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Abstract  24 

The exchange of metabolites among different bacterial genotypes is key for 25 
determining the structure and function of microbial communities. However, the factors 26 
that govern the establishment of these cross-feeding interactions remain poorly 27 
understood. While kin selection theory predicts that individuals should direct benefits 28 
preferentially to close relatives, the potential benefits resulting from a metabolic 29 
exchange may be larger for more distantly related species. Here we distinguish 30 
between these two possibilities by performing pairwise cocultivation experiments 31 
between auxotrophic recipients and 25 species of potential amino acid donors. 32 
Auxotrophic recipients were able to grow in the vast majority of pairs tested (78%), 33 
suggesting that metabolic cross-feeding interactions are readily established. Strikingly, 34 
both the phylogenetic distance between donor and recipient as well as the dissimilarity 35 
of their metabolic networks was positively associated with the growth of auxotrophic 36 
recipients. Finally, this result was corroborated in an in-silico analysis of a co-growth 37 
of species from a gut microbial community. Together, these findings suggest metabolic 38 
cross-feeding interactions are more likely to establish between strains that are 39 
metabolically more dissimilar. Thus, our work identifies a new rule of microbial 40 
community assembly, which can help predict, understand, and manipulate natural and 41 
synthetic microbial systems. 42 
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 47 

Significance 48 

Metabolic cross-feeding is critical for determining the structure and function of natural 49 
microbial communities. However, the rules that determine the establishment of these 50 
interactions remain poorly understood. Here we systematically analyze the propensity 51 
of different bacterial species to engage in unidirectional cross-feeding interactions. Our 52 
results reveal that synergistic growth was prevalent in the vast majority of cases 53 
analyzed. Moreover, both phylogenetic and metabolic dissimilarity between donors 54 
and recipients favored a successful establishment of metabolite exchange interactions. 55 
This work identifies a new rule of microbial community assembly that can help predict, 56 
understand, and manipulate microbial communities for diverse applications. 57 

 58 

Introduction 59 
 Microorganisms are ubiquitous on our planet and are key for driving vital ecosystem 60 
processes (1-3). They contribute significantly to the flow of elements in global 61 
biogeochemical cycles (3, 4) and are also crucial for determining the fitness of plants 62 
(5, 6) and animals (7, 8) including humans (9, 10). These vital functions are provided 63 
by complex communities that frequently consist of hundreds or even thousands of 64 
metabolically diverse strains and species (11, 12). However, the rules that determine 65 
the assembly, function, and evolution of these microbial communities remain poorly 66 
understood. Yet understanding the underlying governing principles is central to 67 
microbial ecology and crucial for purposefully designing microbial consortia for 68 
biotechnological (13) or medical applications (14, 15). 69 

 In recent years, both empirical and theoretical work increasingly suggests that the 70 
exchange of essential metabolites among different bacterial genotypes is a key 71 
process that can significantly affect growth (16, 17), composition (18), and the structure 72 
of microbial communities (19). In those cases, one bacterial genotype releases a 73 
molecule into the extracellular environment, which can be used by other cells in the 74 
local vicinity. The released substances frequently include building block metabolites 75 
such as amino acids (20, 21), vitamins (22, 23), or nucleotides (24) as well as 76 
degradation products of complex polymers (19, 25). Even though these compounds 77 
represent valuable nutritional resources, they are released as unavoidable byproducts 78 
of bacterial physiology (26, 27) and metabolism (28) or due to leakage through the 79 
bacterial membrane (29, 30). Consequently, the released compounds create a pool of 80 
resources that can benefit both conspecifics and members of other species in the local 81 
neighborhood (31-34). The beneficiaries include genotypes that opportunistically take 82 
advantage of these metabolites as well as strains, whose survival essentially depends 83 
on an external supply with the corresponding metabolite. These so-called auxotrophic 84 
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genotypes carry a mutation in a biosynthetic or regulatory gene, which renders the 85 
resulting mutant unable to autonomously produce a certain metabolite such as an 86 
amino acid, a vitamin, or a nucleotide. By utilizing metabolites that are produced by 87 
another cell, a unidirectional cross-feeding interaction is generated. Auxotrophic 88 
mutants that use compounds released by others frequently gain a significant fitness 89 
advantage over prototrophic cells that produce the required metabolites by themselves 90 
(35). Due to the tremendous benefits that can result from this process, cross-feeding 91 
interactions are prevalent in all kinds of microbial ecosystems, including soil (36), 92 
fermented food (21), aquatic environments (37, 38), as well as host-associated 93 
microbiota (7, 39). Despite the ubiquity of unidirectional cross-feeding interactions in 94 
nature, the rules that govern their establishment remain poorly understood (40-43). In 95 
particular, it is unclear how the relationship between the metabolite donor and the 96 
auxotrophic recipient affects the likelihood that a cross-feeding interaction is 97 
successfully established. Two possibilities are conceivable. 98 

 First, kin selection theory predicts that organisms should preferentially direct 99 
benefits to close relatives rather than to more distantly related individuals (44). In this 100 
way, individuals indirectly favor the spread of their own genes. Even if the interaction 101 
at this stage is merely created by chance and has not evolved for this purpose, certain 102 
mechanisms might be in place that could maximize the chance that cells preferentially 103 
interact with conspecifics. Such mechanisms could be based, for example, on 104 
recognition alleles, as they play a role in other social interactions such as quorum 105 
sensing (45), biofilm formation (46), and swarming (47). Moreover, the exchange of 106 
metabolites could be mediated by contact-dependent interactions such as the 107 
formation of intercellular nanotubes (48, 49), which might require a close phylogenetic 108 
relatedness between donor and recipient for an efficient transport to operate. In the 109 
following, we refer to this possibility as the similarity hypothesis. 110 

