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In this paper, we propose an energy functional at the level of DFT 4+ U + V that allows us to compute self-
consistently the values of the onsite interaction, Hubbard U and Hund J, as well as the intersite interaction
V. This functional extends the previously proposed ACBNO functional [L. A. Agapito et al., Phys. Rev. X
5, 011006 (2015)] including both onsite and intersite interactions. We show that this ab initio self-consistent
functional yields improved electronic properties for a wide range of materials, ranging from sp materials to
strongly correlated materials. This functional can also be seen as an alternative general and systematic way
to construct parameter-free hybrid functionals, based on the extended Hubbard model and a selected set of
Coulomb integrals, and might be used to develop novel approximations. By extending the DFT + U method to
materials where strong local and nonlocal interactions are relevant, this work opens the door to the ab initio
study the electronic, ionic, and optical properties of a larger class of strongly correlated materials in and out of

equilibrium.

DOLI: 10.1103/PhysRevB.102.155117

I. INTRODUCTION

During the last few decades, density functional theory
(DFT) has emerged as one of the most reliable and efficient
numerical methods to simulate a wide range of materials.
However, it is well known that the most employed local and
semilocal functionals suffer from many problems, in particu-
lar, the so-called “delocalization problem,” which prevents a
practical application of using DFT to materials where strong
local electron-electron correlations are taking place [1,2].
More advanced functionals, such as metageneralized gradi-
ent approximation or hybrid functionals can solve some of
these problems, but are still not ideal for strongly correlated
systems. In order to overcome this problem, one can rely on
the well-established dynamical mean field theory (DMFT)
[3,4], and its extensions such as DFT + DMFT or GW +
DMFT, which have become the state-of-the-art methods to
treat strongly correlated materials [5]. In most of these meth-
ods, the effective electronic parameter describing the local
interaction, the Hubbard U, is computed within the framework
of constrained random-phase approximation (cRPA) [6-9].
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As an alternative effective approach, DFT + U method
originally proposed by Anisimov, Lichestein, and coworkers
[1,10-12] provides a successful way to improve the treatment
of correlated solids upon DFT, without the numerical burden
of the DFT + DMFT or GW + DMFT methods. In order to
correct the overdelocalization of the electrons, it was pro-
posed to include an energy penalty U for the localized 3d
or 4f orbitals, in the spirit of the mean-field Hubbard model
[1,2,10-12]. The success of the DFT + U method mainly
originates from the simplicity of the method, its relative
low computational cost, and the fact that it can predict the
proper magnetic ground state of correlated materials such
as charge-transfer and Mott insulators [1]. Of course, the
DFT + U approach is not applicable to some really strongly
correlated systems and for these systems once needs to go
beyond DFT 4+ U and use DMFT or cluster DMFT frame-
works. Other limitations include, for instance, the incapacity
to access lifetimes of quasiparticles. Still, the DFT 4+ U ap-
proach is very attractive when it comes to the calculation of
larger systems, such as twisted bilayer systems with small
twist angles [13], or for out-of-equilibrium situations, using
real-time time-dependent DFT +U (TDDFT + U) [14,15]. It
also improves the description of the optical properties of some
correlated materials within linear response [16].

Here, we develop an efficient numerical approach tailored
toward materials for which not only local correlations are im-
portant, but also nonlocal correlations, which means a strong
interaction between neighboring localized electrons. This is
one step toward dealing with correlated materials in an ef-
ficient way but within the constraints of applicability of the
DFT + U + V method (as discussed for instance in Ref. [2]).
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One example of such system in which nonlocal correlations
are important is charge-ordering insulators, such as Fe3;O4
[17], for which an electron is delocalized over two sites and
hence the Mott-Hubbard localization cannot occur. Nonlocal
interaction also plays a key role in low-dimensional systems,
such as adatoms on Si(111) surfaces [18] or sp electron
systems such as graphite and graphene [19-21]. Finally, the
role of the intersite interaction is strongly debated for high-T7;.
superconductors and dictates many of their properties [22]. In
all these systems, the intersite interaction plays a decisive role
and the related self-interaction error contained in (semi)local
functional of DFT is crucially hampering the capability of
these functionals.

The low-energy physics of these systems is usually well
described by an extended Hubbard model. In particular, if we
only account for charge interaction between neighboring sites,
the extended Hubbard Hamiltonian reads as

Hepwy = — Z Ztij(cz(,cj,a +Hc)+U Z”H,T”i,¢
i o i
+% ZZ‘/i_jni.anj,a/’ (1)

i#j o,0'
where o denotes the spin index, #; are the hopping matrix
elements, U represents the onsite interaction, and V;; are the
nonlocal Coulomb matrix elements between the neighboring
sites 7 and j.

