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Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae.
The virus causes the infectious disease COVID-19. The biology of coronaviruses has been studied for many
years. However, bioinformatics tools designed explicitly for SARS-CoV-2 have only recently been developed
as a rapid reaction to the need for fast detection, understanding, and treatment of COVID-19. To control the
ongoing COVID-19 pandemic, it is of utmost importance to get insight into the evolution and pathogenesis of
the virus.
In this review, we cover bioinformatics workflows and tools for the routine detection of SARS-CoV-2 infection,
the reliable analysis of sequencing data, the tracking of the COVID-19 pandemic and evaluation of containment
measures, the study of coronavirus evolution, the discovery of potential drug targets and development of ther-
apeutic strategies. For each tool, we briefly describe its use case and how it advances research specifically for
SARS-CoV-2. All tools are freely available online, either through web applications or public code repositories.
Contact: manja@uni-jena.de

Keywords: virus bioinformatics, SARS-CoV-2, sequencing, epidemiology, drug design, tools

3

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2020                   doi:10.20944/preprints202005.0376.v1

manja@uni-jena.de
https://doi.org/10.20944/preprints202005.0376.v1


F. Hufsky et al. Computational strategies to combat COVID-19

1 Introduction
On December 31, 2019, the Wuhan Municipal Health
Commission reported several cases of pneumonia in
Wuhan (China) to the WHO1. The cause of these
cases was a previously unknown coronavirus, now
known as severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), which can manifest itself in
the disease named COVID-19. At the time of writ-
ing (May 22, 2020), nearly five million cases were re-
ported worldwide, with over 320,000 deaths2.
The group of Coronaviridae includes viruses with very
long RNA genomes up to 33,000 nucleotides. SARS-
CoV-2 belongs to the Sarbecovirus subgenus (genus:
Betacoronavirus) and has a genome of approximately
30,000 nucleotides [1]. In line with other members of
Coronaviridae, SARS-CoV-2 has four main structural
proteins: spike (S), envelope (E), membrane (M), and
nucleocapsid (N). Further, several nonstructural pro-
teins are encoded in the pp1a and pp1ab polyproteins,
which are essential for viral replication [1]. SARS-
CoV-2 seems to use the human receptor ACE2 as its
main entry [2], which has been observed for other Sar-
becoviruses as well [3, 4]. The binding domains for
ACE2 are located on the spike proteins, which further
contain a novel furin cleavage site, associated with in-
creased pathogenicity and transmission potential [5–
8].
Although SARS-CoV-2 has a lower mutation rate than
most RNA viruses, mutations certainly accumulate
and result in genomic diversity both between and
within individual infected patients. Genetic hetero-
geneity enables viral adaptation to different hosts and
different environments within hosts, and is often asso-
ciated with disease progression, drug resistance, and
treatment outcome.
In light of the COVID-19 pandemic, there has been
a rapid increase in SARS-CoV-2 related research. It
will be critical to get insight into the evolution and
pathogenesis of the virus in order to control this pan-
demic. Researchers around the world are investigat-
ing SARS-CoV-2 sequence evolution on genome and
protein level, are tracking the pandemic using phylo-
dynamic and epidemiological models, and are exam-
ining potential drug targets. Laboratories are sharing
SARS-CoV-2 related data with unprecedented speed.
In light of this sheer amount of data, many fundamen-
tal questions in SARS-CoV-2 research can only be
tackled with the help of bioinformaticians. Adequate
analysis of these data has the potential to boost dis-
covery and inform both fundamental and applied sci-
ence, in addition to public health initiatives.
In this review, we cover bioinformatics workflows and
tools (see Table 1) starting with the routine detec-
tion of SARS-CoV-2 infection, the reliable analysis of

1https://www.who.int/csr/don/05-january-2020-pneumonia-of-
unkown-cause-china/en/

2https://www.who.int/docs/default-source/coronaviruse/situation-
reports/20200521-covid-19-sitrep-122.pdf?sfvrsn=24f20e05_2

sequencing data, the tracking of the COVID-19 pan-
demic, the study of coronavirus evolution, up to the
detection of potential drug targets and development
of therapeutic strategies. All tools have either been
developed explicitly for SARS-CoV-2 research, have
been extended or adapted to coronaviruses, or are of
particular importance to study SARS-CoV-2 epidemi-
ology and pathogenesis.

2 Detection and annotation
The routine detection method for SARS-CoV-2 is
a real-time quantitative reverse transcriptase poly-
merase chain reaction (qRT-PCR). The test is based
on the detection of two nucleotide sequences: the
virus envelope (E) gene and the gene for the RNA-
dependent RNA polymerase (RdRp) [9]. Specificity
(exclusion of false positives) and sensitivity (exclusion
of false negatives) are two of the most important qual-
ity criteria for the validity of diagnostic tests. To ensure
unique identification of SARS-CoV-2 and avoid false-
negative and false-positive detection, the computation
of SARS-CoV-2-specific primers is required. A new
set of primers might be required, if the specificity or
sensitivity of the qRT-PCR test changes due to muta-
tions in the SARS-CoV-2 genome or related corona-
virus genomes (see PriSeT).
Besides qRT-PCR, genome analysis plays a crucial
role in public health responses, including epidemiolog-
ical efforts to track and contain the outbreak (see Sec-
tion Tracking, epidemiology and evolution). The
genome sequence of SARS-CoV-2 was rapidly deter-
mined and shared on GenBank (MN908947.3). It is
annotated based on sequence similarity to other coro-
naviruses. Next-generation sequencing (NGS) can
be used to assess the genomic diversity of the virus.
Regular sequencing from clinical cases is, for exam-
ple, useful to monitor for mutations that might affect
the qRT-PCR test (see CoVPipe, V-Pipe). To reliably
derive intra-host diversity estimates from deep se-
quencing data is challenging since most variants oc-
cur at low frequencies in the virus population, and am-
plification and sequencing errors confound their de-
tection. Multiple related viral strains (haplotypes) are
hard to resolve but may be critical for the choice of
therapy (see Haploflow, V-Pipe).
The SARS-CoV-2 nanopore sequencing protocol has
been developed and optimised by the ARTIC net-
work [10], which has extensive experience and ex-
pertise in deploying this technology in the sequenc-
ing and surveillance of outbreaks, including Zika and
Ebola [11]. Nanopore sequencing is used to quickly
generate high accuracy genomes of SARS-CoV-2 and
track both transmission of COVID-19 and viral evolu-
tion over time (see poreCov).
In addition to amplicon-based sequencing ap-
proaches, metagenomic/-transcriptomic sequencing
offers the ability to identify the primary pathogen and
additional infections that may be present [12]. It can
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Table 1: Bioinformatics tools accelerating SARS-CoV-2 research. Overview of all workflows and tools covered in this
review. A list of these and further tools can be found on the website of the European Virus Bioinformatics Center (EVBC):
http://evbc.uni-jena.de/tools/coronavirus-tools/.

