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Optical manipulation of domains in chiral topological superconductors
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Optical control of chirality in chiral superconductors bears potential for future topological quantum computing
applications. When a chiral domain is written and erased by a laser spot, the Majorana modes around the domain
can be manipulated on ultrafast timescales. Here we study topological superconductors with two chiral order pa-
rameters coupled via light fields by a time-dependent real-space Ginzburg-Landau approach. Continuous optical
driving, or the application of supercurrent, hybridizes the two chiral order parameters, allowing one to induce
and control the superconducting state beyond what is possible in equilibrium. We show that superconductivity
can even be enhanced if the mutual coupling between two order parameters is sufficiently strong. Furthermore,
we demonstrate that short optical pulses with spot size larger than a critical one can overcome a counteracting
diffusion effect and write, erase, or move chiral domains. Surprisingly, these domains are found to be stable,
which might enable optically programmable quantum computers in the future.
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I. INTRODUCTION

Chiral superconductors spontaneously break time-reversal
symmetry and host topologically protected chiral Majorana
edge modes [1,2], thus bearing potential for applications in
quantum computing [3,4]. The superconductor’s chirality it-
self can be a useful degree of freedom, much like spin [5,6],
valley [7,8], and other quantum states [9], which may allow
for quantum information processing [10]. It is therefore desir-
able to develop means of controlling chiral superconductors
and their associated Majorana edge modes, preferably on ul-
trafast timescales. Dynamical symmetry breaking by optical
driving [10–12], or supercurrents [13,14], has been suggested
as an efficient way to achieve this goal.

It was recently predicted that optical switching of chirality
in a bulk chiral superconductor can be achieved by a joint ef-
fect of homogeneous linearly and circularly polarized optical
pulses [10]. The local and ultrafast manipulation of Majo-
rana modes, however, requires the creation and annihilation
of chiral domains by a laser spot of finite size. It is not a
priori obvious that this can be achieved since locally perturbed
order parameters can diffusively relax back to their original
state in a system with multicomponent superconducting insta-
bilities. Here we microscopically derive the time-dependent
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Ginzburg-Landau (TDGL) equations [15,16] in real space
from a prototype model on a honeycomb lattice [17–21],
which could be realized, as suggested by recent experiments,
in highly doped graphene [22,23] or twisted bilayer graphene
and other van der Waals materials [24–32]. Further works on
chiral superconducting materials, which will follow a similar
phenomenology as discussed here, include experimental evi-
dence for chiral p ± ip-wave superconductivity in materials,
such as UPt3 [33–35] and UTe2 [36]. The perhaps most no-
table candidate material has been Sr2RuO4 with proposals of
triplet p-wave pairing [37,38], but a more recent investiga-
tion ruled this out [39], and there is now evidence for d- or
potentially even g-wave instabilities [40–42]. Importantly, our
TDGL theory phenomenologically but transparently describes
the dynamics of coupled order parameters of general chiral
superconductors in both spatially homogeneous and inhomo-
geneous scenarios.

Our main results are twofold. On the one hand, we find
that because the two chiral order parameters are coupled
via the optical vector potential as a consequence of angular-
momentum conservation, a continuous driving (or a static
supercurrent) can hybridize the two order parameters. Pro-
vided that the coupling between the two order parameters is
sufficiently strong, superconductivity can even be enhanced
beyond their equilibrium values. On the other hand, we
demonstrate that a short pulse of linearly polarized light can
drive the two order parameters to be close in magnitude.
Due to the accompanying amplitude-mode oscillation (Higgs
mode) [43–50], the balance between the two chiral order
parameters depends on the precise time at which the pulse is
switched off with respect to this oscillation. The probability
for a switch from one order to the other to occur is roughly

2643-1564/2021/3(1)/013253(15) 013253-1 Published by the American Physical Society

https://orcid.org/0000-0001-7020-2204
https://orcid.org/0000-0002-7946-0282
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.013253&domain=pdf&date_stamp=2021-03-18
https://doi.org/10.1103/PhysRevResearch.3.013253
https://creativecommons.org/licenses/by/4.0/


YU, CLAASSEN, KENNES, AND SENTEF PHYSICAL REVIEW RESEARCH 3, 013253 (2021)

1

2
p+ip pp+ip p p  ip

1

2
p+ippp+ipp

p  ip

1

2

p  ip p  ip 

p+ippp+ippp

p+ipp  ip

FIG. 1. Interference of Majorana fermions using optically en-
gineered domains in a p + ip superconductor. A single electron is
injected at the two leads (gray shaded boxes) into the domain walls
between the p + ip and p − ip states, which carry two copropagating
Majorana modes. Depending on the topography of the domains,
the fractionalization and propagation of these electrons along the
Majorana boundary modes implements either a Hadamard gate (left)
or an identity operation (right) on the charging states of the leads.
Using optical manipulation, one can switch between these two gates
on ultrafast timescales (center).

1/2. A second circularly polarized pulse can be used to favor
one chiral order parameter over the other in order to achieve
a reliable switching [10]. Finally, for the spatially inhomoge-
neous situation, we predict that there is a minimal spot size
required to overcome the diffusion effect, which counteracts
the switching. Above a critical spot, size switching can be
obtained in a stable fashion, allowing for the optical creation
or annihilation of chiral domains of multicomponent super-
conductors [10,21], such as the widely studied chiral p ± ip
superconductivity. A combination of creation and annihilation
can be used to move the domain.

Since the induced chiral domain is stable after application
of optical pulses, manipulation of Majorana modes at the
boundary of such domains is possible. This could be used
to optically program quantum logic gates. Figure 1 depicts
a possible implementation of a Hadamard gate [51–53] us-
ing the Majorana modes of optically engineered domains in
a p + ip superconductor. Analogous to the mechanism de-
scribed in Ref. [4], the single-electron charging states of two
leads can be used to encode quantum bits of information
[10]. Upon injection of a single electron at a p + ip/p − ip
domain-wall boundary that carries a pair of Majorana modes
or, equivalently, a single chiral complex fermion mode, the
electron can propagate along the edge channel. Crucially, the
superconducting sample boundary hosts only a single Majo-
rana mode, necessitating a fractionalization of the electron
into Majorana fermions. By an optically induced choice of
domain topography, these propagating Majorana modes can
then implement interference, realizing a Hadamard gate on the
charging states of the leads [4].

Importantly, we need to go beyond Ref. [10] to investi-
gate the spatial-temporal dynamics that is required in such a
device. To this end, we explicitly formulate inhomogeneous
scenarios by Ginzburg-Landau phenomenology. Our theory
transparently describes the coupling of order parameter com-
ponents via an optical field, addresses the conditions of optical
enhancement of chiral superconductivity, reveals the neces-
sary conditions for local switching of chirality, and elevates
the concept introduced in Ref. [10] towards the functionalities
of quantum gates.
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FIG. 2. Optical engineering of chiral superconductivity on a hon-
eycomb lattice. Geometrical parameters are indicated: bμ=1,2,3 are
three bonding vectors connecting the B and A lattices, which define
the two primitive vectors of the lattice by a1 = b1 − b3 and a2 =
b2 − b3. An in-plane optical driving is applied, as indicated by the
red arrow.