 Second, unidirectional cross-feeding interactions might favor more distantly related 111 
donor-recipient pairs over interactions among close relatives. Two closely related 112 
bacterial cells are more likely to share ecological preferences such as habitat or 113 
resources utilized than two phylogenetically different bacterial taxa (41). Moreover, two 114 
genealogically related cells have greater similarities in their metabolic network than 115 
two distantly related cells (33, 50, 51). As a consequence, the biosynthetic cost to 116 
produce a given metabolite, and thus its nutritional value, is more likely to be different 117 
in heterospecific pairs than among members of the same species (52, 53). If these 118 
differences translate into enhanced growth of the auxotrophic recipient, a positive 119 
correlation between the growth of the auxotroph and the phylogenetic and/ or 120 
metabolic distance to the donor cell would be observed. In the following, we refer to 121 
this alternative possibility as the dissimilarity hypothesis. 122 

 Here we aim at distinguishing between these two hypotheses to better understand 123 
the rules that govern the establishment of this ecologically important interaction. To 124 
achieve this goal, we used unidirectional cross-feeding interactions as a model. 125 
Synthetically assembling pairs consisting of an auxotrophic recipient and a prototrophic 126 
amino acid donor of the same or a different species ensured that both interaction 127 
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partners do not share a common evolutionary history. In this way, all results will 128 
represent the situation of a naïve encounter between both interaction partners and only 129 
mirror effects resulting from the phylogenetic relatedness and metabolic dissimilarity 130 
between partners. Using this ecological approach, we systematically determined 131 
whether and how the phylogenetic or metabolic distance between auxotrophic 132 
recipients and prototrophic amino acid donors affects cross-feeding in pairwise 133 
bacterial consortia. 134 

 Our results show that in the vast majority of cases, unidirectional cross-feeding 135 
interactions successfully established between a prototrophic donor and an auxotrophic 136 
recipient. Strikingly, recipients' growth was positively associated with both, the 137 
phylogenetic and metabolic distance between donor and recipient. This pattern could 138 
partly be explained by the difference in the amino acid profiles produced by donors. 139 
Finally, an in-silico analysis of co-growth of species from a gut microbial community 140 
revealed that recipient genotypes benefitted more when interacting with metabolically 141 
dissimilar partners, thus corroborating the empirical results. Our work identifies the 142 
metabolic dissimilarity between donor and recipient genotypes as a key parameter for 143 
the establishment of unidirectional cross-feeding interactions. 144 

 145 
Results 146 
 147 
Auxotrophic recipients commonly benefit from the presence of prototrophic 148 
donor cells 149 
 To determine the probability, with which unidirectional cross-feeding interactions 150 
emerge between an auxotrophic recipient and a prototrophic donor genotype, a series 151 
of pairwise coculture experiments were performed (Fig. 1A). For this, 25 strains that 152 
belonged to 21 different bacterial species were used as potential amino acid donors 153 
(Figs. 1B and S1A). Donor strains were selected to cover both the existing diversity of 154 
bacterial taxa and the phylogenetic neighborhood of the focal auxotrophs as good as 155 
possible. These potential amino acid donors were individually cocultured together with 156 
one auxotrophic recipient of Escherichia coli or Acinetobacter baylyi, which were both 157 
auxotrophic for either histidine (ΔhisD) or tryptophan (ΔtrpB) (Fig. S1B). 158 
 To test if the selected donor strains can support the growth of auxotrophic recipients, 159 
the abovementioned strains were systematically cocultured in all possible pairwise 160 
combinations (initial ratio: 1:1). Subsequently, the net growth of the recipient strains in 161 
coculture was quantified over 24 h, and compared to the growth, the same strain 162 
achieved in monoculture over the same period in the absence of amino acid. In this 163 
experiment, the donor's presence affected the recipient's growth either positively, 164 
negatively, or in a neutral way. Only 2% of the tested cases showed a growth reduction, 165 
and in 20% of the interactions, auxotrophs did not respond at all to the presence of a 166 
donor cell (Fig. 1C). In contrast, in the vast majority of cocultures tested (i.e., 78%), 167 
auxotrophic cells grew significantly better in the presence of donor cells than 168 
monocultures of auxotrophs, suggesting that unidirectional cross-feeding interactions 169 
can readily establish (Fig. 1C).  170 
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 171 

Fig. 1. Unidirectional cross-feeding between prototrophic donor cells and amino acid 172 
auxotrophic recipients is common. (A) Overview over the experimental system used. 173 
Metabolically autonomous donor genotypes (dark cell) were cocultivated together with an 174 
auxotrophic recipient that was unable to produce either histidine or tryptophan (white cell). 175 
Growth of auxotrophs signifies the successful establishment of a unidirectional cross-feeding 176 
interaction, in which the focal amino acid (△) is exchanged between both cells. (B) 177 
Phylogenetic tree of bacterial species (donors and recipients) used in this study. Different 178 
colors indicate different phyla. The tree was constructed based on the 16S rRNA gene. 179 
Recipient strains used in this study are highlighted in bold. Branch node numbers represent 180 
bootstrap support values. (C) Growth of auxotrophic recipients in pairwise coculture with 181 
different donor genotypes. Escherichia coli and Acinetobacter baylyi, each either auxotrophic 182 
for histidine (ΔhisD) or tryptophan (ΔtrpB), were used as amino acid recipients. The relative 183 
fitness of receivers when grown in coculture with one of X donors is plotted relative to their 184 
growth in monoculture in the absence of the focal amino acid (dashed line). CFU was 185 
calculated 24 h post-inoculation. Interactions in cocultures were classified as negative (n = 8), 186 
neutral (n = 76), and positive (n = 296), based on the statistical difference between the growth 187 
of auxotrophs in monoculture and coculture (FDR-corrected paired t-test: P ≤ 0.05, n = 4).  188 

