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Abstract

In this thesis a theoretical study of singly excited resonances of molecular hydrogen under
the influence of moderately strong, ultrashort laser pulses was conducted. Motivated by a
recent measurement of an absorption spectrum of H2, a deeper investigation of this system
was needed. All numerical calculations were performed within the framework of a few-level
model including interactions with laser fields. Certain parameters, as well as the investigated
vibronic states in the model system, are obtained from experimental data, so that the system
can qualitatively reproduce the real hydrogen. Resonant line shapes were examined. An XUV
field is used as an excitation pulse, while an NIR pulse is used to couple dark states with bright
states. In absence of an NIR field, the expected Lorentzian line shape could be observed.
The full width at half maximum is determined geometrically and its relation to the lifetime
is demonstrated successfully. In the presence of the NIR field, the line form becomes asym-
metrical - a fit was performed for the occuring Fano line shape. The main goal was to observe
time-resolved absorption spectra. The absorption spectra showed rich dynamics. To conclude
how the time-dependent structures come about, a systematic investigation is performed by
forbidding couplings between certain dark and bright states. This break-down of the system
to simpler ones enabled us to deduce which couplings between the considered vibronic states
cause which time changing structures, imprinted by electronic and nuclear degrees of freedom,
in the spectrum.

Zusammenfassung

In dieser Arbeit werden einfach angeregte Resonanzen von molekularem Wasserstoff unter Ein-
fluss von moderat starken, ultrakurzen Laserpulsen theoretisch untersucht. Motiviert wird dies
durch ein vor kurzem gemessenes Absorptionsspektrum von H2, welches eine tiefere Unter-
suchung dieses Systems veranlasst. Dabei wurden alle numerischen Berechnung im Rahmen
einer Few-Level-Simulation durchgeführt, welche die Wechselwirkung mit Laserfeldern berück-
sichtigt. Gewisse Parameter, sowie die zu untersuchenden Vibrationszustände im Modellsystem
konnten unter Berücksichtigung von experimentellen Daten gewonnen werden, sodass das be-
trachtete System qualitativ das reale Wasserstoff reproduzieren kann. Untersucht wurden die
resonanten Linienformen. Dabei dient ein XUV Puls als Anregungspuls, und ein NIR Puls wird
verwendent um Kopplungen zwischen hellen und dunklen zu ermöglichen. Ohne Einfluss vom
NIR Puls konnte eine zu erwartende Lorentzförmige Kurve beobachtet werden. Geometrisch
wurde die Halbwertsbreite bestimmt und somit der Zusammenhang dieser Größe zur Leben-
szeit bestätigt. Unter Einfluss des NIR Lasers ändert sich die Linie zu eine asymmetrische
Fano förmige Linie, zu der auch ein Fit erstellt wurde. Das Hauptziel ist es nun zeitaufgelöste
Absorptionsspektren im System zu betrachten. Ds Absorptionsspektrum zeigte eine reich-
haltige Dynamik. Um Rückschlüsse auf die Ursachen der zeitabhängigen Strukturen zu ziehen,
wurde eine systematische Untersuchung durchgeführt, indem man Kopplungen zwischen gewis-
sen dunklen und hellen Zuständen verbietet. Durch diese Aufschlüsselung des gesamten Systems
in kleinere Systeme, konnte abgeleitet werden, welche Kopplungen zwischen den betrachteten
Vibrationszuständen welche zeitabhängigen Strukturen, geprägt von elektronischen und nuk-
learen Friheitsgeraden, im Spektrum verursachen.
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1 Introduction
Atoms were believed to be indivisible particles. Over time, this hypothesis turned out to be wrong.
In 1911, Ernest Rutherford was the first person to show experimentally that an atom consists
of a positive charged nucleus, that contains almost the whole mass of the atom, surrounded by
electrons, which compensate the nucleus’ electric charge [1]. Numerous other atom models then
were proposed. During the evolution of quantum mechanics, the atomic orbital model occurred.
This model describes the wave-like behavior and the location of an electron in an atom and is still
used nowadays for many calculations. The simplest atom is the hydrogen atom. It consists of a
single proton as nucleus, surrounded by an electron. The new understanding of quantum mechanical
behavior of atoms lead to an analytical solution of the Schrödinger equation for the nonrelativistic
hydrogen atom. Moving on from the simplest atom to the simplest molecule, molecular hydrogen,
consisting of two positively charged protons and two negatively charged electrons, one could ask, if
the wavefunction for this molecule can be found easily, too. The answer is no, because when dealing
with molecules, it is not possible to add properties known from atoms together. No exact analytical
solution to the wavefunction for H2 exists. This is why approximations are used, to simplify the
molecular system. The most important approximation is the Born-Oppenheimer approximation,
by assuming that the nuclei of a molecule are fixed in space, and their motion is independent of the
motion of the electrons. Using this approximation the wavefunction could be split into a nuclear
and electronic part using a product ansatz.

The study of atoms and molecules results to the question, how they behave in the free system as
well under external influence. Electronic motions are in the order of femtoseconds to attoseconds.
To get insights to the dynamics, interferometric methods proved to be the solution. In particular
transient-absorption spectroscopy (TAS) is widely used. The temporal evolution of a wave function,
describing the microscopic system within the framework of the non-relativistic quantum theory, is
related to complex phase factors. Hence, when dealing with quantum mechanics, measuring time
is strictly linked into measuring phases. Temporal phase information of an atom or a molecule can
be gained by letting them interact with an external light source. Through this interaction, their
relative phase shift, e.g. due to absorption, can be measured. This implies, that one needs a light
source with high coherence, or perfect phase-relationship. Here, laser pulses come in handy, since
they have a high coherence. The key ingredient in TAS is using ultrashort laser pulses, in order to
resolve electronic motions within an atom or a molecule. An XUV pulse can be to used excite the
system, while after a time delay, a second pulse, an NIR pulse, can be used to create a temporal
overlap between the phases of the considered system and the NIR pulse. By comparing the initial
intensity of the XUV pulse before it passes through the system with the intensity after travelling
to the system, one can finally get insights to the dynamical processes after excitation.

A recent measured absorption spectrum of molecular hydrogen drew attention for a deeper
investigation for the system (see figure 1). Since further experiments in our group are yet to be
done, a theoretical consideration is needed for a better understanding. Also predicting experimental
outcome and gaining understanding of not discussed effects in other experimental works, like [21, 22],
is a goal to pursue.

The thesis is structured as follows: in section 2 the atomic units system is presented, before
introducing a fundamental quantum mechanical description for quantum states. Light-matter inter-
action with linear absorption theory are discussed afterwards, along with the concept of transient-
absorption spectroscopy.

Section 3 deals with basic concepts of the H2 molecule, which is the investigated system through-
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Figure 1: Absorption spectrum of H2, measured by Gergana Borisova at the Max-Planck-Intitut
für Kernphysik Heidelberg, in the division of Prof. Dr. Thomas Pfeifer. The OD [arb. u.]
is plotted against the energy [eV]. Here, some spectral lines of the excited vibrational C1Πu- and
D1Πu-states are visible.

out this thesis. Starting with introducing the common used molecular term symbols and introducing
the states of interest for the simulation later, the Born-Oppenheimer approximation is explained
in more detail. After that, the Hamiltonian and wave functions of molecular hydrogen are built
in the framework of the mentioned approximation. The relevant energies in the system, potential
curves and a level scheme for the considered 87 vibronic states are presented as well. Assuming a
few-level model, which is the last point covered in this section, a numerical implementation aiming
to solve the Schrödinger equation for our system is presented in section 4. The implementation is
based on previous works by Paul Birk in our group.

There, it is also explained, how the Hamiltonian of the hydrogen system is built. The laser
pulse configurations, parameters used in the simulation and the concept of zero-padding is outlined
afterwards.

Section 5 presents the results of our calculated data. Taking a simplification into a five-level
system, we are able to see population transfers between the ground electronic state and the bright
states and the influence of an NIR pulse to the system. Resonant line shapes of the spectrum with
and without an external NIR field are studied afterwards, both for the five-level system and as well
for the full 87-level system. However, for the full system, we examine the time-resolved spectrum,
if the NIR pulse is turned on. For different time delays between the XUV and NIR pulse, different
scans are performed for different coupling configurations between certain bright and dark states.
An outlook for possible further extensions to the simulation, like intensity scans and implementing
Franck-Condon factors for the transitions between dark and bright states, is given at last.

A conclusion to sum up the presented ideas is given to close the thesis.
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2 Theory
This section covers some theoretical aspects on light-matter interaction. It starts with an intro-
duction to atomic units, before it turns to the basics of quantum mechanics. We give a short
introduction in light-matter interactions, how one can quantify this interaction with linear absorp-
tion theory and finally how an experiment using Transient-Absorption Spectroscopy (TAS)
enables access to the intrinsic dynamics of a quantum system.

2.1 Atomic Units
In atomic and molecular physics it is well established to use atomic units (a.u.). These units are
defined by properties of the electron of a hydrogen atom. We denote the mass of an electron with
me, the elementary charge e, the reduced Planck constant h̄ and the Bohr radius is a0. Within the
atomic unit system, these four values, and as well the factor 1/4πϵ0 (ϵ0 = electric constant), are
set to 1:

me = e = h̄ = a0 =
1

4πϵ0
= 1. (1)

The speed of light c is defined by the inverse of the fine-structure constant α, so that c ≈ 137.
One time unit is t = 1 a.u. ≈ 24.189 as (attosecond), one energy unit is E = 1 a.u. ≈ 27.211
eV, the field strength is given by E = 1 a.u. ≈ 5.142 · 1011 V/m, while the intensity is I = 1 a.u.
≈ 3.51 · 1016. In this thesis atomic units are used, if it is not mentioned otherwise.