Tool Advancing SARS-CoV-2 research by Link(s)

Detection and annotation

PriSeT computing SARS-CoV-2 specific primers for RT-PCR tests https://github.com/mariehoffmann/PriSeT

CoVPipe reproducible, reliable and fast analysis of NGS data https://gitlab.com/RKIBioinformaticsPipelines/
ncov_minipipe

poreCov reducing time-consuming bioinformatic bottlenecks in processing
sequencing runs

https://github.com/replikation/poreCov

VADR validation and annotation of SARS-CoV-2 sequences https://github.com/nawrockie/vadr

V-Pipe reproducible NGS-based end-to-end analysis of genomic diversity
in intra-host virus populations

https://cbg-ethz.github.io/V-pipe/
https://github.com/cbg-ethz/V-pipe

Haploflow detection and full-length reconstruction of multi-strain infections https://nextcloud.bifo.helmholtz-
hzi.de/s/j4MyspJs5kfdZxy

VIRify identifying viruses in clinical samples https://github.com/EBI-Metagenomics/emg-
viral-pipeline

VBRC genome
analysis tools

visualizing differences between coronavirus sequences at different
levels of resolution

https://www.4virology.net

VIRULIGN fast, codon-correct multiple sequence alignment and annotation of
virus genomes

https://github.com/rega-cev/virulign

Rfam COVID-19 annotating structured RNAs in coronavirus sequences and
predicting secondary structures

https://rfam.org/covid-19

UniProt
COVID-19

providing latest knowledge on proteins relevant to the disease for
virus and host

https://covid-19.uniprot.org/

Pfam protein detection and annotation for outbreak tracking and studying
evolution

https://pfam.xfam.org

Tracking, epidemiology and evolution

Covidex fast and accurate subtypification of SARS-CoV-2 genomes https://sourceforge.net/projects/covidex
https://cacciabue.shinyapps.io/shiny2/

Pangolin assigning a global lineage to query genomes https://pangolin.cog-uk.io/
https://github.com/hCoV-2019/pangolin/

BEAST 2 understanding geographical origin, and evolutionary and
transmission dynamics

https://www.beast2.org/

Phylogeographic
reconstruction

studying the global spread of the pandemic with particular focus on
air transportation data

https://github.com/hzi-
bifo/Phylogeography_Paper

COPASI modelling the dynamics of the epidemic and effect of interventions http://copasi.org/
https://github.com/copasi

COVIDSIM analysing effects of contact reduction measures and guide political
decision making

http://www.kaderali.org:3838/covidsim

CoV-GLUE tracking changes accumulating in the SARS-CoV-2 genome http://cov-glue.cvr.gla.ac.uk/

PoSeiDon detection of positive selection in protein-coding genes https://github.com/hoelzer/poseidon

Drug design

VirHostNet understanding molecular mechanisms underlying virus replication
and pathogenesis

http://virhostnet.prabi.fr/

CORDITE carrying out meta-analyses on potential drugs and identifying
potential drug candidates for clinical trials

https://cordite.mathematik.uni-marburg.de

CoVex identifying already approved drugs that could be repurposed to
treat COVID-19

https://exbio.wzw.tum.de/covex/

P-HIPSTer enabling the discovery of PPIs commonly employed within the
coronavirus family and PPIs associated with their pathogenicity

http://www.phipster.org/
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be used to identify coronaviruses in clinical and envi-
ronmental samples, e.g., from human Bronchoalveo-
lar lavage fluid (see VIRify). SARS-CoV-2 genomic
traces in human faecal metagenomes from before the
pandemic support the hypothesis of a possible pres-
ence of a most recent common ancestor of SARS-
CoV-2 in the human population before the outbreak
of the current pandemic, possibly in an inactive non-
virulent form [13]. Further, metagenomics helps to
check sequence divergence as the virus could un-
dergo mutation and recombination with other human
coronaviruses.
To help fight the COVID-19 pandemic, it is essen-
tial to make high-quality SARS-CoV-2 genome se-
quence data and metadata openly available. On
GISAID3 (Global Initiative on Sharing All Influenza
Data), laboratories around the world have shared viral
genome sequence data with unprecedented speed4.
Researchers are encouraged to submit genome se-
quences to public databases that do not impose lim-
itations on the sharing and use of the genomic se-
quences. NCBI offers a new streamlined submission
process for SARS-CoV-2 data5.
Several bioinformatics tools have been developed
for the detection and annotation of SARS-CoV-2
genomes (see VADR, V-Pipe, VIRify, VBRC tools,
VIRULIGN). Comparative genomics helps to detect dif-
ferences to other coronaviruses, e.g., SARS-CoV-1,
which might affect the functionality and pathogenesis
of the virus.
Aside from coding sequences and proteins, the identi-
fication of conserved functional RNA secondary struc-
tures (see Rfam) is essential to understanding the
molecular mechanisms of the virus life-cycle [14, 15].
Coronaviruses are known to have highly structured,
conserved untranslated regions, which harbour cis-
regulatory RNA secondary structure, controlling viral
replication and translation, and even small changes in
these structures reduce the viral load drastically [16–
18].
Studying viral genomic diversity and the evolution
of coding and non-coding sequences (see UniProt,
Pfam, Rfam) is important for a better understand-
ing of the evolution and epidemiology of SARS-CoV-
2 (see Section Tracking, epidemiology and evo-
lution), and the molecular mechanisms underlying
COVID-19 pathogenesis (see Section Drug design).

2.1 PriSeT: Primer Search Tool
PriSeT [19] is a software tool that identifies chemically
suitable PCR primers in a reference data set. The
reference data set can be a FASTA file of complete
genomes or a set of short regions. It is optimized for
metabarcoding experiments where species are iden-
tified from an environmental sample based on a bar-

3https://www.gisaid.org/
4>30,000 SARS-CoV-2 genomic sequences on May 22, 2020
5https://ncbiinsights.ncbi.nlm.nih.gov/2020/04/09/sars-cov2-data-

streamlined-submission-rapid-turnaround/

Figure 1: SARS-CoV-2-specific primers computed with
PriSeT. Approximate amplicon locations of de novo com-
puted primer pairs for SARS-CoV-2.

code – a relatively short region from the genome. The
most frequently applied type of PCR for such exper-
iments is the paired-end PCR – two different primer
sequences are chosen to be complementary to the
template and located within an offset range. The re-
gion in between is the amplicon or barcode and will
be matched against the reference database to resolve
operational taxonomic units to organisms.
PriSeT computes frequent k-mers that could serve
as primer candidates, combines them to pairs, and
ranks them by frequency and taxonomic coverage.
When applied to SARS-CoV-2 genomes and adjust-
ing the parameters to the ones of an RT-PCR, PriSeT
computes primer pairs that occur in all genomes and
are suitable for RT-PCR. These primer pairs can then
be filtered further for those producing transcripts that
have no matches outside the SARS-CoV-2 taxon. A
list of SARS-CoV-2-specific primer pairs computed on
19 SARS-CoV-2 genomes is available on Research-
Gate6 (see Fig 1).
The computation of SARS-CoV-2-specific primers will
help to design RT-PCR tests, since the resulting bar-
codes serve as unique identifiers for SARS-CoV-2 and
avoid false-negative and false-positive identifications.
PriSeT is hosted on GitHub:
https://github.com/mariehoffmann/PriSeT.

2.2 CoVPipe: Amplicon-based genome recon-
struction

CoVPipe is a highly optimized and fully automated
workflow for the reference-based reconstruction of
SARS-CoV-2 genomes based on next-generation am-
plicon sequencing data using CleanPlex R© SARS-
CoV-2 panels (Paragon Genomics, Hayward, CA,
USA) from swab samples. The pipeline applies read
classification, clipping of raw reads to remove termi-
nal PCR primer sequences or primer hybrids as well
as Illumina adapters and low-quality bases. The pro-
cessed reads are then aligned to a given reference se-
quence using BWA-MEM [20]. Resulting BAM files are
evaluated to report mapping quality measurements

6https://www.researchgate.net/publication/340418344_Primer_
pairs_for_detection_of_SARS-CoV-2_via_RT-PCR
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like coverage, read depth, and insert size (bedtools
v2.27 and samtools v1.3). Variants are called using
GATK (v4.1) [21] and filtered following best practices of
GATK. Finally, different consensus sequences can be
created using different masking methods. Additionally,
detailed information such as coverage, genomic local-
ization and effect on respective gene products are re-
ported for each variant site.
The pipeline is designed for reproducibility and scal-
ability in order to ensure reliable and fast data anal-
ysis of SARS-CoV-2 data. The workflow itself is im-
plemented using Snakemake [22], which provides ad-
vanced job balancing and input/output control mech-
anisms, and uses conda [23] to provide well defined
and harmonized software environments.
CoVPipe is available via GitLab:
https://gitlab.com/RKIBioinformaticsPipelines/
ncov_minipipe.