Our goal is to derive the expression of an orbital energy
functional containing at the same time U and J describing
the multiband onsite interaction, and the intersite interaction
V describing the charge interaction between the different
atomic sites. The functional can be seen as a hybrid func-
tional, in which the Kohn-Sham orbitals are expanded into a
basis of atomiclike orbitals, including the onsite terms, and
some of the intersite terms. At variance with most of the
proposed hybrid functionals, we do not use a mixing pa-
rameter to determine the weight of the exchange interaction,
but we base our approach on the extended Hubbard model
and the related DFT + U + V scheme, which allows for a
fully ab initio and self-consistent estimate of the U, J, and V
effective electronic parameters. Moreover, we use an approxi-
mate double-counting term, as commonly done for DFT + U,
which does not require any parameter to be adjusted.

The self-consistency in the Hubbard U can be crucial in the
case of transition-metal complexes [23], and we expect this to
be equally true for the intersite interaction. In our approach,
the onsite Hubbard U, Hund J, and the intersite interaction
V are all evaluated at the same time, to ensure the consis-
tency of our approach. It is important to stress that except
for the additional cost of computing more Coulomb integrals
at the beginning of the calculation, our approach does not
represent a major extra cost compared to the usual DFT 4 U
and the ACBNO functional [16,24]. This makes our method
very attractive computationally. Another major interest of this
method is the possibility to extend it directly to the time-
dependent case, only assuming the adiabatic approximation,
or to couple to other degrees of freedom, such as phonons.

This paper is organized as follows. First, we briefly review
the DFT + U and the DFT 4+ U + V methods in Sec. II. Then,
we present our generalization of the ACBNO functional, the

extended ACBNO functional, in Sec. III. We then test our
functional on different systems and compare our results with
prior works. Finally, we draw our conclusions in Sec. V.

II. DFT + U and DFT 4+ U +V

The DFT 4 U method aims at replacing the DFT energy
functional Epgr[n] by the DFT 4 U energy functional of the
form [16]

Epersu[n, {no,}] = Eprrln] + Ee[{n,

w}] = Eacl{min ]
)

where E,, is the electron-electron interaction energy, and E;.
accounts for the double counting of the electron-electron in-
teraction already present in Epgr. This double-counting term
is not known in the general case and several approximated
forms have been proposed along the years. The E,, and E;,
energies depend on the density matrix of a localized orbitals
basis set {¢/:"}, which are the localized orbitals attached to
the site 1. In the following, we refer to the elements of the
density matrix of the localized basis as occupation matrices,
and we denote them {nmm} Combining these two expres-
sions, we obtain the Ey energy to be added to the DFT
total energy, which only depends on an effective Hubbard U
parameter U™ = U — J. This gives the rotational-invariant
form of DFT + U proposed by Dudarev et al. [25]:

Ey[{mm}] = Eeel{rmm ] = Eac[ {0 1]

Uett

_Z IWIZ(Inla annla Inla) 3)
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where [ is an atom index, n, [, and m refer to the principal,
azimuthal, and angular quantum numbers, respectively, and
o is the spin index. In the case of a periodic system, the
occupation matrices 7, L.n, l “ are given by

Inla

Zzwkf”k "k|P1nl|wnk) (4)

where wy is the k-point weight and f; is the occupation of
the Bloch state |7 ). Here, |¢,"') are the localized orbitals
that form the basis used to describe electron localization and

Isrim';l is the projector associated with these orbitals, usually

defined as A" L= |pLnty (@hm !|. The definition of the orbitals
and of the prOJectors will be discussed in more details below.
In the following, we omit the principal quantum number n for
conciseness.

Recently, an extension of the DFT 4+ U method was pro-
posed by Leiria Campo Jr and Cococcioni [26], in order to
account for the intersite electronic interaction V, in the spirit
of the extended Hubbard Hamiltonian [22]. This represents
the first ab initio DFT 4 U 4 V method proposed in the liter-
ature capable of estimating the intersite interaction V. In their
method, only the charge interaction between neighboring sites
is accounted for. In a similar spirit, Belozerov and coworkers
proposed a LDA 4+ DMFT + V approach that they applied to
the monoclinic phase of VO, [27].
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The Hubbard U is usually defined as the averaged of the
onsite interactions of the localized orbitals

1
UM = o Ll Velol ') )
iJ

where V,, is the screened Coulomb interaction. If the screened
Coulomb interaction is frequency dependent, this leads to a
frequency dependent U, as used in the cRPA method. If a stati-
cally screened Coulomb interaction is used instead, as done in
the DFT + U method, the U becomes frequency independent.

In a similar way, the most akin definition of the averaged
intersite interaction V is defined as [26]

1 - '
Vit = e 2o e [Vel# 9] ). ©
LJ

For conciseness, we omit below the quantum numbers in our
notation and refer in the following to V,[f, as V1. Similarly,

we refer below to U’/ and J'/ as U! and J'. The expressions
for E,, and E;. become for DFT 4+ U + V [26]
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where ) 7, denotes that for each atom / the sum runs over
its neighboring atoms J. In these expressions, we defined
Nt =% nlo and N' =Y N'°. This definition uses a
generalizatlon of the occupation matrix

JI
— E ZN[,U(N],(T _ 1)]

N’N’
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n

where it is clear that n/%

as defined in Eq. (4).
Combining the previous expressions, one arrives to the
energy Eyy that must be added to the DFT total energy:

Ueff II o 1,0 Il,o
EUV - Z Z anm M
VI
- Z dn

mma

, is the usual occupation matrix n/?

