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ABSTRACT
Equilibration of polymer melts containing highly entangled long polymer chains in confinement or with free surfaces is a challenge for
computer simulations. We approach this problem by first studying polymer melts based on the soft-sphere coarse-grained model confined
between two walls with periodic boundary conditions in two directions parallel to the walls. Then, we insert the microscopic details of the
underlying bead-spring model. Tuning the strength of the wall potential, the monomer density of confined polymer melts in equilibrium
is kept at the bulk density even near the walls. In a weak confining regime, we observe the same conformational properties of chains as in
the bulk melt showing that our confined polymer melts have reached their equilibrated state. Our methodology provides an efficient way of
equilibrating large polymer films with different thicknesses and is not confined to a specific underlying microscopic model. Switching off the
wall potential in the direction perpendicular to the walls enables to study free-standing highly entangled polymer films or polymer films with
one supporting substrate.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0022781., s

I. INTRODUCTION

Polymer confinement plays an important role for many aspects
of adhesion, wetting, lubrication, and friction of complex fluids from
both theoretical and technological points of view. For more than
two decades, both theoretical and experimental works1–8 have shown
that the dynamic and structural properties of polymers subject to
confinement may deviate from that in the bulk as the interaction
between polymers and confining surfaces becomes non-negligible.
For example, the conformations of polymer chains in a melt near
the wall in the direction perpendicular to the wall shrink remark-
ably compared to bulk chains, while they only extend slightly par-
allel to the wall.3,9,10 Long chain mobility in confined melts is also
affected by entanglement effects, while, in turn, the conformational
deviations from bulk chains have influence on the distribution of
entanglements.11–15 Furthermore, many studies have also focused
on the dependency between the glass transition temperature Tg and
the nature of the confinement effects.16–18 Therefore, it is important

to understand the mechanical properties of confined polymer melts
and how confinement impacts both viscous and elastic properties of
amorphous polymer films with different surface substrates or even
free surfaces.

Computer simulations provide a powerful method to mimic the
behavior of polymers under well-defined external conditions cover-
ing the range from atomic to coarse-grained (CG) scales.19,20 How-
ever, the cost of computing time rises dramatically as the size and
complexity of systems increase. To avoid this, applying appropriate
coarse-grained models that keep the global thermodynamic prop-
erties and the local mechanical and chemical properties is still an
important subject.21–30 One of the successful monomer-based mod-
els, namely, the bead-spring (BS) model22,23 together with an addi-
tional bond-bending potential,31–34 has been successfully employed
to provide a better understanding of generic scaling properties of
polymer melts in bulk. For such a model, static and dynamic proper-
ties of highly entangled polymer melts in bulk have been extensively
studied in our previous work.35,36 We have verified the crossover
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scaling behavior of the mean square displacement of monomers
between several characteristic time scales as predicted by the Rouse
model37 and reptation theory38–41 over several orders of magnitude
in the time. For weakly semiflexible polymer chains of sizes of up
to N = 2000 monomers, we have also confirmed that they behave
as ideal chains to a very good approximation. For these chains, the
entanglement length Ne = 28 in the melt, estimated through the
primitive path analysis and confirmed by the plateau modulus,34,35,42

results in polymer chains of N = 2000 ≈ 72Ne. Thus, we here focus
on this model and a related variant for the study of the equili-
bration of polymer melts confined between two repulsive walls as
supporting films, and free-standing films after walls are removed.
Each film contains nc = 1000 chains of N = 2000 monomers at the
bulk melt density ρ0 = 0.85σ−3. Directly equilibrating such large and
highly entangled chains in bulk or confinement is not feasible within
reasonably accessible computing time.

A novel and very efficient methodology has recently been devel-
oped28,43 for equilibrating large and highly entangled polymer melts
in bulk described by the bead-spring model.22,23 Through a hierar-
chical backmapping of CG chains described by the soft-sphere CG
model27,28 from low resolution to high resolution and a reinserting
of microscopic details of bead-spring chains, finally, highly entan-
gled polymer melts in bulk are equilibrated by molecular dynam-
ics (MD) simulations using the package ESPResSO++.44,45 To first
order, the required computing time depends only on the overall
system size and becomes independent of the chain length. Similar
methodologies have also been used to equilibrate high-molecular-
weight polymer blends46 and polystyrene melts.47 In this paper, we
extend the application of the soft-sphere approach to confined poly-
mer melts and subsequently free-standing films. As polymer chains
are described at a lower resolution, the number of degrees of free-
dom becomes smaller. Here, we adapt this hierarchical approach
to equilibrate polymer melts confined between two walls in detail.
Moreover, we apply our newly developed, related model48,49 to pre-
pare polymer films with one or two free surfaces. Different from
Refs. 27 and 43, we take the bending elasticity of bead-spring chains
in a bulk melt into account for the parameterization of the soft-
sphere CG model. Namely, the underlying microscopic bead-spring
chains are weakly semiflexible (bending constant kθ = 1.5ε) instead
of fully flexible (kθ = 0.0ε).

The outline of this paper is as follows: In Sec. II, we introduce
the main features of the microscopic bead-spring model and soft-
sphere coarse-grained model used for studying the confined polymer
melts. The application of the soft-sphere CG model for confined
coarse-graining melts and conformational properties of fully equi-
librated confined CG melts are addressed in Sec. III. In Sec. IV, we
reinsert the microscopic details of confined CG melts and discuss the
equilibration procedures. In Sec. V, we show how to prepare films
with one or two free surfaces by switching to another variant of the
bead-spring model. Finally, our conclusion is given in Sec. VI.