 189 
Recipient growth depends on amino acid production of donor genotypes 190 

 The main factor causing the growth of auxotrophs in the coculture experiments 191 
was likely the amount and identity of metabolites that donor cells released into the 192 
extracellular environment (i.e., the exo-metabolome) (26). To test if amino acid 193 
production of donors could explain the observed recipient growth, the supernatant of 194 
monocultures of all 25 donor strains was collected during exponential growth. 195 
Subjecting the cell-free supernatant of these cultures to LC/MS/MS analysis revealed 196 
that all tested genotypes secreted amino acids in varying amounts (Figs. 2A and S2).  197 
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 199 

Fig. 2. Total amino acids production of different donors can predict unidirectional cross-200 
feeding. (A) Heatmap of amino acids released by different donor strains. Amount of amino 201 
acid (mM per cell) produced by 25 donor strains (for abbreviations see Fig. 1B) is shown (Y-202 
axis). Cell-free supernatants of exponentially growing cultures were analyzed via LC/MS/MS. 203 
Colors indicate different amino acid concentrations (legend). Σ = total amino acid produced by 204 
the donor. (B) Overview over the statistical relationships between the total amount of amino 205 
acids (upper part) or the focal amino acid (lower part) in supernatants of donor cultures and 206 
the growth of the corresponding auxotrophic recipients. Results of spearman rank correlations 207 
(⍴) are shown.  208 

  209 

In this experiment, donors are not expected to specifically produce the amino acid that 210 
the cocultured auxotroph requires for growth. Moreover, bacteria usually use generic 211 

B

mM cell-1

A

Supernatant experiment 
Total amino acids
Recipient n ρ P-value
AB-his 89 0.29 4.3x10-3
AB-trp 90 0.17 0.12
ECB-his 92 0.35 8.3x10-4
ECB-trp 93 0.33 1.2x10-3
Focal amino acid
AB-his 89 0.23 0.029
AB-trp 90 0.09 0.37
ECB-his 92 0.47 0.2x10-5
ECB-trp 93 0.43 0.13x10-4
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transporters that transport similar types of amino acids across the membrane (54-56). 212 
Thus, auxotrophic recipients may benefit not only from the one amino acid they require 213 
for growth, but also from utilizing the other amino acids that are produced by the donor. 214 
To quantitatively determine whether the released amino acids could explain the growth 215 
of recipient cells, the conditioned cell-free supernatant was supplied to monocultures 216 
of auxotrophic cells and the resulting growth over 24 h was quantified. In addition, the 217 
chemical composition of the supernatants used was determined via LC/MS/MS. This 218 
experiment revealed that donor supernatants enhanced the growth of auxotrophic 219 
recipients. Interestingly, recipient growth correlated positively with the total amount of 220 
amino acids that were present in the supernatant (Table 2B). In addition, growth of 221 
auxotrophic recipients was positively associated with the concentration of the amino 222 
acid auxotrophs required for growth as well as with the total amount of amino acids 223 
produced by donor cells (Table 2B). Together, these results show that auxotrophic 224 
recipients not only use the amino acids they cannot produce on their own, but also take 225 
advantage of the other amino acids that are produced by donor cells. 226 

 227 
Recipient growth correlates positively with amino acid profile dissimilarity 228 
 To distinguish between the two main hypotheses, we asked whether the difference 229 
in the amino acid profile produced by a closely and distantly related donor strain could 230 
explain the growth auxotrophs achieved in the coculture experiment. To test this, we 231 
calculated the Euclidean distance between the amino acid profiles of all 25 donor 232 
strains. Assessing the statistical relationship between the normalized growth of 233 
auxotrophs in coculture with the Euclidean distance in the amino acid profiles of closely 234 
and distantly related donor genotypes revealed a significant positive relationship 235 
between both parameters in all cases (Fig. 3A and Table 1). In other words, auxotrophs 236 
grew better in coculture with a donor, which contained an amino acid mixture that was 237 
different from the one a conspecific cell would have produced. Thus, these results 238 
provide evidence that supports the dissimilarity hypothesis. 239 
 240 
Growth of recipients scales positively with the phylogenetic and metabolic 241 
distance to donor cells 242 
 Next, we asked whether two phylogenetically close genotypes are more likely to 243 
engage in a unidirectional cross-feeding interaction than two more distantly related 244 
genotypes. To test this, we re-analyzed the results of the coculture experiment by 245 
focusing on the phylogenetic relatedness between donor and recipient genotypes. In 246 
this context, only those cocultures were considered, in which auxotrophs showed 247 
detectable growth. These analyses revealed a positive association between the growth 248 
of recipients and the phylogenetic distance to donor cells (Fig. 3B and Table 1).  249 

