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ABSTRACT

We present a theoretical formulation of the frequency domain multidimensional pump-probe analog spectroscopy, which utilizes the spec-
tral–temporal entanglement features of the biphoton sources. It has been shown, via a compact multi-time, convolutional Green’s function
expression and the accompanying numerical simulations, that utilizing the correlation properties of non-classical sources offers a viable
scheme for the exploration of dissipative kinetics of the cavity confined quantum aggregates. The cooperative and competitive modifications
brought in by the photonic cavity mode and the auxiliary vibrational modes into the scattering and dephasing properties of the exciton–
polaritons have been explored via their signatures in the multidimensional correlation maps. The study offers a new parameter window for
the investigation of the dynamical polariton characteristics and warrants the usage of multi-mode entanglement properties of the external
photonic sources in future studies.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012754

I. INTRODUCTION

Over the past few decades, the ability to engineer and control
multi-mode entanglement of spatial–temporal modes of the pho-
tonic sources gave rise to a plethora of applications in quantum
communications, metrology, computation, and precision
measurements.1–5 Such studies can also be extended to the domain
of the characterization of unknown matter properties, where the
non-classical correlation features of the optical modes induce con-
trolled dynamical evolution of the matter modes, thereby empha-
sizing their scope as spectroscopic probes.6–10 In such studies, the
resultant spectral features of the matter modes crucially depend on
the windowed dynamics in the joint time–frequency space, which
were controllably induced. Depending on their generation pro-
cesses, the photonic modes can be entangled in temporal–spectral,
polarization, or the orbital angular momentum degrees of
freedom.11–13 For the pump-probe analog proposed in this commu-
nication, we focus on the biphoton sources having non-classical
spectral–temporal properties in the optical regime.

Traditionally, the optical pump-probe techniques or their
multi-pulse generalizations have attempted to decipher the quasi-
particle correlation dynamics by carrying out experiments either by
pumping the matter modes via temporally strobed laser pulses or
by pumping via coincident multi-frequency laser pulses. These
techniques, which probe the matter dynamical responses, are col-
lectively referred to as multidimensional coherent spectroscopies
(MDCSs).14,15 The origin of the dynamical response of the matter
modes is related to the contributions originating from the time-
dependent matter polarization, which contains relevant informa-
tion about the interactions among the participating matter modes.
The signal thus generated has the temporal and spectral features
related to the mode correlation and dephasing encoded into it.16–18

The classical field-assisted (e.g., shaped laser pulse assisted) MDCS
techniques provide an accessible control over the spectroscopic
parameter space via the pulse bandwidths, central frequencies, rela-
tive phases, and inter-pulse delays. The inter-pulse intervals offer,
via multidimensional Fourier transforms, a convenient visualization
window for the correlations among matter modes in the frequency
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space. In contrast, the entangled sources allow enhanced control of
the parameters enabling direct access to the biphoton wavefunc-
tions. The fact that the corresponding biphoton amplitude proper-
ties can be manipulated brings several advantages to their plausible
use in exploring the mode correlations in the multidimensional fre-
quency space. Moreover, the quantum field-induced signals scale
favorably with the field intensities, making them suitable for study-
ing the transient cavity mediated phenomenology in the low-energy
regime. In this communication, we focus on the transmitted mode
pump-probe analog while treating their respective frequencies as
the parametric scanning variables for the generation of the
spectra.19–23

In a distinct but concurrent development within the field of
the cavity, quantum electrodynamics have shown the ability of the
spatially confined photonic modes to interact with the localized
matter transitions and modify the dynamical energy landscape.
Collective multi-exciton processes, e.g., exciton-migrations, long-
range cavity mediated exciton transfer, proximity induced exciton–
exciton scattering occurring in the interacting exciton harvesting
chromophores, namely, quantum aggregates, offer several dynami-
cal features that could change drastically in the presence of the
cavity mode. The ability to engineer optical cavity modes that inter-
act with the collective excitons and alter their delocalization prop-
erties offer an additional investigative tool for the cooperative
exciton dynamics in these systems. Toward this aim, the cavity
mediated control of the coherent excitonic transport properties in
the quantum aggregates remains a coveted goal.24–32 This commu-
nication aims to leverage the static tunability of the cavity to gener-
ate the exciton–polariton sideband modes and investigate the
emergent mode correlation dynamics in the presence of phonon
induced dissipation using the entangled biphoton sources (Fig. 1).

In Sec. II, we propose the cavity–exciton–phonon
Hamiltonian that serves as a prototypical spectroscopic model for
this study and introduces the polariton basis and the relevant
polariton Green’s functions. In Sec. III, we present a brief descrip-
tion of the entangled photon generation protocols followed by the
evaluation of the proposed entangled biphoton enhanced
pump-probe analog signal and the presentation of the numerical
simulations. Section IV contains a brief discussion of the presented
work along with an outlook that summarizes the article.