II. MODELS
A. Generic microscopic bead-spring models

In the microscopic bead-spring model,22,23 all monomers at a
distance r interact via a shifted Lennard-Jones (LJ) potential ULJ(r),

ULJ(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

VLJ(r) − VLJ(r = rcut), r ≤ rcut

0, r > rcut,
(1)

with

VLJ(r) = 4ε[(σ
r
)

12
− (σ

r
)

6
], (2)

where ε is the energy strength of the pairwise interaction and rcut
is the cutoff in the minimum of the potential such that force and
potential are zero at rcut = 21/6σ. These LJ units also provide a nat-
ural time definition via τ = σ

√
m/ε, with m = 1 being the mass

of the monomers. The temperature is set to T = 1.0ε/kB, with kB
being the Boltzmann factor, which is set to one. Along the backbone
of the chains, a finitely extensible nonlinear elastic (FENE) binding
potential UFENE(r) is added,

UFENE(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

− k
2 R2

0 ln[1 − ( r
R0
)

2
], r < R0

∞, r ≥ R0,
(3)

where k = 30ε/σ2 is the force constant and R0 = 1.5σ is the max-
imum value of bond length. For controlling the bending elastic-
ity, i.e., chain stiffness, the standard bond-bending potential31–34 is
given by

U(old)
BEND(θ) = kθ(1 − cos θ), 0 < θ < π, (4)

with the bond angle θ defined by θ = cos−1( b⃗j ⋅⃗bj+1

∣⃗bj∥b⃗j+1 ∣
), where b⃗j

= r⃗j+1 − r⃗j is the bond vector between the (j + 1)th monomer and
the jth monomer along the identical chain. The bending factor kθ
is set to 1.5ε, and the melt density is set to the widely used value of
0.85σ−3 throughout the whole paper.

For studying polymer melts under confinement, we first con-
sider the simpler example of polymer melts that are confined
between two planar, structureless repulsive walls. The walls placed
at z = 0 and z = Lz are described by the 10-4 Lennard-Jones planar
wall potential,3,50

Uwall(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Vwall(z) − Vwall(z = σ), z ≤ σ

Vwall(Lz − z) − Vwall(Lz − z = σ), Lz − z ≤ σ

0, otherwise,

(5)

with

VWall = 4πεw[
1
5
(σ

z
)

10
− 1

2
(σ

z
)

4
]. (6)

Here, εw is the interaction strength between monomers and the
walls, and z and Lz − z are the vertical distances of a monomer from
the two walls, respectively.

For preparing free-standing polymer films with one or two free
surfaces, i.e., mimicking free-standing films in vacuum or later on
studying them in presence of a liquid or a gas, we first have to
stabilize the system at zero pressure, particularly, in the direction
perpendicular to the walls. Only then, we can switch off the wall
potential and prevent system instability. Therefore, a short-range
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attractive potential to reduce the pressure to zero is added48,49 with
an additional shift term,

UATT(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α[cos(π( r
rcut
)

2
) + 1], rcut ≤ r < ra

c

0, otherwise,

(7)

such that UATT(r) = ULJ(r) at r = rcut. Here, α = 0.5145ε is the
strength parameter, and ra

c =
√

2rcut ≈ 1.5874σ is the upper cut-
off such that it has zero force at r = rcut and r = ra

c . Note that this
additional potential does not alter the characteristic conformations
at T = 1ε/kB so that we can switch between these different models as
needed.22,23,48,49,51

Note that using U(old)
BEND(θ), bead-spring chains tend to stretch

out as the temperature decreases. To avoid such an artificial chain
stretching, Eq. (4) can be replaced by48,49

UBEND(θ) = −aθ sin2(bθθ), 0 < θ < θc = π/bθ, (8)

if one is interested in studying polymer melts under cooling. The
fitting parameters aθ = 4.5ε and bθ = 1.5 are determined so that
the local conformations of chains remain essentially unchanged
compared to those with kθ = 1.5ε using Eq. (4) at temperature
T = 1.0ε/kB.

B. Soft-sphere coarse-grained model
In the soft-sphere approach,27 each bead-spring polymer chain

in a melt is represented by a chain of NCG = N/Nb fluctuating soft
spheres in a CG view, as shown in Fig. 1. The coordinate of the center
and the radius of the sth sphere in the ith chain, r⃗i(s) and σi(s), are
described by

r⃗i(s) = R⃗CM,i(s) =
1

Nb

sNb

∑
k=(s−1)Nb+1

r⃗i,k (9)

and

σi(s) = Rg,i(s) =
⎛
⎝

1
Nb

sNb

∑
k=(s−1)Nb+1

∣ r⃗i,k − r⃗i(s)∣2
⎞
⎠

1/2

, (10)

respectively. Here, r⃗i,k is the coordinate of the kth monomer in chain
i, and R⃗CM,i(s) and Rg ,i(s) are the center of mass (CM) and the radius

FIG. 1. Snapshot of the configuration of a bead-spring chain of N = 250 monomers
represented by a coarse-grained chain of NCG = 10 fluctuating soft spheres. Each
sphere corresponds to Nb = 25 monomers, cf. text.

of gyration of Nb monomers in its subchains, respectively. Since we
extend the application of the soft-sphere CG model to semiflexible
chains and follow the slightly different strategies of Refs. 28 and 43,
we list the details of soft-sphere potentials as follows. The spheres are
connected by a harmonic bond potential

U(CG)
bond(di(s) = ∣d⃗i(s)∣) =

3
2b2

CG
di(s)2 (11)

and an angular potential

U(CG)
ang (θi(s)) =

1
2

kbend(1 − cos θi(s)),

with

cos θi(s) =
d⃗i(s) ⋅ d⃗i(s + 1)
∣d⃗i(s)∥d⃗i(s + 1)∣

, (12)

where d⃗i(s) = r⃗i(s + 1)− r⃗i(s) is the bond vector and bCG denotes the
effective bond length. The radius of the sth sphere in chain i and its
fluctuation are controlled by the following two potentials:27,28

U(CG)
sphere(σi(s)) = a1

N3
b

σ6
i (s)

+ a2
σ2

i (s)
Nb

(13)

and

U(CG)
self (σi(s)) = a3σ−3

i (s), (14)

respectively. The non-bonded interactions between any two differ-
ent spheres due to excluded volume interactions according to Flory’s
theory21,38,52 are taken care of by the potential

U(CG)
nb (r⃗i(s), σi(s); r⃗i′(s′), σi′(s′))

= ε1(
2π(σ2

i (s) + σ2
i′(s′))

3
)
−3/2

× exp[−3(r⃗i(s) − r⃗i′(s′))2

2(σ2
i (s) + σ2

i′(s′))
] for i ≠ i′ or s ≠ s′. (15)

Here, the parameters kbend, a1, a2, a3, bCG, and ε1 depending on Nb
are determined by a numerical approach via curve fitting.