II. MODEL AND FORMALISM

To be specific, we consider a chiral d ± id superconductor
on a honeycomb lattice, as illustrated in Fig. 2. The general
results, however, will carry over to other chiral superconduc-
tors (with two-component order parameters), such as p ± ip
superconductors. The tight-binding t-J model Hamiltonian
reads [17–21]

Ĥt-J = − t
∑

〈i, j〉,σ
(â†

iσ b̂ jσ + b̂†
jσ âiσ ) − μ

∑
i,σ

(â†
iσ âiσ + b̂†

iσ b̂iσ )

− J
∑
〈i, j〉

ĥ†
i j ĥi j, (1)

with âσ and b̂σ being the annihilation operators of electrons
with spin σ = {↑,↓} on the A and B sublattices. The hopping
amplitude between nearest-neighbor lattice sites is denoted
by t . The system is assumed to be doped near the van Hove
singularity with the chemical potential μ ∼ t [17,18,22–29].
We consider a nearest-neighbor spin exchange interac-
tion J between spin singlets with creation operators ĥ†

i j =
(â†

i↑b̂†
j↓ − â†

i↓b̂†
j↑) with sites i ∈ A and j ∈ B [17,18]. Based on

this Hamiltonian, we employ the path-integral technique, with
the introduction of three boson fields at the three bondings
bμ by the Hubbard-Stratonovich transformation [54], to set
up the Ginzburg-Landau (GL) Lagrangian for the supercon-
ducting order parameters [54] (see Appendix A for detailed
derivations).

With the order parameters η1(r, t ), η2(r, t ) of the (dx2−y2 +
idxy)-, (dx2−y2 − idxy)-superconducting tendency, respectively,
the GL Lagrangian density reads

Leff (r) =
∑

μ=1,2

�μη∗
μ(r)Dtημ(r) +

∑
μ

�μ|Dtημ(r)|2

+ a
∑

μ

|ημ(r)|2 + b
∑
α=x,y

∑
μ

|Dαημ(r)|2

+ e1(1 − i
√

3)[D+η∗
2 (r)][D+η1(r)]
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+ e1(1 + i
√

3)[D∗
+η2(r)][D∗

+η∗
1 (r)]

+ f1(|η1|2 + |η2|2)2 + f2(|η1|2 − |η2|2)2. (2)

The s-wave order parameter is disregarded here, as it is
not energetically favored [10,17,18] and does not affect the
main conclusions presented here (its inclusion is analyzed
in Appendices A and B). Here, Dt ≡ ∂t − (2e/ih̄)ϕ(r, t ),
Dα = ∂α − (2e/ih̄c)Aα (r, t ), and D± = Dx ± iDy are the co-
variant derivatives that respect the gauge invariance of the
Lagrangian [21], where ϕ(r, t ) and A(r, t ) are the scalar and
vector potentials of the electromagnetic field, and c is the
speed of light. The first � term is of the Gross-Pitaevskii
type, and is responsible for dissipation [15,16] back to equi-
librium. The second � term is of the Klein-Gordon type,
which leads to collective-mode dynamics, such as the am-
plitude or Higgs mode, that is defined by the fluctuation
of the order-parameter amplitude [43,48,50]. Here the pa-
rameters �μ and �μ are treated phenomenologically and
are allowed to be different for the two d ± id order pa-
rameters only if time-reversal symmetry is explicitly broken,
for instance by a circularly polarized laser field, following
Ref. [10]. The other coefficients {a < 0, b, e1, f1 > 0, f2 =
− f1/3} are all real numbers that are microscopically calcu-
lated through the Hamiltonian (1); see Appendix A. Estimated
by graphene’s material parameters t = 2.7 eV, the bond-
ing length |b| = 2.46/

√
3 Å [55], μ = 0.9t , and J = 0.25t

[10,18], a = −10−3/|b|2 meV−1 m−2, b = 800 meV−1, e1 =
150 meV−1, and f1 = 2.1/|b|2 meV−3 m−2 at T = 1.5 K.
These parameters correspond to a critical temperature Tc =
4.7 K. We choose � = 5|a|h̄/(kBTc), with a realistic nanosec-
ond relaxation time for small order-parameter fluctuations,
and � = −ah̄2/(2|η0|2), with the superconducting gap η0 =√−a/(2 f1 + 2 f2) = 0.02 meV, following Ref. [16]. How-
ever, importantly, this GL Lagrangian can also be constructed
based entirely on symmetry considerations [21], independent
of microscopic details, rendering our results applicable to a
wide range of physical situations.

When f2 < 0, the two chiral (d ± id) waves are degenerate
superconducting ground states [17,18], which is the case for
Hamiltonian (1) (see Appendix B). Otherwise, the dx2−y2 =
(η1 + iη2)/2 and dxy = (η1 − iη2)/2 waves are the ground
states. As the two order parameters η1 and η2 are coupled in
the e1 terms, obeying angular-momentum conservation, their
interplay can be optically controlled. From δL/δη∗

1,2(r) = 0
[15], we obtain the TDGL equations(

�1 0
0 �2

)
Dt

(
η1

η2

)
+

(
�1 0
0 �2

)
D∗

t Dt

(
η1

η2

)

+
(

a − b
∑

α=x,y D2
α −e1(1 + i

√
3)D̃−D−

−e1(1 − i
√

3)D̃+D+ a − b
∑

α=x,y D2
α

)(
η1

η2

)

+
(
F+(|η1|2, |η2|2) 0

0 F−(|η1|2, |η2|2)

)(
η1

η2

)
= 0, (3)

where D̃ν = ∂ν + (2e/ih̄c)Aν (r), D̃± = D̃x ± iD̃y, and
F±(|η1|2, |η2|2) ≡ 2 f1(|η1|2 + |η2|2) ± 2 f2(|η1|2 − |η2|2).
We choose a gauge with ϕ = 0 and consider the dynamics
under vector potentials Ax,y(r, t ) that are, in general, spatially
and temporally dependent, which we shall specify in the
following.
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FIG. 3. Optical engineering of order parameters by homoge-
neous optical fields. (a) Hybridization of two chiral order parameters
by continuous linearly polarized optical fields. An arbitrary value 5e1

for the order-parameter coupling is used for illustration of super-
conductivity enhancement. Optical switching of chirality is shown
in (b) by order parameter magnitude and (c) by real and imaginary
components of η2. In (d), a second left-circularly polarized laser with
time delay σt relative to the first linearly polarized laser is applied
to reverse the chirality, while the right-circularly polarized laser can
retain the chirality (not shown). Parameters used for calculation are
given in the figure and text.

