‖Sz + B⊥Sx), where B‖ is the projection of B onto

the NV axis and B⊥ =
√
B2 −B2

‖ . From the fit to this model (Fig. S1 C), we extract

B0 = (0.461(3), 3.568(3), 0.626(3)) mT, D = 2.872(1) GHz and x0 = 1.8(2) µm. For

the sample in Fig. 4 we used an alternative, optical method to determine the distance, focusing

the excitation laser first on the YIG surface and then on the NV layer, reading off the change

in the position of the microscope objective from its closed-loop piezo-controller, measuring

x0,Sample2 = 1.0(3) µm.

Section S2: Determination of MS and thickness of YIG with VNA measurements

The YIG saturation magnetization Ms and thickness d are important parameters for analyz-

ing the spin-wave dispersion. Here we describe the extraction of these parameters using vector

network analyzer (VNA) measurements.

We flip-chip a YIG chip on the central conductor of a coplanar waveguide (CPW) and use

a VNA to measure the microwave transmission S21 through the CPW as a function of a mag-

netic field B0 applied in-plane and parallel to the central conductor of the CPW (Fig. S2 A).

When the frequency matches the YIG FMR, energy is absorbed and S21 decreases. We extract

Ms = 1.42(1) · 105 A/m by fitting the data with the Kittel equation ω = γ
√
B0(B0 + µ0Ms).

We determine the thickness of the YIG chip from the frequency of the first perpendicular

standing spin-wave mode (PSSW) (43).To extract the frequency of the first PSSW, we measure

the spin-wave mediated transmission of microwaves between two striplines using the VNA (Fig.



S2 B-C). The PSSW manifests as a small dip in the transmission (indicated by the dashed black

line in Fig. S2 B and the black arrow in Fig. S2 D). To extract the thickness d, we calculate the

PSSW frequency at each field for fixed Ms and different values of the thickness using (44).The

best match is reached for d = 245(5) nm.

Section S3: Effect of the spin wave stray field on the NV spins

In this section we derive the NV Rabi frequency due to the stray fields from spin waves

excited in the YIG by a stripline carrying an oscillating current. In section S3.2 we present the

magnetization profile excited by the stripline magnetic field, based on the spin susceptibility of

the YIG. In section S3.3 we provide the dipolar field generated by the magnetization oscillations

at the NV centers and determine their Rabi frequency by evaluating the efficiency of the field in

driving the NV spins, including the chirality of the spin-wave field. In section S3.4, we extend

the results obtained to the case of two adjacent striplines and calculate the interference pattern.

Our theoretical framework captures and explains several effects visible in the data, such as the

spin wave focussing and caustics beams, as well as the interference fringes.

S3.1 Model and parameters

We use the reference frame depicted in Fig. 1 of the main text. Additionally, the length,

width and thickness of the stripline are referred to as l, w and δ, respectively, the thickness of

the yttrium iron garnet (YIG) film is d, and the NV-YIG distance is x0. The static magnetic

field B0 is always applied at a φ=35◦ angle with respect to the sample plane and parallel to the

striplines. Because B0 in the experiments of Figs. 2-4 does not exceed 27 mT, which is much

smaller than the YIG saturation magnetization µ0Ms ≈ 178 mT, the static magnetization of the

film only tilts out of plane by a small angle B0 sinφ/(µ0MS) / 5◦. We therefore disregard the

out-of-plane component of the static magnetizaton and magnetic field B0 in the calculations.

We use the parameters w = 2.5 µm, δ = 200 nm, l = 88 µm, d = 245 nm and x0 = 1 µm. The



striplines in Fig. 4 E-F of the main text are 110 µm apart and driven with a phase difference of

π.

S3.2 Magnetization excited by a microwave stripline of finite length

S3.2.1 Stripline magnetic field

Two striplines i = {1, 2} carrying a current density Ji(r, ω) with frequency ω generate the

vector potentials (45)

