English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Superficial white matter imaging: Contrast mechanisms and whole-brain in vivo mapping

MPS-Authors
/persons/resource/persons180061

Kirilina,  Evgeniya
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Center for Cognitive Neuroscience Berlin (CCNB), FU Berlin, Germany;

/persons/resource/persons198368

Helbling,  Saskia
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons188645

Pine,  Kerrin
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons73213

Dinse,  Juliane
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20053

Trampel,  Robert
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19656

Geyer,  Stefan
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons23475

Bazin,  Pierre-Louis
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Integrative Model-Based Cognitive Neuroscience Research Unit (IMCN), University of Amsterdam, Germany;

/persons/resource/persons147461

Weiskopf,  Nikolaus
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Felix Bloch Institute for Solid State Physics, University of Leipzig, Germany;
Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, United Kingdom;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Kirilina_2020.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Kirilina, E., Helbling, S., Morawski, M., Pine, K., Reimann, K., Jankuhn, S., et al. (2020). Superficial white matter imaging: Contrast mechanisms and whole-brain in vivo mapping. Science Advances, 6(41): eaaz9281. doi:10.1126/sciadv.aaz9281.


Cite as: https://hdl.handle.net/21.11116/0000-0007-328B-4
Abstract
Superficial white matter (SWM) contains the most cortico-cortical white matter connections in the human brain encompassing the short U-shaped association fibers. Despite its importance for brain connectivity, very little is known about SWM in humans, mainly due to the lack of noninvasive imaging methods. Here, we lay the groundwork for systematic in vivo SWM mapping using ultrahigh resolution 7 T magnetic resonance imaging. Using biophysical modeling informed by quantitative ion beam microscopy on postmortem brain tissue, we demonstrate that MR contrast in SWM is driven by iron and can be linked to the microscopic iron distribution. Higher SWM iron concentrations were observed in U-fiber-rich frontal, temporal, and parietal areas, potentially reflecting high fiber density or late myelination in these areas. Our SWM mapping approach provides the foundation for systematic studies of interindividual differences, plasticity, and pathologies of this crucial structure for cortico-cortical connectivity in humans.