2.2 Fundamental Quantum Mechanics
When dealing with non-relativistic quantum systems, the most fundamental time-dependent de-
scription of a quantum mechanical system is given by the Schrödinger equation

− i ∂
∂t
|Ψ(x, t)⟩ = H(t) |Ψ(x, t)⟩ , (2)

where |Ψ(x, t)⟩ denotes a time-dependent state of the system. H(t) is the Hamiltonian, which
corresponds to the underlying energies of the particles in the considered system. In the stationary
case, equation (2) becomes an eigenvalue equation:

H |Ψn⟩ = En |Ψn⟩ . (3)

One obtains a set of n orthogonal eigenstates, each associated with an energy En. These energies
are sorted by value, where the lowest energy E0 corresponds to the ground state. A general solution
of the Schrödinger equation can now be written as a superposition of all the eigenstates

|Ψ(x, t)⟩ =
n∑

i=0

ci(t) |Ψi(x, t)⟩ . (4)

The absolute squares of the coefficients ci = ⟨Ψi|Ψ⟩ sum up to 1 (
∑n

i=0 |ci|2 = 1), if the nor-
malization is given, since the physical interpretation of the expansion coefficients is the probability
to find the considered system in a state |Ψi⟩. For given initial conditions, the time propagation of
a general state (equation (4)) is a phase evolution:

|Ψ(x, t)⟩ =
∑
n

e−iEnt/h̄ |Ψn(x, t = 0)⟩ . (5)
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2.3 Light-Matter interactions
To get insights of the dynamical behavior in an atom or molecule, one can use an external light source
to interact with the considered system. If one knows how the incoming light source is changed after
travelling through the system, one can quantify how the light is affected by the matter by looking at
the absorbance. On needs to compare the intensity I0(ω) of the transmitted light before travelling
through a medium, and the intensity I(ω) that is actually transmitted through the medium. Here ω
is the angular frequency of the light. Then calculating the ratio of these two intensities and taking
the common logarithm results to the absorbance, also known as optical density (OD):

OD(ω) = log10
I0(ω)

I(ω)
= − log10

I(ω)

I0(ω)
. (6)

2.3.1 Linear Absorption

Light attenuation through an extended medium is described empirically by Beer-Lambert’s law:

I(ω, z) = I0(ω) · e−α(ω)z. (7)

The attenuation is exponential and depends not only on the sample’s length z, but also on an
absorption coefficient α(ω). This macroscopic quantity is related to the microscopic absorption
cross section σ(ω) and the atomic number density ρN :

α(ω) = ρN · σ(ω). (8)

As shown in [2], the cross section σ(ω) can be written via

σ(ω) =
ω

ϵ0c
Im

(
d(ω)

E(ω)

)
, (9)

while E(ω) is the electric field and d(ω) is the so called dipole moment expectation value. If one
now insert Beer-Lamberts’ law from equation (7) into the definition of the OD, equation (6), one
gets:

OD(ω) =
σ(ω)

ln 10
· ρN · l. (10)

The optical density is hence proportional to σ(ω), for a propagation path of a length of l.

2.3.2 Transient-Absorption Spectroscopy

Since this thesis is about a numerical simulation of an experiment using TAS, a short overview
on the experimental technique is covered here. More details can be found e.g. in [2] or in recent
publications of our group [3, 4, 17]. A TAS experiment allows to get an insight into the time-
dependent bound state dynamics of a system (e.g. how an atom or molecule is influenced by an
NIR1 laser field). The time-dependent dynamics is imprinted into the measured sample’s absorbance
or transmittance. TAS is a pump-probe technique, which means that two laser pulses are used -
an excitation (pump) and a typically weaker probe pulse, measuring the absorbance. By applying
different time delays τ between the pump and probe pulses, one is able to resolve the underlying

1Near-InfraRed
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Figure 2: Laser pulse geometry used in the experiment. Left: a) Transient absorption scheme -
NIR pulse is coming first, XUV pulse is second. This is defined as negative time delay between the
pulses. Right: b) Transient coupling scheme - here the weaker XUV pulse comes first, then the NIR
pulse is coming second. This is defined as positive time delay.

dynamics of the target in time. In a typical attosecond transient absorption setup, one of the pulses
is a (moderately) strong NIR pulse pulse and the other a weak XUV2 pulse. The XUV pulse is
generated in the process of high-order harmonic generation, which is described in more details in
e.g. [5]. The time delay τ is defined to be negative (τ < 0, TAS scheme), if the NIR pulse comes
first to start dynamical evolution of the target, before, after a delay of τ , the XUV pulse, probes
the target, whose recorded signal provides information about the effect of the NIR. However, if the
the time delay is positive (τ > 0, transient coupling scheme), the first pulse is the weaker XUV
pulse (see. fig. 2 for a visual representation). It can now excite the target, initiating temporal
dynamics in the target. If a pertubation, by an NIR probe pulse, occurs within the lifetime of the
dynamics induced by the XUV pulse, one can still recover the influence of the NIR in the measured
absorption signal.

2eXtrem UltraViolet



6 3 Basic Concepts of Molecular Hydrogen and a Few-Level Model

3 Basic Concepts of Molecular Hydrogen and a Few-Level
Model

This chapter gives an overview on the basic concepts to be considered for the treatment of molecules,
since our system of interest is the hydrogen molecule. Here we follow [6]. The goal is to solve the
Schrödinger equation using a few-level model, as will be explained in section 3.5. Before that, we
introduce the molecular term symbols, a common notation used for molecules. For the description
of H2 as a diatomic molecule its Hamiltonian and wave functions are derived in the framework of
the Born-Oppenheimer approximation. Also a level-scheme for molecular hydrogen is considered,
to have a look of the different energy contributions.

3.1 Molecular Term Symbol
While the spectroscopic notation is used for atoms, in analogy for molecules one uses the following
term symbol to characterize their electronic states:

2S+1Λ±
g,u. (11)

S is the total spin quantum number, while Λ is the projection of the total angular momentum on
the z-axis (Λ ∈ {Σ,Π,∆, ...} with the identification Σ = 0,Π = 1,∆ = 2, ...). The superscript
defines the symmetry/antisymmetry and the subscript g, u refers to the parity of a state ϕ(r) for
’even’ (g) or ’odd’ (u):

ϕg(r) = ϕg(−r) even
ϕu(r) = −ϕu(−r) odd

If one wants to specify a certain state, e.g. the ground electronic state, one adds the letter
X before the term symbol: thus X1Σ+

g is the ground state of H2. The following excited states
are labeled alphabetically A,B,C, .... Note that capital letters are used, when dealing with singlet
states (multiplicity = 1). However, triplet states (multiplicity = 3) are notated using lower case
letters a, b, c, .... Additionally one adds a molecular orbital designator, like 2pσ, to characterize one
electron wave functions. More details can be found in [6] as well.

The states of interest beside the ground state of H2 are the three lowest excited states (Hydro-
gen does not have an A-state): B1Σ+

u 2pσ, C1Πg2pπ and D1Πu3pπ, which can be populated from
the ground state using an XUV-pulse. Furthermore, the E,F 1Σ+

g 2sσ + 2pσ2 and H1Σ+
g 3sσ are

studied, since they can couple to the excited states using an NIR-pulse.

For the sake of simplicity, the above mentioned states are abbreviated to B-/C-/D- state (bright
states) or EF-/H- state (dark states).

3.2 Born-Oppenheimer Approximation
Molecular hydrogen consists of two protons and two electrons. As we will see in the following part,
the description of such a simple molecule is not just adding properties, known from atoms, together.
In molecular physics, the most important approximation uses the fact that the mass of an electron
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me is much smaller than the mass of an atomic nucleus M , where

me

M
≈ 10−3...10−5. (12)

The Coulomb force is responsible for keeping the molecule together. This force acts identically
on the electrons and to the nuclei and therefore the electrons movement is much faster than the
movement of the nuclei. Hence, one can say that the nuclei are fixed and do not move, while
the electrons orbit around them with a high speed. This leads to the assumption that one can
treat the motion of the electrons and the movement of the nuclei separately. This ansatz was
first introduced in 1927 by Max Born and J. Robert Oppenheimer [7] and named after them: the
Born-Oppenheimer approximation.

3.3 Hamiltonian and Wave Functions

Figure 3: Relative coordinates for a diatomic molecule in respect to the centre of mass O. The
big red dots represent the nuclei of atom A and B, with mass MA and MB , respectively. They are
indicated by capital letters, while lower case letters stand for the coordinates of the electrons. The
figure is taken from [6].