Similarly, as shown in Eq. (5), the two soft repulsive planar walls
located at z = 0 and z = Lz depending on the radius of each sphere
are given by

U(CG)
wall (z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

V (CG)
wall (z) − V (CG)

wall (z = σi(s)), z ≤ σi(s)

V (CG)
wall (Lz − z) − V (CG)

wall (Lz − z = σi(s)), Lz − z ≤ σi(s)

0, otherwise,
(16)

with

V (CG)
Wall = 4πε(CG)

w [1
5
(σi(s)

z
)

10

− 1
2
(σi(s)

z
)

4

], (17)

where ε(CG)
w is the interaction strength between soft spheres and the

walls and z and Lz − z are the vertical distances from the two walls,
respectively.
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FIG. 2. (a) Probability distributions of
radius σ of soft spheres, P(σ), (b) bond
length d between two successive soft
spheres, P(d), and (c) the bond angle
θ between two successive bonds, P(θ),
for a fully equilibrated bulk CG melt and
a confined CG melt (nc = 1000, NCG
= 80). Data for the reference systems (nc

= 1000, N = 2000) in a CG representation
are also shown for comparison. Data are
averaged over 30 (bulk) and 60 (confined
melts) independent configurations.

For the parameterization of the soft-sphere CG model, we take
15 independent and fully equilibrated bulk polymer melts of bead-
spring polymer chains with kθ = 1.5ε obtained from the previous
works35,42,43 as our reference systems. Using Eqs. (9) and (10) with

Nb = 25, each melt containing nc = 1000 bead-spring chains of
N = 2000 = NCGNb monomers in a cubic simulation box of size
V = L3 (L ≈ 133σ with periodic boundary conditions in x-, y-, and
z- directions) at the melt density ρ0 = 0.85σ−3 is mapped onto a CG

FIG. 3. [(a) and (b)] Rescaled mean
square internal distance, ⟨R2(s, Nb)⟩/s,
plotted as a function of s. [(c) and (d)]
Pair distribution of sphere pairs, g(r, Nb),
plotted as a function of r. Data for a bulk
CG melt, a confined CG melt, and a con-
fined melt in a CG presentation are pre-
sented, as indicated. In (a) and (c), all
nc = 1000 chains are considered, while
only chains having their CMs in the inter-
val [0.3Lz , 0.7Lz ] are counted in (b) and
(d). Data for the reference systems in
a CG representation are also shown for
comparison.
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melt containing nc = 1000 soft-sphere chains of NCG = 80 spheres
at the CG melt density ρ(CG)

0 (NCG) = ρ0NCG/N = 0.034σ−3. The
parameters a1 = 6.3444 × 10−3σ6, a2 = 4.1674σ−2, kbend = 1.3229ε,
a3 = 22.0εσ3, bCG = 6.68σε−1/2, and ε1 = 290.0εσ3 are deter-
mined27,28 such that the average conformational properties of the
reference melt systems in a CG representation are reproduced by
fully equilibrated CG melts of soft-sphere chains. Quantitatively, the
conformational properties are characterized by the probability dis-
tributions of the radius of soft spheres, P(σ, Nb), the bond length
connecting two successive soft spheres, P(d, Nb), and the bond angle
between two successive bonds, P(θ, Nb), the average mean square
internal distance between the jth soft sphere and the (j + s)th soft
sphere along the identical chain, ⟨R2(s, Nb)⟩, and the pair distribu-
tion of all pairs of soft spheres, g(r, Nb) (see Figs. 2 and 3 discussed
in Sec. III).

Since the excluded volume effect between Nb monomers in
each subchain is ignored in the parameterization of the soft-sphere
approach and self-entanglements on this length scale are negligible
as Nb <Ne, subchains behave as ideal chains (alternatively, one could
include excluded volume for semi dilute solutions via a Flory term).
For Nb = 25(<Ne = 28), the chain to a good approximation can be
described as a Gaussian chain, while this is not the case for sig-
nificantly shorter chains. In this case, we can simplify several steps
of hierarchical backmapping43 to only one step of fine-graining to
introduce microscopic details of subchains once a CG melt reaches
its equilibrated state.

III. EQUILIBRATION OF SOFT-SPHERE CHAINS
IN A CONFINED CG MELT

In this section, we extend the application of the soft-sphere CG
model for polymer melts in bulk to polymer melts confined between
two repulsive walls [Eq. (16)], first focusing on the CG melt contain-
ing nc = 1000 chains of NCG = 80 spheres at the CG bulk melt density
ρ(CG)

0 = 0.034σ−3. For the comparison to our reference systems, we
set the distance between two walls compatible with the bulk melt.
Thus, we locate two walls at z = 0σ and z = Lz ≈ 133σ while keep-
ing the periodic boundary conditions along the x- and y- directions
with the lateral linear dimensions Lx = Ly = 133σ. Of course, one
can adjust Lz and extend/reduce Lx and Ly for keeping the bulk melt
density as needed.

The initial configurations of soft-sphere chains in terms
of {σi(s), di(s), θi(s)} are randomly generated according to
their corresponding Boltzmann weights exp[−βU(CG)

sphere(σi(s))],
exp[−βU(CG)

bond(di(s))], and exp[−βU(CG)
ang (θi(s))], respectively, where

β = 1/(kBT) = 1.0ε−1. Additionally, we set 1σ < σi(s) < σmax = 8σ
and 0σ < di(s) < dmax = 21σ but restrict the coordinates of centers of
spheres, r⃗i(s), satisfying the condition σi(s) < r⃗i(s) < (Lz − σi(s)).
It is computationally more efficient to perform Monte Carlo simula-
tions to equilibrate confined CG melts. Similar to Ref. 28, our simu-
lation algorithm including three types of MC moves at each step is as
follows: (i) For a local move, one of the ncNCG spheres is randomly
selected, e.g., the sth sphere in the ith chain, the sphere of radius σi(s)
at r⃗i(s) = (ri,x(s), ri,y(s), ri,z(s)) is allowed to move within the range
−σi(s) < Δri ,x(s), Δri ,y(s), Δri ,z(s) < σi(s). The trial move is there-
fore accepted if exp[−β(ΔU(CG)

nb + ΔU(CG)
bond + ΔU(CG)