2.3 poreCov: Rapid sample analysis for
nanopore sequencing

Nanopore workflows were previously used in other
outbreak situations, e.g., Zika, Ebola, Yellow Fever,
Swine Flu, and can deliver a consensus viral genome
after approximately seven hours7. The ARTIC net-
work provides all the necessary information, tools, and
protocols to assist groups in sequencing the corona-
virus via nanopore sequencing8. These protocols uti-
lize a multiplex PCR approach to amplify the virus di-
rectly from clinical samples, followed by sequencing
and bioinformatic steps to assemble the data9. Due to
the small viral genome, up to 24 samples can be se-
quenced at the same time. Rapid sample analysis is,
therefore, of particular interest.
The workflow poreCov is implemented in
nextflow [24] for full parallelization of the workload
and stable sample processing (see Fig. 2). poreCov
generates all necessary results and information
before scientists continue to analyze their genomes
or make them public on, e.g., GISAID or ENA / NCBI.
The workflow carries out all necessary steps from
basecalling to assembly depending on the user input,
followed by lineage prediction of each genome using
Pangolin (see Sec. 3.2). Furthermore, read coverage
plots are provided for each genome to assess the
amplification quality of the multiplex PCR. In addition,
poreCov includes a quick time tree-based analysis of
the inputs against reference sequences using augur10

and toytree11 for visualization. poreCov supports
scientists in their SARS-CoV-2 research by reducing
the time-consuming bioinformatic bottlenecks in
processing dozens of SARS-CoV-2 sequencing runs.

7https://nanoporetech.com/about-us/news/novel-coronavirus-
covid-19-information-and-updates

8https://artic.network/ncov-2019
9https://artic.network/ncov-2019/ncov2019-bioinformatics-

sop.html
10https://github.com/nextstrain/augur
11https://github.com/eaton-lab/toytree

Figure 2: Simplified overview of the poreCov workflow.
The individual workflow steps (blue) are executed automat-
ically depending on the input (yellow). Instead of using raw
nanopore fast5 files, fastq files or complete SARS-CoV-2
genomes can be used as an alternative input. If reference
genomes and location/times are added, a time tree is addi-
tionally constructed.

All tools are provided via ’containers’ (pre-build
and stored on docker hub) to generate a re-
producible workflow in various working environ-
ments. poreCov is freely available on GitHub:
https://github.com/replikation/poreCov.

2.4 VADR: SARS-CoV-2 genome annotation and
validation

VADR validates and annotates viral sequences based
on models built from reference sequences [25]. Coro-
navirus models, based on NCBI RefSeq [26] entries,
including one for SARS-CoV-2 (NC_045512.2), are
available for analyzing coronavirus sequences. VADR
computes an alignment of each incoming sequence
against the RefSeq and uses it to map the RefSeq fea-
tures, which include protein coding sequences (CDS),
genes, mature peptides (mat_peptide), and structural
RNA (stem_loop) features. The ORF1ab polyprotein
CDS involves a programmed ribosomal frameshift,
which VADR is capable of properly annotating. The tool
identifies and outputs information about more than 40
types of problems with sequences, such as early stop
codons in CDS, and has been in use by GenBank for
screening and annotating incoming SARS-CoV-2 se-
quence submissions since March 2020. VADR (v1.1)
includes heuristics for accelerating annotation and for
dealing with stretches of ambiguous N nucleotides,
that were specifically added for SARS-CoV-2 analysis.
VADR helps advance SARS-CoV-2 research by stan-
dardizing the annotation of SARS-CoV-2 sequences
deposited in GenBank and other databases and by al-
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lowing researchers to fully annotate and screen their
sequences for errors due to misassembly or other
problems.
VADR is freely available via GitHub:
https://github.com/nawrockie/vadr including specific
instructions for use on SARS-CoV-2 sequences12.

2.5 V-Pipe: Calling single-nucleotide variants
and viral haplotypes

V-pipe is a bioinformatics pipeline that integrates var-
ious computational tools for the analysis of viral high-
throughput sequencing data. It supports the repro-
ducible end-to-end analysis of intra-host NGS data,
including quality control, read mapping and alignment,
and inference of viral genomic diversity on the level of
both single-nucleotide variants (SNVs) and long-range
viral haplotypes. V-pipe uses the workflow manage-
ment system Snakemake [22] to organize the order of
required computational steps, and it supports clus-
ter computing environments. It is easy to use from
the command line, and conda [23] environments fa-
cilitate installation. V-pipe’s modular architecture al-
lows users to design their pipelines and developers to
test their tools in a defined environment, enabling best
practices for viral bioinformatics.
A recent release of V-pipe addresses specifically the
analysis of SARS-CoV-2 sequencing data. It uses the
strain NC_045512 (GenBank: MN908947.3) as the
default for read mapping and reporting of genetic vari-
ants, and it includes several improvements, for exam-
ple, for calling single-nucleotide variants. Also, V-pipe
can generate a comprehensive and intuitive visualiza-
tion of the detected genomic variation in the context of
various annotations of the SARS-CoV-2 genome. This
summary of the output can help to generate diagnostic
reports based on viral genomic data.
V-pipe is an SIB resource13 and available via GitHub:
https://github.com/cbg-ethz/V-pipe. Users are sup-
ported through the website14, tutorials, videos, a mail-
ing list, and the dedicated wiki pages of the GitHub
repository.

2.6 Haploflow: Multi-strain aware de novo as-
sembly

Viral infections often include multiple related viral
strains [27], either due to co-infection or within-host
evolution. These strains - haplotypes - may vary
in phenotype due to certain, strain-specific genetic
properties [28]. It is not entirely clear yet whether
SARS-CoV-2 has a tendency for multiple infections,
though there are indications that co-infections with
other Coronaviruses do occur [29]. Most assem-
blers struggle with resolving complete viral haplo-
types, even though these may be critical for the choice

12https://github.com/nawrockie/vadr/wiki/Coronavirus-annotation
13https://www.sib.swiss/research-infrastructure/database-software-

tools/sib-resources
14https://cbg-ethz.github.io/V-pipe/

of therapy. Haploflow is a novel, de Bruijn graph-
based assembler for the de novo, strain-resolved as-
sembly of viruses that is able to rapidly resolve differ-
ences up to a base-pair level between two viral strains.
Haploflow will help advance SARS-CoV-2 research
by enabling the detection and full-length reconstruc-
tion of SARS-CoV-2 multi-strain infections.
Haploflow is freely available via
https://nextcloud.bifo.helmholtz-
hzi.de/s/j4MyspJs5kfdZxy

2.7 VIRify: Annotation of viruses in meta-omic
data

VIRify is a recently developed, generic pipeline for
the detection, annotation, and taxonomic classification
of viral and phage contigs in metagenomic and meta-
transcriptomic assemblies. This pipeline is part of the
repertoire of analysis services offered by MGnify [30].
VIRify’s taxonomic classification relies on the detec-
tion of taxon-specific profile hidden Markov models
(HMMs), built upon a set of 22,014 orthologous pro-
tein domains and referred to as ViPhOGs. Included in
this profile HMM database are 139 models that serve
as specific markers for taxa within the Coronaviridae
family.
Here, we show the applicability of VIRify on the as-
sembly of a metatranscriptomic dataset from a human
Bronchoalveolar lavage fluid. Within this assembly, a
29 kb contig was classified by VIRify as belonging
to the Coronaviridae family (see Fig. 3). This shows
the utility of the VIRify pipeline, used in isolation from
MGnify, for studying coronaviruses in the human res-
piratory microbiome.
VIRify can be used for the identification of coron-
aviruses in clinical and environmental samples. Due to
the intrinsic differences between metatranscriptomes
and metagenomes, additional considerations regard-
ing quality control, assembly, post-processing and
classification have to be kept in mind15.
VIRify is available via GitHub:
https://github.com/EBI-Metagenomics/emg-viral-
pipeline.