However, given that previous analyses suggested that differences in the amino acid 250 
profiles could predict auxotrophic recipients' growth (Fig. 3A and Table 1), we 251 
hypothesized that the phylogenetic distance might only be a proxy for the difference in 252 
the strains' metabolic networks. To verify this hypothesis, we compared genome-scale 253 
metabolic networks of all donor and recipient genotypes. Using this data, a metabolic 254 
similarity matrix between donor and recipient strains was calculated by identifying 255 
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commonalities and differences in both partners' biosynthetic pathways. Correlating the 256 
resulting data with the growth of auxotrophic recipients in coculture revealed again a 257 
positive association between the metabolic distance and recipient growth (Fig. 3C and 258 
Table 1). Together, these results provide additional support for the interpretation that 259 
cross-feeding interactions are more likely to establish between two more dissimilar 260 
genotypes. 261 
 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

Fig. 3. Cross-feeding increases with an increasing dissimilarity to donor cells. Shown is 272 
the net growth of the E. coli recipient auxotrophic for histidine (ΔhisD, △) as a function of (A) 273 
the amino acid profile distance, (B) the phylogenetic distance, and (C) the genome-based 274 
metabolic distance between donor and recipient. Red lines are fitted linear regressions and 275 
grey area indicates the 95% confidence interval. Sample size is 80 in all cases. Growth of 276 
recipient is displayed as a logarithm of the difference in number of CFUs between 0 h and 24 277 
h and was normalized per number of donor cells.  278 

 279 
Table 1. Amino acid profile distance (AAD), phylogenetic distance (PD), and metabolic 280 
distance (MD), is positively associated with recipient growth. Results of statistical 281 
regressions are shown.  282 

 283 

 284 
All three distance measures alone can explain recipient growth 285 
 Having observed a significant positive correlation of recipient growth with each of 286 
the three-distance metrics analyzed (i.e., amino acid profile distance (AAD), 287 
phylogenetic distance (PD), and metabolic distance (MD), Table 1), we asked whether 288 
these factors alone were sufficient to predict the growth of auxotrophic recipients. This 289 
question was addressed by replotting the data of the performed coculture experiments 290 
in three-dimensional graphs that display the growth of a given auxotroph depending 291 

AAD PD MD
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ECB-his 80 0.23 5.9x10-6 0.10 4.95x10-3 0.16 1.96x10-4
ECB-trp 91 0.26 2.1x10-7 0.12 6.40x10-4 0.17 3.80x10-5
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on two of the three measures quantified. Fitting a 2D plane into the resulting graphs 292 
indicated that increasing each of the three measures also increased recipients' growth 293 
(Fig. 4 and S3). Thus, these graphs suggested that the three explanatory variables are 294 
likely correlating with each other. To subject this conjecture to a formal statistical test, 295 
we repeated the regression analyses to examine whether MD or AAD were significantly 296 
associated with the growth of auxotrophs in coculture, when the first predictor variable 297 
PD was already included (Table S1). In all cases, growth of E. coli recipients remained 298 
positively associated with metabolic distance as well as the distance of the amino acid 299 
production profile (Table S1). However, this pattern no longer holds for A. baylyi 300 
auxotrophs (ΔhisD and ΔtrpB) (Table S1).  301 
 Furthermore, we hypothesize that the amount of amino acid produced by the donors 302 
should affect recipient growth. Genotypically related donors are more likely to produce 303 
the same spectrum of amino acids as compared to distantly related individuals. In order 304 
to consider this fact, we performed additional analyses that controlled for the role of 305 
total amino acid production or focal amino acid production (his or trp). In almost all 306 
cases, growth of recipients remained significantly positively associated with the three 307 
distance measures (Table S2 and S3). Together, the set of analyses performed 308 
demonstrates that the three different measures analyzed (i.e., AAD, PD, and MD, and) 309 
can individually (in the case of E. coli) or in combination (both species) explain the 310 
cross-feeding between prototrophic donors and auxotrophic recipients, thus, 311 
corroborating the dissimilarity hypothesis. 312 
 313 

 314 

Fig. 4. Multiple distance measures interactively explain recipient growth. The plane 315 
depicts the linear regression between the growth of the histidine auxotrophic E. coli recipient 316 
(ΔhisD) and the phylogenetic distance, the metabolic distance, and the amino acid profile 317 
distance between donor and recipient. Data points above the plane are shown in black. See 318 
also Fig. S3 for other comparisons. 319 

 320 
In-silico models predict that metabolic dissimilarity between species enhances 321 
cross-feeding  322 
 To verify whether the patterns we observed in laboratory-based coculture 323 
experiments also apply to natural microbial communities, we used in-silico modeling 324 
to simulate the co-growth of different bacterial species that co-occur in the human 325 
gastrointestinal tract. Specifically, we considered all of 334,153 pairwise combinations 326 
of 818 bacteria commonly found in this environment. The in-silico simulations indicated 327 
that the relationship between metabolic distance and metabolic exchange (i.e., total 328 
metabolic fluxes between species) follows a saturation curve (Fig. 5). In fact, fitting a 329 
logistic function resulted in a higher goodness of fit (P < 0.001, R2 = 0.04) than fitting 330 
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a linear function (R2 = 0.023). This finding suggests that also bacteria residing within 331 
the human gut are more likely to engage in cross-feeding interactions with 332 
metabolically more dissimilar species. Taken together, the set of computational 333 
analyses performed here is in line with the experimental data shown above: both 334 
datasets reveal that metabolic cross-feeding interactions are more likely to establish 335 
between two metabolically more dissimilar partners. 336 
 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