To derive the Hamiltonian of a diatomic molecule, we use relative coordinates, as shown in fig.
3, and atomic units. The kinetic energy of the two nuclei is

Tn = − 1

2M̃
∇2

R, (13)
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where M̃ is the reduced mass
M̃ =

MAMB

Ma +MB
(14)

and R = RB −RA the distance between the nuclei. Since the nuclei of H2 have the same mass,
MA =MB , the reduced mass becomes

M̃ =
M2

A

2MA
=
MA

2
. (15)

Also given the fact that H2 has two electrons, the kinetic energy of the electrons reads

Tel =

2∑
i=1

(
−1

2
∇2

ri

)
, (16)

for the coordinates ri of the electrons. The potential energy caused by the Coulomb force is

V (r,R) = −
∑

i∈{A,B}

2∑
j=1

Zi

|Ri − rj |︸ ︷︷ ︸
Uen

+

2∑
i,k=1
i<k

e2

|ri − rk|︸ ︷︷ ︸
Uee

+
ZAZB

R︸ ︷︷ ︸
Unn

. (17)

Zi is the atomic number for nucleus i, whereby for molecular hydrogen it is ZA = ZB = 1. The
term Uen describes the energy between an electron and a nucleus, Uee and Unn are the energies
that occur due to the electron-electron and nuclear-nuclear repulsion, respectively. Together, these
energies sum up to the total Hamiltonian:

H = Tn(R) + Tel(r) + V (r,R). (18)

The Schrödinger equation using this Hamiltonian transforms into

[Tn(R) + Tel(r) + V (r,R)]Ψ(r,R) = EΨ(r,R). (19)

However, using the Born-Oppenheimer (BO) approximation, it is possible to split the Schrödinger
equation into an electronic part and a nuclear part. This is achieved by using a product ansatz of
the wavefunction in such a way that the electronic part and the nuclear part are separated:

Ψ(r,R) = ϕ(r)ψ(R). (20)

As previously described, one can assume that the nuclei are fixed and not moving so that we can
treat R now as a fixed value. The Schrödinger equation for the electronic part becomes

Helϕe(r;R) = Ve(R)ϕe(r;R), (21)

where
Hel = H− Tn(R) = [Tel + V (r;R)]. (22)

The semicolon in the wavefunction ϕ(r;R) and in the potential V (r;R) emphasizes again that R
is simply a parameter. Therefore equation (21) needs to be solved for each R separately. The
index e is the electronic quantum number. Ve(R) is a continuous R-dependent function and is



3.4 Energies, Potential Curves and Level Scheme for H2 9

called molecular potential. This will be discussed in section 3.4. For the nuclear part we denote ν
as the vibrational quantum number and J as the rotational quantum number (see section 3.4 for
more details) and hence the Schödinger equation for the nuclear part with wave function ψν,J(R)
becomes:

Hnψν,J(R) =WeνJψν,J(R) (23)

for
Hn = −me

2M̃
∇2

r + Ve(R). (24)

3.4 Energies, Potential Curves and Level Scheme for H2

In this section, we estimate the typical energy scales in the hydrogen molecule. The electronic
energy We caused by the binding of the electrons, can be found in SI units as followed: let ⟨r⟩
be the average distance between an electron to its nucleus, where ⟨r⟩ ≈ 0.074nm for H2. The
momentum p of the electron can be estimated by p = h̄/⟨r⟩, while the average kinetic energy is
⟨T ⟩ = p2

2me
. Using the Virial theorem, one finds: 2⟨T ⟩ = −⟨V ⟩, for a − 1

r potential. The total
binding energy is the sum of potential and kinetic energy

We = ⟨T ⟩+ ⟨V ⟩ ≈ −
p2

2me
= − h̄

2me⟨r⟩2
≈ 7eV. (25)

Not only the electron motion, but also the nuclear motion is relevant and contributes to the
total energy of the molecule as well. The nuclei of an atom of a molecule can vibrate, since there
is a force acting on the electrons and the two nuclei. Assume the force F is harmonic, such as
F = −kR, for a constant k. The vibrational frequency of the nuclei can be found as ων =

√
k/M̃ ,

while the frequency of an electron is ωe =
√
k/m̃e. The respective energy to those frequencies is

given via Wν = h̄ων and We = h̄ωe for the energy of vibrational motion and the electronic energy.
Taking the ratio of theses energies one finds

Wν ≈
√
me/M̃We ≲ 0.1eV, (26)

where ≈
√
me/M̃ ≲ 10−2, since M̃ is in the order of nuclear masses.

Also the whole nuclear structure can rotate in space, giving rise to the rotational energy WJ . A
derivation for an estimate is found in [6]. The order of magnitude of the rotational energy is about

WJ ≈ 1meV to 10meV. (27)

The wave function is characterized by the quantum numbers e, ν, J : the electronic, vibrational
and rotational quantum number, respectively. Each set of these quantum numbers correspond to
a different state. The electronic energies depend on the distance to the nucleus and give rise to
potential energy curves. Within the electronic potential, different vibrational states exists, while
within the vibrational states there are different rotational states. In figure 4 the curves of the X-/B-
/C-/D-/EF- states are plotted. Also the energy levels for all the vibrational states with J = 1 are
visualized. The data for the curves are taken from [10]. The energies of the vibrational states for the
B-/C-/D- state are calculated from experimental data from [11], while the energies of the EF-state
are taken from [10]. The potential curves of the EF-/H- states have a double minimum, meaning
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Figure 4: Potential energy curves of H2 for the states of interest, with the energies of the vibrational
states with J = 1 for the excited states. The ground state X has J = 0, ν = 0. The potential energy
E in eV is plotted against the nuclear distance R in Å. The B-state has a minimum at around
11.1eV, for the C-state it is found at around 12.1eV, while the D-state’s minimum is at 13.8eV. The
EF-state has a double minimum at around 12.1eV. The states from both minima are each plotted
in both potential wells, since we assume that each state can be populated due to tunneling. For
the H-curve, which also has a double minimum, no data were found, but the considered vibrational
ground state energies start at 14.0eV. The vibrational ground state for all states are indicated as
well. For the ground electronic state X, the ground vibrational state is set to 0eV.
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Figure 5: Level scheme for H2, for the considered states. Only the states with J = 1 are considered,
for different ν’s. The energy levels are plotted side by side to avoid an overlap.

there are some states lying only in one of the potential wells. In this thesis an approximation is
made that all states in both wells are considered equally, since due to tunneling it is possible to
populate all states in both wells.

No data for the potential curves of the H-state were found. But the energies for the H-state are
found in [12].

Since BO approximation is still assumed, we will only consider energies for a fixed R and treat
any couplings between the dark and bright states equally (for the time being). For the states of
interest, a level scheme is plotted in figure 5. The reason to choose vibrational states with J = 1
is due to the fact that the ground state of H2 has J = 0 and out of it, transitions with ∆J = 1
are allowed. The couplings of rotational states are neglected in this work, since these couplings are
much smaller than the vibrational couplings. Also one needs to consider the selection rules: if one
populates one of the excited (B-/C-/D-) states with an XUV-pulse from the ground state (∆Λ ̸= 0),
it is ∆ν = 0,±1,±2, ... and ∆J = 0,±1. This explains why all transitions from the ground state
to any of the B-/C-/D- states are allowed, because all of these rules are fulfilled. Analogously the
couplings from the EF-/H- states to excited states using a NIR-pulse are allowed, since the same
selection rules can be applied here.

3.5 Few-Level Model
The system of interest, molecular hydrogen with its B-/C-/D- and as well EF-/H- states, is a finite
system. This system can be studied using a few-level model, which aims to solve the Schrödinger
equation (2). The Hamiltonian H(t) can be separated into an unpertubated part H0 and an
interaction part Hint:

H(t) = H0 +Hint(t). (28)
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The interaction part is in the dipole approximation Hint = d̂ ·E(t), where d̂ is the dipole-moment
operator and E(t) is the electric field [9]. The general solution of the Schrödinger equation (4) is
the wavefunction that represents the few-level system. Regarding a finite number of states, there
is also a finite number of orthonormal eigenfunctions {|Ψi⟩}

|Ψ(t)⟩ =
n∑

i=0

ci(t) |Ψi⟩ . (29)

By projecting |Ψ(t)⟩ on |Ψi⟩, the wavefunction can be expressed in the eigenbasis and is therefore
understood as an n× 1 vector, while the Hamiltonian turns into a n×n matrix. The Schrödinger
equation transforms into

i
∂

∂t


c0(t)
c1(t)

...
cn(t)

 =


⟨0|H(t)|0⟩ ⟨0|H(t)|1⟩ . . . ⟨0|H(t)|n⟩

⟨1|H(t)|0⟩
. . . ...

... . . . ...
⟨n|H(t)|0⟩ . . . . . . ⟨n|H(t)|n⟩



c0(t)
c1(t)

...
cn(t)

 . (30)

This is the matrix form of the Schrödinger equation and the beginning for numerical calculations.
The n × 1 vector (c0(t), c1(t), . . . , cn(t))

T is often called ’state vector’. Eigenvalues of the free
Hamiltonian H0 are the diagonal entries, while the electric field influences the off-diagonal elements
(contributed by Hint), containing the transition amplitudes between two states of the considered
system. However, in our case, we have not one, but two electric fields, an interaction with an
XUV-pulse and one with an NIR-pulse. This is why we also split the interaction Hamiltonian into
two parts:

Hint(t) = Hint,XUV (t) +Hint,NIR(t), (31)

whereby

Hint,XUV (t) = d̂XUV · EXUV (t) (32)
Hint,NIR(t) = d̂NIR · ENIR(t). (33)

Here, d̂XUV is the dipole moment that allows population transfer from the ground state X to the
excited B-/C-/D- states caused by the XUV pulse. On the other hand, d̂NIR is the dipole moment
that allows coupling from the EF-/H- states to the excited B-/C-/D- states, via the NIR-pulse. An
in-depth explanation of constructing the Hamiltonian for the considered system can be found in
section 4.2.

The solution of equation (30) is given by:
c0(t)
c1(t)

...
cn(t)

 = e−iH(t)·t


c0(t = 0)
c1(t = 0)

...
cn(t = 0)

 (34)

The algorithm to solve this equation numerically is described in the next section.
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4 Numerical Implementation
In this section the algorithm for solving the Schrödinger equation for a few-level model, as discussed
in the previous section, is presented. Afterwards the Hamiltonian of the considered system is
constructed. The relevant parameters and the laser configuration used in the simulation are outlined
as well. Also, the concept of zero-padding is introduced and its relevance for the simulation is pointed
out.