III. MECHANISM OF CHIRALITY SWITCHING

We first discuss the coupling between the two chiral order
parameters through light in the homogeneous case. Here, we
can analyze the chirality switching mechanism analytically.
The coupling of the two order parameters is e1(A2

x − A2
y ) →

0 for the circularly polarized laser within the rotating-wave
approximation. Therefore, as also confirmed by our numerical
calculation, circularly polarized light by itself cannot cause
chirality switching. We therefore focus here on the linearly
polarized laser first.

We first analyze the hybridization of order parameters by
a continuous optical driving of frequency ω and electric-
field amplitude E, say, Ax = −(c/ω)Ex cos(ωt ) (equivalent
to sourcing a constant supercurrent). When the two chiral
order parameters are driven to the same magnitude, we use
the ansatz η̃2 = η̃1eiφ to solve the TDGL equation (3) and find
φ = −π/3 and magnitude

|η̃1,2| =
√

1

4 f1

[
−a + 2(2e1 − b)

(
eEx

h̄ω

)2]
, (4)

which is tunable by the field strength. This implies that by
driving, superconductivity is suppressed when 2e1 < b, oth-
erwise it is enhanced due to the strong spatial fluctuation
between the two order parameters. Such a hybridization is
confirmed in Fig. 3(a) with adiabatically turned on con-

013253-3



YU, CLAASSEN, KENNES, AND SENTEF PHYSICAL REVIEW RESEARCH 3, 013253 (2021)

tinuous driving of frequency h̄ω = 20 meV with Ax =
−(c/ω)Ex cos(ωt ) exp [−t2/(2σ 2

t )] for duration time σt =
4 ns for t < 0 and −(c/ω)Ex cos(ωt ) for t > 0. This hy-
bridization also implies the existence of a critical supercurrent
that induces nodes in the superconducting gap before super-
conductivity is destroyed, providing a unique feature of chiral
superconductors.

We now turn to the discussion of chirality switching with
short pulses in the homogeneous case. The similar mag-
nitude of order parameters through driving is essential for
the chirality switching, which happens when the passive
order parameter, initially absent, overcomes the initially ac-
tive one. The order parameters can be driven to be close
only when the field strength is larger than a critical value
Ec ≈ (h̄ω/e)

√−a/(b − 2e1) = 1 kV/cm, estimated by set-
ting |η̃1,2| → η0/2 in Eq. (4). Figure 3(b) confirms that when
the two chiral order parameters are driven to be close by a
linearly polarized laser with Ex = 1.2Ec, switching of chiral-
ity happens after the pulse, accompanied by an oscillation
of the order parameters. This indicates that the Higgs mode
activation causes a temporal fluctuation that provides an op-
portunity for the passive order parameter to overcome its
inertia. The final state η2 after the switching has a phase shift
−π/3 relative to the initial one η1 [Fig. 3(c)], as expected
from order-parameter hybridization [Eq. (4)]. Nevertheless,
when we further increase the field strength or change the
laser pulse duration, the switching does not always happen.
Half of the time the order parameter simply relaxes back
to the initial state with no switching, which we demonstrate
in thousands of calculated cases with different switch-off
parameters.

An explicit breaking of time-reversal symmetry by a sec-
ond circularly polarized laser, with time delay σt to the first
one, turns out to be key to obtain full control of the switching
process [10]. Although the circularly polarized light cannot
couple the two order parameters directly, as discussed above,
it may influence their damping since single-particle excita-
tions or the environment could be polarized by the laser
[56,57]. Neither of these effects are directly included in the
TDGL framework, but require a more microscopic treatment,
such as Bogoliubov–de Gennes equations [10]. We therefore
assume that the damping rate depends on the chirality of the
laser by a minimal phenomenological ansatz �1 → �1(1 +
δcE (2)

x E (2)
y /E2

c ) and �2 → �2(1 − δcE (2)
x E (2)

y /E2
c ), where a

tiny dimensionless δc ∼ 0.1 > 0 is used. We indeed realize
complete control of the switching by the chirality of the
second laser pulse with this ansatz by using our parameters,
recovering the discovery of Ref. [10], as shown in Fig. 3(d) for
weak fields E (2)

x = −E (2)
y ∼ 0.1Ec of left-handed circularly

polarized light.

IV. OPTICAL ENGINEERING OF CHIRAL DOMAIN

We now address finite-spot–sized laser pulses in order
to investigate the possibility of writing, erasing, or moving
chiral domains for implementations in potential future quan-
tum computers (Fig. 1; see Appendix C for implementing
Hadamard gates using Majorana edge modes). We now restrict
the laser field to a spot of size

√
2σr by using fields Ay(t ) =

−(c/ω)Ey sin(ωt ) exp[−t2/(2σ 2
t )] exp[−r2/(2σ 2

r )]. With a

FIG. 4. Optical engineering of order parameters (normalized by
η0) in real space by laser spots. The spot size

√
2σr is indicated

by black circles. (a1)–(a4) plot the snapshots of |η1| under a laser
of small size with σr = 20 μm. The order parameter relaxes to its
equilibrium after the pulse [(a4)], not switched. (b1)–(b4) and (c1)–
(c4) plot the evolutions of |η1| and |η2|, respectively, when the spot
size is larger, with σr = 60 μm. Switching is achieved [(b4),(c4)]
and stable afterwards. (b5) and (b6) illustrate the optical erasure
of a chiral domain in real space by a linearly polarized laser at
t ∈ [4σt , 6σt ], with spot size σr = 90 μm, and a second pulse of
left-circular polarization at t ∈ [5σt , 7σt ], which favors the switch-
ing from η2 to η1. Parameters for the calculation are given in the
text.

right-circularly polarized laser E (2)
x = E (2)

y = 0.1Ec of σt =
2 ns delay to this linearly polarized field Ey = 1.5Ec, we com-
pute the superconductor dynamics with the TDGL equations
in real space. We illustrate the results with two represen-
tative spot sizes (indicated by the black circles)

√
2σr =

20
√

2 and 60
√

2 μm in Fig. 4. These spot sizes are much
larger than the coherence length of the order parameters,
ξ ∼ √−b/(2a) ≈ 0.1 μm [58]. When the spot size is small
(σr = 20 μm), switching is not achieved after the pulse, as
shown in Figs. 4(a1)–4(a4). The switching becomes possible,
however, when the spot size is larger (σr = 60μm), as shown
in Figs. 4(b4) and 4(c4).