1J,0 JI o
o Mo + (8)

This energy is the expression for the DFT + U + V pro-
posed in Ref. [26], and is invariant under rotation of the
orbitals of the same atomic site. This is a generalization of
the work of Dudarev er al. [25], where the double-counting

expression is a generalization of the fully localized limit
(FLL) double counting of DFT + U. The motivation of this
specific expression for the intersite interaction was done in
Ref. [26] and is therefore not discussed here. Below we show
how it is possible to extend the work of Agapito et al. [24]
to evaluate the average intersite interaction V ab initio and
self-consistently, in a form of a pseudohybrid calculation.

III. AB INITIO V: THE EXTENDED ACBNO FUNCTIONAL

In Ref. [24], an approximation to the electron interaction
energy named ACBNO functional was proposed, allowing for
an efficient ab initio evaluation of the DFT + U energy, which
can be seen as a screened Hartree-Fock evaluation of the
onsite U, or equally as a pseudohybrid functional in which
the (screened) Hartree-Fock energy is included only on a
selected localized subspace. We propose here an extension of
this approach, which includes not only the onsite interaction,
but also the charge exchange between two sites. Below, we
refer to this functional as the extended ACBNO functional.

In our generalized functional, the electron interaction en-
ergy is given

m’

031D oUCETRITArRTE
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where we considered only the charge interaction between two
sites, neglecting other two-site interactions and also three- and
four-site interactions, as the former one is likely to be the
largest contribution to the energy [26].

In Eq. (9), the renormalized occupation matrices ﬁ:,;

occupations NJIZ are, respectively, given by

=1 1 A1
g —Zwkfnkzv" (U P W)

Né/n(: ZZ nkl mm|1ﬂy?k)~

In the last expression, the sum Z{ 7y Tuns over all orbitals of
the system owning the quantum numbers » and /, and being
attached to atoms of the same type as the atom /. This makes
that Né/”i can be seen as the Mulliken charge of atom 7 [24].
Here we propose a definition of the generalized renormalized

_1.
occupatlon matrices nmjm‘/’,

—IJo IJU
o = Z wifukNy, 7 (W

o, and

10)

D

YOI 15, (12)

where we introduced an ansatz similar to the one of the
original paper of the ACBNO functional, namely, a degree of
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where the quantity corresponds here to the charge of the
bound formed by atom / and atom J. In mono-atomic solids,
it is clear that for the on-site case (I = J), this expression
reduces to the expression of Ref. [24]. Let us comment on
the motivation for this renormalization of the generalized oc-
cupation matrix. In the case of onsite interaction, the original
motivation was that if a wave function is fully delocalized, i.e.,
not occupying the localized subspace, it should give a vanish-
ing contribution to the onsite interaction U, and the ACBNO
functional should reduce to the (semi)local functional used to
describe the itinerant electrons. By including the weighting
coefficient, which is the Mulliken charge of the set of orbitals,
the effect is enhanced [24]. Here, as we consider an intersite
interaction, the idea is the opposite. In the atomic limit, for
which the wave functions are not delocalized over different
sites, there should be no intersite interaction. This is well
seen by the fact that for the Coulomb integral of the form

screening in 71

J

(¢! ¢l 197,07 ) to be nonzero, there must be an overlap of the
charge density originating from the two atomic sites. Hence,
if a wave function is not delocalized over the two considered
sites, the term Néf ¢ vanishes, and the wave function does
not contribute to the intersite V. Importantly, thanks to the
renormalization employed here, if a wave function is fully
localized on one site, the wave function still participates to
the interaction.! In the context of cRPA, the screening is given
by the “rest” of the system, but also from the cross-term
screening coming from the “rest” of the system and from the
localized subspace. Only the electrons fully localized in the
localized subspace do not contribute to the screening. This
means that N“’k and N;/? should be equal to 1 for electrons
fully contained in the localized subspace, as they do not lead
to any screening. Partially delocalized electrons should also
contribute to the screening. These properties are both given by
the renormalization factor of the ACBNO functional, as well
as in our extended ACBNO functional, which at least partly
explains the success of this approach.

From Eq. (9), the effective intersite interaction between the
I and J atomic sites V!/ is given by

VIJ

This expression is the main result of this section. With it,
one can evaluate the intersite interaction ab initio and self-
consistently, similarly to what is done for the effective U in
the ACBNO functional. We also derived the expression of
the extended ACBNO functional for the case of noncollinear
spins, as presented in Appendix A. The expression of the
forces is also given in Appendix B.