2.8 Genome analysis tools by VBRC

The Viral Bioinformatics Research Centre (VBRC) is
a mature resource built specifically for virologists to
facilitate the comparative analysis of viral genomes.
Within VBRC, a MySQL database created from GenBank
files supports numerous analysis tools. The curated
database is accessed through Virus Orthologous
Clusters [33], a powerful, but easy-to-use database
GUI. Base-By-Base [34–36] is a tool for generat-
ing, visualizing and editing multiple sequence align-
ments. It can compare genomes, genes or proteins
via alignments and plots. Users can add comments
to sequences and save alignments to a local com-

15for details, see https://github.com/EBI-Metagenomics/emg-viral-
pipeline
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Figure 3: Sequence reads from a human lung metatran-
scriptome (sample accession: SAMN13922059) were first
quality-filtered using TrimGalore v0.6.0 and subsequently
assembled using MEGAHIT v1.1.3 [31] with default parame-
ters. The resulting metatranscriptome assembly was pro-
cessed through the VIRify pipeline. Based on the hits
against the ViPhOG database, a 29 kb contig was classified
as Coronaviridae. Functional protein domain annotations
(inner track) were assigned by an hmmsearch v3.1b2 against
Coronavirus models in Pfam. The image was created with
circlize [32] and polished with Inkscape.

puter. Viral Genome Organizer [37] visualizes and
compares the organization of genes within multiple
complete viral genomes. The tool allows the user
to export protein or DNA sequences and can dis-
play START/STOP codons for 6-frames as well as
open reading frames and other user-defined results.
If genomes are loaded from the database, it can dis-
play shared orthologs. Genome Annotation Transfer
Utility [38] is a tool for annotating genomes using
information from a reference genome. It provides for
interactive annotation, automatically annotating genes
that are very similar to the reference virus but leaving
others for a human decision.
The VBRC was developed for dsDNA viruses but
has been adapted for coronaviruses. SARS-CoV-2
and closely related viruses have been added to the
database. VBRC tools will help to visualize differences
between coronavirus sequences at different levels of
resolution (see Fig. 4).
VBRC is available via https://www.4virology.net.

2.9 VIRULIGN: Codon-correct multiple sequence
alignments

VIRULIGN was developed for fast, codon-correct mul-
tiple sequence alignment and annotation of virus
genomes, guided by a reference sequence [39]. A
codon-aware alignment is essential for studying the
evolution of coding nucleotide sequences to aid vac-
cine and antiviral development [40], to understand the

Figure 4: A region of recombination in coronavirus
genomes at three levels of resolution in Base-By-Base.
Top panel: aligned genomes; blue boxes show differences
compared to top sequence in alignment. Middle panel:
summary view showing differences and indels compared
top sequence. Bottom panel: similarity plot comparing five
genomes.

emergence of drug resistance [41] and to quantify epi-
demiological potential [42]. Theys et al. [43] have
shown that a representative and curated annotation
of open reading frames and proteins is essential to
study emerging pathogens. To this end, a SARS-CoV-
2 reference sequence and genome annotation have
been added to VIRULIGN, based on the first available
genome sequence [1], covering all reading frames and
proteins.
VIRULIGN is easy to install, enabling scientists to per-
form large-scale analyses on their local computational
infrastructure. VIRULIGN is particularly well suited
to study the rapidly growing number of SARS-CoV-2
genomes made available [44], due to its efficient align-
ment algorithm that has linear computational complex-
ity with respect to the number of sequences stud-
ied. Furthermore, VIRULIGN’s flexible output formats
(e.g., CSV file with headers corresponding to the
genome annotation) facilitate its integration into anal-
ysis workflows, lowering the threshold for scientists
to deliver advanced bioinformatics pipelines [45, 46]
and databases [47], that are necessary to track the
COVID-19 pandemic.
VIRULIGN is available via GitHub:
https://github.com/rega-cev/virulign.

2.10 Rfam COVID-19 Resources: Coronavirus-
specific RNA families

Rfam [48] is a database of RNA families that hosts cu-
rated multiple sequence alignments and covariance
models. To facilitate the analysis of Coronavirus
sequences, Rfam produced a special release 14.2
with ten new families representing the entire 5’ and
3’ untranslated regions (UTRs) from Alpha-, Beta-,
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Gamma-, and Deltacoronaviruses. A specialised set
of Sarbecovirus models is also provided, which in-
cludes SARS-CoV-1 and SARS-CoV-2 sequences.
The families are based on a set of high-quality whole
genome alignments that have been reviewed by ex-
pert virologists. In addition, Rfam now contains a re-
vised set of non-UTR Coronavirus structured RNAs,
such as the frameshift stimulating element, s2m RNA,
and the 3’ UTR pseudoknot.
The new Rfam families can be used in conjunction
with the Infernal software [49] to annotate struc-
tured RNAs in Coronavirus sequences and predict
their secondary structure (see Fig. 5). Table 2
shows the results for the SARS-CoV-2 RefSeq entry
(NC_045512.2). In addition, the online Rfam sequence
search enables users to scan genomic sequences and
find the RNA elements.
The Coronavirus Rfam families are available at
https://rfam.org/covid-19.

2.11 UniProt COVID-19 protein portal: rapid ac-
cess to protein information

UniProt [50] has recognised the urgency of anno-
tating and providing access to the latest information
on proteins relevant to the disease for both the virus
and human host. In response, the COVID-19 UniProt
portal provides early pre-release access to (i) SARS-
CoV-2 annotated protein sequences, (ii) closest SARS
proteins from SARS 2003, (iii) human proteins rel-
evant to the biology of viral infection, like receptors
and enzymes, (iv) ProtVista [51] visualisation of se-
quence features for each protein, (v) links to sequence
analysis tools, (vi) access to collated community-
contributed publications relevant to COVID-19, as well
as (vii) links to relevant resources.
The COVID-19 portal enables community crowdsourc-
ing of publications via the “Add a publication” fea-
ture within any entry. Thus, the community can as-
sist in associating new or missing publications to rel-
evant UniProt entries. ORCID is used as a mech-
anism to validate user credentials as well as recogni-
tion for contribution. Ten publication submissions have
been received so far, contributing to our understand-
ing of the virus biology. The COVID-19 UniProt por-
tal advances SARS-CoV-2 research by providing lat-
est knowledge on proteins relevant to the disease for
both the virus and human host.
The COVID-19 UniProt portal is available via
https://covid-19.uniprot.org/. UniProt also hosted we-
binars to describe the portal16 and publication submis-
sion system17.

2.12 Pfam protein families database

The Pfam protein families database is widely used
in the field of molecular biology for large-scale func-
tional annotation of proteins [52]. The latest release of

16https://www.youtube.com/watch?v=EY69TjnVhRs
17https://www.youtube.com/watch?v=sOPZHLtQK9k

Pfam, version 33.1, contains an updated set of mod-
els that comprehensively cover the proteins encoded
by SARS-CoV-2 (see Table 3). The only SARS-CoV-
2 protein that lacks a match is Orf10, a small puta-
tive protein found at the 3’-end of the SARS-CoV-2
genome, which appears to lack similarity to any other
sequence in UniProtKB18. The Pfam profile hidden
Markov model (HMM) library in combination with the
HMMER software [53] facilitates rapid search and anno-
tation of coronaviruses and can be used to generate
multiple sequence alignments that allow the identifica-
tion of mutations and clusters of related sequences,
particularly useful for outbreak tracking and studying
the evolution of coronaviruses.
The Pfam HMM library can be downloaded from
https://pfam.xfam.org and can be used in combination
with pfam_scan to perform Pfam analysis locally. Mul-
tiple sequence alignments of matches can be gener-
ated using hmmalign19. Precalculated matches and
alignments are available from the Pfam FTP site20.