In fact, as long as the spot size σr � 20 μm, we always
find the chirality switching with the domain size smaller than
the spot size, indicating the existence of a critical size σ (c)

r
of photo-induced chiral domain. The switching is always re-
versed when the handedness of second pulse is reversed. From
the TDGL equations, an order-parameter fluctuation relaxes to
equilibrium on a timescale τ ∼ 3 ns [compare Fig. 3(b)]; on
the other hand, the excited spatial fluctuation propagates with
the Higgs-mode propagation speed v = √

�/b ∼ 5.3 km/s.
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We may thereby estimate the critical spot size as σ (c)
r ∼ vτ =

16 μm, reasonably agreeing with the numerical calculation. It
is important to note that this critical spot size is two orders of
magnitude larger than the superconducting coherence length
in our model.

The ability of optical erasure of a chiral domain is es-
sential for application since the combination of creation and
annihilation can move a chiral domain on demand, potentially
allowing for the interference of Majorana modes [2,3,51–53].
On the basis of the chiral domain in Figs. 4(b4) and 4(c4),
we now apply similar optical pulses but use a left-circularly
polarized laser that favors the switching from η2 to η1. The
diffusion of order parameters at the edge leaves a ring of chiral
domain with a small size (see Fig. 6 of Appendix B), which,
however, can be entirely erased by pulses of larger size, such
as σr = 90 μm, shown in Figs. 4(b5)–4(b8).

Again, in real space, the phase of η2 has a shift −π/3 with
respect to η1, and hence the order parameter at the center of
the domain wall is neither dx2−y2 nor dxy, but a superposition.
The free energy is increased, as the domain wall costs addi-
tional energy (see Fig. 5 in Appendix B), indicating that the
chiral domain may be energetically metastable. However, the
chiral order parameters carry opposite angular momenta and
topological winding numbers such that their direct conversion
breaks angular-momentum conservation, seemingly not pos-
sible in the absence of magnetic fields [59,60]. Indeed, the
photo-induced chiral domain appears to be stable since it does
not vanish after the pulse in the TDGL computation, robust to
order-parameter fluctuation.

V. DISCUSSION AND CONCLUSION

Phenomenological GL approaches solely rely on system
symmetry and hence do not strongly depend on the un-
derlying mechanism for chiral superconductivity [21]. The
parameters therein depend on the environment such as the
substrate and phonons, which may play a role in the super-
conducting mechanism [61,62] and, as bosonic and fermionic
baths, can influence the switching processes. On the one hand,
they can relax hot quasiparticles to suppress heating effects.
On the other hand, they can enhance the damping rate �

[10,15] and therefore tend to decelerate the chirality switching
and favor a larger critical size of the laser spots for local
switching.

We have demonstrated local control of chirality by focused
laser pulses that can write, erase, and move chiral domains,
and addressed the way to realize optically programmable
quantum logic gates. For realistic unconventional supercon-
ductors, the required field strengths are within reach: a field
of one to several kV/cm of tens of terahertz is large enough
to cause sufficient coupling between order parameters and
trigger the switching, such that heating effects might be small.
The required minimal size of the laser spot is tens of mi-
crometers to overcome the diffusion when writing a chiral
domain. We find that an enhancement of superconductiv-
ity may be possible in particular materials with sufficiently
strong coupling of order parameters by optical driving. The
hybridization of chiral order parameters is measurable by a
scanning tunneling microscope, which can track the nodes in
the gap that are created in this case [63]. The local chirality of
the superconductor can be measured via Kerr rotation with
spatial resolution [64,65] or via the anomalous Hall effect
[66–69]. Our study also suggests that unique features in the
optical response of chiral superconductors may be useful for
identifying the superconducting state of magic-angle twisted
bilayer graphene and other van der Waals materials [24–32].
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APPENDIX A: EFFECTIVE LAGRANGIAN

Based on the lattice model [Eq. (1)] of the honeycomb lattice (Fig. 2) [18–21], we define the continuous field operators

ψ̂A(r) = 1√
S

∑
k

â(k)eik·r, ψ̂B(r) = 1√
S

∑
k

b̂(k)eik·r,

where S = N� is the area of N unit cells, with � = √
3a2/2 = 3

√
3b2/2 being the area of one unit cell. Here, a = |a1| = |a2|

and b = |bμ={1,2,3}|, introduced in Fig. 2. In terms of the field operator �̂(r) = [ψ̂A↑(r), ψ̂B↑(r), ψ̂†
A↓(r), ψ̂†

B↓(r)]
T

in the Nambu
space, the free part of the Hamiltonian,

Ĥ0 =
∫

dr�̂†

⎛
⎜⎜⎝

−μ −t f (k̂) 0 0
−t f †(k̂) −μ 0 0

0 0 μ t f †(−k̂)
0 0 t f (−k̂) μ

⎞
⎟⎟⎠�̂,
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where f (k) = ∑
μ eik·bμ , while the interaction Hamiltonian,

Ĥint = −J�
∑

μ

∫
dr[�̂†(rμ)τA�̂(r) + �̂†(r)τB�̂(rμ)]

[
�̂†(r)τ T

A �̂(rμ) + �̂†(rμ)τ T
B �̂(r)

]
,

with rμ = r + bμ and

τA =

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, τB =

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠.

Accordingly, with the Grassmann field �(r, τ ) = [ψA↑(r), ψB↑(r), ψA↓(r), ψB↓(r)], the action reads

S =
∫ β

0
dτdr�∂τ� +

∫ β

0
dτdr�(r, τ )H0(k̂)�(r, τ ) − J�

∑
μ

∫ β

0
dτdr[�(rμ)τA�(r) + �(r)τB�(rμ)]

× [
�(r)τ T

A �(rμ) + �(rμ)τ T
B �(r)

]
. (A1)

We introduce the complex Bose fields φ(r, rμ) by Hubbard-Stratonovich transformation [54],

1 =
∫

DφDφ exp

[
−

∫ β

0
dτ

∑
μ

∫
drφ(r, rμ)

1

J�
φ(r, rμ)

]
,

with which a shift of the Bose field, φ(r, rμ) → φ(r, rμ) + J�[�(r, τ )τ T
A �(rμ, τ ) + �(rμ, τ )τ T

B �(r, τ )], yields

Spair =
∫ β

0
dτdr�∂τ� +

∫ β

0
dτdr�(r, τ )H0(k̂)�(r, τ ) +

∑
μ

∫ β

0
dτdrφ(r, rμ)

1

J�
φ(r, rμ)

+
∑

μ

∫ β

0
dτdrφ(r, rμ)

[
�(r)τ T

A �(rμ) + �(rμ)τ T
B �(r)

]

+
∑

μ

∫ β

0
dτdr[�(rμ)τA�(r) + �(r)τB�(rμ)]φ(r, rμ).

The fermion singlets, in the last two terms, can mediate an effective interaction between the order parameters φ(r, rμ) after
being integrated out. To perform this integration, we go to the momentum-frequency space for the fermion Grassmann field,

�(τ, r) = 1√
β

1√
S

∑
k

∑
ωn

�(ωn, k)e−iωnτ eik·r,

and for the boson field with respect to the center-of-mass coordinate r + rμ/2,

φ(τ, r, r + bμ) = 1√
β

1√
S

∑
k,ωm

φ(ωm, k)e−iωnτ eik·(r+bμ/2).