II. DISSIPATIVE EXCITON–POLARITON KINETICS

A. Hamiltonian

The quantum aggregates typically consist of few electronic
sub-units, i.e., sites which, under the optical excitations, display
coherent and incoherent exciton transfer across the sites. The
exciton kinetics in these systems, under low-intensity optical excita-
tions, can be well-described via the Frenkel exciton Hamiltonian
and the associated generalized master equation.33 The nature of
exciton energy transfer in the quantum aggregates is principally
governed via the mutual interplay between the coulomb correla-
tions and vibrational dephasing. The former gives rise to exciton
delocalization while the latter is responsible for the collective
dephasing of excitons. In the presence of the cavity interaction, the
exciton transfer pathways across the aggregates are significantly
altered. Often, it gives rise to counter-intuitive observations such as
dissipation-less energy migration or extraordinary spatial range
exciton transfer phenomenology.34–36 In this work, we focus on a
functional prototype representing the light-harvesting complex,
LHC-II, which has been under investigation for its efficient exciton
transfer under ambient conditions.37–40

FIG. 1. (a) Scheme for a prototypical
process that is expected to be revealed
by the proposed signal measurement
technique in direct matter pumping
configuration in the presence of cavity.
It involves the phonon-assisted trans-
port between the two states in the
double polariton manifold, followed by
the inter-manifold stimulated emission
and transport between states in the
single polariton manifold. It undergoes
further stimulated emission, which con-
tributes to the observed signal. The
interpretive nature of the processes in
the site basis jNm, Nn, Nαi of two exci-
tonic sites (m, n) and one cavity mode
(α) (with excitation numbers Ni ) is illus-
trated in (b1)–(b4). The cavity mediated
pathways proceed via j2, 0, 0i,
j1, 0, 1i, j0, 0, 1i, and j0, 1, 0i, result-
ing in the conversion of a local double
exciton into a single exciton accompa-
nied by their complementary cavity and
external radiation mode processes.
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In order to construct the combined exciton–cavity–phonon
Hamiltonian, we systematically introduce the individual
Hamiltonian components and describe the approximations made
in the following. Throughout this work, the �h is set to unity. The
exciton site Hamiltonian Hs is given by Hs ¼

PNs
m,n¼1

(Emδmn þ Jmn)By
mBn þ

PNs
m,n,k,l¼1 KmnklBy

mB
y
nBkBl , where Bm(By

m) are
the exciton creation (annihilation) operators (at the mth site),
which follows the deformed boson statistics [Bm, Bn ] ¼
[By

m, B
y
n ] ¼ 0 and [Bm, By

n ] ¼ δmn(1� q(1)m By
mB

y
mBmBm), where

qm ¼ 3=2 has been set for this work.41,42 The exciton operator sta-
tistics governs the nature of the different nonlinear excitonic pro-
cesses that can be described within this formalism. Within its
monomeric form, LHC-II is composed of Ns ¼ 14 individual chro-
mophores (consisting of chlorophyll molecules) that act as a host
for the single and double excitons. The on-site excitation energies
are given by Em, and the inter-site Coulomb mediated hopping,
given by Jmn, account for the exciton migration. The corresponding
values are obtained from the semi-empirical simulation performed
in Refs. 43 and 44, which had demonstrated simultaneous spectral
fit with the experimentally obtained linear absorption, fluorescence,
and the circular dichroism spectra. The multi-exciton interaction
term (Kmnkl) describes plausible higher-order excitonic processes and
accounts for the energy shifts for the local multi-exciton state ener-
gies. In the present work, we approximate this term, limiting our-
selves to contributions involving Kmnmn(Kmnnm) and Kmmmm, which
accounts for the non-local energy shifts, Δ(1)

mn ¼ 4Kmnmn ¼ 4Kmnnm

and local energy shifts, Δ(2)
mm ¼ 2Kmmmm to the double exciton states,

respectively. The corresponding numerical values are sampled from
two separate Gaussian distributions with the width σ (cm�1) ¼ 50:0
using stochastic sampling. The approximated exciton Hamiltonian
can be expressed as ~Hs ¼

PNs
m,n¼1 (Emδmn þ Jmn) By

mBn þPNs
m¼1 (Δ

(2)
mm=2)B

y
mB

y
mBmBm þPNs

m,n¼1;m=n (Δ
(1)
mn=2)B

y
mB

y
nBmBn.

