English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

On the reversible deactivation of cobalt ferrite spinel nanoparticles applied in selective 2-propanol oxidation

MPS-Authors
/persons/resource/persons212552

Sinev,  Ilya
Department of Physics, Ruhr-University Bochum, 44780 Bochum, Germany;
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21590

Haevecker,  Michael
Helmholtz-Zentrum Berlin für Materialien und Energy GmbH, Division Solar Energy Research, Elektronenspeicherring BESSY II;
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons227603

Jeon,  Hyosang
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21743

Knop-Gericke,  Axel
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21898

Muhler,  Martin
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;
Laboratory of Industrial Chemistry, Ruhr Universität Bochum;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Anke, S., Falk, T., Bendt, G., Sinev, I., Haevecker, M., Antoni, H., et al. (2020). On the reversible deactivation of cobalt ferrite spinel nanoparticles applied in selective 2-propanol oxidation. Journal of Catalysis, 382, 57-68. doi:10.1016/j.jcat.2019.12.007.


Cite as: https://hdl.handle.net/21.11116/0000-0007-7A86-9
Abstract
CoFe2O4 nanoparticles (NPs) were synthesized by using a colloidal one-pot synthesis method based on the decomposition of metal acetylacetonates in the presence of oleyl amine. The characterization by X-ray diffraction, transmission electron microscopy and N-2 physisorption revealed non-porous spinel phase CoFe2O4 NPs with an average particle size of 4 nm. The unsupported metal oxide NPs were applied in the selective oxidation of 2-propanol in a continuously operated fixed-bed reactor under quasi steady-state conditions using a heating rate of 0.5 k min(-1). 2-Propanol was found to be oxidatively dehydrogenated over CoFe2O4 yielding acetone and H2O with high selectivity. Only to a minor extent dehydration to propene and total oxidation to CO2 was observed at higher temperatures. The detected low-temperature reaction pathway with maxima at 430 and 510 K was inhibited after the initial 2-propanol oxidation up to 573 K, but an oxidative treatment in O-2 or N2O atmosphere led to full regeneration. No correlation between the desorbing amount or the surface oxygen species investigated by O-2 temperature programmed desorption experiments and the low-temperature activity was observed. The amounts of evolving CO2 during the TPO experiments indicate deactivation due to formation of carbonaceous species. Inhibition experiments with pre-adsorbed reaction intermediates and infrared spectroscopy identified acetate species as reversible poison, whereas carbonates are rather spectators. In addition, carbon deposition was detected by X-ray photoelectron spectroscopy, which also revealed a minor influence of cobalt reduction during the deactivation process as confirmed by X-ray absorption spectroscopy studies. (C) 2019 Elsevier Inc. All rights reserved.