With k ≡ {ωn, k} and q ≡ {ωm, q}, we arrive at the partition function

Z =
∫

Dφμ(q)Dφμ(q) exp(−Seff [φ, φ]),

with an effective action for the boson field,

Seff [φ, φ] =
∑

μ

∑
q

φμ(q)
1

J�
φμ(q) − tr ln[−Ĝ−1(φ, φ)].

Here, tr(...) = ∑
k〈k|...|k〉, Ĝ−1[φ] = iω̂ − Ĥ0 − �̂, in which the matrix elements of the operators read

〈k|�̂|k′〉 = 1√
βS

∑
μ

[
φμ(k′ − k)

(
eiκ·bμτ T

A + e−iκ·bμτ T
B

) + φμ(k − k′)(e−iκ·bμτA + eiκ·bμτB)
]
,

〈k|(−iω̂ + Ĥ0)|k′〉 = [−iωn + Ĥ0(k)]δkk′ , (A2)
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with κ = (k + k′)/2 denoting the center-of-mass momentum. When the order parameter is small, it can be used to expand the
action,

Seff [φ, φ] =
∑
μ,q

φμ(q)
1

J�
φμ(q) + 1

2

∑
kk′

tr
(
G0

k�k,k′G0
k′�k′,k

) + 1

S

∫
dr

1

4

∑
k

tr(G0k�kG0k�kG0k�kG0k�k ), (A3)

where the first two terms are linear, while the third term is nonlinear.

1. Linear term

From the first two terms in Eq. (A3), we arrive at the linear effective action,

SL
eff =

∑
μq

φμ(q)
1

J�
φμ(q) + 1

βS

∑
kq,μμ′

Bμμ′

k− q
2 ,k+ q

2
φμ(q)φμ′ (q),

where

Bμμ′

k− q
2 ,k+ q

2
= tr

[
G0

k− q
2

(
eik·bμτ T

A + e−ik·bμτ T
B

)
G0

k+ q
2
(e−ik·bμ′ τA + eik·bμ′ τB)

]
. (A4)

Here, G0(ωm, k) = diag{Ge(ωm, k), Gh(ωm, k)} is the Green function of the free Hamiltonian in the Nambu space, where the
Green functions in the electron and hole space read

Ge(k, ωm) = P1(k)

iωm − ε1(k)
+ P2(k)

iωm − ε2(k)
,

Gh(k, ωm) = P1(k)

iωm + ε1(k)
+ P2(k)

iωm + ε2(k)
. (A5)

Here, ε1(k) = t | f (k)| − μ and ε2(k) = −t | f (k)| − μ are the electron and hole dispersions, and

P1(k) = 1

2

(
1 −eiφk

−e−iφk 1

)
, P2(k) = 1

2

(
1 eiφk

e−iφk 1

)

are the projection operators for the two bands.
With Green function Eq. (A5), we obtain

Bμμ′

k− q
2 ,k+ q

2
= 1

2

(
1

iωm + ε1
(
k − q

2

) 1

iωm − ε1
(
k + q

2

) + 1

iωm + ε2
(
k − q

2

) 1

iωm − ε2
(
k + q

2

))

× {
cos

[
k · (bμ + bμ′ ) − ϕk− q

2
− ϕk+ q

2

] + cos k · (bμ − bμ′ )
}

+ 1

2

(
1

iωm + ε1
(
k − q

2

) 1

iωm − ε2
(
k + q

2

) + 1

iωm + ε2
(
k − q

2

) 1

iωm − ε1
(
k + q

2

))

× { − cos
[
k · (bμ + bμ′ ) − ϕk− q

2
− ϕk+ q

2

] + cos k · (bμ − bμ′ )
}
, (A6)

which is an even function of q. Assuming a small q, we define the mass and fluctuation terms,

1

S

1

β

∑
k

Bμμ′
k,k + 1

J�
δμμ′ ≡ Mμμ′

(q = 0),

1

S

1

β

∑
k

(
Bμμ′

k−q/2,k+q/2 − Bμμ′
k,k

)∣∣∣
ωq→0,q→0

−→
∑
δγ

T μμ′
δγ qδqγ , (A7)

where the fluctuation of long range is determined by

T μμ′
δγ ≡

⎛
⎝T 11 T 12 T 13

T 12 T 22 T 23

T 13 T 23 T 33

⎞
⎠

δγ

= 1

2

∂2

∂qδ∂qγ

(
1

S

1

β

∑
k

Bμμ′

k− q
2 ,k+ q

2

)∣∣∣
ωq→0,q→0

. (A8)

Via the summation over momentum and Matsubara frequency, we obtain

Bμμ′
q ≡ 1

S

1

β

∑
k

Bμμ′

k− q
2 ,k+ q

2
= 1

2S

∑
k

(
nF

(
ε1

(
k − q

2

)) + nF
(
ε1

(
k + q

2

)) − 1

ε1
(
k − q

2

) + ε1
(
k + q

2

) + nF
(
ε2

(
k − q

2

)) + nF
(
ε2

(
k + q

2

)) − 1

ε2
(
k − q

2

) + ε2
(
k + q

2

) )

× {
cos

[
k · (bμ + bμ′ ) − φk− q

2
− φk+ q

2

] + cos k · (bμ − bμ′ )
}
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+ 1

2S

∑
k

(
nF

(
ε1

(
k − q

2

)) + nF
(
ε2

(
k + q

2

)) − 1

ε1
(
k − q

2

) + ε2
(
k + q

2

) + nF
(
ε2

(
k − q

2

)) + nF
(
ε1

(
k + q

2

)) − 1

ε2
(
k − q

2

) + ε1
(
k + q

2

) )

× { − cos
[
k · (bμ + bμ′ ) − φk− q

2
− φk+ q

2

] + cos k · (bμ − bμ′ )
}
. (A9)

Finally, the inverse Fourier transformation φμ(q) = 1√
S

1√
β

∫
dτdreiωmτ e−iq·(r+bμ/2)φμ(τ, r) can bring the action back to the

time-spatial space, yielding the effective action

SL
eff [φ, φ] =

∑
μμ′

∫ β

0
dτdrφμ(r, τ )Mμμ′

φμ′ (r, τ )

+
∑
μμ′

∑
δγ

T μμ′
δγ

∫ β

0
dτdr∂δφ

∗
μ(r, τ )∂γ φμ′ (r, τ ). (A10)