Ai(r, ω) =
µ0

4π

∫
dr′Ji(r

′, ω)
eik|r−r

′|

|r− r′|
, (2)

parallel to the direction of the current (the z-direction). µ0 is the vacuum permeability and

k = ω/c. Substituting the Weyl identity (46),

eik
√

(x−x′)2+(y−y′)2+(z−z′)2√
(x− x′)2 + (y − y′)2 + (z − z′)2

=
i

2π

∫
dkydkz

eikx|x−x
′|+iky(y−y′)+ikz(z−z′)

kx
, (3)

where k =
√
k2x + k2y + k2z (and hence kx =

√
k2 − k2y − k2z ), the Fourier components of the

magnetic field µ0(Hx, Hy)
(i) = (∂Az/∂y,−∂Az/∂x)(i) in reciprocal space are

H(i)
x (x; ky, kz) = 2iJi(ω)

e−ikxx

kx

eikxδ − 1

kx
sin
(
ky
w

2

) sin(kzli/2)

kz
e−ikzzi , (4)

H(i)
y (x; ky, kz) = 2iJi(ω)

e−ikxx

kx

eikxδ − 1

ky
sin
(
ky
w

2

) sin(kzli/2)

kz
e−ikzzi , (5)

where kx =
√

(ω/c)2 − k2y − k2z , zi are the z-coordinates of the centers of the striplines and the

total current is given by Jiwδ. The generated magnetic field is perpendicular to the stripline axis,

i.e. Hz = 0, and kxHx(x; ky, kz) = kyHy(x; ky, kz). Since l � w, the magnetic field oscillates

as function of kz with a short period of 4π/l, while it oscillates with ky with a much longer

period of 4π/w (Fig. S3 A). For a frequency ω/(2π) ∼ 2 GHz, k0 ≡ ω/c = 4.19 rad/m with

characteristic wavelength λ0 = 2π/k0 = 0.15 m. The wavelength of the excited spin waves is

much smaller than this scale, indicating that
√
k2y + k2z � ω/c. Thus, kx → i

√
k2y + k2z = iκ.



With κδ � 1:

H(i)
x (x; ky, kz) = −2iJi(ω)eκx

e−κδ − 1

κ2
sin
(
ky
w

2

) sin(kzli/2)

kz
e−ikzzi ,

H(i)
y (x; ky, kz) = 2Ji(ω)eκx

e−κδ − 1

κky
sin
(
ky
w

2

) sin(kzli/2)

kz
e−ikzzi . (6)

The magnetic field distribution in k-space is plotted in Fig. S3 A for the sample dimensions

specified above, emphasizing the fast kz oscillations. A microwave excitation with field com-

ponents hx = ±ihy is circularly polarized. The relation

Hx(x; ky, kz) = −i(ky/κ)Hy(x; ky, kz). (7)

implies that when |ky| � |kz|, |Hx| � |Hy| , so the radiation is nearly linearly-polarized along

the ŷ-direction (in momentum space). On the other hand, when |ky| � |kz|, Hx(x; ky, kz) →

−isgn(ky)Hy(x; ky, kz) is nearly right- (left-) circularly polarized for positive (negative) ky.

The polarization-momentum locking of the stripline magnetic field is responsible for the chiral

pumping of circularly-polarized spin waves (24,35,47).

S3.2.2 Excited magnetization

The stripline magnetic field excites spin waves in the YIG film. In the mixed position and

momentum space, the dynamic magnetization M(x,k, ω) reads in linear response (24,35,47)

Mα(x,k, ω) =
1

d

∫ 0

−d
dx′χαβ(x, x′,k, ω)Hβ(x′,k, ω) (8)

where we sum over repeated Cartesian indices α, β = {x, y, z}. γ is the electron gyromagnetic

ratio and the spin susceptibility reads (24)

χαβ(x, x′,k, ω) = −γµ0Msm
k
α(x)mk∗

β (x′)
1

ω − ωk + iΓk

. (9)

Here,mk
α(x) characterize the ellipticity of the magnetization precession associated with the spin

waves (see Eq. (11) and Eq. (13)), and Γk = 2αGωk is the Gilbert damping of the spin waves

with frequency ωk.



For the parameters of our experiments, the spin waves are in the dipolar-exchange regime

with strongly anisotropic dispersion. For the long wavelengths considered here, the magnetiza-

tion is homogeneous across the film thickness, which allows for an analytical treatment. The

spin-wave dispersion for free magnetization boundary conditions reads (24,35,47)

ωk = γµ0Ms

√
[ΩH + αexk2 + 1− f(|ky|)]

[
ΩH + αexk2 + (k2y/k

2)f(|ky|)
]
, (10)

where αex is the exchange stiffness, ΩH ≡ B0 cos(φ)/µ0Ms, and

f(|ky|) = 1− 1

|ky|d
+

1

|ky|d
exp(−|ky|d).