So far, we remained elusive on the orbitals used to define
the localized subspace. This is a technical but very important
implementation-dependent issue that deserves some discus-
sion. In the OCTOPUS code [16,28], we construct the localized
orbitals {d),ln’”” } by taking the radial part of the pseudoatomic
wave functions given by the pseudopotential files, and mul-
tiplying them by the usual spherical harmonics, in order to
obtain the pseudoatomic orbitals. More precisely, in case of
periodic solids, we use in all the above equations not the
isolated localized orbital, but the Bloch sums of the localized
orbitals, which read as

ol (r) = ﬁ > e Rl e+ R), (15)
R

and which amount for introducing a phase factor when the
spheres on which the atomic orbitals are defined cross the

'We found that using ,/N;” Ny° as a definition of the weighting

coefficient, which implies that a wave function only localized to one
site does not contribute to V, overscreens the intersite interaction
V, for instance, for binary s-p semiconductors. In this paper, all the
results are presented for the weighting factor given by Eq. (13).

I 1) J =11, —JJﬁ —1J,a=JlI,
| St Lo Bl i) [l — supntrcitte]

2 I J,
Zm m',apf nrr?mnm m

(14)
-y ple il )
m,m’,a ““mm' 'm'm

(

border of the real-space simulation box. Here N corresponds
to the number of unit cells forming the periodic crystal, i.e.,
the number of k points of the simulation. The projection onto
Kohn-Sham states selects a single momentum, explaining why
the k-point index was not specified in the above equations.
Also note that the normalization factor in the Bloch sum van-
ishes when we use the periodicity of the crystal for computing
the sum over the entire crystal. This reduces to a sum over the
unit cell without the normalization factor.

In order to be able to treat various type of solids, including
weakly correlated solids such as Si, we also implemented
the Lowdin orthonormalization procedure, which transforms
the set of nonorthogonal localized orbitals {¢,’,;”’l} into an
orthonormal set of localized orbitals

B0 =3 (S7) o) (16)
J

where i and j indices run over all the considered orbitals,
and the overlap matrix for the set of considered orbitals is
(Sk)ij = (¢i|Pjk). Importantly, using these orthogonalized
orbitals, we obtain a trace of the onsite occupation matrix
which is consistent with the Mulliken population analysis and
leads to the exact same trace of the occupation matrix than the
dual projector defined in Ref. [29] for nonorthogonal basis set.

Due to the periodicity of the Bloch sums of the localized
orbitals, we only need to compute projections on the orbitals
of the atoms inside the simulation box, irrespective of the
number of neighboring atoms considered. This is also the
case for a simpler DFT + U calculation, making the cost
of DFT 4+ U +V calculation only mildly more expensive
than a more standard DFT + U calculation. This is a major

155117-4



PARAMETER-FREE HYBRIDLIKE FUNCTIONAL BASED ON ...

PHYSICAL REVIEW B 102, 155117 (2020)

L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L]
e ——

o765 ® o © W e o o o o o o

’ \\

FIG. 1. Sketch of possible choices for defining a portion of the
real-space grid on which the atomic orbitals and Coulomb integrals
can be evaluated. Atom positions are indicated by green crosses.
Details are discussed in the main text.

difference compared to the original formulation of DFT +
U +V, which requires the construction of larger supercells
to include further neighbors [26]. We stress here that the
orthonormal orbitals given by Eq. (15) are not the ones that
we use to compute the Coulomb integrals, as they are periodic
orbitals, and Coulomb integrals computed using these orbitals
would contain both onsite and intersite overlaps, which is not
what we want. For this reason, the Coulomb integrals are
computed before performing the orthonormalization proce-
dure, from the atomic orbitals of the pseudopotential. More
precisely, each of them is evaluated on a portion of the grid,
and the Coulomb integrals are computed on the union of
these two spheres, using a nonperiodic Poisson solver. This
is sketched in Fig. 1, in which the violet points correspond to
the grid points obtained from the union of the two spherical
meshes centered on two atoms (indicated by green crosses).
These are the points we used in our implementation. Another
possible choice would be a single, larger, sphere centered at
the middle of the two atoms, as indicated in red in Fig. 1.
This choice obviously leads to more grid points and we found
that there is no difference in-between the two choices, as the
atomic orbitals rapidly decay away from the center of the
atom. Finally, we note that a formulation in terms of Wannier
functions would look very much the same as the one we have
presented here.

IV. RESULTS
A. ZrSiSe

The nodal-line semimetals have received a lot of attention
recently. Due to the vanishing density of states at the Dirac
or Weyl points, the screening of the Coulomb interaction
is altered, and long-range Coulomb interaction is a crucial
ingredient in the description of these materials [30]. Hence,
the nodal-line semimetals exhibit strong nonlocal correlations
[31,32], which are not captured by a local Hubbard U as used
in DFT 4 U. This represents therefore an interesting potential
application of our extended ACBNO functional.

2 &
5+
3
1 L |
DFT+U +V — |
HSE06 +

r X M

FIG. 2. Band structure of bulk ZrSiSe obtained using the ex-
tended ACBNO functional (red lines) compared to the hybrid
functional calculation (blue dots).