The gap equation is given by the saddle-point solution δSeff (φ, φ)/δφq|q→0 = 0, leading to the eigenvalue equation for the

vector fields �� = (φ1, φ2, φ3)T ,

1

J�
�� =

⎛
⎝A B B
B A B
B B A

⎞
⎠ ��, (A11)

where A = −Bμμ
q=0 and B = −Bμμ′

q=0|μ �=μ′ . The first eigenvalue 1/J = �(A + 2B) corresponds to the extended s-wave state with

eigenvector ��s = (1, 1, 1)T /
√

3, and the remaining two eigenvalues 1/J = �(A − B) are degenerate, corresponding to the
d-wave order parameters with two degenerate eigenvectors,

��a = 1√
6

(2,−1,−1)T , dx2−y2 , ��b = 1√
2

(0, 1,−1)T , dxy. (A12)

The superposition of ��a and ��b gives different types of d-wave superconductivity. Particularly, superposition
√

2
2 ( ��a + i ��b) =

1√
3
(1, ei 2π

3 , ei 4π
3 )

T
gives the dx2−y2 + idxy wave, while

√
2

2 ( ��a − i ��b) = 1√
3
(1, ei 4π

3 , ei 2π
3 )

T
gives the dx2−y2 − idxy wave. We

decompose φμ by the new basis with

�(r, t ) = [φ1(r, t ), φ2(r, t ), φ3(r, t )]T = η1(r, t )ξ1 + η2(r, t )ξ2 + η3(r, t )ξ3, (A13)

where

ξ1 = 1√
3

(1, ei2π/3, ei4π/3)T ,

ξ2 = 1√
3

(1, ei4π/3, ei2π/3)T ,

ξ3 = 1√
3

(1, 1, 1)T

are the basis for the order parameters in the (dx2−y2 + idxy) wave, (dx2−y2 − idxy) wave, and s wave, respectively, and ηi denote
the amplitudes of these order parameters.

In terms of order-parameter amplitudes ηi(r), we express the linear GL Lagrangian as

Leff =
∑

i={1,2,3}
(ξ †

i Mξi )
∫

drη∗
i (r)ηi(r) +

∑
δγ

∑
i j

(ξ †
i T δγ ξ j )

∫
dr∂δη

∗
i (r)∂γ η j (r)

=
∑

i

ai

∫
drη∗

i (r)ηi(r) +
∑
δγ

∑
i j

ci j
δγ

∫
dr∂δη

∗
i ∂γ η j,

where the coefficients ai ≡ ξ
†
i Mξi and ci j

δγ ≡ ξ
†
i T δγ ξ j are governed by symmetry and band structure. These coefficients are

simply parameterized by several real quantities {a, a′, b, b′, e1, e2}. For ai, a1 = a2 = a and a3 = a′, following the gap equation
near Tc. When i = j = {1, 2, 3},

c11
δγ = c22

δγ = bδδγ , c33
δγ = b′δδγ ;

when i �= j, we find

c21
xx = −c21

yy = e1(1 − i
√

3), c21
xy = c21

yx = ie1(1 − i
√

3),
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c31
xx = −c31

yy = e2(1 + i
√

3), c31
xy = c31

yx = −ie2(1 + i
√

3),

c32
xx = −c32

yy = e2(1 − i
√

3), c32
xy = c32

yx = ie2(1 − i
√

3),

and c ji
δγ = (ci j

δγ )∗ that guarantees the Hermiticity. These analyses simplify the linear GL Lagrangian to be

Leff = a
∫

dr[|η1(r)|2 + |η2(r)|2] + a′
∫

dr|η3(r)|2

+ b
∫

dr(|∂xη1|2 + |∂yη1|2 + |∂xη2|2 + |∂yη2|2)

+ b′
∫

dr[|∂xη3(r)|2 + |∂yη3(r)|2]

+
[

e1(1 − i
√

3)
∫

dr(∂x + i∂y)η∗
2 (r)(∂x + i∂y)η1(r)

+ e2(1 + i
√

3)
∫

dr(∂x − i∂y)η∗
3 (r)(∂x − i∂y)η1(r)

+ e2(1 − i
√

3)
∫

dr(∂x + i∂y)η∗
3 (r)(∂x + i∂y)η2(r) + H.c.

]
, (A14)

where the coefficients with different chemical potentials are numerically calculated in this work. The form of the gradient terms
can be simply understood from the angular-momentum conservation. The system has C6 symmetry, given by operators, e.g.,
Ĉ1

6 = ei 2π
6 Jz . Since ∂x + i∂y and ∂x − i∂y have angular momentum +1 and −1, while η1, η2, and η3 have angular momentum

+2, −2, and 0, the total angular momentum of every gradient term has to be the integer times of 6. For example, the term∫
dr(∂x + i∂y)η∗

2 (r)(∂x + i∂y)η1(r) has an angular momentum 6.

2. Nonlinear terms

For the derivation of the nonlinear term, we can treat the order parameter to be homogeneous by

φμ(k = 0) = 1√
S

∫
drφμ(r) ≈

√
Sφμ(r). (A15)

With �k = 1√
β

∑
μ [φ̄μQT

μ (k) + φμQμ(−k)], where QT
μ (k) = eik·bμτ T

A + e−ik·bμτ T
B , the dominant nonlinear term in the La-

grangian reads

LNL
eff = 1

4β2S

∫
dr

∑
μi

tr
{
G0k

[
φ̄μ1 QT

μ1
(k) + φμ1 Qμ1 (−k)

]
G0k

[
φ̄μ2 QT

μ2
(k) + φμ2 Qμ2 (−k)

]
G0k

× [
φ̄μ3 QT

μ3
(k) + φμ3 Qμ3 (−k)

]
G0k

[
φ̄μ4 QT

μ4
(k) + φμ4 Qμ4 (−k)

]}
. (A16)

Although with complicated form, it is simplified by using

QT
μi

=
(

0 0
�T

μi
0

)
, Qμi =

(
0 �μi

0 0

)
, (A17)

and the Green function in the subspace,

G0kQT
μi

=
(

0 0
Gh

k�T
μi

0

)
, G0kQμi =

(
0 Ge

k�μi

0 0

)
, (A18)

since G0kQT
μi

G0kQT
μ j

= 0, via which the nonlinear term is reduced to

LNL
eff = 1

S

∫
dr

1

2β2

∑
k

∑
μi

φ̄μ1φμ2 φ̄μ3φμ4 tr
[
Gh

k�T
μ1

(k)Ge
k�μ2 (−k)Gh

k�T
μ3

(k)Ge
k�μ4 (−k)

]
.
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With relation �μ(−k) = �T
μ(k) = ( 0 eik·bμ

e−ik·bμ 0 ) in mind, we obtain

LNL
eff = 1

S

∫
dr

1

2β2

∑
k

∑
μi

φ̄μ1φμ2 φ̄μ3φμ4 × tr
[
G0kQT

μ1
(k)G0kQμ2 (−k)G0kQT

μ3
(k)G0kQμ4 (−k)

]
.