At long wavelengths, mx and my are homogeneous across the film thickness and given by

mx =

√
D + 1

(D − 1)
, my = i

√
D − 1

(D + 1)
, (11)

with

D =
1/2− (1/2)

(
1 + k2y/k

2
)
f(|ky|)

ωk/(µ0γMs)−
(
ΩH + αexk2y + 1/2

)
+ (1/2)

(
1− k2y/k2

)
f(|ky|)

. (12)

We define the ellipticity parameter

η =
|mx|
|my|

=
D + 1

D − 1
. (13)

In the dipolar regime, the spin waves precess elliptically. When k → 0, f(|ky|) → 0, ωk →

µ0γMs

√
ΩH(ΩH + 1) (corresponding to the FMR frequency),D → −1−2ΩH−2

√
ΩH(ΩH + 1).

When ΩH → 0 with a small static magnetic field, D → −1− 2
√

ΩH , |my| � |mx|, leading to

a (nearly) linearly-polarized Kittel mode. When k is large, the exchange interaction dominates

and the spin waves are right-circularly polarized.

We plot the calculated excited transverse magnetization amplitude in momentum space in

Fig. S3 B-C with parameters similar to those in Fig. 4F of the main text, i.e. Ms = 1.42 ·

105 A/m, αG = 1 × 10−4, ω/2π = 2.29 GHz. The momentum distribution of the resonantly



excited spin waves reflects the hyperboles formed by the cut through the anisotropic spin wave

dispersion at the given frequency. The excitation becomes unidirectional when the spin waves

are circularly-polarized (24,47), in which case only those with positive values of ky are excited.

Due to the YIG thickness much smaller than the wavelengths considered, this chirality is not

the intrinsic one of Damon-Eshbach surface modes, which exist only in much thicker films.

The real part of the inverse Fourier transform of Eq. (8) gives the observable spatiotemporal

magnetization

Mα(ρ, t) =
1

4π2

∫∫
dkeiρ·k−iωtMα(x,k) (14)

with ρ = (y, z). Using this equation, we calculate a snapshot of the dynamic magnetization

when spin waves are driven by a stripline as in Fig. 4 of the main text (Fig. S4). We observe

interference of spin waves with frequency ω. Triangular areas of weak and strong excitation

exist at the sides and in front of the stripline, respectively, with a spin wave focus point at the

vertex of the latter triangle. These features can be understood from the anisotropy of the spin

wave dispersion that leads to a critical opening angle of available spin wave momenta at a given

frequency.

S3.3 Dipolar field and Rabi frequency

When the frequency of the magnetic stray field generated by a spin wave matches an NV

ESR frequency, it can drive Rabi rotations of the NV spin if it has a circularly polarized com-

ponent of the correct handedness. Here we describe the spin-wave induced Rabi driving of the

NV spins.

S3.3.1 Dipolar field generated by an oscillating magnetization

The magnetic field generated by a magnetization pattern can be calculated using Coulomb’s

law (45)

Bβ(r, t) =
µ0

4π
∂β∂α

∫
dr′

Mα(r′, t)

|r− r′|
. (15)



By substituting the magnetization from Eq. (14) and using the Coulomb integral∫
dr′

eik·ρ
′
f (x′)

|r− r′|
=

2π

k
eik·ρ

∫
dx′e−|x−x

′|kf (x′) , (16)

where k = |k|, we obtain the magnetic field above the film (x > 0) (24,35,47)

BSW,x(x,k, t) =
µ0

2
e−kx−iωt(1− e−kd)

(
Mx(k)− iky

k
My(k)

)
, (17)

with BSW,y(k) = −i(ky/k)BSW,x(k), and BSW,z(k) = −i(kz/k)BSW,x(k). Thus, when |kz| �

|ky|,BSW,y(k) = −isign(ky)BSW,x(k), i.e. the polarization and momentum are locked. BSW,(x,y)

vanishes for negative ky when the spin waves are right circularly-polarized since Mx(k) −

iMy(k)ky/k → 0 (24,47). The right-forward dipolar field is left-circularly polarized.

In real space, the stray field generated by the spin wave is given by the real part of the inverse

Fourier transform

BSW (x,ρ, t) =
1

4π2

∫∫
eiρ·kBSW (x,k, t)dk. (18)

A snapshot of the spin-wave stray field at a distance x0 above the film is plotted in Fig. S5.