4.1 Algorithm for Solving the Schrödinger Equation in the Few-Level
Model

Since in numerical calculations one can only use finite time steps ∆t, one needs to choose ∆t
sufficiently small. Later we will see in section 4.3 that ∆t = 0.5a.u. is proven to be small enough.
The error of the time discretization for sufficiently small ∆t is negligible [13]. The problem of solving
equation (34), is that the Hamiltonian is a sum of the free and interaction part. In second-order
accuracy [14] the time propagation can be solved by splitting the operator via

e−i(H0(t)+Hint(t))·t ≈ e−iH0(t)· t2 · e−iHint(t)·t · e−iH0(t)· t2 . (35)

Therefore, the first step in the algorithm is to apply half of a time propagation, caused by the free
Hamiltonian, by multiplying a complex phase term with the eigenvalues λ0,j of H0 to the state
vector:

|Ψ(t)⟩ ← e−i·λ0,j ·∆t
2 |Ψ(t)⟩ . (36)

The next emerging problem is that not only Hint is a sum of two parts again (the XUV and NIR
part), but also that both parts are non-diagonal, meaning the time propagation exp [−iHint(t) · t]
cannot be evaluated. To overcome both challenges, one splits Hint(t) = Hint,XUV (t) +Hint,NIR(t)
in the time propagation in first-order accuracy into

e−i(Hint,XUV (t)+Hint,NIR(t))·t ≈ e−iHint,XUV (t)·t · e−iHint,NIR(t)·t. (37)

To evaluate both factors, one first diagonalizes both Hamiltonians, before applying an unitary
transformation T into the diagonal basis of the respective Hamiltonians, such that

HD
int,XUV (t) = T−1

XUVHint,XUV (t)TXUV

HD
int,NIR(t) = T−1

NIRHint,NIR(t)TNIR.

The eigenvectors of the Hamiltonians are stored as columns in the transformation matrix T . This
is first done for the XUV part - rotating the state vector into the diagonal basis of Hint,XUV (t):

|ΨD
XUV (t)⟩ = T−1

XUV |Ψ(t)⟩ . (38)

After that, the time evolution is applied, using the eigenenergies λXUV,j of HD
int,XUV (t) as phase

terms
|ΨD

XUV (t)⟩ ← e−i·λD
XUV,j ·∆t |ΨD

XUV (t)⟩ , (39)
before transforming back to the original basis

|Ψ(t)⟩ ← TXUV |ΨD
XUV (t)⟩ . (40)
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Now the whole procedure needs to be repeated for the NIR part: basis transformation

|ΨD
NIR(t)⟩ = T−1

NIR |Ψ(t)⟩ , (41)

time evolution
|ΨD

NIR(t)⟩ ← e−i·λD
NIR,j ·∆t |ΨD

NIR(t)⟩ , (42)

and back transformation
|Ψ(t)⟩ ← TNIR |ΨD

NIR(t)⟩ . (43)

After all this is done, the last step is to apply the second half of a time propagation of the free
Hamiltonian:

|Ψ(t)⟩ ← e−i·λD
0,j ·∆t

2 |Ψ(t)⟩ . (44)

The reason to consider equation (37) is to simplify the expression, since there are two basis
transformations, which results in less matrix multiplications and saved computation time. Never-
theless the results are satisfactory, as seen in section 5.

In a nutshell, the state vector |Ψn(t)⟩ is calculated for each time step tn = tn−1 + ∆t and is
used subsequently as the new state vector for the following time step:

|Ψn(tn)⟩ = e−i·λD
0,j ·∆t

2 TNIRe
−i·λD

NIR,j∆tT−1
NIRTXUV e

−i·λD
XUV,j∆tT−1

XUV e
−i·λD

0,j ·∆t
2 |Ψn−1(tn−1)⟩ .

(45)
This iteration is implemented using a loop, until it reaches the end of the time propagation.

The initial state the one where only the ground state is populated:

|Ψ(t = 0)⟩ = (1, 0, 0, ..., 0)T . (46)

Also for each time step, the time-dependent dipole moment d(t) of the system between the ground
state |0⟩ and the excited states |i⟩, for i = 1, 2, ..., n needs to be calculated

d(t) = ⟨Ψ(t)|d̂|Ψ(t)⟩ =
∑
i

c∗0(t)ci ⟨0|d̂|i⟩+ c.c. (47)

The ground to excited dipole transition matrix elements are represented by ⟨0|d̂|i⟩, while ⟨0|d̂|0⟩ =
0. By taking the Fourier transform of the time-dependent dipole moment, one gets a quantity d(ω)
(dipole expectation value, as named for equation (9)) to calculate the OD from equation (10).

4.2 Building the Hamiltonian for the Simulation
The Hamiltonian contains the total energy of the considered system and also describes all possible
interactions between the considered states. A short summary of our system for describing the
Hamiltonian from the previous sections is presented:

1. The bright B-/C-/D-states can be excited from the ground electronic state X using an XUV
pulse.

2. The dark EF-/H-states can couple to the bright states with an NIR-pulse.
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First of all, the free Hamiltonian H0 is constructed. It contains all energy levels of all considered
states as diagonal elements:

H0 = diag(EX , EB1,0 , EB1,1 , ..., EB1,37 , EC1,0 , ..., EC1,13 , ED1,0 , ..., ED1,18 ,

EEF1,0
, ..., EEF1,11

, EH1,0
, ..., EH1,2

). (48)

The index YJ,ν refers to a specific state with its quantum numbers. As shown in the level scheme
in figure 5, we consider 38 B-, 14 C-, 19 D-, 12 EF- and 3 H- vibrational states. Including the
ground state there are 1 ground state + 71 bright states + 15 dark states = 87 total states. So the
Hamiltonian has a dimension of 87× 87.

If one wants to consider decays, by adding a lifetime 1/Γ to the states, the energies must be
modified to

E ← E − iΓ
2
. (49)

However, the ground electronic state energy (EX) does not need to be modified, since it cannot
decay. More details are explained in the next section (4.3).

In a second step we consider the interaction part. To allow transitions from the ground state
to the bright states, one must fill up the first row and the first column of the Hamiltonian with the
corresponding transition probabilities. Comparing to equation (32), the dipole moment operator
d̂XUV has non-zero entries for d1,j , di,1 with i, j ≤ 72, so that di,j = d∗j,i. Since the dark states
cannot be excited using an XUV-pulse, the transition probabilities d1,j , di,1 with i, j ≥ 73 are = 0.
From [11] there are experimental data, with transition amplitudes A from the excited state to the
ground state. The dipole moment, is proportional to the square root of A [16]:

di,j ∼
√
Ai,j . (50)

The interaction part of the Hamiltonian can now be evaluated by multiplying the electric field to
the dipole moment operator: Hint,XUV = d̂XUV · E(t), where E(t) = EXUV (t).

The same principle can be applied for Hint,NIR(t) = d̂NIR · E(t), with E = ENIR(t): the EF-/H-
states can couple to all of the B-/C-/D- states, meaning that the Hamiltonian must have non-zero
entries in all rows and columns, where a transition can happen. See equation (51) for the written
out total Hamiltonian. The colors of H0, Hint,XUV (t) and Hint,NIR(t) indicate, which element is
contributed by which Hamiltonian part.

The dipole moments in d̂NIR are at first all set equal to 1. This is why also the dipole moments
in d̂XUV are normalized to 1, relative to the maximum entry, so that all dipole moments have the
same order of magnitude. Later we will consider cases, where we use Franck-Condon factors in
d̂NIR for certain transitions.
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H(t) =



EX d1,2E(t) d1,3E(t) . . . d1,72E(t) 0 0 0 . . . 0
d2,1E(t) EB1,0

0 . . . 0 d2,73E(t) d2,74E(t) d2,75E(t) . . . d2,87E(t)
d3,1E(t) 0 EB1,1

. . . 0 d3,73E(t) d3,74E(t) d3,75E(t) . . . d3,87E(t)
...

...
... . . . ...

...
...

... . . .
...

d72,1E(t) 0 0 . . . ED1,18 d73,73E(t) d73,74E(t) d73,75E(t) . . . d73,87E(t)
0 d73,2E(t) d73,3E(t) . . . d73,72E(t) EEF1,0 0 0 . . . 0
0 d74,2E(t) d74,3E(t) . . . d74,72E(t) 0 EEF1,1

0 . . . 0
0 d75,2E(t) d75,3E(t) . . . d75,72E(t) 0 0 EEF1,2

. . . 0
...

...
...

...
...

...
...

... . . . ...
0 d87,2E(t) d87,3E(t) . . . d87,72E(t) 0 0 0 . . . EH1,2


(51)

4.3 Configuration of the Laser Pulses and other Parameters
XUV and NIR pulses are ultrashort laser pulses. A brief mathematical treatment for these laser
pulses is introduced, based on [2]. A detailed description can be found in [15].

The XUV and NIR pulses can be identified as time-dependent electric fields E(t) (in the time
domain). The complex form can be written as

E(t) = E (t) · eiϕ(t), (52)

for an envelope E (t), defining the temporal structure of the pulse and a phase term ϕ(t). The real
part of this electric field is the measurable quantity which interacts with a physical system.