ang + ΔU(CG)
wall )] > η,

where η is a random number and η ∈ [0, 1). (ii) For a snake-slithering
move, one end of the nc chains is randomly selected, and σ(new)

i (s),
d(new)

i (s), and θ(new)
i (s) of the selected sphere are randomly generated

according to their corresponding Boltzmann weights, respectively.
The trial move is accepted if exp[−β(ΔU(CG)

nb + ΔU(CG)
self + ΔU(CG)

wall )]
> η. (iii) For a trial change in the sphere size, one of the ncNCG

spheres is randomly selected, and σ(new)
i (s) of the selected sphere is

randomly generated according to its Boltzmann weight. Finally, the
trial move is accepted if exp[−β(ΔU(CG)

nb + ΔU(CG)
self )] > η. A cutoff

at r(CG)
cut = 20σ for calculating the non-bonded interactions between

two different spheres, U(CG)
nb (ri(s), σi(s), ri′(s′), σi′(s′)), is also intro-

duced27 since the contributions for r > 20σ are negligible. Neverthe-
less, there is no influence on measurements of any physical observ-
able while it speeds up the simulations by a factor of four. Applying
a linked-cell algorithm with the cell size Lc = 2.66σ (Lx/Lc = Ly/Lc

is very close to an integer), smaller than the cutoff value r(CG)
cut , speeds

up the simulation even more by an additional factor of 2.5, i.e., all
together, it speeds up by a factor of ten. It takes about 10 h central
processing unit (CPU) time on an Intel 3.60 GHz PC for a confined
CG melt to reach its equilibrated state (after 2 × 107 MC steps are
performed). The acceptance ratio is about 73% for a trial change of
the sphere size, 45% for a local move, and 41% for a snake-slithering
move.

Choosing the wall strength ε(CG)
w ≈ O(0.1 − 1)ε, there is no

detectable influence on the probability distributions P(σ, Nb), P(d,
Nb), and P(θ) comparing to that for an equilibrated CG melt in bulk,
as shown in Fig. 2. Since soft spheres are allowed to penetrate each
other in CG melts, we observe that the distributions P(σ, Nb) and
P(d, Nb) are slightly narrower for both equilibrated CG melts in bulk
and in confinement than that for the reference systems while the
average values of radius and bond length remain the same. We have
also compared the estimates of ⟨R2(s, Nb)⟩ and g(r, Nb) for an equi-
librated confined CG melt to an equilibrated CG melt in bulk and
the reference data in Fig. 3. The curve of ⟨R2(s, Nb)⟩ taken the aver-
age over all nc = 1000 chains for a confined CG melt deviates from
the bulk behavior for s > 10 due to the confinement effect, while for
s < 6, ⟨R2(s, Nb)⟩ is a bit smaller compared to the bulk value. It is
due to the artifact of the soft-sphere CG model, where the excluded
volume effect within the size of spheres is not considered. After
monomers are reinserted into soft-sphere chains, local excluded vol-
ume and the corresponding correlation hole effect automatically
correct for these deviations. However, the discrepancy for s < 6
is still within fluctuations observed in bulk. When monomers are
reinserted into soft-sphere chains, the estimate of g(r, Nb) starts to
increase at r ≈ 3σ and then decrease at r ≈ 5σ. It indicates that near
the walls, the distance between any two spheres decreases due to the
confinement effect.

To investigate the confinement effect on packing and confor-
mations of a polymer melt, we determine the soft-sphere density
profile between two walls as follows:

ρ(CG)(z, Nb) =
1

LxLy

nc

∑
i=1

NCG

∑
s=1

δ(zi(s) − z). (18)

Figure 4 shows that the soft-sphere density profiles with bin size 1σ
for three different values of the interaction strength between the soft
spheres and walls, ε(CG)

w /ε = 1.0, 0.5, and 0.1, are the same within
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FIG. 4. (a) Soft-sphere density profile rescaled by the CG bulk melt density, ρ(CG)
(z, NCG)/ρ(CG)

0 (NCG), plotted as a function of z for fully equilibrated confined CG melts
(nc = 1000, NCG = 80, and Nb = 25) with three different values of ε(CG)

w , as indicated. (b) Two components of the rescaled mean square radius of gyration in the directions
parallel (∥) and perpendicular (�) to the walls, ⟨R2

g,α(z, Nb)⟩/⟨R2
g,α⟩0, plotted vs the rescaled distance of the CM of the chains with bin size 3σ from the walls, z/Lz , including

error bars for a confined CG melt with ε(CG)
w = 0.5ε and Lz = 133σ. In (a), data for the reference systems in a CG representation are also shown for comparison. In (b),

data for a confined melt of (nc = 1000, N = 2000) based on the bead-spring model with εw = 0.005ε and Lz = 134σ in a CG representation (BS→ CG) are also shown for
comparison.

small fluctuation. The bulk melt density persists, i.e., ρ(CG))(z, Nb)
= ρ(CG)

0 , between z = 5 and z = Lz − 5. ρ(CG)(z, Nb) increases and
reaches a maximum value at z = 3σ and then approaches zero next
to the walls. It indicates that the confinement effect is weak for
spheres sitting in the middle regime between two walls. The change
in ρ(CG)(z, Nb) is related to P(σ, Nb) since P(σ, Nb) has its maximum
at z = ⟨σi(s)⟩ ≈ 3.06σ (see Fig. 2). The two components of the mean
square radius of gyration depending on the z-component of CMs of
chains are defined as follows:

⟨R2
g,α(z, Nb)⟩ =

∑nc
i=1∑

NCG
s=1 (r⃗i,α(s) − r⃗(CM)

i,α )
2δ(r⃗(CM)

i,z − z)
NCG∑nc

i=1 δ(r⃗
(CM)
i − z)

, (19)

where r⃗i,α=∥(s) = r⃗i,x(s) + r⃗i,y(s) and r⃗i,α=⊥(s) = r⃗i,z(s). Figure 4(b)
shows that the linear dimensions of confined chains having their
CM in the regime 0.3Lz ≤ r⃗(CM)

i,z ≤ 0.7Lz are the same as in
a bulk melt within fluctuation. For polymer chains of N = 2000
monomers in a bulk melt, the mean square radius of gyration is