Focusing on the d waves, we have
∑

μ φ̄μ(k)�μ(k) = η∗
1�1(k) + η∗

2�2(k), with

�1(k) = 1√
3

(
0 eik·b1 + ei 4π

3 eik·b2 + ei 2π
3 eik·b3

e−ik·b1 + ei 4π
3 e−ik·b2 + ei 2π

3 e−ik·b3 0

)
,

�2(k) = 1√
3

(
0 eik·b1 + ei 2π

3 eik·b2 + ei 4π
3 eik·b3

e−ik·b1 + ei 2π
3 e−ik·b2 + ei 4π

3 e−ik·b3 0

)
. (A19)

We see �∗
2(−k) = �1(k) or �∗

1(−k) = �2(k). The nonlinear part in the Lagrangian then becomes

LNL
eff = 1

S

∫
dr

1

2β2

∑
k

tr
{
Gh

k[η∗
1 (r)�1(k) + η∗

2 (r)�2(k)]Ge
k[η1(r)�2(k) + η2(r)�1(k)]

× Gh
k[η∗

1 (r)�1(k) + η∗
2 (r)�2(k)]Ge

k[η1(r)�2(k) + η2(r)�1(k)]
}
. (A20)

There are still many terms that should be further simplified. We can generally demonstrate that only the terms with two �1(k)
and �2(k) can survive among them by the C3 symmetry of the system, dramatically simplifying the calculations. With using
C−1

3 k · bμ = k · C3bμ, we know that a C3 operation gives a transformation {b1, b2, b3} → {b2, b3, b1}. Such a transformation
then leads to

�1(k) → e−i2π/3�1(k), �2(k) → ei2π/3�2(k). (A21)

This transformation gives C → e±i2π/3C = 0 apart from the terms with two �1(k) and �2(k). We write down all these (six)
terms and analyze their property in a general way:

1© = 1

2β2

1

S

∑
k

tr
[
Gh

k�1(k)Ge
k�2(k)Gh

k�1(k)Ge
k�2(k)

] → |η1(r)|4,

2© = 1

2β2

1

S

∑
k

tr
[
Gh

k�2(k)Ge
k�1(k)Gh

k�2(k)Ge
k�1(k)

] → |η2(r)|4,

3© = 1

2β2

1

S

∑
k

tr
[
Gh

k�1(k)Ge
k�1(k)Gh

k�2(k)Ge
k�2(k)

] → |η1(r)|2|η2(r)|2,

4© = 1

2β2

1

S

∑
k

tr
[
Gh

k�2(k)Ge
k�2(k)Gh

k�1(k)Ge
k�1(k)

] → |η1(r)|2|η2(r)|2,

5© = 1

2β2

1

S

∑
k

tr
[
Gh

k�1(k)Ge
k�2(k)Gh

k�2(k)Ge
k�1(k)

] → |η1(r)|2|η2(r)|2,

6© = 1

2β2

1

S

∑
k

tr
[
Gh

k�2(k)Ge
k�1(k)Gh

k�1(k)Ge
k�2(k)

] → |η1(r)|2|η2(r)|2. (A22)

We demonstrate below that these terms can gather to two coefficients in terms of f1 and f2.
We can demonstrate that 1© = 2©. We note that Gh(k,−ωm) = −Ge(k, ωm), leading to

2© = 1

2β2

1

S

∑
k

∑
ωm

tr[Gh(k,−ωm)�2(k)Ge(k,−ωm)�1(k)Gh(k,−ωm)�2(k)Ge(k,−ωm)�1(k)]

= 1

2β2

1

S

∑
k

∑
ωm

tr[Ge(k, ωm)�2(k)Gh(k, ωm)�1(k)Ge(k, ωm)�2(k)Gh(k, ωm)�1(k)]

= 1

2β2

1

S

∑
k

∑
ωm

tr[Gh(k, ωm)�1(k)Ge(k, ωm)�2(k)Gh(k, ωm)�1(k)Ge(k, ωm)�2(k)] = 1©.
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We can also show that the two terms are real: We note that the Green function also satisfies G∗
h(−k, ωm) = −Ge(k, ωm) or

G∗
e (−k, ωm) = −Gh(k, ωm). By taking the conjugation and using k → −k,

2©∗ = 1

2β2

1

S

∑
k

∑
ωm

tr[G∗
h(−k, ωm)�∗

2(−k)G∗
e (−k, ωm)�∗

1(−k)G∗
h(−k, ωm)�∗

2(−k)G∗
e (−k, ωm)�∗

1(−k)]

= 1

2β2

1

S

∑
k

∑
ωm

tr[Ge(k, ωm)�1(k)Gh(k, ωm)�2(k)Ge(k, ωm)�1(k)Gh(k, ωm)�2(k)]

= 1

2β2

1

S

∑
k

∑
ωm

tr[Gh(k, ωm)�2(k)Ge(k, ωm)�1(k)Gh(k, ωm)�2(k)Ge(k, ωm)�1(k)] = 2©.

We define 1© = 2© = f1 + f2. On the other hand, it is similar to demonstrate 3© = 4© and 5© = 6©. We can also demonstrate
that 3© and 5© are real, e.g.,

5©∗ = 1

2β2

1

S

∑
k

∑
ωm

tr[G∗
h(−k, ωm)�∗

1(−k)G∗
e (−k, ωm)�∗

2(−k)G∗
h(−k, ωm)�∗

2(−k)G∗
e (−k, ωm)�∗

1(−k)]

= 1

2β2

1

S

∑
k

∑
ωm

tr[Ge(k, ωm)�2(k)Gh(k, ωm)�1(k)Ge(k, ωm)�1(k)Gh(k, ωm)�2(k)]

= 1

2β2

1

S

∑
k

∑
ωm

tr[Ge(k,−ωm)�1(k)Gh(k,−ωm)�2(k)Ge(k,−ωm)�2(k)Gh(k,−ωm)�1(k)]

= 1

2β2

1

S

∑
k

∑
ωm

tr[Gh(k, ωm)�1(k)Ge(k, ωm)�2(k)Gh(k, ωm)�2(k)Ge(k, ωm)�1(k)] = 5©.

When we write 3© + 5© = f1 − f2, the nonlinear part of the GL Lagrangian reads

LNL
eff =

∫
dr[ f1(|η1|2 + |η2|2)2 + f2(|η1|2 − |η2|2)2]. (A23)

We now can work out the concrete value of f1 and f2. We have

f1 + f2 = 1

2β2

1

S

∑
k

tr
[
Gh

k�1(k)Ge
k�2(k)Gh

k�1(k)Ge
k�2(k)

]
,

f1 − f2 = 1

2β2

1

S

∑
k

tr
[
Gh

k�1(k)Ge
k�1(k)Gh

k�2(k)Ge
k�2(k)

] + 1

2β2

1

S

∑
k

tr
[
Gh

k�1(k)Ge
k�2(k)Gh

k�2(k)Ge
k�1(k)

]
. (A24)

We restrict to a high electron doping, in which case the electron and hole Green functions are approximated by Gh
k ≈ P1(k)

iωm+ε1(k)

and Ge
k ≈ P1(k)

iωm−ε1(k) , with which, e.g.,

f1 + f2 � 1

2β2

1

S

∑
k

∑
ωm

tr

{
P1(k)�1(k)P1(k)�2(k)P1(k)�1(k)P1(k)�2(k)

[iωm + ε1(k)]2[iωm − ε1(k)]2

}
.