Our simulation uses a Gaussian envelope, defined by

EG(t) = E0 · e−(t/tG)2 , (53)

where tG depends on the FWHM pulse duration:

tG =
tFWHM√
2 ln 2

. (54)

The phase term ϕ(t) is in our case characterized by the frequency ω with

ϕ(t) = ωt. (55)

We use:

• E0,XUV = 5 · 10−5a.u.

• tFWHM, XUV = 0.5fs

• h̄ωXUV = 14eV for the XUV pulse and

• E0,NIR = 3 · 10−3a.u.

• tFWHM, NIR = 5fs
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• h̄ωNIR = 1.6eV for the NIR pulse.

The field strength may differ from the strength, which is used in an experiment, because we do not
know the actual dipole moments, as mentioned in the section before. Therefore the couplings with
an NIR field may be stronger, so that a weaker NIR pulse must be considered. By trial and error
these parameters are found, giving us good results.

Obtaining the field by switching from time domain into the spectral (frequency) domain is
related to the Fourier transform

Es(ω) = FT {E(t)} =
∫ +∞

−∞
dt E(t)e−iωt, (56)

and the inverse transform is calculated via

E(t) = FT −1{Es(ω)} = 1

2π

∫ +∞

−∞
dω Es(ω)eiωt. (57)

In the following, the propagation time T , the time steps ∆t, the life time 1/Γ and the range of
the time delay scan are discussed:

• T = 100.000 a.u. The propagation time T needs to be long for the investigated dynamics to
fully evolve. The set value has proved to be sufficient.

• ∆t = 0.5 a.u.: The time step increments ∆t are chosen in an order of magnitude where natural
electronic motion takes place. This indeed produced a satisfactory result.

• Γ = 2 ·10−4 a.u. By considering a lifetime 1/Γ for the states, a decay, e.g. due to spontaneous
emission, can be simulated as well. According to [17], the time-dependent dipole moment d(t)
after an δ-function-like XUV-excitation at t = 0 becomes

d(t > 0) ∼ −ie−iωrt−Γ
2 t. (58)

The value ωr = Er/h̄ is the resonance frequency, where Er is the energy position or the
elements of the free Hamiltonian H0 in equation (48). This is the reason, for why the energies
are modified according to equation (49). As outlined also in [17], the imaginary part of the
Fourier transform of d(t) is associated to the spectral line shape with

Im d(ω) = Im
(∫ +∞

−∞
d(t)e−iωtdt

)
∼ Im

(
1

i(ωr − ω) + Γ/2

)
. (59)

This shows a Lorentzian line profile, centered at ωr with a full width at half maximum
(FWHM) of Γ. The chosen value has shown that the decay is appropriate for the simulation
and the Lorentzian profile could be observed. See more in section 5.1.2.

• Time delay scan from τstart = −10fs to τend = 60fs, in steps of dτ = 0.05fs are considered.
These settings were determined because in that range one could observe a lot of dynamics.
The step size and time range are regulated in a way to have a reasonable resolution, while
the computation time is kept to a minimum.

If not mentioned otherwise, the above mentioned settings and parameters are used for all simula-
tions.
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4.4 Zero-Padding
When dealing with a discrete Fourier transform, in our case for calculating the OD, by taking the
ratio of the time-dependent dipole moment and the electric field from time domain into frequency
domain, the resolution ∆ω depends on the propagation time T or also on the number of steps N
[18]:

∆ωN =
2 · π

∆t ·N
=

2 · π
T

. (60)

One can improve the resolution ∆ωN , by adding zeros to the calculated signal, before taking the
Fourier transform. This process is called zero-padding. It is easy to see that indeed

∆ωN+M =
2 · π

∆t · (N +M)
<

2 · π
∆t ·N

= ∆ωN , (61)

if one adds M additional zeros to the signal.

In the simulation N = 200.000 (T = 100.000 a.u. in steps of ∆t = 0.5 a.u., see section 4.3).
From the calculated signal, we increased its length by a factor of five, meaning M = 800.000, so
that N ′ = N +M = 1.000.000, since this factor is large enough to get a better resolution, while
adding more zeros would not make a significant difference. This is because the line shape of the
resonance lines for the chosen Γ is broad enough that a better resolution would not have a great
impact on the shape.
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5 Results and Data Analysis
This section covers the results of the numerical calculation of the laser-driven few-level system.
It starts with reducing the whole system, consisting of 87 states, to a five-level system. The
reduced complexity enables to gain an intuitive understanding of the behaviour of the state vectors.
Following to this, the full 87-level system is considered. With only the XUV as excitation pulse, the
resonant lines spectrum in absence of the NIR pulse is studied. By turning on the NIR pulse, time-
delay scans are investigated systematically, to find the sources, which cause the occuring dynamics.
Lastly, an intensity scan is studied, before an approach for using Franck-Condon factors to scale
the transition probabilities between D- and EF-states is examined.

5.1 The Five-Level System
In this subsection, the following states are chosen for investigating their behavior under interaction
with the XUV and NIR laser fields:

X B C D EF
(ν, J) (0, 0) (4, 1) (1, 1) (1, 1) (9, 1)

photon energy [eV] 0 11, 81 12.58 15.01 13, 40
trans. amplitude to X 0 0.545 1 0.546 0

Table 1: The chosen states with their corresponding parameters for the five-level system

Since h̄ωNIR = 1.6eV (see section 4.3), there are resonant couplings between the B-/EF-states
and the D-/-EF states, while the couplings between the C- and EF-states can also happen off-
resonantly. Only one dark state is considered to further simplify the system. In atomic units, the
associated Hamiltonian reads:

H5L(t) =


0 0.545E(t) 1E(t) 0.546E(t) 0

0.545E(t) 0.434-0.0001i 0 0 1E(t)
1E(t) 0 0.462-0.0001i 0 1E(t)
0.546 0 0 0.552-0.0001i 1E(t)
0 1E(t) 1E(t) 1E(t) 0.492-0.0001i

 , (62)

with electric fields as defined in section 4.3.

5.1.1 Time-Dependent Time Population of the Five-Level System

The absolute square of the state vectors for different time delays between the XUV and NIR pulses
are plotted in figure 6. The rising population around time zero of the B-/C-/D-state indicates,
how the XUV pulse rearranges the populations from the ground state to the bright states, before
they start decaying exponentially. The C-state has the strongest population increase, because its
transition amplitude from the ground state is the highest, as seen in table 1. Although the B- and
D-state have a similar transition amplitude from the ground electronic state, the population of the
D-state is higher than the population of the B-state. The reason for this is, because the D-state’s
energy at 15.01eV lays closer to the photon energy of the XUV pulse h̄ωXUV = 14eV (see section
4.3), so the excitation is higher than for a state with a photon energy farther away. The ground
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electronic state’s amplitude is subtracted by 1, so it has a minimum at ∼ −6·10−6, which implicates
that its population decreased from 1 and stays at 1− 6 · 10−6.
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(a) τ = −10fs, zoomed out, to see the ground state population
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10 0 10 20 30 40 50
Time in [fs]

0

1

2

3

4
Am

pl
itu

de
 [a

rb
. u

ni
ts

]

1e 7
X
B
C
D
EF

(d) τ = 10fs

Figure 6: The population of the considered states in the five-level simulation is plotted. The XUV pulse
arriving at τ = 0fs can populate the bright states from the ground electronic state X. The amplitude of the
X-state is subtracted by 1, with its minimum at around −6 · 10−6. While the effect of the NIR pulse is not
visible for a negative time delay (b), one can see that the EF-state can couple to the bright states and gain
population, when the resonant NIR coupling is switched on during and after the initial XUV population of
the bright states, in (c) for τ = 0fs and (d) for τ = 10fs. Also it can loose its population back to the bright
states. The states decay exponentially right after they got populated.

For a negative time delay τ = −10fs (a), (b) where the NIR pulse arrives before the XUV pulse
can interact with the system, and with this populate the excited B-/C-/D-states, the effect of the
NIR pulse is not visible, because the EF-state cannot be populated from the X-state. With this the
coupling to the not yet populated bright states is not existing. If both pulses arrive simultaneously
(c), τ = 0fs, the NIR pulse can couple the EF-state with the B-/C-/D- state, since the NIR pulse
duration still lasts, even though the XUV pulse finished its interaction with the system. This is
why the population of the EF-state in (c), τ = 0fs, is smaller compared to (d), τ = 10fs, where the
NIR pulse can interact with the system for its full duration.

Another observed effect is that the EF-state can loose its population to the bright states again,
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i.e. it can transfer its population back; in (c) the C-state rises a little bit at around 2.5fs, in (d) the
same effect is seen at around 12.5fs. Whenever rise of the population of the C-state is observed, the
EF-state becomes less populated. The population of the B- and D-state, on the other side, do not
rise during the NIR interaction. This is the two-photon-transition, meaning that the EF-state acts
like an intermediate step for further couplings to other bright states. Since both B- and D-state
can couple resonantly with the EF-state, the two-photon-transition from B-to-EF-to-D and vice
versa is about equally probable, meaning both states cannot get a population gain, because the
loss to the first-photon-transition to the EF-state is equalized with the gain from the two-photon-
transition. But two-photon-transitions from the C-state in one of the B-/D-state is less probable
because of the off-resonant coupling. In reverse it happens with a higher probability, because the
general probability to couple with the EF-state is higher from the B- or D-state, so there are more
chances for a two-photon-transition to the C-state. This is why a population gain is only visible
for the C-state.

All interactions need to happen within the decay time of the states, this is why a short time
delay was chosen.