In order to benchmark our functional, we decided to inves-
tigate ZrSiSe, and we used a hybrid functional as a reference
to compare with. In Refs. [31,33], it was shown that hy-
brid functional calculations with a fraction of exact exchange
of 7% reproduce best the experimental results, compared
to the standard fraction of 25% used in the HSE06 func-
tional [34]. We employed the experimental lattice constant
of 3.623 A and we sampled the real space using a spacing
of 0.3 bohrs and the Brillouin zone using a 7 x 7 x 3 k-
point grid. We considered localization of the d orbitals of
Zr and included the interaction with the first-nearest neigh-
bors. We employed the local-density approximation for the
DFT exchange-correlation energy functional. We obtained
self-consistent values for the effective Uy = U — J and V
of 1.63 and 0.37 eV, respectively. The comparison of the
band structure computed from DFT + U 4V and the hybrid
functional is shown in Fig. 2. We found that DFT + U +V
has almost the same band dispersion than the one obtained
from the hybrid functional close to the Weyl point, showing
the validity of our functional in describing this material.

We recently applied our functional to successfully repro-
duce the measured angle-resolved photoemission spectrum
of ZrSiSe [33] including spin-orbit coupling. Formulas for
noncollinear spins are presented in Appendix A.

B. Graphene and graphite

Low-dimensional sp materials received a lot of attention
recently as they display strong local and nonlocal Coulomb in-
teraction [20,21]. In Ref. [20], cRPA calculations of the onsite
and intersite interactions for graphene at half-filling were pre-
sented. Similar calculations were performed in graphene and
graphite in Ref. [21]. In order to illustrate the flexibility and
robustness of our implementation, we compute the intersite
interactions for graphene, treated here with mixed periodic
boundary conditions, and graphite, which is a fully periodic
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TABLE I. Calculated values of the onsite () and intersite (V;;)
interactions for graphite and graphene computed with our extended
ACBNO functional (DFT + U + V), compared to prior works. Val-
ues are given in eV. The notation V; denotes the intersite interaction
between an atom in the unit cell and its ith neighbor. In the case of
graphite, two values are indicated, corresponding to the two sublat-
tices of the system.

Graphite Graphene
Material This work Ref. [21] This work Ref. [21] Ref. [20]
18] 7.62-7.64  8.0-8.1 7.56 9.3 10.16
Vo 4.04 3.9 4.02 5.5 5.68
Voo 2.58 2.4-2.4 2.57 4.1 4.06
Vos 2.24 1.9 2.24 3.6 3.70
Voa 1.91 1.69 3.19

material. We use a 15 x 15 k-point grid to sample the two-
dimensional Brillouin zone of graphene and a 12 x 12 x 5
grid in the case of graphite. We employ an in-plane lattice
constant of 2.47 A in both cases, and an out-of-plane constant
of 6.708 A for graphite. The real-space grid is sampled by a
spacing of 0.35 bohrs and we employed the norm-conserving
Pseudodojo pseudopotential [35]. We compare the previously
reported values to the ones obtained by our functional in
Table I. A major difference is that in the present calcula-
tions all p orbitals are considered, whereas prior studies only
considered p, orbitals. As a result, both onsite and intersite
interactions are found to be smaller in our case that in previous
works [20,21].

Already in the 1950s, in the context of m-conjugated sys-
tems, it was proposed by Pariser, Parr, and Pople a one-band
model with nearest-neighbor hopping and intersite interac-
tion. This model has been widely studied and few expressions
have been proposed to interpolate the Coulomb interaction be-
tween the long-range 1/r behavior and the short-range onsite
value, which is the Hubbard U. In order to get a more physical
insight on the values obtained by our method, we compare
them to the popular Ohno interpolation formula [36], which
reads as

Vi v (17)
In this expression, the intersite interaction between atoms i
and j separated by the distance r;; is estimated from the on-
site interaction U and an effective dielectric constant €.

The fact that we can fit the values of the intersite interaction
with the Ohno potential indicates that the Coulomb integrals
are properly computed (see Fig. 3). The most interesting point
is that the effective dielectric constant € = 2.15, used here
to match our calculated intersite interaction values, agrees
reasonably very well with the effective dielectric constant of
graphite of 2.5 found experimentally or from cRPA calcula-
tions [21]. This shows that the functional correctly describes
the screening at place in graphite.

Figure 4 shows the band structure of graphene obtained
using the extended ACBNO functional, compared to the
LDA one. In this case, we included both s and p orbitals,
orthonormalized using the Lowdin orthonormalization proce-

5.5 : ] ] ]
Extended ACBNO +

5 K Ohno fit ]
4.5 4

3.5 ]

V [eV]

3
15 | | | | |
1 1.5 2 2.5 3 3.5 4

Interatomic distance [A4]

+

FIG. 3. Comparison between the calculated intersite V for
graphite and the extrapolated values using the Ohno formula and the
calculated onsite effective U. An effective dielectric constant € of
2.15 is used here.

dure discussed above. The comparison of the band dispersion
close to the K point (right panel of Fig. 4) shows that the
extended ACBNO leads to Fermi velocity quite close to the
GW one around the K point, compared to the LDA calcula-
tion. This demonstrates that our functional also improves the
description of the electronic properties of graphene. However,
we note that the extended ACBNO functional opens too much
the gap between the m bands at the M point. Indeed, the
extended ACBNO functional yields a splitting of 6.52 eV,
compared to 4.01 eV for the LDA. This overestimates the GW
splitting of 4.89 eV, but is quite similar to the B3LYP value
of 6.14 eV [38], which is probably linked to the way we are
approximating the screening in the ACBNO functional.