Since the distance to the film is much smaller than the relevant wavelengths, the interference

pattern of the spin waves is well resolved. We note that |BSW,z| � |BSW,x| , |BSW,y| because

the excited spin waves propagate almost perpendicular to the stripline. The strong chirality

(unidirectionality) is caused by both the stripline magnetic field (see in Fig. S3) and the stray

field from the spin waves (24,35,47). All Cartesian vector components exert a torque on the NV

center spin, which is oriented at an angle to the film. The dipolar field shows a focal point with

large amplitude, which can be controlled by tuning the magnetic field and stripline frequency,

which could be interesting for spintronic applications.

The field of a spin wave that is characterized by |kz| � |ky| (therefore k ⊥M, correspond-

ing to a Damon-Eshbach geometry and an effectively one-dimensional configuration) is given

by (x > 0)

BSW (x,k, t) = −µ0

2
e−kx−iωt(1− e−kd)My(k) (1 + sign(ky)η) (ŷ + isign(ky)x̂) , (19)



where we used Mx = −iηMy. To arrive at the equations given in the main text, we calculate

the field of a traveling spin wave given by the real part of m⊥ = m0
⊥e

i(k0y−ωt)(ŷ − iηx̂). The

Fourier transform of the y-component is

My(ky) = m0
⊥2πδ(ky − k0). (20)

Substituting into Eq. (19) and taking the inverse Fourier transform, we get Eq. (2) of the main

text

BSW(y) = −Re[
µ0m

0
⊥

2
e−|k0|x0ei(k0y−ωt)(1− e−|k0|d)(1 + sign(k0)η)(ŷ + isign(k0)x̂)] (21)

= −Re[B0
SW e

i(k0y−ωt)(ŷ + isign(k0)x̂)] (22)

S3.3.2 Calculation of the Rabi frequency

The dynamic magnetic field generated by the spin waves can induce transitions between the

spin states of the NV center when its frequency matches an NV ESR frequency as described by

the NV spin Hamiltonian. We write the dynamic part of the magnetic field as

BSW(y) = Re[(Bxx̂ +Byŷ +Bzẑ)e−iωt] (23)

In the local coordinates of the NV center, with the z′-direction along the applied static

magnetic field (therefore along the NV axis), the field amplitudes becomes

Bx′ = Bx cosφ−Bz sinφ, (24)

By′ = By, (25)

Bz′ = Bz cosφ+Bx sinφ. (26)

The Hamiltonian describing the NV spin dynamics is given by

HNV = DS2
z + γB′ · S (27)



where S = (Sx, Sy, Sz) are the Pauli matrices for a spin 1 and D/2π = 2.87 GHz is the zero-

field frequency. The two magnetic-dipole allowed transitions between the ms = 0 and the

ms = ±1 states are driven by magnetic fields of opposite handedness. When the magnetic-field

frequency ω matches one of the NV ESR frequencies D± γB0, the NV spin will Rabi oscillate

between the corresponding ms = 0 and ms = ±1 states with a Rabi frequency given by

ω±R =
γ√
2
|Bx′ ± iBy′| . (28)

We use Eq. (28) to calculate the spin-wave induced Rabi frequency caused by the spatial

magnetization profile shown in Fig. S4. The Rabi frequency closely resembles the spatial mag-

netization profile, including the presence of caustic beams and a focal point (Fig. S6).

When the NV ω− transition is driven by a resonant Damon-Eshbach spin wave with k0 > 0,

we get

ω−R =
√

2γB0
SW cos2

φ

2
. (29)

If the NV spin is also driven by a magnetic field that is given by Re[BREFe
−iωt], we get

ω−R =
γ√
2

∣∣∣∣2B0
SWe

ik0y cos2
φ

2
+BREF,x′ − iBREF,y′

∣∣∣∣ . (30)

from which follows Eq. 3 of the main text. Including a damping parameter into Eq. (30), we fit

the data of Fig. 2B of the main text, from which we extract the spin-wave amplitude m0
⊥ (using

the ellipticity parameter calculated with Eq. (13)) and the spin-wave damping:

ω−R =
γ√
2

∣∣∣∣2B0
SWe

ik0y−y/y0 cos2
φ

2
+ eiθBREF

∣∣∣∣ . (31)

Here, y0 is the spin-wave decay length from which the Gilbert damping parameter is extracted

using y0 = vg/(2ωαG), with vg the group velocity, leading to αG = 1.2(1) · 10−4. The main

contribution to the uncertainty is caused by the uncertainty in the NV-YIG distance, which we

measured to be 1.8(2) µm (see section S1) at the location of the stripline and which increases



by about 0.4 µm/mm as estimated from the optical interference fringes visible in Fig. 1B of the

main text (the distance change between two fringes is given by λ0/2, with λ0 the wavelength of

the light in air). Using Eq. (31), we also fitted the data shown in Fig. 3B of the main text, with

BREF given by Eq. (1).