Fig. 5. Metabolic exchange increases with an increasing metabolic distance between 349 
interaction partners in gut microbial communities. Shown is the result of an in-silico flux-350 
balance-analysis of paired models analyzing 334,153 combinations of 818 bacterial species 351 
residing in the human gut. Results of a logistic model (red line) and the 95% confidence interval 352 
(grey area) are displayed. 353 

 354 
Discussion 355 
 Metabolic cross-feeding interactions among different microbial species are 356 
ubiquitous and play key roles in determining the structure and function of microbial 357 
communities (16, 57, 58). However, the rules that govern their establishment remain 358 
poorly understood. Here we identify the metabolic dissimilarity between donor and 359 
recipient genotype as a major determinant for the establishment of obligate, 360 
unidirectional cross-feeding interactions between two bacterial strains. In systematic 361 
coculture experiments between a prototrophic amino acid donor and an auxotrophic 362 
amino acid recipient, we show that growth of auxotrophic recipients in coculture was 363 
positively associated with (i) the compositional difference in the amino acid mixtures 364 
various donor produced (Fig. 3A), (ii) their phylogenetic distance (Fig. 3B), as well as 365 
(iii) the difference in their metabolic networks (i.e. their metabolic distance) (Fig. 3C). 366 
Furthermore, in-silico simulations of the co-growth of species from a gut microbial 367 
community corroborated that the propensity of cross-feeding interactions to establish 368 
increased when both interacting partners were metabolically more dissimilar (Fig 5). 369 

R2 = 0.046

P < 0.001
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 In our study, we manipulated the relatedness between donor and recipient 370 
genotypes. A high phylogenetic relatedness between two genotypes (donor and 371 
recipient) in coculture means that they can perform similar metabolic reactions and are 372 
more likely to be characterized by overlapping growth requirements (33, 43). As a 373 
consequence, both the nutritional value of a given molecule and the biosynthetic cost 374 
to produce it is alike (52, 53, 59). In contrast, two phylogenetically distant strains likely 375 
differ in their metabolic capabilities and requirements. Thus, two more closely related 376 
strains are likely to compete for environmentally available nutrients and provide an 377 
increased potential for a difference in the cost-to-benefit-ratio than two distant relatives 378 
(43, 60). This statistical relationship can explain why in our coculture experiments, both 379 
the phylogenetic and metabolic distance was positively associated with the growth of 380 
cocultured auxotrophs. Thus, our results support the dissimilarity hypothesis to explain 381 
the establishment of unidirectional cross-feeding interactions. Our findings are in line 382 
with previous studies that analyzed the effect of the phylogenetic relatedness and 383 
metabolic dissimilarity on antagonistic interactions between two different genotypes. 384 
The authors of these studies found that bacteria mainly inhibit the growth of 385 
metabolically more similar and related species (41, 61). Even though the focal 386 
biological process differs drastically between our (metabolic cross-feeding) and these 387 
other studies (antagonistic interactions), the main finding is conceptually equivalent: 388 
genotypes are more likely to compete against close relatives, yet support the growth 389 
of more dissimilar strains – either by enhancing their growth (Fig. 3) or inhibiting them 390 
less (41, 61). 391 

 In our experiments, we took advantage of synthetically assembled pairwise 392 
interactions between different bacterial genotypes to assess how the similarity 393 
between interacting partners affects the cross-feeding of metabolites. Even though this 394 
approach is limited by the number of pairwise comparisons that can be analyzed in 395 
one experiment, the obtained results provide a very clear answer to the focal question. 396 
First, the selected donor strains covered a broad range of taxonomic diversity in 397 
bacteria (Fig. 1B). Thus, the spectrum of ecological interactions analyzed here likely 398 
reflects the range of interactions a given bacterial genotype would typically experience 399 
in a natural microbial community. Second, by deliberately choosing strains that lack a 400 
previous coevolutionary history, any result observed can be clearly attributed to the 401 
focal, experimentally-controlled parameter (e.g., phylogenetic or metabolic distance). 402 
In this way, confounding effects like an evolved preference for a certain genotype can 403 
be ruled out. Finally, we analyzed bacterial consortia in a well-mixed, spatially 404 
unstructured environment, in which the exchanged metabolites are transferred 405 
between cells via diffusion through the extracellular environment. Such a set-up 406 
minimizes factors that would be amplified in a spatially structured environment, such 407 
as a local competition for nutrients or the release of metabolic waste products that 408 
inhibit the growth of other cells in the local vicinity. Thus, the experimental approach 409 
chosen circumvents the challenges of manipulating and detecting metabolite 410 
exchange in natural environments and instead capitalizes on analyzing experimentally 411 
arranged and carefully controlled coculture experiments. 412 
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 The guiding principle discovered in this study is most likely relevant for ecological 413 
interactions outside the realm of microbial communities. Mutualistic interactions, in 414 
which two partners reciprocally exchange essential metabolites or services, usually 415 
involve two or more completely unrelated species (60, 62-64). In contrast, cooperative 416 
interactions among closely related individuals usually rely on the uni- or bidirectional 417 
exchange of the same commodity or service (60). Thus, the fact that two more 418 
dissimilar individuals have an increased potential to engage in a synergistic interaction 419 
than two more similar individuals may be a universal rule that guides the establishment 420 
of mutualistic interactions in general (43).  421 