E-Er [eV]

—20

<0201 KM
k[4]

T K M T

FIG. 4. Left panel: band structure of graphene, calculated using
the LDA (dashed black lines), compared to the LDA + U + V cal-
culation (red lines). Right panel: comparison of the band dispersion
close to the K point. The GW data (blue dotted lines) are taken from
Ref. [37].
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TABLE II. Effective electronic parameters of silicon calculated
from the extended ACBNO functional, compared to the one obtained
by linear response [26]. The parameters labeled by U correspond to
onsite interactions whereas the ones labeled by V' correspond to the
nearest-neighbor interactions.

Parameters This work Ref. [26]
Uys 3.68 2.82
U,y 3.55 3.65
Usp 2.29 3.18
Vis 0.94 1.40
Vip 1.37 1.36
Vop 1.86 1.34
C. Silicon

In Ref. [26], LDA 4+ U + V method was applied to bulk
silicon, as a test case of weakly correlated semiconductor
material that is well understood. They showed that this cor-
rective functional improves the values of direct and indirect
band gaps compared to LDA. The calculated values of onsite
U and intersite V interactions, obtained from our functional,
are compared in Table II to the values obtained from linear-
response calculation in 3 x 3 x 3 supercell calculation [26].
We employed an 8 x 8 x 8 k-point grid to sample the Bril-
louin zone, a grid spacing of 0.5 bohrs and norm-conserving
Pseudodojo pseudopotential [35]. The lattice constant is taken
to be the experimental one of a = 5.431 A. Overall, our re-
sults are found to be in reasonable agreement with the values
of Ref. [26], even if we are getting significant differences for
some of the values. This can be tracked to different implemen-
tations, different pseudopotentials, and the difference between
the supercell treatment and the primitive one, as the screen-
ing is computed in a different way in the two approaches.
However, it is worth noting that the band structure of silicon
computed from LDA + U + V almost matches perfectly the
one obtained from linear-response values, as shown in Fig. 5.
This shows that whereas the values of U and V are not fully
transferable from one implementation to another one, the
observables obtained from the two approaches, the extended
ACBNO functional and linear response, are very similar. We
checked that using the generalized gradient approximation
instead of the LDA one for the exchange-correlation part does
not lead to a significant change of the calculated values of the
effective electronic parameters.

D. Transition metal oxides: MnO and NiO

We now turn our attention to transition metal oxides, for
which it is quite common to employ the DFT + U method to
improve the description of electronic correlations. We com-
puted the density of state of both bulk NiO and bulk MnO
in their antiferromagnetic phase, as shown in Figs. 6 and 7.
The magnetic moments obtained for the different functionals
are reported in Table III. All the calculations presented here
were performed considering type-II antiferromagnetic materi-
als below their Néel temperature. Below its Néel temperature
(Ty = 523 K [39]), NiO exhibits a rhombohedral structure,
which is obtained by contraction of the original cubic cell
along one of the [111] directions [39]. However, we have

E [eV]

—15
r X W L r K

FIG. 5. Band structure of bulk silicon calculated using the LDA
(dashed black lines), compared to the one obtained from the LDA +
U + V method (red lines). The blue dots correspond to the LDA +
U + V calculation from linear-response calculation of U and V in
supercell [26]. Only valence bands and the first conduction band are
shown.
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FIG. 6. Comparison of the density of states of NiO obtained
using the LDA (top panel), the ACBNO functional (DFT + U; middle
panel), and the extended ACBNO functional (DFT + U + V; bottom
panel), with the experimental one obtained from photoemission and
inverse photoemission [46]. The energies were shifted such that the
top of the valence band corresponds to the zero of energy in all cases.
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FIG. 7. Same as Fig. 6, but for bulk MnO. Experimental data are
taken from Ref. [47].

neglected the small distortions and considered NiO (and
MnO) in its cubic rock-salt structure. Calculations were
performed using a lattice parameter of 4.1704 A for NiO
and 4.4315 A for MnO, a real-space spacing of Ar = 0.2
bohrs, and a 8 x 8 x 8 k-point grid to sample their Bril-
louin zones. We employed norm-conserving pseudopotentials,
and all orbitals available were considered for localization. A
broadening of 0.1 eV was used to mimic the experimental
broadening of the density of states.