S3.4 Effect of magnetic field misalignment on the observed spin-wave patterns

To explain the asymmetry along ẑ of the observed spin-wave patterns in Fig. 4, we repeat

the calculation of Fig. 4C with the introduction of a 5◦ misalignment between the static field

and the stripline (Fig. S7). The tilt is from the ẑ toward the −ŷ axis.

S3.5 Influence of the spin-wave propagation direction on the field profile

As previously explained (S3.3.2, Eq. (28)), right(left)-propagating spin waves generate a

circularly-polarized field with handedness that drives the ω− (ω+) transition. Moreover, for

perfectly circular polarization, the right(left)-propagating waves only generate a field above

(below) the film, which can be simply explained by cancellation of the field contributions of

neighbouring spins (Fig. S8). For elliptical polarization, the field suppression is not complete.

S3.6 Interference between spin waves generated by two adjacent striplines

Finally, we calculate the interference pattern generated by two striplines on the YIG film,

with centers separated by 200µm. With l1 = 100µm and l2 = −100µm in Eq. (6) and consid-

ering the π phase difference between the two striplines

Hx(x; ky, kz) = −2iJ(ω)eκx
e−κδ − 1

κ2
sin
(
ky
w

2

) sin(kzl/2)

kz
(e−ikzz1 − e−ikzz2), (32)

Hy(x; ky, kz) = 2J(ω)eκx
e−κδ − 1

κky
sin
(
ky
w

2

) sin(kzl/2)

kz
(e−ikzz1 − e−ikzz2). (33)

By substitution into Eqs. (8) and (17), we obtain the Rabi frequencies of the NV center in

Figure S9. The spin-wave interference is clearly reflected in the Rabi frequency.



YIG

diamond

NV ensemble

stripline

y

x

0 30-30

B 
(m

T)

0

-0.4

0.4

y (µm)

B
Bx

y

0 30-30
y (µm)

fr
eq

ue
nc

y 
(G

H
z)

3

2.8

2.9

1

0.99

0.995

PL (norm
alized)

A B

C

Fig. S1. Determination of the YIG-NV distance. (A) Idea of the measurement. The diamond
is located at a height x above the current-carrying stripline fabricated on the YIG. ESR spectra
are measured along a line perpendicular to the stripline. The current in the stripline generates
a magnetic field (dashed black line), causing a shift of the NV ESR frequencies. (B) NV ESR
spectra measured along a line oriented perpendicularly to the stripline (which is located between
y=0 and y=30 µm). The eight dips in the photoluminescence (PL) are caused by the ESR
transitions of the four NV families having different orientations in the diamond crystal lattice.
(C) Stripline magnetic field in the NV layer corresponding to the values extracted from the fit.



A

2

0

D

Fr
eq

ue
nc

y 
(G

H
z)

B

S    (norm
.)

-1

21

3

1

0

Magnetic �eld (mT)
20 40 60

50 µm

C

B = 30 mT

Frequency (GHz)
2.6 32.2

0

S 
   

(n
or

m
.)

21

2

-5

Magnetic �eld (mT)
20 40 60

Fig. S2. VNA-FMR detection of spin waves to determine Ms and thickness of the YIG
chip. (A) Transmission S21(B,ω) through the central conductor of a CPW on top of which
a YIG chip is placed. The absorption of YIG at the FMR (dark blue line in the data) is ex-
tremely sharp (FWHM<10 MHz). The dashed black line is calculated using the extracted value
of MS = 1.42 · 105 A/m. (B) S21(B,ω) mediated by spin waves across the device shown in
(C). The white and black dashed lines are the calculated frequencies of the FMR and 1st-order
PSSW, respectively. The red dashed line indicates a frequency that is twice that of the calcu-
lated band minimum. Above this frequency, three-magnon scattering becomes allowed, which
may contribute to the observed vanishing of the spin-wave mediated transmission above this
frequency. (C) Device used to obtain the measurement in (B). The two gold striplines fabri-
cated on YIG and connected to the input and output of the VNA as indicated by the arrows.
Stripline width = 2.5 µm, thickness = 200 nm. (D) Vertical linecut of (B) at 30 mT, showing
the FMR absorption dip followed by several oscillations and the PSSW, indicated by the black
arrow.