3 Tracking, epidemiology and evolution
As there is no universal approach for classifying
a virus species’ genetic diversity, the phylogenetic
clades are referred to by different terms, such as ‘sub-
types’, ‘genotypes’, or ‘groups’. However, phyloge-
netic assignment is important for studies on virus epi-
demiology, evolution, and pathogenesis (see Covidex,
Pangolin). Thus, a nomenclature system for nam-
ing the growing number of phylogenetic lineages that
make up the population diversity of SARS-CoV-2 is
needed. Rambaut et al. [44] have described a lin-
eage nomenclature for SARS-CoV-2 that arises from
a set of fundamental evolutionary, phylogenetic and
epidemiological principles.
Phylodynamic models may aid in dating the origins of
pandemics, provide insights into epidemiological pa-
rameters, e.g., R0 [54], or help determine the effec-
tiveness of virus control efforts (see BEAST 2, phylo-
geographic reconstruction). Phylodynamic analyses
aim to conclude epidemiological processes from viral
phylogenies, at the most basic level by comparing ge-
netic relatedness to geographic relatedness.
Mathematical epidemiological models project the
progress of the pandemic to show the likely out-
come and help inform public health interventions (see
COPASI, COVIDSIM). Such models help with analysing
the effects of contact reduction measures or other in-
terventions, forecasting hospital resource usage, and
guiding political decision-making.
As the pandemic progresses, SARS-CoV-2 is natu-
rally accumulating mutations. On average, the ob-
served changes would be expected to have no or min-
imal consequence for virus biology. However, track-

18https://covid-19.uniprot.org/
19http://hmmer.org/
20ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam_SARS-

CoV-2_2.0/
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Figure 5: SARS-CoV-2 Rfam secondary structure predictions. The sequence is based on the NC_045512.2 RefSeq
entry displayed with the wuhCor1 UCSC Genome Browser alongside the NCBI Genes track.

Table 2: Rfam version 14.2 matches to the SARS-CoV-2 RefSeq entry NC_045512.2

RefSeq coordinates Rfam
accession

Rfam ID Rfam description Comment

NC_045512.2/1-299 RF03120 Sarbecovirus-
5UTR

Sarbecovirus 5’ UTR See Rfam family RF03117 for
Betacoronavirus 5’ UTR.

NC_045512.2/13,469-
13,550

RF00507 Corona_FSE Coronavirus
frameshifting
stimulation element

NC_045512.2/29,536-
29,870

RF03125 Sarbecovirus-
3UTR

Sarbecovirus 3’ UTR See Rfam family RF03122 for
Betacoronavirus 3’ UTR.

NC_045512.2/29,603-
29,662

RF00164 Corona_pk3 Coronavirus 3’ UTR
pseudoknot

The family annotates the pseudoknot
found in the 3’ UTR (RF03120).

NC_045512.2/29,727-
29,769

RF00165 s2m Coronavirus 3’
stem-loop II-like motif
(s2m)

The family is a subset of the 3’ UTR
model (RF03120) that corresponds to
the PDB:1XJR 3D structure from
SARS-CoV-1.
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Table 3: Pfam version 33.1 matches to the proteome of SARS-CoV-2 found in UniProtKB.

Uniprot accession ID Gene
Name

Pfam
accession

Pfam ID Pfam description

sp|P0DTC1|R1A_SARS2 ORF1ab PF11501 bCoV_NSP1 Betacoronavirus replicase NSP1
PF19211 CoV_NSP2_N Coronavirus replicase NSP2, N-terminal
PF19212 CoV_NSP2_C Coronavirus replicase NSP2, C-terminal
PF12379 bCoV_NSP3_N Betacoronavirus replicase NSP3, N-terminal
PF01661 Macro Macro domain
PF11633 bCoV_SUD_M Betacoronavirus single-stranded poly(A) binding

domain
PF12124 bCoV_SUD_C Betacoronavirus SUD-C domain
PF08715 CoV_peptidase Coronavirus papain-like peptidase
PF16251 bCoV_NAR Betacoronavirus nucleic acid-binding (NAR)
PF19218 CoV_NSP3_C Coronavirus replicase NSP3, C-terminal
PF19217 CoV_NSP4_N Coronavirus replicase NSP4, N-terminal
PF16348 CoV_NSP4_C Coronavirus replicase NSP4, C-terminal
PF05409 Peptidase_C30 Coronavirus endopeptidase C30
PF19213 CoV_NSP6 Coronavirus replicase NSP6
PF08716 CoV_NSP7 Coronavirus replicase NSP7
PF08717 CoV_NSP8 Coronavirus replicase NSP8
PF08710 CoV_NSP9 Coronavirus replicase NSP9
PF09401 CoV_NSP10 Coronavirus RNA synthesis protein NSP10

sp|P0DTC2|SPIKE_SARS2 S PF16451 bCoV_S1_N Betacoronavirus-like spike glycoprotein S1,
N-terminal

PF09408 bCoV_S1_RBD Betacoronavirus spike glycoprotein S1, receptor
binding

PF19209 CoV_S1_C Coronavirus spike glycoprotein S1, C-terminal
PF01601 CoV_S2 Coronavirus spike glycoprotein S2

sp|P0DTC3|AP3A_SARS2 ORF3a PF11289 bCoV_viroporin Betacoronavirus viroporin

sp|P0DTC4|VEMP_SARS2 E PF02723 CoV_E Coronavirus small envelope protein E

sp|P0DTC5|VME1_SARS2 M PF01635 CoV_M Coronavirus M matrix/glycoprotein

sp|P0DTC6|NS6_SARS2 ORF6 PF12133 bCoV_NS6 Betacoronavirus NS6 protein

sp|P0DTC7|NS7A_SARS2 ORF7a PF08779 bCoV_NS7A Betacoronavirus NS7A protein

sp|P0DTD8|NS7B_SARS ORF7b PF11395 bCoV_NS7B Betacoronavirus NS7B protein

sp|P0DTC8|NS8_SARS2 ORF8 PF12093 bCoV_NS8 Betacoronavirus NS8 protein

sp|P0DTC9|NCAP_SARS2 N PF00937 CoV_nucleocap Coronavirus nucleocapsid

sp|P0DTD2|ORF9B_SARS2 ORF9b PF09399 bCoV_lipid_BD Betacoronavirus lipid binding protein

sp|P0DTD3|Y14_SARS2 ORF14 PF17635 bCoV_Orf14 Betacoronavirus uncharacterised protein 14
(SARS-CoV-2 like)
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ing these changes (see CoV-GLUE, PoSeiDon) will help
us better understand the pandemic and could help
improve the effectiveness of antiviral drugs and vac-
cines.