5.1.2 Resonant Line Shapes of the Spectrum

Since the XUV pulse is very short, its excitation can be considered almost δ-like, in accordance
with the discussion in section 4.3, a Lorentzian line shape occurs, if the line spectrum is calculated
in absence of an NIR pulse. This is shown for the D-state in figure 7. It is clearly visible that
the line is centered at h̄ω ≈ 15.01 eV, which is the resonant energy difference between the D-state
energy and the ground state energy. The FWHM is geometrically found to be

FWHM = 0.00544 eV = 0.00020 a.u. = Γ. (63)

This demonstrates the connection between the FWHM and the lifetime. If additionally the NIR
pulse interacts with the system, the line shape turns to be asymmetrical (see. figure 8). Specifically
for the considered D-state as above, the line’s maximum shifts either to the left or to the right,
creating a minimum and maximum. Here E0,NIR = 1 · 10−2 a.u. and for comparison, a weaker
pulse with E0,NIR = 0.5 · 10−2 a.u. are used, since the interactions are very weak compared to if
one considers all states. When more dark states are allowed to couple through the NIR pulse, the
overall interaction strength is effectively enhanced. Since here only one EF-state is used, a stronger
coupling could be achieved by using a higher field strength. The time delay is set to τ = 8fs and
τ = 10fs.

The observed line shape in figure 8 is a Fano line shape and can be explained with the Fano
formalism [19], which will not be discussed in detail in this thesis. However, the line can be fitted
using

f(q, ϵ(E)) = a · |q + ϵ(E)|2

1 + ϵ2(E)
+ c, (64)

for
ϵ(E) =

E − Er

Γ/2
(65)

a scaling parameter a and a parameter for the non-resonant background part c. Er is the resonance
energy, or the position of the state on the photon energy axis, which is kept fix for the fit. The sign
of the q-parameter decides, whether the line shape begins with a maximum switching to a minimum
or vice versa. The following fit parameters are found:
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Figure 7: If only the XUV pulse interacts with the system, a Lorentzian line profile can be observed,
here, for the considered D-state. The FWHM corresponds to the lifetime, where Γ = 0.00544 eV =
0.0020 a.u.

figure q a c

8a 1.074 4262 -3661
8b -1.618 2268 -1717
8c 7.204 219 6.682
8d -9.962 127 63

Table 2: Fit parameters for the Fano lines in figure 8.

Here we see that the minus sign refers to a maximum switching to a minimum and vice versa
for a plus sign.

5.2 The Full 87-Level System
After looking at the simplified five-level system, this subsection covers the full system consisting
of all 87 considered states. In absence of the NIR field, the spectrum is shown, first, if one treats
all couplings and transitions equal, by setting all dipole moments to 1, then by weighting the
transition probabilities according to the experimental data, as described in section 4.2. After that,
time-delay scans are investigated in section 5.2.2. Naturally, any coupling between dark states and
bright states are possible. This shows many time-dependent structures and need to be investigated
carefully. An approach by regarding a system, where only few couplings between certain bright and
dark states are possible, is pursuit. By doing it systematically, one can find which couplings causes
which structures. In section 5.2.3 an intensity scan is considered and its relevance is pointed out.
Furthermore Franck-Condon-factors are used to weight the transition amplitudes between the D-
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(a) E0,NIR = 1 · 10−2 a.u., τ = 8fs
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(b) E0,NIR = 1 · 10−2 a.u., τ = 10fs

14.98 14.99 15.00 15.01 15.02 15.03
Photon Energy [eV]

0

2000

4000

6000

8000

10000

12000

14000

Op
tic

al
 D

en
sit

y 
[a

rb
. u

.]

D-state at 15.00963 eV J=1, =4
Spectrum
Fit

(c) E0,NIR = 0.5 · 10−2 a.u., τ = 8fs
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(d) E0,NIR = 0.5 · 10−2 a.u., τ = 10fs

Figure 8: An asymmetric line shape can be observed for the same D-state as in figure 7, by using an NIR
pulse with intensity of E0,NIR = 1 · 10−2 a.u. for (a), (b) and E0,NIR = 0.5 · 10−2 for (c), (d), each with time
delay of τ = 8fs and τ = 10fs. The spectrum is fitted with a function according to equation (64). The fit
parameters can be seen in table 2.
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and EF-states. A time-delay scan is compared to a scan, where the scaling is not applied.

5.2.1 Resonant Lines Spectrum with XUV only

The first case for the investigation of the resonant line spectrum assumes that all transition am-
plitudes from the ground state X to the bright states are equal to 1. In other words, all non-zero
entries of the dipole moment operator d̂XUV are 1. This assumption serves as a sanity check to
verify that the implementation for the full system is correct. Since all transition probabilities are
equal, and according to equation (9) and (10)

OD(ω) ∼ σ(ω) ∼ ω, (66)

i.e. one would expect that the calculated OD is increasing linearly regarding the photon energy
E = h̄ω. Indeed, in figure 9a the amplitude of the spectrum follows a linear behavior with higher
photon energy. The spectrum also only shows the bright states, while the dark states do not give
rise to any resonant absorption lines, since they cannot be excited from the ground state. For
the sake of completeness, all resonant energy differences for all states are indicated. At around
∼ 13.1eV, ∼ 14.3eV, ∼ 14, 8eV and ∼ 16.6eV larger peaks stand out. The reason for this is con-
structive interference between two or more states at around each of the mentioned energies. This
is also why some lines near these peaks also have a higher amplitude, since they also can interfere
with them.

After this sanity check, the dipole moments are weighted using experimental data, as explained
in section 4.2. The spectrum for this configuration is shown in figure 9b. The linear rising behavior
of the lines to higher energies vanishes, since the transition amplitudes from ground to exited state
are not treated equal anymore. Also the larger peaks at around ∼ 14, 8eV and ∼ 16.6eV do not
dominate the line spectrum. The modulation of the amplitudes of the lines now reflects the change
in the transition amplitudes according to the Fracnk-Condon factors between ground an excited
vibrational states.

5.2.2 Time-Delay Scans with an NIR Pulse

In the following, we calculate the optical density for changing time delay τ between the XUV and
NIR pulse. The obtained time-delay scans are analyzed in order to identify which dynamics signa-
tures are caused by which interaction between the states, e.g. which couplings are important for the
observed spectral line changes. This is accomplished by a systematic investigation, where we only
allow couplings between certain bright and dark states. By allowing, or turning on couplings between
certain states we mean the following: if the coupling between the B- and EF-states is allowed, that
the associated dipole moments describing the coupling with an NIR pulse are non-zero. In this case,
in the Hamiltonian, equation (51), d73,2 = d73,3 = ... = d73,39 = 1, because the couplings between
EFJ=1,ν=0 and all 38 B-states are allowed. Analogously for all the other EF-states. If a coupling is
not allowed or turned off, the associated dipole moments describing the couplings with an NIR pulse
equals zero, e.g. if the coupling of the B- and H-states is turned off, d85,2 = d85,3 = ... = d85,39 = 0,
i.e. HJ=1,ν=0-state cannot interact with any of the B-states.

A full time-delay scan by allowing all couplings between the bright and dark states is performed
and is plotted in a 2D-plot in figure 10. The energy differences between all states and the ground
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(b) Dipole moments weighted according to section 4.2.

Figure 9: The calculated resonant line spectrum for all states is plotted and the resonant energy
difference between each state to the ground state are marked. Only the bright states are forming
the line spectrum. In (a), where all transition amplitudes from ground to the excited states are
equal to 1, the amplitudes show a linear rising behavior for higher photon energies. By weighting
them according to section 4.2, the amplitudes are proportional to the weighting factors, as seen in
(b).
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electronic state are marked as well. This time-delay scan shows rich dynamics: a lot oscillations and
energy shifts can be observed. To understand the reason behind the dynamics and which coupling
causes them, a systematic approach by performing time-delay scans for different coupling scenarios
is pursued. Specifically, the cases for turning on the coupling between the B- and EF-states, and
considering the coupling between B-/EF-states and the D-/EF-states are investigated in detail. All
other cases considered in the simulation can be discussed analogously to the two mentioned cases.
This is why we do not discuss their time-delay scans in this thesis, but only their contribution to
the case, where all couplings between all bright and dark states are allowed, is indicated. But the
scans with the associated Fourier plot are found in appendix A.
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Case 1: Only couplings between the B-/EF-states are allowed
The full time-delay scan for this case is shown figure 11. Around τ ≈ −5fs to τ ≈ 5fs, one can

see oscillations between ≈ 11.1eV to ≈ 12.6eV for the B-states. These are caused by the modulation
of the NIR pulse. After the B-states are excited with the XUV-pulse at τ = 0fs, the NIR pulse
starts to transfer populations to the EF-states. It is observed that the period of these oscillation is
≈ 1.3fs. Taking into account that the NIR pulse frequency is given via h̄ωNIR = 1.6eV and using

ω =
2π

T
(67)

for the period T , one finds
T =

2π

ωNIR
=

2πh̄

1.6eV ≈ 2.6fs. (68)

This showss that the oscillations are half-cycle periodic. The factor of 1
2 can be explained by the

fact that the absolute square of the NIR pulse is considered for the calculation of the OD, meaning
that negative amplitudes of the NIR pulse also give rise to a maximum in the oscillations. Thus
the oscillation period is half of a period of the laser frequency.

Also the oscillations are stronger for the B-states, which can couple resonantly to the EF-states,
here in the range of ≈ 11.1eV to ≈ 12.6eV. Between ≈ 12.6eV to 13.6eV there is almost no oscil-
lation, while between ≈ 13.6eV to ≈ 14.7eV the oscillations are visible again, but weaker, because
here the B-states can couple off-resonantly to the EF-states.