TABLEIII. Calculated magnetic moments of the transition metal
atoms for different methods, in Bohr magneton, compared to the
experimental values. The magnetic moments are computed by taking
a sphere around the atoms with, respectively, a radius of 1.11 and
1.04 A for NiO and MnO.

Functional NiO MnO
PBE 1.15 4.13
ACBNO 1.57 4.39
eACBNO 1.65 4.38
Expt. 1.64%, 1.90° 4.58¢, 4,794

2Reference [40].
bReference [41].
‘Reference [41].
dReference [42].

As many prior studies, see for instance Refs. [43,44], we
found that the semilocal Perdew-Burke-Ernzerhof (PBE) [45]
functional produces a very small band gap for NiO. Adding
a Hubbard U improves the energy band gap compared to the
experiment. This also changes the shape of the peaks located
around —5 and —7eV. Considering the intersite interaction
(bottom panel of Fig. 6) improves further the band gap. More-
over, it induces a splitting of the broad peak obtained at the
PBE + U level into two peaks, corresponding to O-p bands
and Ni-d bands, and improves the position of the satellite
peak to be at —6eV. These three peaks make that the density
of states computed at the extended ACBNO level is improved
compared to the calculation considering only the onsite inter-
action, even if notable differences compared to the experiment
still persists. It is important to note that these effects are the
same as the one obtained from self-consistent linear-response
evaluation of the onsite and intersite interactions, which shows
again that our approach qualitatively captures the same effects
as the linear-response method of Ref. [26]. We find that the
magnetic moment of NiO is also improved using the extended
ACBNO functional compared to the PBE + U result (see
Table III).

The calculation performed for bulk MnO also show, at
the PBE level, the same effects as reported before in the
literature [43,44]: there is a wrong splitting of the density of
states for the top valence bands, the band gap is too small,
and the bottom of the valence bands shows a double peak,
as for NiO, which is also not correct. We found that these
features are already corrected very well by the addition on
an onsite interaction, which yield a nice agreement with the
experimental result. Interestingly, the addition of an intersite
interaction does not produce any sizable difference, compared
to a simple PBE + U calculation. The magnetic moment of
the Mn atom is also not much affected by the inclusion of the
intersite interaction (see Table III).

These calculations show that in the case where the onsite
interaction is not enough to describe the electronic properties,
the ab initio evaluation of the intersite interaction improves
the description of the electronic properties, whereas when the
onsite interaction is enough, adding the intersite interaction
does not degrade the electronic properties.

E. Band gaps of semiconductors and insulators

After investigating in details the effect of our functional on
the electronic properties of specific materials, we finally want
to discuss its performance on the electronic band gaps of a se-
ries of semiconductors and insulators. It is indeed interesting
to wonder if this functional can be used without having to rely
on some knowledge of how the localization takes place, and to
use it as a pseudohybrid functional. Our results, presented in
Table IV, are obtained using a 8§ x 8 x 8 k-point grid for sam-
pling the Brillouin zone of each material. We employed the
experimental lattice constant and used PBE norm-conserving
Pseudodojo pseudopotential [35]. For each material we con-
verged the spacing such that it yields a converged PBE band
gap at 20 meV. In the case of ACBNO and eACBNO calcula-
tions, all atomic orbitals available from the pseudopotentials
were employed to construct the localized subspaces. This
implies that different pseudopotentials will lead to different
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TABLE IV. Electronic band gaps, in eV, calculated as the differ-
ences of Kohn-Sham eigenvalues for various materials. Calculations
were performed at the experimental lattice constant. The mean abso-
lute relative error (MARE) is also reported.

PBE ACBNO eACBNO  G,W, Expt.
Ar 8.66 13.08  13.08  13.28[48] 14.20 [48]
C 419 428 571  550[48] 5.48[48]
Si 0.61 0.4 130 1.12[48] 1.17[48]
Ge 004 000  0.77° 0.66[48] 0.74 [48]
LiF 9.14 11.13  11.84 1327 [48] 14.20 [48]
MgO 478 554 63 7.25[48] 7.83[48]
BN 430 530 587  585[48] 6.25[48]
AlSb 122 1.14 178  1.80[49] 1.62[49]
AIP 156 177 244  239[49] 2.45[48]
AlAs 143 146 213 2.09[49] 2.15[49]
GaAs 052 035 087  1.64[48] 1.52[48]
NiO 101 214 229  1.1[48] 4.0[24]
MnO 099 024 086  1.7[48]  4.1[24]
TiO, 191 261 402  3.18[48] 3.03-3.3[24]
ZnO 095 252 286  2.68[48] 3.44[24]
MARE (%) 489 4057 1938 1471

2The s orbitals are not considered for Ge, as we found that this leads
to some substantial differences, unlike other materials.

intersite interactions, as for instance some pseudopotentials
provide d orbitals for Si, whereas some others do not. Overall,
we find that the choice of the pseudopotential does not affect
too much the band gaps obtained by the functional, except in
the case of partially occupied d orbitals, such as in transition
metal oxides, and there we note that some important devia-
tions can be observed, as for example in NiO.