 Our results highlight the utility of using synthetic, laboratory-based model systems 422 
to understand fundamental principles of microbial ecology. In this study, we 423 
demonstrated that the establishment of interactions in complex natural communities is 424 
likely determined by simple rules of assembly. These insights not only enrich our 425 
understanding of complex microbial communities, but also help us to engineer them 426 
for biotechnological or medical applications.  427 

 428 

Material and methods 429 
 430 
Bacterial strains and their construction 431 
 Twenty-five bacterial wild type strains were used as potential amino acid donors 432 
(Supplemental Table S4). Escherichia coli BW25113 and Acinetobacter baylyi ADP1 433 
were used as parental strains, from which mutants that are auxotrophic for histidine 434 
(ΔhisD) or tryptophan (ΔtrpB) were generated. The gene to be deleted in order to 435 
create the corresponding auxotrophy was identified using the KEGG (65) and the 436 
EcoCyc (66) database. For E. coli, deletion alleles were transferred from existing single 437 
gene deletion mutants (i.e. the Keio collection, (67)) into E. coli BW25113 using phage 438 
P1-mediated transduction (68). In-frame knockout mutants were achieved by the 439 
replacement of target genes with a kanamycin resistance cassette. In the case of A. 440 
baylyi, deletion mutants were constructed as described previously (48). Briefly, linear 441 
constructs of the kanamycin resistance cassette with 5’-overhangs homologous to the 442 
insertion site were amplified by PCR, where pKD4 was used as a template (see 443 
Supplemental Table S5 for primer details). Upstream and downstream regions 444 
homologous to hisD and trpB were amplified using primers with a 5’-extension that was 445 
complementary to the primers used to amplify the kanamycin resistance cassette. The 446 
three amplified products (upstream, downstream, and kanamycin) were combined by 447 
PCR, resulting in overhanging flanks with a kanamycin cassette. This PCR product 448 
was introduced into the A. baylyi WT strain. For this, the natural competence of A. 449 
baylyi was harnessed. Transformation was done by diluting 20 μl of a 16 h-grown 450 
culture in 1 ml lysogeny broth (LB). This diluted culture was mixed with 50 μl of the 451 
above PCR mix and further incubated at 30 °C with shaking at 200 rpm for 3 h. Lastly, 452 
1 ml volume was pelleted, washed once with LB broth, plated on LB agar plates 453 
containing kanamycin (50 µg ml-1), and incubated at 30 °C for colonies to grow.  454 
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 Conditional lethality of constructed auxotrophic mutations in MMAB medium was 455 
verified by inoculating 105 colony-forming units (CFU) ml-1 of these strains into 1 ml 456 
MMAB medium with or without the focal amino acid (100 µM). After 24 h, their optical 457 
density (OD) was determined spectrophotometrically at 600 nm using FilterMax F5 458 
multi-mode microplate reader (Molecular Devices) and the mutation was considered 459 
conditionally essential when growth did not exceed the OD600nm of uninoculated 460 
minimal medium (67, 69).  461 
 462 
Culture conditions and general procedures 463 
 A modified minimal media for Azospirillum brasilense (MMAB, (70)) was used for all 464 
experiments containing K2HPO4 (3 g L-1), NaH2PO4 (1 g L-1), KCl (0.15 g L-1), NH4Cl 465 
(1 g L-1), MgSO4 · 7H2O (0.3 g L-1), CaCl2 · 2H2O (0.01 g L-1), FeSO4 · 7H2O (0.0025 466 
g L-1), Na2MoO4· 2H2O (0.05 g L-1), and 5 g L-1 D-glucose as a carbon source. 10 ml 467 
of trace salt solution was added per liter of MMAB media from the 1L stock. Trace salt 468 
stock solution consisted of filter sterilized 84 mg L-1 of ZnSO4. 7H2O, 765 µl from 0.1 469 
M stock of CuCl2. 2H2O, 8.1 µl from 1 M stock of MnCl2, 210 µl from 0.2 M stock of 470 
CoCl2. 6H2O, 1.6 ml from 0.1 M stock of H3BO3, 1 ml from 15 gL-1 stock of NiCl2.  471 
 All strains were precultured in replicates by picking single colonies from LB agar 472 
plates, transferring them into 1 ml of liquid MMAB in 96-deep well plate (Eppendorf, 473 
Germany), and incubating these cultures for 20 h. In all experiments, auxotrophs were 474 
precultured at 30 °C in MMAB, which was supplemented with 100 µM of the required 475 
amino acid. The next day, precultures were diluted to an optical density of 0.1 at 600 476 
nm as determined by FilterMax F5 multi-mode microplate readers (Molecular Devices).  477 
 478 
Coculture experiment 479 
 Approximately 50 µl of preculture were inoculated into 1 ml MMAB, leading to a 480 
starting density 0.005 OD. In case of cocultures, donor and recipient were mixed in a 481 
1:1 ratio by co-inoculating 25 µl of each diluted preculture without amino acid 482 