⟨R2
g⟩0 = ⟨R2

g,∥⟩ + ⟨R2
g,⊥⟩ ≈ 909σ2. With a decrease in the distance z

from the walls, ⟨R2
g,∥(z, Nb)⟩ increases moderately with larger fluc-

tuations, while ⟨R2
g,⊥(z, Nb)⟩ decreases gradually even already in the

regime where the monomer density is ρ(CG)(z, NCG) ≈ ρ(CG)
0 . Note

that none of chains has its CM next to the wall. From the results
shown in Fig. 4(b), we should expect that ⟨R2(s, Nb)⟩ and g(r, Nb)
follow the bulk behavior if we count those chains sitting in the mid-
dle regime (0.3Lz ≤ r⃗(CM)

i,z ≤ 0.7Lz) between two walls. It is indeed
seen in Figs. 3(b) and 3(d). Similar behavior has been observed for
shorter chains confined between two walls.3,9,10,53

IV. EQUILIBRATING BEAD-SPRING CHAINS
IN A CONFINED MELT
A. Backmapping procedure

After equilibration of the CG melt, we apply the simi-
lar backmapping strategy developed in Ref. 43 to reinsert the

FIG. 5. Snapshots of the configuration of fully equilibrated CG melt containing nc = 1000 chains of NCG = 80 soft spheres confined between two walls at the CG melt density
ρ(CG)

0 (NCG) = 0.034σ−3 and its fine-graining configuration containing nc = 1000 chains of N = NCGNb = 2000 monomers based on the bead-spring model at the melt density
ρ0 = 0.85σ−3 obtained via the backmapping procedure (Sec. IV A). Here, each soft sphere is represented by a subchain of Nb = 25 monomers. The walls are placed at z = 0
and z = Lz , where Lz = 133σ (left) and 134σ (right). The periodic boundary conditions are considered in the parallel directions to the walls, i.e., along the x- and y- directions,
and the linear dimensions of walls are Lx = Ly = 133σ.
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microscopic details of the bead-spring model described in Sec. II A
(see Fig. 5). In this strategy, two monomers along the chains are
bonded via the FENE potential [Eq. (3)] and the shifted LJ poten-
tial [Eq. (1)]. The non-bonded and bond-bending interactions are
excluded at this step. The confinement effect is introduced by the
soft repulsive wall potential [Eq. (5)]. Each soft-sphere CG chain
of NCG = 80 spheres is now replaced by a bead-spring chain of
N = 2000 monomers. To preserve the relationship between a soft
sphere and a subchain of Nb = 25 monomers given in Eqs. (9) and
(10), two pseudopotentials43 for the sth soft sphere in the ith chain
are implemented as follows:

Ucm(r⃗i(s), R⃗CM,i(s)) = kcm[r⃗i(s) − R⃗CM,i(s)]
2 (20)

and

Ug(σi, Rg,i) = kg[σ2
i (s) − R2

g,i(s)]
2
, (21)

where kcm and kg determine the coupling strength. The forces
derived from these two potentials can drive the center of mass and
the radius of gyration of each subchain to the center and the radius
of the corresponding soft sphere, respectively. Namely, each bead-
spring chain is then sitting on top of its corresponding soft-sphere
CG chain (see Fig. 1). During this backmapping procedure, it is
more practical to perform MD simulations in the NVT ensemble
with a weak coupling Langevin thermostat at T = 1.0ε/kB by set-
ting the friction constant Γ = 0.5τ−1. Choosing kcm = 50.0ε and
kg = 5.0ε, the integration time step is set to Δt = 0.005τ. At this stage,
all 1000 soft-sphere CG chains can be mapped into 1000 bead-spring
chains confined between two walls simultaneously since there is no

interaction between different chains. Snapshots of the configura-
tions of the fully equilibrated confined CG melt and the backmapped
confined melt of bead-spring chains are shown in Fig. 5. Here, the
strength of the wall potential Uwall(z) is set to εw = 0.005ε. To keep
the bulk melt density ρ0 = 0.85σ−3 in the middle regime between
two walls (the weak confinement regime) in a microscopic represen-
tation, we set Lz = 134σ instead of Lz = 133σ taking the repulsive
potential of the wall, which is a steep but smooth function, into
account. The reinsertion MD time is about 80τ and the CPU time
is about 2.8 h on a single processor in an Intel 3.60 GHz PC.

B. Equilibration procedure
In the next step, the full excluded volume interaction, as listed

in Sec. II A, has to be introduced. To avoid the “explosion” of
the system due to the overlap of monomers, we have to switch on
the excluded volume interactions between the non-bonded pairs
of monomers in a quasi-static way (slow push-off).42,51 Therefore,
the shifted LJ potential for each non-bonded pair of monomers
at a distance r, [Eq. (1)], is first replaced by a force-capped LJ
potential

UFC-LJ(r) =
⎧⎪⎪⎨⎪⎪⎩

(r − rfc)U
′

LJ(rfc) + ULJ(rfc) for r ≤ rfc

ULJ(r) for r > rfc,
(22)

where rfc is an adjustable cutoff distance in this warm-up proce-
dure. rfc = ro

fc decreases monotonically at each cycle from 21/6σ to
0.8σ in the warm-up procedure for the non-bonded pairs except the
next-nearest neighboring (nn) pairs along identical chains. For the
nn pairs, rfc = rnn

fc is set to 1.1σ initially and tuned according to the

FIG. 6. (a) Monomer density profile
rescaled by the bulk melt density ρ(z)/ρ0
plotted as a function of z for a poly-
mer melt confined between two walls
located at z = 0σ and z = Lz = 134σ
in the intermediate stage of the warm-
up procedure. (b) Rescaled mean square
internal distance, ⟨R2

(s)⟩/(sl2
b), plot-

ted vs s for chains in a confined poly-
mer melt right after the backmapping and
warm-up procedures, with ℓb = 0.964σ
being the mean square root of the bond
length. (c) Time series of the cutoff dis-
tance for the next-nearest neighboring
pairs of monomers (rnn

fc ) and other non-
bonded pairs (ro

fc) for UFC-LJ(r) in a warm-
up procedure. In (a), several values of
the strength εw are chosen, as indicated,
and only data for z ≤ 10σ are shown
in the inset. In (b), the master curve for
the average behavior of the reference
systems is also shown for comparison.