3.1 Covidex: Alignment-free subtyping using
machine learning

Viral subtypes or clades represent clusters among iso-
lates from the global population of a defined species.
Subtypification is relevant for studies on virus epi-
demiology, evolution and pathogenesis. Most sub-
type classification methods require the alignment of
the input data against a set of pre-defined subtype
reference sequences. These methods can be com-
putationally expensive, particularly for long sequences
such as SARS-CoV-2 (≈30 kb per genome). To tackle
this problem, machine learning tools may be used for
virus subtyping [55]. Covidex was developed as an
open-source alignment-free machine learning subtyp-
ing tool. It is a shiny app [56] that allows fast and ac-
curate (out-of-bag error rate < 1.5 %) classification of
viral genomes in pre-defined clusters (see Fig. 6). For
SARS-CoV-2, the default uploaded model is based
on Nextstrain [57] and GISAID data [58]. Alterna-
tively, user-uploaded models can be used. Covidex
is based on a fast implementation of random forest
trained over a k-mer database [59, 60]. By train-
ing the classification algorithms over k-mer frequency
vectors, Covidex substantially reduces computational
and time requirements and can classify hundreds of
SARS-CoV-2 genomes in seconds. Thus, in the con-
text of the current global pandemic where the number
of available SARS-CoV-2 genomes is growing expo-
nentially, SARS-CoV-2 research can benefit from this
specific tool designed to reduce the time needed in
data analysis significantly.
Covidex is available via SourceForge:
https://sourceforge.net/projects/covidex or the web
application https://cacciabue.shinyapps.io/shiny2/.

3.2 Pangolin: Phylogenetic Assignment of
Named Global Outbreak LINeages

Pangolin assigns a global lineage to query SARS-
CoV-2 genomes by estimating the most likely place-
ment within a phylogenetic tree of representative se-
quences from all currently defined global SARS-CoV-
2 lineages based on the lineage nomenclature pro-
posed by Rambaut et al. [44]. It is easily scalable so
that it can be run on either thousands or a handful of
sequences. Internally, pangolin runs mafft [61] and
iqtree [62, 63], providing a guide tree and alignment
to keep analysis overhead relatively lightweight.
Pangolin has many applications, including frontline
hospital use and local and global surveillance. For
example, in hospitals sequencing SARS-CoV-2 sam-
ples, it could be used to rule out within-hospital trans-
mission, informing infection control measures. It can
also be used for surveillance purposes, summarising
which lineages are present in an area of interest. The

Figure 6: Overview of Covidex for viral subtyping analy-
sis. Left: The user is expected to load a sequence file and to
select the model that will be applied for classification. Mod-
els may be selected from the default list or uploaded by the
user. Right: The program output (table and plots).

web-application also connects with Microreact21 dis-
playing query sequences in the context of the global
lineages worldwide. pangolin is used as part of
COG-UK’s22 data processing pipeline to assign lineages
to UK sequences. Further, users can define their
own finer-scale lineages, for instance within-country
lineages, and provide their own guide tree and align-
ment.
Pangolin makes it easy to get useful information out
of viral genome sequencing in real-time and can as-
sist in identifying new introductions and in tracking the
spread of SARS-CoV-2.
Pangolin is available as web application via
https://pangolin.cog-uk.io/ and as command line tool
via GitHub: https://github.com/hCoV-2019/pangolin/.

3.3 BEAST 2: Phylodynamics based on Bayesian
inference

Important evolutionary and epidemiological ques-
tions regarding SARS-CoV-2 can be addressed us-
ing Bayesian phylodynamic inference [64], which al-
lows the adequate combination of evidence from mul-
tiple independent sources of data, such as genome
sequences, sampling dates and geographic locations.
BEAST 2 [65] is an advanced computational software
framework that enables sophisticated Bayesian anal-
yses utilising a range of phylodynamic packages,
e.g. [66–72]. The phylogenetic history (the tree) can
be inferred simultaneously with evolutionary and epi-
demiological parameters, such that the uncertainty

21microreact.org
22https://www.cogconsortium.uk/
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from all aspects of the joined model is accounted for
and reflected in the results. Phylodynamic analysis
of SARS-CoV-2 is crucial in understanding (i) SARS-
CoV-2 evolutionary dynamics, particularly through es-
timation of the evolutionary rate at which mutations get
fixated in the viral genome, (ii) the temporal origin of
a selection of COVID-19 cases as an approximation
of the time at which a sub-epidemic emerged, (iii) the
geographical origin of sub-epidemics, (iv) SARS-CoV-
2 transmission dynamics, e.g. through direct estima-
tion of the effective reproduction number Re and its
changes through time, and (v) the proportion of un-
detected COVID-19 cases. Indeed, due to the evo-
lutionary and epidemiological processes occurring on
the same time scale, the diversity in the viral genome
sheds light on between-host transmission dynamics
- making Bayesian phylodynamic analysis of SARS-
CoV-2 a crucial complement to classical epidemiolog-
ical methods.

BEAST 2 is available via https://www.beast2.org/.

3.4 Phylogeographic reconstruction using air
transportation data

Phylogeographic methods combine genomic data with
the sampling locations of viral isolates and models of
spread, e.g. using air travel or local diffusion, to recon-
struct the putative spread paths and outbreak origins
of rapidly evolving pathogens. Reimering et al. [73]
published a method that infers locations for internal
nodes of a phylogenetic tree using a parsimonious re-
construction together with effective distances, as de-
fined by Brockmann et al. [74]. Effective distances
are calculated based on passenger flows between air-
ports. A strong connection between two airports is
represented by a small distance. Using these dis-
tances as a cost matrix, the parsimonious reconstruc-
tion identifies ancestral locations for internal nodes of
the tree that minimize the distances along the phy-
logeny. This method allows rapid inferences of spread
paths on a fine-grained geographical scale [73]. Re-
construction using effective distances infers phylogeo-
graphic spread more accurately than reconstruction
using geographic distances or Bayesian reconstruc-
tions that do not use any distance information.

Phylogeographic reconstruction using air transporta-
tion data can be used to study the global spread of the
SARS-CoV-2 pandemic, especially in the early phases
when air travel still substantially contributed to the
spread of the virus. The method is currently adapted
to consider both air travel and local movement data
within countries during inference to reflect the chang-
ing worldwide movements in different phases of the
pandemic.

The code is included in the GitHub repository
for Reimering et al. [73] https://github.com/hzi-
bifo/Phylogeography_Paper

3.5 COPASI: Modeling SARS-CoV-2 dynamics
with differential equations

COPASI is a dynamics simulator, originally focused
on chemical and biochemical reaction networks [75].
However, it is by now also widely applied to other
fields, including epidemiology. It allows simulating
models with the traditional differential equation ap-
proach that represents populations as continua, as
well as with a stochastic kinetics approach which
considers populations are composed of individuals.
COPASI has a common model representation for both
these approaches, which allows switching between
them with ease. Additionally, one can add arbitrary
discrete events to models. This software is equipped
with several algorithms that provide comprehensive
analyses of models, and it has support for parameter
estimation using a series of optimisation algorithms.
COPASI has been used to model various aspects of vi-
rology, including mechanisms of action [76–79], phar-
maceutical interventions [80], virus life-cycle [81], vac-
cine design [82] and dynamics of epidemics [83–85].
COPASI has also been applied to COVID-19, particu-
larly to model the dynamics of the epidemic and effect
of interventions [86]. Some of the authors have also
used COPASI to model the local epidemics and fore-
cast usage of hospital resources (P. Mendes) and to
compare the possible advantages of contact network
agent-based models over differential equation models
(S. Hoops).
COPASI is available from http://copasi.org/ and
https://github.com/copasi.

3.6 COVIDSIM: Epidemiological models of viral
spread

Classical epidemiological models have seen broad
reuse in describing the COVID-19 outbreak. Deter-
ministic or compartmental mathematical models as-
sign individuals in a population to different subgroups
and describe their dynamic changes using systems
of differential equations. For SARS-CoV-2, the SEIR
model and extended versions thereof are frequently
used. The underlying model framework is not new at
all, and related models have been described already
at the beginning of the 20th century to model infec-
tious diseases [87]. In brief, in the SEIR or SEIRD-
Model, individuals in a population are grouped into
Susceptible (S), Exposed (E), Infected (I), Recovered
(R) and Deceased (D) individuals. Initially, all individ-
uals except for a small number who are already in-
fected are considered susceptible to infection. The
model can then simulate the population infection dy-
namics, using parameters such as the incubation time
or the average disease duration for parameterization
of the differential equations. Such SEIR models have
been used to predict the COVID-19 dynamics, e.g. in
Spain and Italy, and to analyse the effect of control
strategies [88]. Extended versions of the SEIR model
were developed to guide political decision making [89].
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Figure 7: Web interface of the COVIDSIM simulator. The
interface is allowing the user to modify model parameters
and compare simulated dynamics with real infection data.