A B C

-1 -0.5  0  0.5  1
k y (µm-1)

-1

-0.5

 0

 0.5

 1

k z (µ
m

-1
)

 0

 0.5

 1

|hx(k)| |My(k)|

-2.5  0  2.5
k y (µm-1)

-2.5

 0

 2.5

k z (µ
m

-1
)

0

0.6

1.2

|MX(k)|

-2.5  0  2.5
k y (µm-1)

-2.5

 0

 2.5

k z (µ
m

-1
)

0

0.2

0.4

Fig. S3. Drive field and excited magnetization in reciprocal space. (A) x−component of
the magnetic field generated by the stripline in momentum space. (B)-(C) Resulting transverse
magnetization amplitude, for αG = 1 × 10−4, ω = 2.29 GHz, µ0Ms = 0.178 T, and applied
magnetic field B0 = 20 mT. Note the different scales used for plotting |Mx| and |My|.

A B

0  1  2
-2

-1

 0

1

 2

 0

-1.5

Re{M  (r)}x

y/l

z/
l

1.5

0  1  2
-2

-1

 0

1

 2

 0

-4

y

y/l

z/
l

4

Re{M  (r)}

Fig. S4. Spatial profile of the excited magnetization. Spatial profile of the out-of-plane
(A) and in-plane (B) of the transverse magnetization oscillations excited by a single stripline,
located at y = 0 between z/l = −0.5 and z/l = +0.5.



A B

0  -150

 0 0

y (µm)

0.6 C

0 0

 0  0

-0.6

y (µm) y (µm)

z 
(µ

m
)

z 
(µ

m
)

z 
(µ

m
)

150  -150150  -150150
 -150

150

 -150

150

 -150

150

0

0.6

-0.6

0

0.1

-0.1

Re
{B

  }
 (m

T)

Re
{B

  }
 (m

T)

Re
{B

  }
 (m

T)

zyx

D E

0  -150

 0

0

y (µm)

1.2
F

0 0

 0  0

y (µm) y (µm)

z 
(µ

m
)

z 
(µ

m
)

z 
(µ

m
)

150  -150150  -150150
 -150

150

 -150

150

 -150

1501.2

0

0.1

0

|B
  -

iB
  | 

(m
T)

|B
  |

 (m
T)

z

x
y

|B
  +

iB
  | 

(m
T)

x
y

Fig. S5. Spatial profile of the dipolar field generated by spin waves. Snapshot of the stray
field in real space at t = 0 for a microwave driving with a frequency ω = 2.29 GHz and a
stripline current of 0.7 mA at a distance x0 above the film. The stripline is located at y = 0,
z ∈ [−40, 40]µm. The damping coefficient is αG = 10−4.



A B

0
 -2

 2

 0

 0

y/l

z/
l hot spot

caustics

1

4 2

Rabi frequency (norm
.)

Fig. S6. Calculated spatial map of the Rabi frequency for a single stripline. (A) Rabi
frequency calculated from the dipolar field without the (small) direct contribution from the
stripline at y = 0 and z/l ∈ [−0.5, 0.5]. (B) Schematics indicating the emergence of caustic
spin-wave beams and the ”hot spot” where energy gets focussed.
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Fig. S7. Effect of a small angle between the stripline and the in-plane component of the
static field B0. Calculated spatial map of the Rabi frequency when the in-plane projection of
the static field (B0) is oriented at a 5◦ angle from the stripline.
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Fig. S8. Magnetic field generated by spin waves propagating to the left and right. The
magnetic stray field generated by a spin wave is the sum of the fields generated by the individual
precessing spins in the magnet. The phases of the spin waves traveling to the right interfere
constructively/destructively above/below the film, and vice versa for spin waves traveling to the
left.



0
-2.5

2.5

 0

 0

y/l

z/
l

1

4 2

Rabi frequency (norm
.)

Fig. S9. Calculated spatial map of the Rabi frequency induced by two adjacent striplines.
We observe interference of spin waves generated by two striplines located at y = 0 for z ∈
±[0.5, 1.5].
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