Another effect that enhances the couplings are two-photon-transitions. A B-state can couple
to one of the EF-state, which can then couple back to the same B-state or couple to another B-
state. This effect is also stronger for resonant couplings. By taking the Fourier transform of the
time-delay scan along the time delay axis, these two-photon-transitions are visible on a straight
line with slope ±1, crossing the resonant line at around the double photon energy at 3.2eV. The
Fourier plot is shown in figure 12. Some B-states can couple through the EF-state to many different
other B-states, this is why there are more straight lines slightly above or below the double photon
energy, indicating the two-photon-transitions. This is observed e.g. for the B-states at ≈ 14eV
to ≈ 14.5eV. The double photon energy peak is also not sharp at exactly 3.2eV but has a certain
width, reflecting the spectral width of the NIR pulse.

Due to the two-photon-transition phase shifts are occurring. These phase shifts lead to inter-
ference and depend on the time delay. In this case, at τ ≳ 5fs the oscillations vanishes due to the
dephasing. The phase shifts can be better observed in figure 13. For the B-states with ν = 2, 4, 6
the OD of the associated spectral line is averaged within ±0.02eV of the line’s position along the
time delay axis. A vertical line in black is positioned at the minimum of the BJ=1,ν=2 state. The
related minima of the higher energetic states are indeed shifted to higher time delays.

Another structure e.g. at τ ≈ 25fs to τ ≈ 32fs and τ ≳ 55fs, for the B-states in the range of
≈ 11.1eV to ≈ 12.6eV in the time-delay scan is seen. The spectral lines seem to shift to higher or
lower energies. It is assumed that this is caused by the AC Stark effect. Briefly summarized, it
describes the splitting and shifting of spectral lines under the influence of an external electric field.
Here the NIR pulse is the electric field, which may shift the energy due to that effect.
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Figure 13: The averaged OD within ±0.02eV of each spectral line along the time delay axis is
plotted. A phase shift can be observed. The vertical black indicates the minimum of the BJ=1,ν=2-
state; the related minima of the other two B-states with higher ν are shifted to higher time delays.



32 5 Results and Data Analysis

Case 2: Couplings between B-/EF- and D-/EF-states are allowed
The time-delay scan for this case is shown in figure 14. Here, more time-dependent features can

be observed compared to case 1, where only interactions between the B- and EF states were allowed.
In the range of τ ≈ −5fs to τ ≈ 5fs, not only the B-states can interact with the NIR pulse, but also
the D-states for ≳ 14.5eV can couple resonantly to the EF-states, showing oscillations due to the
NIR laser modulation. The last two D-states are laying closely together, and thus the oscillations
are enhanced due to constructive interference. The spectral lines of the B-states between ≈ 12.6eV
to 13.6eV are showing a weak oscillation. In the previous case, the oscillation in that area was almost
non-existing; these B-states can only couple off-resonantly to the 12 EF-states between ≈ 12.3eV
and ≈ 13.4eV. Since the D-states also are allowed to couple to the EF-states, the populations of the
EF-states are larger, due to the additional coupling. This is the reason that two-photon-transitions
can couple off-resonantly to the less preferred B-states between ≈ 12.6eV to 13.6eV with a higher
probability. The D-states between ≈ 14.0eV and ≈ 14.5eV also show no visible interaction with the
system, since they couple only off-resonantly, too. Looking to the associated Fourier plot, figure
15, the two-photon-transitions dominate for the D-states ≳ 14.5eV. Compared to the case above,
for the B-states, which can couple resonantly, the two-photon-transitions are more common likewise.

For higher time delays, the oscillations are returning, but in a diagonal shape. In this case,
for the B-states, between ≈ 11eV and ≈ 12.6eV, from τ ≈ 10fs to τ ≈ 25fs, τ ≈ 25fs to τ ≈ 45fs
and τ ≳ 45fs are the first, second and third returning oscillations, respectively. For the D-states,
between ≈ 14.8eV and ≈ 16.6eV, 2ω-oscillations happen in the range of τ ≈ 22fs to τ ≈ 50fs
and τ ≳ 50fs. The reason for the returning oscillation could be a quantum mechanical revival of
the wave function. After a certain time during the time evolution, the wave function occurs in a
periodic recurrence, back to its initial form or in multiple scaled fractions of its initial form. This
can happen multiple times, as seen in the time-delay scan. The diagonal shape can be explained
by phase shifts, as mentioned in the previous case, caused by two-photon-transitions. However, the
phase shifts are much stronger, which needs to be further studied. A possible explanation is that
the suspected Stark effect can cause additional phase shifts, also through two-photon-transitions,
but with a shifted energy. The previously mentioned suspected energy shift at τ ≈ 25fs to τ ≈ 32fs
and τ ≳ 55fs, for the B-states between ≈ 11.1eV to ≈ 12.6eV appear approximately at the same
time delay range, where the revival structures of the D-states lay. Looking closely to the area right
above and beneath the first revival structure of the D-states, there are also energy shifts in the time
delay range corresponding to the first two revival structures of the B-states. This is also seen for
both revival structures at around τ ≈ 50fs. Also since the wave function had more time to evolve,
its phase becomes larger the higher the photon energy of the considered state is.

When looking to the recurring oscillations it is also interesting to inspect the evolution of a
spectral line shape for different time delays. We choose the DJ=1,ν=5-state at ≈ 15.22eV, because
the oscillations there are strong. In figure 16, the spectral line is investigated for τ = 30.4fs to
τ = 31.6fs in steps of ∆τ = 0.05fs. The asymmetrical line shape, beginning with a minimum
transitioning to a maximum, is rising until τ = 30.95fs. At τ = 31.0fs, the minimum becomes a
maximum and vice versa, meaning the q-parameter describing the Fano line (see also section 5.1.2)
flips from positive to negative, before the line descends.
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Figure 16: The resonant line of the DJ=1,ν=5-state is plotted for τ = 30.4fs to τ = 31.6fs with
∆τ = 0.05fs. The line switches its sign of the q-parameter at τ = 31.0fs, in this case the transition
from a minimum to a maximum of the asymmetrical line is changed to a transition from a maximum
to a minimum.
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Couplings between all dark and bright states are allowed
A systematical investigation for different configurations of allowed couplings between certain

bright and dark states is performed. Breaking down the time-delay scan using few couplings allows
one to deduce the causes for distinct time-dependent structures in the time-delay scan, where
couplings between all dark and bright states (from now on: all couplings) are allowed, as introduced
earlier in figure 10. The notation e.g. ”B-EF” is used, if the couplings between the B- and EF-states
are allowed.

The time-delay scan where all couplings are allowed, is modified and divided in sections, so it
is easier to follow, which features in the scan are addressed (figure 17). When talking about a
section, it is always referred to the same section in the time-delay scan of the respective case. All
considered time-delay scans using different coupling configurations and the associated Fourier plot
can be found in the appendix A. Their contribution to the time-delay scan using all couplings are
summarized in a tabular form:

Allowed Couplings Contribution in Section Comment

B-EF (a), (c), (e), (h)
(a), (c): energy shifts, (h): weaker energy shifts, (e): 2ω
oscillations by resonant couplings. Additionally at the end
of (i): weak 2ω oscillations by off-resonant couplings.

C-EF (g), (h), (i)

(g): weak 2ω-oscillations by the first two C-states, (h):
energy shifts, (i): weak 2ω-oscillations by the last few
C-states. Couplings between C-EF happen mostly off-
resonantly.

D-EF (h), (k), (m), (s) (h), (k), (m): energy shifts, (s): weak 2ω-oscillations.
B-H (c), (e), (f), (g) (c), (f): weak energy shifts, (e), (g): weak 2ω-oscillations.

C-H (f), (g)
(f): energy shifts, (g): weak 2ω-oscillations. The states
there can couple resonantly to the H-states between ≈ 14eV
and ≈ 14.5eV.

D-H (s) (s): weak 2ω-oscillations. Additionally in the areas (n)-(q),
very weak energy shifts can be observed.

B-EF and D-EF (a) - (e), (g)-(n), (q), (s)
(a), (b), (d), (e), (j), (l), (n), (q), (s): moderately strong to
strong 2ω-oscillations, (g), (i): weaker 2ω-oscillations, (c),
(h), (k), (m): energy shifts

B-H and D-H —"—

Mostly the same effects as in the case B-EF and D-EF but
only weaker; because only the H-states can couple, the os-
cillations shifts to right - it is less possible for the energet-
ically lower B-states ≲ 12.4eV to couple with the H-states
beg. from 14.0eV. The same applies to the D-states with
energy ≲ 15.4eV - this is why in (l), (n) the 2ω-oscillations
are barely visible.

C-EF and D-EF (f)-(s)
(f), (g), (i): weak 2ω-oscillations, (n)-(s): moderately
strong 2ω-oscillations, in (h), (j)-(m) energy shifts for both
C- and D-states can be observed.

C-H and D-H —"— Mostly the same effects as in case above, but weaker, ana-
logue argumentation like in the B-H and D-H case.

Table 3: A systematic investigation for identifying the contribution of different coupling configura-
tion for the time-dependent structures in figure 17 is performed.
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The energy shifts indicated in (a), (c), (k) and (m) were discussed earlier in the previous cases,
suggesting an AC stark effect could have caused them. Taking a closer look at section (h), figure
18, one can observe, how every shown line is shifted either to higher or lower energies. Since in the
range of ≈ 12.6eV to ≈ 14.5 many of the B- and C-states are laying energetically very close to each
other, so that interference effects may also cause energy shifts. The same argument can be applied
for section (f). The behavior that the lines are not ”straight” is only observed in the energy range
of section (f) and (h). Weak 2ω-oscillations are observed, too, for the states between ≈ 13.2eV to
≈ 13.6eV, throughout almost the complete visible time-delay axis. But compared to figure 17, they
are not that dominant as the oscillations that are pointed out explicitly.