J. Chem. Phys. 153, 144902 (2020); doi: 10.1063/5.0022781 153, 144902-7

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

following cost function:42

C = ∫
s=50

s=20
ds
⎡⎢⎢⎢⎢⎣
(⟨R

2(s)⟩
s
)

master curve
− (⟨R

2(s)⟩
s
)

current cycle

⎤⎥⎥⎥⎥⎦
(23)

at the end of each cycle in the warm-up procedure with the restric-
tion that 0.8σ ≤ rnn

fc ≤ 1.1σ. Master curve refers to fully equili-
brated polymer melts in bulk (the reference systems). Here, we have
assumed that the mean square internal distance, ⟨R2(s)⟩, for the con-
fined chains in a melt finally should coincident with the master curve
for s < 50 (up to two soft spheres in a CG representation) at least. For
a polymer melt under strong confinement effect, the bulk behav-
ior may no longer be valid even for s < 50 ≈ 2Ne. However, it is
more important to first correct chain distortion due to the absence
of excluded volume interactions between monomers [see Fig. 6(b)].
Once we remove the criterion of the cost function, confined chains
will relax very fast on a short length scale dominated by both the
entanglement and confinement effects. Note that this final equili-
bration step only affects subchain lengths of up to the order of Ne.
In this process, the nn-excluded volume is adjusted according to the
value of C, namely, reduced (increase rnn

fc by 0.01σ) if C < 0 and
enhanced (decrease rnn

fc by 0.01σ) if C > 0. If |C| < 0.0001σ2, rnn
fc

remains unchanged.
We perform MD simulations in the NVT ensemble with a

Langevin thermostat at the temperature T = 1.0ε/kB using the pack-
age ESPResSo++44,45 for equilibrating a confined polymer melt con-
taining nc = 1000 chains of N = 2000 monomers under three pro-
cedures as follows: (a) In the warm-up procedure, 120 cycles of
1.5 × 105 MD steps per cycle in the first 80 cycles and 5 × 104

MD steps per cycle in the rest 40 cycles are performed with a larger
friction constant Γ = 1.0τ−1 and a small time step Δt = 0.0002τ.

Differently from Ref. 42, more MD steps and a slower rate of
decreasing the cutoff value of ro

fc for non-bonded monomer pairs
except nn pairs are required for the confined polymer melt system
due to the competition between the excluded volume effect and the
confinement effect. In the first 100 cycles, rnn

fc is updated at each cycle
associated with the cost function. In the rest 20 cycles, rnn

fc decreases
by 0.01σ before reaching the minimum value 0.8σ [see Fig. 6(a)].
(b) In the relaxation procedure, the shifted LJ potential ULJ(r) is
restored. We first perform 105 MD steps with Γ = 0.5τ−1 and
Δt = 0.001τ and then another 2 × 106 MD steps with Δt = 0.005τ
to ensure that the confined melt reaches its equilibrated state. After-
ward, we can set the time step to its standard value, Δt = 0.01τ, for
the further study of the confined polymer melt in equilibrium.

During warming up the confined polymer melt, the local
monomer density profile ρ(z) near the walls varies with the interac-
tion strength εw between monomers and walls, as shown in Fig. 6(a).
For εw = 0.005ε, the bulk melt density ρ0 is conserved all the way up
to the wall, where the bin size is set to 0.5σ. At the same time, after
the confined polymer melt is warmed up, the curve of ⟨R2(s)⟩ coin-
cides with the master curve for s < 50, as shown in Fig. 6(b). A typical
variation of cutoff distances, rnn

fc and ro
fc, for the non-bonded pairs

of monomers in the warm-up procedure are shown in Fig. 6(c). At
the end of the warm-up procedure, UFC-LJ(r) approaches to ULJ(r).
Thus, there is no problem to switch back to ULJ(r) for the further
relaxation of the confined polymer melt.

First, we examine the difference between the equilibrated con-
fined melt and the reference bulk melt, as shown in Fig. 7. We
compare the whole system in terms of the mean square internal
distance ⟨R2(s)⟩, the single chain structure factor Sc(q), and the col-
lective structure S∥(q) in the direction parallel to the walls. We see
that the curve of ⟨R2(s)⟩ estimated only for those chains having their

FIG. 7. (a) Rescaled mean square inter-
nal distance, ⟨R2

(s)⟩/(sl2
b), plotted as

a function of s. (b) Two components of
the single chain structure factors, Sc,∥(q)
and Sc ,�(q), plotted vs q. (c) Collective
structure factor S(q) plotted vs q. (d) Pair
distribution g(r) plotted vs r. Data are
for a fully equilibrated confined melt of
bead-spring chains with the interaction
strength εw = 0.005ε. In (b), the theo-
retically predicted slope q−2 for a Gaus-
sian coil is also shown for comparison.
Data for the average behavior of fully
equilibrated polymer melts in bulk (the
reference systems) are also shown for
comparison.
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CMs satisfying 0.3Lz ≤ r⃗(CM)
i,z ≤ 0.7Lz follows the master curve, while

the curve obtained by taking the average over all 1000 chains starts
to deviate from bulk behavior at s = 250. To detect any anisotropy
of chain conformations under confinement, we distinguish Sc ,�(q
= qz), where the wave vector q⃗ is oriented in the z-direction per-
pendicular to the wall and Sc,∥(q = (q2

x + q2
y)1/2). Sc,∥(q) follows the

same chain structure as in the bulk melt, as shown in Fig. 7(b). The
shift of Sc ,�(q) toward to a slightly larger value of q from the bulk
curve also indicates that the estimate of ⟨R2

g,⊥⟩ for all 1000 chains is
smaller. Nevertheless, chains still behave as ideal chains. On com-
paring the collective structure factor of the whole melt between the
confined polymer and the bulk melt in the parallel direction to the
walls, we see that there is no difference as the distance between two
walls is compatible to the bulk melt [see Fig. 7(c)]. The local pack-
ing of monomers characterized by the pair distribution g(r) for both
inter- and intra-pairs of monomers is also in perfect agreement with
the bulk melt, as shown in Fig. 7(d).