We recently implemented a version of the model in
COVIDSIM, a simulator which includes hospitalised pa-
tients and patients in intensive care and implements
effects of contact reduction measures, and that can be
overlaid with data from different German federal states
and data from other countries. This model has a con-
venient web interface (see Fig. 7), permitting the user
to change model parameters and get an intuitive feel-
ing for the model dynamics – allowing it to estimate
infection parameters and to analyse effects of contact
reduction measures and guide political decision mak-
ing.
The web interface is in German and available via
http://www.kaderali.org:3838/covidsim.

3.7 CoV-GLUE: tracking nucleotide changes in
the SARS-CoV-2 genome

SARS-CoV-2 is naturally accumulating nucleotide
mutations in its RNA genome as the pandemic
progresses. Point mutations, specifically non-
synonymous substitutions, will result in amino acid re-
placements in viral genome sequences, while other
mutations will result in insertions or deletions (indels).
On average the observed changes would be expected
to have no or minimal consequence for virus biol-
ogy. However tracking these changes will help us
better understand and control the pandemic as mu-
tations could arise with impact on virus biology and
could lead to escape from antiviral drugs and future
vaccines. The purpose of CoV-GLUE is to track the
changes accumulating in the SARS-CoV-2 genome
(see Fig. 8). The resource was developed exploit-
ing GLUE, a data-centric bioinformatics environment for
virus sequence data, with a focus on variation, evolu-
tion and sequence interpretation [90]. Sequences are
downloaded from GISAID EpiCoV [91] approximately

Figure 8: List of amino acid replacements to the SARS-
CoV-2 reference sequence. Replacements have been de-
tected in GISAID SARS-CoV-2 sequences from the pan-
demic using CoV-GLUE.

every week and added to a constrained alignment
within the GLUE framework. Users can browse the ac-
cumulating variation or submit a FASTA file of a novel
genome to CoV-GLUE for comparison to the available
data. An amino acid replacements, indels and diag-
nostic primer design report is generated from the sub-
mitted data. The user can access the detected vari-
ants and using a phylogenetic placement maximum-
likelihood method [92] visualise their sequence rela-
tive to a reference data set. The user’s sequence is
also assigned to a lineage consistent with Rambaut et
al. [44].
CoV-GLUE will help advance SARS-CoV-2 research by
tracking changes accumulating in the SARS-CoV-2
genome. CoV-GLUE web application is available online
via http://cov-glue.cvr.gla.ac.uk/

3.8 PoSeiDon: Positive Selection Detection and
Recombination Analysis

Viruses and their hosts are in constant competition,
and selection pressure continuously affects the evo-
lution of their genes. Selection pressure, in the form
of positive selection, can be studied by comparing the
rates of non-synonymous (dN) and synonymous sub-
stitutions (dS) in an alignment of orthologous genes.
Over several sites (codons), the dN/dS ratio can reach
values well above 1 [93]. Such positively selected
sites are described in recent SARS-CoV-2 studies.
For example, Velazquez-Salinas et al. [94] showed
that the selection pressure on ORF3a and ORF8
genes can drive the evolution of the virus during the
COVID-19 pandemic, while Korber et al. [95] describe
worrying changes in the spike protein through the de-
tection of positive selection.
PoSeiDon simplifies the detection of positive selection
in protein-coding sequences [96]. Firstly, the pipeline
builds a multiple sequence alignment, estimates a
best-fitting substitution model, and performs a recom-
bination analysis followed by the construction of all
corresponding phylogenies. Secondly, positively se-
lected sites under varying models are detected. The
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results are summarised in a user-friendly web page,
providing all intermediate results and graphically dis-
playing recombination events and positively selected
sites.
The rapid detection of positive selection helps to mon-
itor protein changes of SARS-CoV-2 during the pan-
demic. It provides potential target sites for drug de-
velopment, helping to counteract the virus during its
"arms race" with the human species.
Poseidon is available via GitHub:
https://github.com/hoelzer/poseidon.

4 Drug design
To limit the pandemic threat, it is of utmost importance
to develop therapy and vaccination strategies against
COVID-19. Understanding the molecular mechanisms
underlying the disease’s pathogenesis is key to identi-
fying potential drug candidates for clinical trials. Viral-
host protein-protein interactions (PPIs) play a crucial
role during viral infection and hold promising therapeu-
tic prospects.
To facilitate the identification of potential drugs, a
screening of known drugs and PPIs, referred to as
drug repurposing, is usually cheaper and more time-
efficient than designing drugs from scratch [97, 98].
This is especially true for SARS-CoV-2, as it is a mem-
ber of a viral genus that has been thoroughly studied.
Therefore, we can infer information and potential drug
targets from other betacoronaviruses, and especially
SARS-CoV-1. The described databases contain infor-
mation about virus-host PPIs (see VirHostNet, CoVex)
and virus-drug interactions (see CORDITE, CoVex) and
gather information from other viruses and drugs to
infer potential PPIs for SARS-CoV-2 (see CoVex,
P-HIPSTer).

4.1 VirHostNet SARS-CoV-2 release

The complete understanding of molecular interactions
between SARS-CoV-2 and host cellular proteins is
key to highlight functions that are essential for viral
replication and pathogenesis of COVID-19 outbreak.
Toward this end, VirHostNet [99] was upgraded in
March 2020 to include a comprehensive collection of
protein-protein interactions manually annotated from
the literature involving ORFeomes from multiple coro-
naviruses, including MERS-CoV, SARS-CoV-1 and
SARS-CoV-2. This biocuration effort also incorpo-
rated, in close to real-time, the data obtained through
affinity-purification mass spectrometry by the Korgan
laboratory [100]. Hence, in a few days, more than 650
binary protein-protein interactions were made avail-
able to scientists working on COVID-19.
The VirHostNet resource was rapidly catalogued as
a fair and open data resource to help fight against
COVID-19 [101]. To leverage the cost of highly ex-
pensive experiments, open access is provided to the
interology web application allowing fast and repro-
ducible in silico prediction of SARS-CoV-2/human in-

teractome As a proof of concept, VirHostNet was
used as a gateway to explore systems-level links
between the SARS-CoV-2 proteins and host path-
ways involving apoptosis, autophagy and immune re-
sponse [102]. The interactome predicted for SARS-
CoV-2 was wired to an anti-apoptotic switch regulated
by Bcl-2 family members that could potentially be a
therapeutic target. The network reconstruction identi-
fied the prosurvival protein Bcl-xL and the autophagy
effector Beclin 1 as vulnerable nodes in the host cel-
lular defense system against SARS-CoV-2. Interest-
ingly, both proteins harbour a so-called Bcl-2 homol-
ogy 3 (BH3)-like motif, which is involved in homotypic
(inside the Bcl-2 family) and heterotypic interactions
with other domains.
The VirHostNet SARS-CoV-2 release will acceler-
ate research on the molecular mechanisms underly-
ing virus replication as well as COVID-19 pathogene-
sis and will provide a systems virology framework for
prioritizing drug candidates repurposing.
VirHostNet web application is available via
http://virhostnet.prabi.fr/.