supplementation. Monocultures of both donors and recipient (with and without the focal 483 
amino acid) were inoculated using 50 µl of preculture. Cultures were incubated at a 484 
temperature of 30 °C and shaken at 220 rpm. Cell numbers were determined at 0 h 485 
and 24 h by serial dilution and plating. Donor strains were plated on MMAB agar plates, 486 
whereas recipients (auxotrophs) were differentiated on LB agar containing kanamycin 487 
(50 µg ml-1) to select for recipient strains. For key resources, see (Supplemental Table 488 
S6).  489 
 490 
Relative fitness measurement 491 
 To quantify the effect of amino acid cross-feeding on the fitness of the recipient, the 492 
number of colony-forming units (CFU) per ml was calculated for monoculture and 493 
coculture conditions at 0 h and 24 h. Each donor was individually paired with one of 494 
the recipients as well as grown in monoculture. Every combination was replicated four 495 
times. The relative fitness of each recipient was determined by dividing the growth of 496 
each genotype achieved in coculture by the value of its respective monoculture. Since 497 
different donor genotypes show inherent differences in growth, the growth of recipients 498 
in coculture was normalized to reduce to minimize potential effects of this variation. 499 
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For this, growth of recipients in monoculture was first subtracted from its growth in 500 
coculture and then divided by the growth the respective donor genotype achieved in 501 
coculture.  502 
 503 
Amino acid supernatant experiment 504 
 To determine whether cross-feeding was mediated via compounds that have been 505 
released into the extracellular environment, the cell-free supernatants of donor 506 
genotypes were harvested and provided to receiver strains. To collect the supernatant, 507 
donors were grown in 2.5 ml MMAB in 48-deep well plates (Axygen, USA) and 508 
cultivated at 30 °C under shaking conditions (220 rpm). Supernatants were isolated in 509 
the mid-exponential growth phase and centrifuged for 10 min at 4,000 rpm. Then, 510 
supernatants were filter-sterilized (0.22 µm membrane filter, Pall Acroprep, USA) and 511 
stored at -20 °C. Meanwhile, receivers were grown in 1 ml MMAB in 96-well plates for 512 
24 h. After adjusting the receiver OD600nm to 0.1, 5 µl of the receiver culture was added 513 
to the replenished donor supernatant (total culturing volume: 200 µl, i.e. 160 µl donor 514 
supernatant + 40 µl MMAB) in 384-well plates (Greiner bio-one, Austria) (total: 50 µl 515 
culture). Four replicates of each comparison were grown for 24 h at 30 °C in a FilterMax 516 
F5 multi-mode microplate reader (Molecular Devices). MMAB without supernatant and 517 
monocultures of receiver strains were used as control. Growth was determined by 518 
measuring the optical density at 600 nm every 30 minutes, with 12 minutes of orbital 519 
shaking between measurements. OD600nm was measured and analyzed to calculate 520 
the maximum optical density (ODmax) achieved by the receiver strain usingthe Softmax 521 
Pro 6 software (Table S7). For each donor supernatant-receiver pair, ODmax achieved 522 
by receivers with supernatant was subtracted from the values achieved by cultures 523 
grown without supernatant and normalized with the OD600nm, the respective donor 524 
strain had achieved at the time of supernatant extraction. 525 
 526 
Amino acid quantification by LC/MS/MS 527 
 All 20 proteinogenic amino acids in the culture supernatant were analyzed. 100 µl 528 
of extracted supernatant was derivatized using the dansyl chloride method (71, 72). 529 
Norleucine was added as an internal standard to the sample and a calibration curve 530 
was generated by analyzing all 20 amino acids at different concentrations. All samples 531 
were directly analyzed via LC/MS/MS. Chromatography was performed on a Shimadzu 532 
HPLC system. Separation was achieved on an Accucore RP-MS 150 x 2.1, 2,6 μm 533 
column (Thermo Scientific, Germany). Formic acid 0.1% in 100% water and 80% 534 
acetonitrile were employed as mobile phases A and B, respectively. The mobile phase 535 
flow rate was 0.4 ml min-1 and the injection volume was 1 μl. Liquid chromatography 536 
was coupled to a triple-quadrupole mass spectrometer (ABSciex Q-trap 5500). Other 537 
parameters were: curtain gas: 40 psi, collision gas: high, ion spray voltage (IS): 2.5 538 
keV, temperature: 550 °C, ion source gas: 1: 60 psi, ion source gas 2: 70 psi. Multiple 539 
reaction monitoring was used to determine the identity of the focal analyte. Analyst and 540 
Multiquant software (AB Sciex) were used to extract and analyze the data.  541 