Finally, we go back to the outset and analyze the conforma-
tional properties of the confined equilibrated melt in a CG rep-
resentation by mapping bead-spring chains to soft-sphere chains
using Eqs. (9) and (10). As shown in Figs. 3 and 4(b), all the results
obtained by taking the average over 14 configurations within 6τe
are consistent with the data obtained from the MC simulations of
a confined CG melt within fluctuation. Since in the microscopic
model, the excluded volume interactions between monomers are
properly taken into account, the curves of ⟨R2(s, Nb)⟩ g(r, Nb) at
short length scales do not deviate from the curves for the refer-
ence systems in a CG representation. This shows that the con-
fined polymer melt indeed reaches the equilibrium on all length
scales.

V. PREPARATION OF SUPPORTED
AND FREE-STANDING FILMS AT ZERO PRESSURE

In order to study free-standing or supported films at pressure
P = 0.0ε/σ3, stabilizing non-bonded attractive monomer monomer
interactions are required. For this, we switch to our recently devel-
oped CG model48,49 based on the bead-spring model22,23 by simply
turning on the attractive potential UATT(r) [Eq. (7)] for non-bonded
monomer pairs and replacing the bending potential U(old)

BEND(θ) with
UBEND(θ) [Eq. (8)]. This choice of interaction has the additional
advantage that it allows us to study glassy films as well. Starting
from a fully equilibrated polymer melt confined between two walls
obtained in the last section, we perform MD simulations in the NVT
ensemble with a Langevin thermostat at the temperature T = 1.0ε/kB
using the package ESPResSo++,44,45 keeping the short range repul-
sion from the walls. Figure 8(a) shows that the three diagonal terms
of the pressure tensor Pαβ(t) first drop from 4.9ε/σ3 (5.0ε/σ3 for
bulk melts) to 1.4ε/σ3 right after UATT(r) is switched on and then
to 0.1ε/σ3 in a very short time about 20τ. We further relax the con-
fined polymer film for 30 000τ ≈ 13τe, with τe ≈ 2266τ being the
entanglement time,35 by performing MD simulations in the NPT
ensemble (Hoover barostat with Langevin thermostat54,55 imple-
mented in ESPResSo++44,45) at temperature T = 1.0ε/kB and pressure
P = (Pxx + Pyy + Pzz)/3 = 0.0ε/σ3 to finally adjust the pressure from
0.1ε/σ3 to 0.0ε/σ3. Under this circumstance, an equilibrated free-
standing film is generated after removing two walls by turning off
the wall potential at z = 0σ and z = Lz = 134σ. If we only remove
one of the walls, we get a polymer film with one supporting sub-
strate, where one, of course, can introduce appropriate adhesion
interactions.

FIG. 8. (a) Time series of diagonal terms
of the pressure tensor Pαβ(t). [(b) and
(c)] Rescaled mean square internal dis-
tance, ⟨R2

(s)⟩/(sl2
b), plotted vs s for all

chains (b) and chains having their CMs
in the interval [0.3Lz , 0.7Lz ] (c) in a con-
fined polymer melt. (d) Monomer density
profile rescaled by the bulk melt den-
sity ρ(z)/ρ0, plotted as a function of z
between two walls located at z = 0σ and
z = Lz = 134σ. Data for confined poly-
mer melts based on two variants of bead-
spring model are shown, as indicated.
In [(b) and (c)], data for the reference
systems (bulk melts) and for the free-
standing film after relaxing for 30 000τ
are also shown for comparison. In the
inset of (d), only data for z ≤ 5 are
shown. The Gibbs dividing surfaces for
the confined film at different states at
z = z(lower)

G = 0.35σ, 1.21σ, and 1.82σ
from left to right are marked by arrows.
The root mean square bond length
increases slightly from ℓb ≈ 0.964σ to
ℓb ≈ 0.967σ after switching the potential
U(old)

BEND(θ) to UBEND(θ) and UATT(r).
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FIG. 9. Snapshots of the configurations
of a fully equilibrated melt containing
nc = 1000 chains of N = 2000 monomers
confined between two walls (a confined
film) at the melt density ρ = 0.85σ−3 and
with free surfaces (a free-standing film)
at T = 1.0ε/kB and P = 0.0ε/σ3.

The overall conformations of all chains and inner chains
(0.3Lz ≤ r(CM)

i,z ≤ 0.7Lz) as characterized by ⟨R2(s)⟩ between two
walls for a confined polymer melt based on two variants of bead-
spring model and after relaxing for 30 000τ (NPT MD simulations)
are preserved within fluctuation, as shown in Figs. 8(b) and 8(c).
The monomer density profile ρ(z) in the direction perpendicular to
the wall compared to the density in the interior of confined melt is
also preserved. as shown in Fig. 8(d). The thickness of films, D, is
determined according to the concept of the Gibbs dividing surface
that has been applied to identify the interface between two different
phases,56–58 e.g., liquid and vapor, and polymer and vacuum, based
on the density profile in the direction perpendicular to the inter-
faces. The locations of the Gibbs dividing surfaces (planar surfaces)
corresponding to the upper and lower bounds of films,

z(upper)
G = zc +

1
ρ̄ ∫

zmax

zc

ρ(z)dz

and

z(lower)
G = zc −

1
ρ̄ ∫

zc

zmin

ρ(z)dz, (24)

are obtained by the requirement of equal areas that

∫
z(upper)

G

zc

(ρ(z) − ρ̄)dz = ∫
zmax

z(upper)
G

(ρ(z) − 0)dz (25)

and

∫
z(lower)

G

zmin

(ρ(z) − 0)dz = ∫
zc

z(lower)
G

(ρ(z) − ρ̄)dz, (26)

respectively. Here, zmin and zmax are the two limits where ρ(z)
approaches to zero, and zc = (zmin + zmax)/2. The mean monomer
density is given by

ρ̄ = 1
2Δz ∫

zc+Δz

zc−Δz
ρ(z)dz, (27)

where the value of Δz is chosen such that the monomer density pro-
file ρ(z) in the interval [zc −Δz, zc + Δz] reaches a plateau value
within small fluctuation. Choosing Δ = 2.5σ, the thickness of con-
fined film, D = z(upper)

G −z(lower)
G , at T = 1.0ε/kB reduces from 133.4σ at

P = 4.9ε/σ3 to 131.6σ at P = 0.1ε/σ3 due to the short-range attractive
interaction between non-bonded monomers, and finally is stabilized
at 130.3σ at P = 0.0ε/σ3 where the lateral dimensions of film increase
slightly from Lx = Ly ≈ 133.0σ to Lx = Ly ≈ 134.0σ.