The mean absolute relative error obtained for the eACBNO
functional (19.38%) shows that overall the functional im-
proves drastically the energy band gap of semiconductor
and insulators, compared to PBE (which yields a MARE of
48.9%) and PBE + U, as this latter only mildly improves
upon PBE. The results obtained with the eACBNO are reason-
ably close to the one obtained with a by-far more expansive
GoWy method, which gives for this set of materials a MARE
of 14.71%.

This shows that beyond the set of specific materials pre-
sented above, the functional properly improves the description
of electronic properties for a large variety of solids, without
having to select a priori on which type of orbitals the local-
ization has to take place.

V. CONCLUSION

In conclusion, we presented an efficient method to compute
ab initio and self-consistently the effective electronic param-
eters U, J, and V. We implemented the DFT + U + V and
our energy functional in the real-space TDDFT code OCTOPUS
[28]. We showed results for ground-state calculations showing
that our implementation yields results in good agreement with
the ones previously reported in the literature. We applied our
functional to a correlated nodal-line semimetal, ZrSiSe, show-
ing that our functional produces very similar results to the

one obtained from a by far more expensive hybrid functional
calculation. Applied to low-dimensional sp compounds, our
functional gives results in qualitative agreement with cRPA
calculations. We tested our functional on bulk silicon and
bulk transition metal oxides, and we found that our functional
reproduces well the results of linear response in supercell [26].
Finally, we applied it to a set of semiconductors and insula-
tors, showing that the electronic band gap is well improved
compared to PBE and PBE + U, and that the functional per-
forms reasonably well compared to GoWj.

Let us comment on the choice of localized orbitals. In this
work we employed pseudoatomic orbitals obtained from the
pseudopotentials. Whereas we found that for s-p semiconduc-
tors, the choice of the pseudopotential is quite irrelevant for
the obtained results, we observed significant differences for
transition metal oxides depending on the choice of the pseu-
dopotentials. This can be seen as a limitation of our method.
However, our approach is not limited to pseudopotential-
based codes and can straightforwardly be using any type of
localized orbitals such as, for instance, Wannier orbitals. One
can therefore get rid of the pseudopotential dependency, or at
least reduce it drastically, by applying the present method on
Wannier orbitals constructed on the fly, such as for instance
using the SCDM-k method [50].

Finally, we note that in this work we followed Ref. [26]
and only considered specific intersite interaction. Determining
how reliable and general is this approximation will require
further investigations and would require extending the pre-
sented energy functional to include other intersite interactions.
The method we presented here is general enough such that
one could easily extend it to include other interaction terms.
This work also suggests that when evaluating the expensive
exchange operator, most of the Coulomb integrals might not
be very relevant and some of them can maybe be neglected,
based on physical considerations.

The extension of this functional to the time-dependent
case, or its performance on forces and vibrational properties
of solids, will be investigated in a future work.
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APPENDIX A: DFT + U + V WITH NONCOLLINEAR SPIN

In this Appendix we present the formula we obtained as
we extended the DFT + U + V to the noncollinear spin case.
Based on the same approximation as before, we arrive to
the following expression for the electron-electron interaction
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energy for noncollinear spin systems:
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In the fully localized limit, the corresponding double-counting term is given for the onsite interaction by [51]
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where m is the magnetization of the localized subspace [16], and N’

orbitals of the site /.

(A2)

=Y > nl29 is the number of electrons in the localized

For the intersite interaction, the double-counting term is given by

.
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Putting everything together, one obtains that the rotationally invariant form corresponding to Eq. (8) for the noncollinear spins

reads as
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mm' oo’

which is very similar to the expression (8) presented in the main text, with the exception that the trace is done also on the spin
coordinates for the onsite and intersite interactions. The corresponding potential is given by

U, Ji
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Based on the expression (A1), we obtain the expression for the intersite V for the noncollinear spin case as
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APPENDIX B: FORCES some algebra, one obtains that
In this Appendix we present the formula we obtained for
the contribution to the forces acting on an atom o along the 8nﬁ,fl _ Z ol 1/fk o\, o il
direction i coming from the intersite term. This is given by Wk fiw Pk Vi)
v IEy dEy ono
Fa,iz_ =T L llo J.n,l I'[/kv I,n,l
ORq i on, 7 ORq, + 80, 1{0)0 5 [k ) — Pk | |- (B2)
l
B v/ W/l Bn” 7 .o 8nfnlnf Bl In the present expression, as in the ACBNO case [16] the
- Z Z Mon'm OR. . R +nmm’ OR, ; -(BD) derivative of U, J, and V to the forces is not taken into
m,m’,o ’

As for the case of DFT + U [16], the derivative of the general-
ized occupation matrix is expressed in terms of the derivative
of the orbitals to reduce the so-called egg-box effect. After

account. Moreover, in case of a Lowdin orthonormalization,
the contribution from the derivative of the overlap matrix
with respect to the atomic position is missing in the previous
expression. This will be explored in a further publication.
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