We calculate the integral according to the residue theorem and arrive at

f1 + f2 = 1

2β

1

S

∑
k

tr[P1(k)�1(k)P1(k)�2(k)P1(k)�1(k)P1(k)�2(k)]

×
(

1

4ε2
1 (k)

{n′
F [ε1(k)] + n′

F [−ε1(k)]} + 1

4ε3
1 (k)

{−nF [ε1(k)] + nF [−ε1(k)]}
)

, (A25)

where nF (z) = 1/(eβz + 1). A similar expression is obtained for f1 − f2.

APPENDIX B: CHIRAL EQUILIBRIUM STATE

Here we use the GL Lagrangian to analyze the equilibrium state. We estimate the parameters by using t = 2.7 eV, J = 0.25t ,
and |b| = 2.46/

√
3 Å for the single-layer graphene. For the chemical potentials μ/t = {0.85, 0.9, 0.95, 1, 1.05, 1.1}, the critical

temperature is calculated to be Tc = {1.23, 4.74, 19.18, 40.05, 15.98, 2.95} K, exhibiting a dome around the doping with μ = t .
Above or below this region, the superconductivity no longer exists. Increasing J may exponentially increase Tc. We note that
e1 approaches zero when μ → t and becomes opposite with μ > t and μ < t . We then choose T = 1.5 K and dopings with
μ/t = {0.9, 1.1} as the typical cases to illustrate the chirality switch dynamics.
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FIG. 5. Free-energy density of the chiral superconductor. In (a),
the free-energy density with respect to the different values of η1 and
η2 is plotted, in which the minimum represents the ground state of
the superconductor. In (b), we plot the additional free energy δ f of
the chirality domain wall in the one-dimensional case.

Without the external field, we may expect that the order pa-
rameter is homogeneous to minimize the free-energy density.
We can demonstrate that {|η1|, |η2|} = η0{1, 0} and η0{0, 1}
are two degenerate states that minimize the free-energy den-
sity. To this end,

∂Leff

∂|η1| = 2a|η1| + 4 f1(|η1|2 + |η2|2)|η1|

+ 4 f2(|η1|2 − |η2|2)|η1| = 0,

∂Leff

∂|η2| = 2a|η2| + 4 f1(|η1|2 + |η2|2)|η2|

− 4 f2(|η1|2 − |η2|2)|η2| = 0. (B1)

The solutions give that the local minima are degenerate:

|η1| = 0, |η2| =
√

− a

2( f1 + f2)
≡ η0,

|η2| = 0, |η1| =
√

− a

2( f1 + f2)
. (B2)

The superconductivity is spontaneously broken into one of
the two classes. In Fig. 5(a), with parameters of μ = 0.9t ,
the profile of the free energy is plotted with respect to |η1|
and |η2|, in which we calculate η0 = 0.02 meV that identifies
the minimum of free energy. The free energy is normalized
by f0 = 1011 eV/nm2. In Fig. 5(b), we calculate and plot the
additional free energy δ f of the chirality domain wall in the
one-dimensional case. We see that the surface energy of the
domain wall is positive and hence the domain is metastable.
With our parameters, the wall width is about 1 μm.

On the basis of the chiral domain in Figs. 4(b) and 4(c), we
now apply similar optical pulses, but use the left-circularly
polarized laser that favors the switching from η2 to η1. In
Fig. 6, we show the erasure of the chiral domain. The diffusion
of order parameters at the edge leaves a ring of chiral domain
with a small size, which, however, can be erased by pulses of
larger size, such as σr = 90 μm, shown in Fig. 6(b).

APPENDIX C: IMPLEMENTING HADAMARD GATES
USING MAJORANA EDGE MODES

The ability to optically control the topography of chiral
superconducting domains provides a handle to implement

FIG. 6. Optical erasure of a chiral domain (normalized by η0) in
real space by laser spots of different sizes: (a1)–(a4) σr = 60 μm and
(b1)–(b4) σr = 90 μm. The spot sizes

√
2σr are indicated by black

circles. The second pulse is left-circularly polarized and favors the
switching from η2 to η1, as shown by the snapshots (a4) and (b4).

quantum operations via interference of Majorana modes.
Here, the key idea is a straightforward extension of a recent
proposal [4] that exploits the domain-wall modes at interfaces
between p + ip superconductors and quantum anomalous
Hall insulators, whose edges carry single Majorana and single
complex fermions (which can equivalently be represented as
pairs of Majorana fermions), respectively. To translate this
idea to optically controlled p + ip chiral superconductors,
note that domain walls between p + ip and p − ip chiral
domains similarly carry two Majorana modes, and hence act
in analogy to the edge states of a quantum anomalous Hall
insulator, depicted in Fig. 1 in the main text.

In this scheme, presume that two metallic leads are
patterned over two domain walls between p + ip/p − ip do-
mains, as shown in Fig. 1 of the main text. The single-electron
charging states |0〉, |1〉 of the two leads now define two single-
qubit states: as one injects single electrons into the leads,
these propagate chirally along the domain-wall boundary until
they reach the sample edge (or, equivalently, an interface
with a trivial insulator). At this point, the complex fermion
edge mode fractionalizes into two Majorana modes, which
entails a fractionalization of the injected electron. As each
Majorana fermion proceeds to travel along the boundary mode
and completes a revolution around the circuit, one can see
that for the left-side circuit in Fig. 1, two of the Majorana
fermions that originate from an electron injected into the
left-side and right-side lead are exchanged. If the left-side
and right-side charging states are represented via Majorana
operators,

ĉL : γ̂ 1
L , γ̂ 2

L ,

ĉR : γ̂ 1
R , γ̂ 2

R , (C1)

respectively, the resulting operation follows from an ex-
change,

γ̂ 2
L → γ̂ 2

R ,

γ̂ 2
R → −γ̂ 2

L . (C2)

Expressed in a charging basis, this exchange implements a
non-Abelian operation. For instance, if the initial charging
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states take the form |1〉|0〉, then the operation transforms this
into

|1〉|0〉 → 1√
2

(|1〉|0〉 + |0〉|1〉), (C3)

thereby implementing the desired Hadamard gate.

Crucially, the order of the above operations is determined
solely via the topography of the domain walls. For instance, a
suitable change to the topography in Fig. 1 (right) changes the
Hadamard gate to an identity operation. This permits control
of the respective quantum operations via optical means.
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