To further relax the free-standing film, we have also per-
formed MD simulations in the NVT ensemble at the temperature
T = 1.0ε/kB for 30 000τ, where the resulting pressure is P = 0.0ε/σ3.
The perpendicular simulation box size is set to Lz = 194σ for prevent-
ing any interaction between monomers and the lateral surfaces of the
box. Snapshots of the configurations of confined and free-standing
films after relaxing for 30 000τ are shown in Fig. 9. The estimate
of ⟨R2(s)⟩ for all chains and chains in the middle part of the free-
standing film, and ρ(z) with bin size 0.25σ are shown in Figs. 8(b),
8(c), and 10, respectively. We see that after relaxing polymer chains
in a free-standing film for 30 000τ ≈ 13τe, the thickness of the free-
standing film, 130.5σ, is still compatible with that of the confined
polymer film, 130.3σ. The average conformations of all chains and
inner chains also remain the same, while the tails of the monomer
density profile become longer, indicating that the surface becomes a
bit rougher.

Finally, the density of chain ends near surfaces for both con-
fined and free-standing films at T = 1.0ε/kB and P = 0.0ε/σ3 is exam-
ined. For this, we compare the normalized density of all monomers,
ϕ(z) = ρ(z)/ρ0, the density of end monomers, ϕe(z) = ρe(z)/(2ρ0/N),
and the relative excess of end monomers, ϕ(excess)

e (z) = [ρe(z)
− (2/N)ρ(z)]/(2ρ0/N), along the perpendicular direction of inter-
faces, averaged over 30 configurations within 6τe, which are shown
in Fig. 11. To illustrate the dependency on the chain length or bead
size, we have also mapped the bead-spring chains of N = 2000

FIG. 10. Monomer density profile rescaled to the bulk melt density ρ(z)/ρ0, plotted
as a function of z along the perpendicular direction of the interfaces of free-
standing film at different relaxation times. For comparison, the centers of free-
standing and confined films in the z-direction are matched. In the inset, only data
for z ≤ 4σ are shown. The Gibbs dividing surfaces for the confined film at different
states at z = z(lower)

G = 1.82σ, 1.75σ for the relaxation time t = 0τ (right after
removing the two walls), and t = 30 000τ are marked by arrows.
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FIG. 11. Normalized densities of all
monomers and end monomers, ϕ(z) and
ϕe(z), respectively, and relative excess
density of end monomers, ϕ(excess)

e (z),
plotted as a function of z along the per-
pendicular direction to the interfaces of
confined [(a) and (c)] and free-standing
films [(b) and (d)]. Explicit bead-spring
chains are shown by red, while the
underlying soft-sphere chains are shown
in green as indicated. For the most
sensitive data ϕ(excess)

e , error bars are
included in (c) and (d). The centers of
free-standing and confined films in the
z-direction are located at z = 67σ for
comparison.

monomers of size σ = 1 onto underlying soft-sphere chains of NCG
= 80 spheres of approximate size 6σ [average radius ⟨Rg(Nb = 25)⟩
≈ 3.0σ]. For films, we observe a weak enrichment of end monomers
at the surfaces due to a potential gain of entropy.59,60 The related
depletion zone for chain ends near the surface, as predicted by self-
consistent field theories,59,60 however, turns out to be too small to
be resolved within the fluctuations of our data. The coarse-graining
slightly smears out this enrichment effect due to the overlap of soft
spheres. For the free-standing film, the enrichment effect of end
monomers near the interfaces is slightly less pronounced, while at
the same time, the interface widens. This indicates a weak roughen-
ing of the free surface compared to the confined film. Nevertheless,
the indicated ϕ(excess)

e (z) near the surfaces in both cases is very small
and levels off on the scale of the typical bulk density correlation
length given, e.g., in Fig. 7.

VI. CONCLUSION

In this paper, we have developed an efficient methodology
to equilibrate long chain polymer films and applied this method
to a polymer film where 1000 chains of 2000 ≈ 72Ne monomers
are confined between two repulsive walls at the bulk melt density
ρ = 0.85σ−3. Starting from a confined CG melt of 1000 chains of 80
soft spheres27,28 at rather high resolution such that each sphere cor-
responds to 25 monomers, it takes only 12.8 h CPU time on a single
processor in Intel 3.6 GHz PC to prepare an initial configuration

based on the bead-spring model (10 h for equilibrating the confined
CG melt using a MC simulation and 2.8 h for reinserting monomers
into soft spheres using a MD simulation). By gradually switching
on the excluded volume interactions between two monomers, over-
lapping monomers are pushed away slowly in a warm-up proce-
dure. Finally, the confined polymer melt is relaxed with full standard
potentials. This takes about 182 h CPU time using 48 cores (2.7 GHz)
on Dual Intel Xeon Platinum 8168 (155 h for the warm-up procedure
and 27 h for the relaxation procedure). Similarly, as found in the
previous studies,43,46 the required MD time for equilibrating con-
fined polymer melts based on the bead-spring model is only about
t = 12 900τ ≈ 5.69τe.

Following the same strategy, one can easily equilibrate highly
entangled polymer melts confined between two walls at distances
ranging from thick films to thin films (in which the distance between
two walls is smaller than the radius of gyration of chains) within
easily manageable computing time. Our work opens ample possi-
bilities to study static and dynamic properties of highly entangled
polymer chains in large polymer films, including, e.g., entanglement
distributions. Varying the interaction potential between walls and
monomers, or even replacing the wall potential by other potentials,
only requires local short relaxation runs starting from a fully equili-
brated polymer melt confined between two repulsive walls. Switch-
ing to our recently developed coarse-grained model for studying
polymer melts under cooling,48,49 both fully equilibrated confined
and free-standing films at the temperature T = 1.0ε/kB and pressure
P = 0.0ε/σ3 are also obtained in this work. This provides a direct
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route to further investigate the relation between the glass transition
temperature and the thickness of films of highly entangled polymer
chains at the zero pressure. Beyond that, it is also interesting to ana-
lyze the rheological properties and local morphology of deformed
films by stretching or shearing.
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