13.2 13.4 13.6 13.8 14.0 14.2
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Figure 18: Zoomed in view of section (h). The spectral lines are shifted either to higher or lower
energies. Between ≈ 13.2eV to ≈ 13.6eV, 2ω-oscillations occur, but they are not as dominant as
the oscillations as e.g. in section (e).

If 2ω-oscillations are contributed by different kind of couplings configurations, e.g. in section
(e) the B-EF and B-H coupling causes this effect, these oscillations are enhanced for the case, that
all couplings are allowed.

Comparing to recent experimental works [21, 22], some structures could be reproduced, es-
pecially the oscillations in in (a), (b), (d), (e). This shows that our simulation could predict
experimental results.

The associated Fourier plot to the time-delay scan using all couplings can be found in the
appendix A as well.
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5.2.3 Outlook: Intensity Scans and Franck-Condon Factors for the Couplings with
NIR

Intensity scans for a fixed time delay τ are not only used to see their influences on the line shapes of
the spectrum, but also to observe energy shifts, due to the Stark effect. Using this information one
can make an estimate, how the couplings are influenced depending on the intensity. For τ = 5fs,
meaning in the overlap of the XUV and NIR pulses, an intensity scan was performed, where all
couplings are allowed, see figure 19. The considered range starts from E0,NIR = 1 · 10−4a.u. to
E0,NIR = 5 · 10−2a.u. in steps of ∆E0,NIR = 2 · 10−4a.u.
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C = 13

D = 0 D = 18EF = 0 EF = 11 H = 0 H = 2

12 13 14 15 16
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Figure 19: An intensity scan is performed at a time delay τ = 5fs, where all couplings are allowed.
The range of the scan is between E0,NIR = 1 · 10−4 a.u. to E0,NIR = 5 · 10−2a.u. in steps of
∆E0,NIR = 2 · 10−4a.u.

From this scan, one can observe how the line shape is changing, e.g. at ≈ 11.5eV, the line of the
BJ=1,ν=2-state is flipping from positive (yellow in the scale) to negative (dark blue in the scale),
for E0,NIR ≈ 0.015a.u.

So far, the simulation sets all transition amplitudes from the dark states to the bright states
equal to 1. However, in reality these amplitudes obey the Franck-Condon-principle. Briefly sum-
marized, it quantifies the transition probabilities during a vibronic transition. This means that
certain vibronic transition are more likely to happen, so that the non-zero entries in dipole moment
operator d̂NIR(t) need to be adjusted. In [20] Franck-Condon factors are found for the hydrogen
molecule. A time delay scan for using these factors by scaling the transition probabilities between



40 5 Results and Data Analysis

D- and EF-states is performed, where the couplings between B-/EF and D-/EF is allowed (figure 20
and figure 21 for the associated Fourier plot). Allowing B-EF increases the probability that more
two-photon-transitions are happening, which can be observed better in the Fourier plot. Also the
same case without scaling the transition probabilities is studied in section 5.2.2, so one can compare
the scans with each other. In doing so, we use the same section classification as used in figure 17.

It is striking that the 2ω-oscillations of the D-states are almost non-existent in the sections (j),
(o), (l), (q), (n), (s), as well for the B-states in (a), (b), (d), compared to figure 14 (B-EF and D-EF
couplings are allowed). The scan looks very similar to the case, where only the B-EF coupling is
allowed, figure 11. This is due to the Franck-Condon factors: most of the factors have a order
of magnitude between 10−2 to 10−7, while the maximum amplitude is at 0.9757 for the transition
between the ground vibronic states. So the couplings with the NIR pulse is really unlikely, while
the couplings between the B- and EF-states are dominating. For future calculations, one should
consider the Franck-Condon factors for other couplings as well, to get a better understanding of how
the system is really evolving and to have a system where the strength of the considered interactions
are more similar to those in the real hydrogen system.



5.2 The Full 87-Level System 41

B
=

0
B

=
37

C
=

0
C

=
13

D
=

0
D

=
18

EF
=

0
EF

=
11

H
=

0
H

=
2

12
13

14
15

16
Ph

ot
on

 E
ne

rg
y 

[e
V]

1001020304050

Time Delay [fs]

101234
1e

4

C-
st

at
es

D-
st

at
es

B-
st

at
es

EF
-s

ta
te

s
H-

st
at

es

Fi
gu

re
20

:
T

im
e-

de
la

y
sc

an
,w

he
re

co
up

lin
gs

be
tw

ee
n

B-
EF

an
d

D
-E

F
ar

e
al

lo
we

d.
Fr

an
ck

-C
on

do
n

fa
ct

or
s

ar
e

us
ed

fo
r

th
e

tr
an

sit
io

n
am

pl
itu

de
s

fo
r

th
e

D
-E

F
co

up
lin

g.
T

he
do

m
in

an
t

2ω
-o

sc
ill

at
io

ns
,a

s
co

m
pa

re
d

to
ca

se
2,

ar
e

m
os

tly
no

t
vi

sib
le

.



42 5 Results and Data Analysis

B
=

0
B

=
37

C
=

0
C

=
13

D
=

0
D

=
18

EF
=

0
EF

=
11

H
=

0
H

=
2

12
13

14
15

16
Ph

ot
on

 E
ne

rg
y 

[e
V]

01234567 Fourier Energy [eV]

10
1

10
2

10
3

10
4

10
5

10
6

C-
st

at
es

D-
st

at
es

B-
st

at
es

EF
-s

ta
te

s
H-

st
at

es

Fi
gu

re
21

:
A

ss
oc

ia
te

d
Fo

ur
ie

r
Pl

ot
to

fig
ur

e
20

.
T

he
pr

ob
ab

ili
ty

fo
r

tw
o-

ph
ot

on
-t

ra
ns

iti
on

s
is

gr
ea

tly
de

cr
ea

se
d,

so
th

at
al

m
os

t
no

st
ra

ig
ht

lin
es

in
di

ca
tin

g
th

e
tr

an
sit

io
ns

ar
e

vi
sib

le
.



43

6 Conclusion
The aim of the thesis was to get insights on dynamical processes in the molecular hydrogen system.
Signatures of electronic and nuclear degrees of freedom imprinted on singly excited resonances of
molecular hydrogen, are investigated theoretically. More specifically an NIR pulse is used to ex-
amine the couplings between different vibronic states. Selection rules limit certain transitions, this
is why all considered bright states can be excited from the ground electronic state, and couplings
between the excited bright states with the considered dark states are possible.

A numerical calculation was implemented in order to investigate the hydrogen system, assuming
a few-level model. This model aims to solve the Schrödinger equation for the considered system,
with known energies of the included eigenstates. The Hamiltonian used in the equation is built
with respect to experimental data for the resonances and as well for the dipole moments, describing
the transition amplitudes from the considered bright states to the ground electronic state, while
the dipole moments describing the couplings via an NIR pulse are initially set all equally. The full
Hamiltonian contains 87 states.

To get an intuitive understanding of how the system works, first, a simplified system with less
degrees of freedom was considered. Only the ground electronic state, three bright states and one
dark state were included. Using this five-level model, we were able to understand how populations
transfer from the ground state to the bright states and via the NIR interaction to the dark state as
well, for different time delays between the excitation pulse and the coupling pulse. The resonant
line shapes were also examined. In absence of the NIR pulse, the spectral lines show a Lorentzian
shape and under the influence of an NIR field they transform into asymmetrical Fano lines.

By considering all 87 states, not only the resonant lines spectrum using XUV only was observed,
but also time-delay scans were performed in order to make predictions about their time-evolution.
The time-delay scans of the dynamics of that many states shows rich dynamical behavior, if the
couplings between all dark and bright states are possible. Thus, a systematic approach for iden-
tifying the time-dependent structures was considered. The idea was to look at time-delay scans,
where only couplings between few selected states is allowed. Knowing which coupling contributes
to which structure, we were able to conclude what causes the dynamics in the initially considered
time-delay scan.

Nevertheless, only a real experiment reveals the true natural behavior of the considered system.
However, recent studies [21, 22] about wave packet dynamics of molecular hydrogen, showed similar
structures in their time-delay scans, compared to our calculations. Since our implementation did not
consider Franck-Condon factors for all the transition amplitudes between dark and bright states,
it is open to investigate, if one can produce similar results as well. Another possible extension to
this work is to include more states that are energetically in the same range. Ionized hydrogen, H+

2 ,
has states in the considered energy range, which can be seen as additional population loss channel,
leading to a kind of a discrete continuum. It would be interesting to investigate, in which way the
dynamics in such a system would change.
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A Appendix
The time-delay scans (TDS) and Fourier plots (FP) for different allowed coupling configurations
can be found:

• C-EF. TDS: figure 22, FP: 23

• D-EF. TDS: figure 24, FP: 25

• B-H. TDS: figure 26, FP: 27

• C-H. TDS: figure 28, FP: 29

• D-H. TDS: figure 30, FP: 31

• B-H and D-H. TDS: figure 32, FP: 33

• C-EF and D-EF. TDS: figure 34, FP: 35

• C-H and D-H. TDS: figure 36, FP: 37

• Couplings between all bright and dark states. FP: 38
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