 542 
Amino acid profile-based distance calculation using supernatant data 543 
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 The similarity between closely related and distantly related donor amino acid profiles 544 
was measured by calculating the Euclidean distance. If the amino acid production of a 545 
closely related donor is given by 𝐶𝑅 = (𝑐𝑟(, 𝑐𝑟*,⋯ , 𝑐𝑟*,), and the amino acid production 546 
of the distant related donor is given by 𝐷𝑅 = (𝑑𝑟(, 𝑑𝑟*,⋯ , 𝑑𝑟*,), the Euclidean distance 547 
between recipient and donor is: 548 
 549 

𝐸𝐷(𝐶𝑅,𝐷𝑅) = 1(𝑐𝑟( − 𝑑𝑟()* + (𝑐𝑟* − 𝑑𝑟*)* + ⋯+ (𝑐𝑟*, − 𝑑𝑟*,)* 550 

Index numbers (1-20) refer to individual amino acids. 551 
 552 
Phylogenetic tree construction and distance calculation  553 
 To cover a broad taxonomic diversity of donor strains, we chose 25 well-554 
characterized species, belonging to four different phyla. The 16S rRNA gene 555 
sequences of 20 strains were retrieved from the NCBI GenBank and 5 strains from 556 
16S rRNA sequencing (see supplementary method). The phylogenetic tree of this 557 
marker gene was generated using the maximum likelihood method in MEGA X 558 
software (73). 16S rRNA gene locus sequences of all strains were converted to amino 559 
acid sequences and aligned with MUSCLE. Maximum-likelihood (ML) trees were 560 
constructed using the Kimura 2-parameter model, where rates and patterns among 561 
mutated sites were kept at uniform rates, yielding the best fit. Bootstrapping was 562 
carried out with 1,000 replicates. The phylogenetic tree was edited using the iTOL 563 
online tool (Table S7) (74). Pairwise phylogenetic distances between donor and 564 
receiver strains were extracted from a phylogenetic distance-based matrix. The 565 
resulting values quantify the evolutionary distance that separates the organisms. 566 
 567 
Reconstruction of metabolic networks 568 
 Genome-scale metabolic networks for all organisms (Table S4) were reconstructed 569 
based on their genomic sequences using the GapSeq software (version v0.9, 570 
https://github.com/jotech/gapseq) (75). In brief, the reconstruction process is divided 571 
in two main steps. First, reactions and pathway predictions, and, second, gap-filling of 572 
the network to facilitate in-silico biomass production using flux balance analysis. For 573 
the reaction and pathway prediction step, all pathways from MetaCyc database (76) 574 
that are annotated for the taxonomic range of bacteria, were considered. Of each 575 
reaction within pathways, the protein sequences of the corresponding enzymes were 576 
retrieved from the SwissProt database (77) and aligned against the organism’s 577 
genome sequence by the TBLASTN algorithm (78). An enzyme, and thus the 578 
corresponding reaction, was considered to be present in the organism’s metabolic 579 
network, if the alignment’s bitscore was ≥ 200 and the query coverage ≥ 75%. 580 
Moreover, reactions were considered to be existing, if more than 75% of the remaining 581 
reactions within the pathway were predicted to be present by the BLAST-searches or 582 
if more than 66% of the key enzymes, which are defined for each pathway by MetaCyc, 583 
were predicted to be part of the network by the blast searches. As reaction database 584 
for model construction, we used the ModelSEED database for metabolic modeling 585 
(79). 586 
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 The second step (i.e., the gap filling algorithm of gapseq) solves several optimization 587 
problems by utilizing a minimum number of reactions from the ModelSEED database 588 
and adding them to the network, in order to facilitate growth in a given growth medium. 589 
Here, the chemical composition of the M9 medium (which is qualitatively identical to 590 
MMAB) with glucose as sole carbon source was assumed. 591 
 592 

Calculating the genome-based metabolic distance of organisms 593 
 To estimate the pairwise metabolic distance between donor and recipient 594 
genotypes, the structure of their metabolic network was compared. For this, a flux 595 
balance analysis was performed on each individual metabolic network model. 596 
Subsequently, total flux was minimized to predict the flux distribution in M9-glucose 597 
medium (80). Pairwise distances of flux distributions between organisms were 598 
calculated as the Euclidean distance between the predicted flux vectors. Only 599 
reactions with a non-zero flux in at least one of the two organisms were included in the 600 
distance approximations. 601 
 602 

In-silico simulation of bacterial co-growth 603 
 To further investigate the relationship between the metabolic distance between 604 
organisms and the likelihood for them to enter into a cross-feeding interaction, we 605 
extended our analysis to a larger number of bacterial organisms using in-silico co-606 
growth simulations. For this, we reconstructed 818 bacterial metabolic network models 607 
as described above. The selected 818 organisms are the same as from the AGORA-608 
collection, which represent common members of the human gut microbiota (81). For 609 
co-growth simulations, the models were merged in a pairwise manner as described 610 
previously (82). The predicted metabolic flux distributions of bacterial co-growth 611 
simulations were used to estimate the metabolic exchange between organisms. The 612 
metabolic exchange between two organisms was calculated as the sum of absolute 613 
predicted exchange rates (exchange fluxes) of metabolites. A logistic curve function of 614 
the form y(x) = a / (1 + e-b*(x-c)) was fitted to the data using R (83). 615 
   616 

Statistical data analysis 617 
 Normal distribution of data was evaluated by means of the Kolmogorov-Smirnov test 618 
and data was considered to be normally distributed when P > 0.05. Homogeneity of 619 
variance was determined using Levene’s test and variances were considered 620 
homogenous if P > 0.05. Differences in the recipient growth in coculture versus 621 
monocultures were assessed with paired sample t-tests. P-values were corrected for 622 
multiple testing by applying the false discovery rate (FDR) procedure of Benjamini et 623 
al. (84, 85). Linear regressions were used to assess the growth support of recipients 624 
in cocultures as a function of different variables (i.e. amino acid profile distance, 625 
phylogenetic distances, metabolic distance). Spearman’s rank correlation was used to 626 
assess the relationship between amino acid production and growth of recipient as 627 
maximum density when cultured with donor supernatants. The relationship between 628 
each proxy tested and recipient growth was depicted as a 2D plane and analyzed by 629 
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fitting a linear regression. Regression analyses was also used to disentangle the effect 630 
of more than one interacting predictor variable. In these cases, the phylogenetic signal 631 
or amino acid produced was controlled for the respective other predictor variable (e.g. 632 
metabolic distance or amino acid production profile distance) used to predict growth of 633 
recipient (Table S7).  634 
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