4.2 CORDITE: CORona Drug InTERactions
database

CORDITE collects data on potential drugs, targets, and
their interactions for SARS-CoV-2 from published ar-
ticles and preprints [103]. CORDITE integrates many
functionalities to enable users to access, sort, and
download relevant data to conduct meta-analyses, to
design new clinical trials, or even to conduct a curated
literature search. CORDITE automatically incorporates
publications from PubMed23, bioRxiv24, chemRxiv25,
and medRxiv26 that report information on computa-
tional, in vitro, or case studies on potential drugs for
COVID-19. Besides original research, reviews and
comments are also included in the database. The in-
formation from the articles and preprints are manu-
ally curated by moderators and can be accessed via
the web server or the open API. Moreover, registered
clinical trials from the NIH27 for COVID-19 are also in-
cluded. Users can directly access the publications, in-
teractions, drugs, targets, and clinical trials, and thus,
the data can be easily integrated into other software
or apps.
The CORDITE database is updated weekly and, at the
date of submission, provides data for more than 700
interactions of 23 targets for more than 530 drugs from
almost 300 publications and more than 240 clinical
trials (as of May 19, 2020). It is thus the largest,
curated database available for drug interactions for
SARS-CoV-2. It allows researchers to carry out meta-
analyses on potential drugs systematically and to
identify potential drug candidates for clinical trials.

23https://www.ncbi.nlm.nih.gov/pubmed/
24https://www.biorxiv.org/
25https://www.chemrxiv.org/
26https://www.medrxiv.org/
27https://clinicaltrials.gov/
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Figure 9: CoVex: CoronaVirus Explorer. CoVex is a
network medicine web platform that allows its users to in-
teractively mine a large interactome that integrates infor-
mation about virus-host protein-interactions, known human
protein-protein interactions as well as drug-protein interac-
tions. CoVex can be used for identifying potential drug tar-
gets and drug repurposing candidates.

CORDITE can be accessed via
https://cordite.mathematik.uni-marburg.de

4.3 CoVex: CoronaVirus Explorer

CoVex [104] is a network and systems medicine web
platform that integrates experimental virus-human
protein interactions for SARS-CoV-2 [100] and SARS-
CoV-1 [99, 105], human protein-protein interac-
tions [106] and drug-protein interactions [107–112]
into a large-scale interactome (see Fig. 9). It al-
lows biomedical and clinical researchers to predict
novel drug targets as well as drug repurposing can-
didates using several state-of-the-art graph analysis
methods specifically tailored to the network medicine
context. Here, expert knowledge about virus repli-
cation, immune-related biological processes or drug
mechanisms can be applied to compile a set of host
or viral proteins (referred to as seeds). Alternatively,
users can upload a list of proteins (e.g. differentially
expressed genes, a list of proteins related to a molec-
ular mechanism of interest) or proteins targeted by
drugs of interest (e.g. a set of drugs known to be ef-
fective) as seeds to guide the analysis. Based on
the selected seeds, CoVex offers three main actions:
(1) searching the human interactome for viable drug
targets, (2) identifying repurposable drug candidates,
and (3) a combination of actions, i.e. starting from a
selection of virus or virus-interacting proteins, users
can mine the interactome for suitable drug targets for
which, in turn, suitable drugs are identified. In sum-
mary, CoVex allows researchers to systematically iden-
tify already approved drugs that could be repurposed
to treat SARS-CoV-2, which is faster than developing
new drugs from scratch.
CoVex web application is available via
https://exbio.wzw.tum.de/covex/.

4.4 P-HIPSTer: a virus-host protein-protein inter-
action resource

Viral-host protein-protein interactions (PPIs) play a
crucial role during viral infection by co-opting host
cellular processes and hold promising therapeutic
prospects. Along these lines, the P-HIPSTer database
can significantly contribute to SARS-CoV2 research

by providing: (1) testable hypotheses on molecular
interactions underlying viral infection and pathogen-
esis and; (2) highlighting host factors and pathways
that serve as potential drug targets to treat infection
caused by different coronaviruses.

P-HIPSTer comprises ∼282,000 predicted viral-
human PPIs on ∼1,000 viruses with an experimen-
tal validation rate of ∼76% [113]. Its predictive al-
gorithm is an adaptation of PrePPI [114, 115] and
combines sequence and structural information to in-
fer viral-human PPIs mediated by domain-domain or
peptide-domain contacts (see Fig. 10). In addition,
P-HIPSTer builds all-atom interaction models for high-
confidence PPI predictions involving folded domains
and integrates sequence- and structure-based func-
tional annotations for viral proteins at multiple levels,
including host biological pathways based on the pre-
dicted PPIs [116–119]. Hence, P-HIPSTer constitutes
a complimentary resource to high-throughput experi-
mental approaches [100]. As of April 2020, P-HIPSTer
contains predictions for 15 coronaviruses with varying
pathogenic potential (alpha- and betacoronaviruses)
and reports 4,587 viral-host PPIs involving 397 hu-
man proteins. This unique collection of predicted viral-
human PPIs enables the discovery of PPIs commonly
employed within the Coronaviridae family and PPIs
associated with their pathogenicity.

The database is available via http://www.phipster.org/

5 Concluding remarks

Bioinformaticians around the world have reacted
quickly to the COVID-19 pandemic by providing
coronavirus-specific tools to advance SARS-CoV-2 re-
search and boost the detection, understanding, and
treatment of COVID-19.

The European Virus Bioinformatics Center curates
a list of bioinformatics tools specifically for coron-
aviruses28, some of which were presented in this re-
view. Neither this review nor the online list is complete,
and in light of the rapid ongoing research, further tools
will be developed. Other initiatives are collecting rel-
evant datasets (COVID-19 Data Portal29) or are sup-
porting researchers by offering assistance with SARS-
CoV-2 genome sequencing (NFDI4Microbiota30).

28http://evbc.uni-jena.de/tools/coronavirus-tools/
29https://www.covid19dataportal.org/
30https://nfdi4microbiota.de/index.php/covid-19/

17

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2020                   doi:10.20944/preprints202005.0376.v1

https://cordite.mathematik.uni-marburg.de
https://exbio.wzw.tum.de/covex/
http://www.phipster.org/
http://evbc.uni-jena.de/tools/coronavirus-tools/
https://www.covid19dataportal.org/
https://nfdi4microbiota.de/index.php/covid-19/
https://doi.org/10.20944/preprints202005.0376.v1


F. Hufsky et al. Computational strategies to combat COVID-19

Figure 10: P-HIPSTer combines sequence and struc-
tural information to predict viral-host PPIs. P-HIPSTer
evaluates the likelihood ratio (LR) for the potential inter-
action between a viral protein (in red) and a human pro-
tein (in blue) combining three evidences: i) Domain-domain
LR that two structure domains interact based on known
complex (green and purple domain-domain complex) com-
prised of their structural neighbours; ii) Peptide-domain LR
that an unstructured peptide in one query binds to a struc-
tured domain in the second query based on known binding
motifs/peptide-domain complex (green and purple peptide-
domain complex) using both sequence and structural sim-
ilarity iii) Redundancy LR based on evidence that multiple
structural neighbours (in orange, purple and green) of one
query protein is known to interact with the remaining query
protein. Each viral protein is functionally annotated based
on sequence and structural similarity (either using homology
models or known protein structures) and their corresponding
set of predicted interacting human proteins.

Key Points

• In light of the sheer amount of data, many funda-
mental questions in SARS-CoV-2 research can
only be tackled with the help of bioinformatic
tools.

• Bioinformatic analysis of SARS-CoV-2 data has
the potential to track and trace SARS-CoV-2 se-
quence evolution and identify potential drug tar-
gets.

• All tools are freely available online to rapidly ad-
vance SARS-CoV-2 research.

Availability
All presented tools are freely available online, ei-
ther through web applications or public code reposi-
tories. You can find a list of the presented tools and
further tools on the EVBC website: http://evbc.uni-
jena.de/tools/coronavirus-tools/
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