The exciton–phonon interactions originate from the inter-
and intra-molecular vibrational motions associated with the
nuclear degrees of freedom of the aggregate. The corresponding
normal modes of the low-energy displacement degrees of freedom
of the collective vibrational coordinates, i.e., the phonon modes, are
responsible for exciton dephasing and relaxation. The phonons,
represented by the free phonon Hamiltonian Hb, is formally repre-
sented by an infinite set of Harmonic oscillators. The exciton–
phonon interactions, taken in the site-uncorrelated, local form are
characterized by the distribution of the corresponding coupling
functions, �gk. The combined phonon and exciton–phonon interac-

tion Hamiltonian can be presented as Hb þ Hsb ¼
P

k υk(b
y
kbk þ

1=2)þP
m,k �gk(bk þ byk)B

y
mBm where υk is the mode frequency

associated with the kth normal mode whose creation (annihilation)

operators are denoted via byk(bk). The phonon operators follow the

free-boson commutation relations, [ bk, bk0 ] ¼ [ byk, b
y
k0 ] ¼ 0 and

[ bk, b
y
k0 ] ¼ δkk0 . The magnitude of the coupling strengths of the

local single excitons are taken as identical while that of the double
excitons are taken as twice as large of the former. Consequently,
within this model, the single and the double excitons are coupled
to a common set of phonon modes which can be characterized by

the site-independent spectral function, J(ω) ¼ π
P

k j�gkj2(δ(ω� υk)
�δ(ωþ υk)) from which the spectral density function is obtained
in the continuum frequency limit. The spectral density function,
presented as J(ω) ¼ 2λ0(γ0ω)=(ω

2 þ γ20)þ
PNb

j¼1 2λj(υ
2
j γ jω)=

((υ2j � ω2)2 þ ω2γ2j ) consisted of Nb ¼ 48 multi-mode Brownian
oscillators and one over-damped oscillator. The number of multi-
mode Brownian oscillators (Nb), the respective spectral shift param-
eters (λ0, λj ¼ υjϒj, where υj and ϒj are the jth oscillator frequen-
cies and Huang–Rhys parameters, respectively), and the damping
parameter γ0, γ j that are required to optimally describe the equilib-
rium spectral density function have been obtained via a systematic
spectral fitting procedure in the work of Novoderezhkin et al.32,43

The numerical values corresponding to those parameters are
enlisted in Appendix B.

The combined cavity and the cavity–exciton interaction
Hamiltonian can be given by Hc þHsc ¼

P
α ωα(ayαaα þ 1=2)

þP
m,α g

(1)
c;m,α(aαB

y
m þ ayαBm)þ g(2)c;α (aα þ ayα)

2
, where we use the

g(1)c;m,α and g(2)c;α to denote the cavity–exciton coupling strengths origi-
nating from resonant dipolar transitions and the non-resonant
energy renormalization induced shifts, respectively. The cavity pho-
tonic modes are described in the oscillator basis with the corre-
sponding creation (annihilation) operators denoted as ayα(aα), for
the αth mode. Within the scope of this study, a single mode limit,
i.e., α ¼ 1, is taken, which yields the single cavity mode with the
fundamental frequency denoted by ωc and uniform coupling
strengths g(1)c;m,α ¼ gc. The cavity, notably, accommodates two-photon
excitations, which are capable of resonantly interacting with multi-
exciton processes. The cavity–exciton interaction strength is deter-
mined by the mode volume of the cavity and the quality factor.45–47

The effect arising from the g(2)c;α could be significant where the
exciton–cavity coupling strengths become comparable to the bare
Rabi frequencies of the multi-exciton system reaching the ultra-strong
regime.46,48,49 Considering the parameters regime treated in this com-
munication, i.e., the range of weak to moderate exciton–cavity cou-
pling strengths, this term has been neglected in the subsequent
analysis. The limiting form of the single mode cavity and the cavity–
exciton interaction Hamiltonian is given by ~Hc þ ~Hsc ¼
ωc(ayaþ 1=2)þP

m gc(aBy
m þ ayBm). Combining the individual

components together, i.e., H ¼ ~Hs þHb þ Hsb þ ~Hc þ ~Hsc, we
obtain the working Hamiltonian as

H ¼
XNs

m,n¼1

(Emδmn þ Jmn)B
y
mBn þ

XNs

m¼1

(Δ(2)
mm=2)B

y
mB

y
mBmBm

þ
XNs

m,n¼1;m=n

(Δ(1)
mn=2)B

y
mB

y
nBmBn

þ
X
k

�hυk(b
y
kbk þ 1=2)þ

X
m,k

�gk(bk þ byk)B
y
mBm

þ ωc(a
yaþ 1=2)þ

X
m

gc(aB
y
m þ ayBm): (1)

The cavity modulated exciton kinetics can be explored by introducing
the polariton basis, which is obtained by exact diagonalization of the
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field-free Hamiltonian subspace, ~Hp ¼ ~Hs þ ~Hc þ ~Hsc to obtain
U�1
p

~HpUp ¼ Hp ¼
P

n¼g,s,d E p(n)Xp(n)p(n) , where the operators

Xp(n)p(n) ¼ j p(n)ih p(n)j are the projectors onto the diagonal elements
of the polariton Hamiltonian Hp corresponding to excitation conserv-
ing polariton manifolds denoted by index n. The three energetically
distinct sectors, namely, ground, single, and double polariton mani-
folds corresponding to n ¼ g, s, d contains Np(g) ¼ 1, Np(s) ¼ 15,
and Np(d) ¼ 120 polariton states, respectively. The proposed spectro-
scopic technique utilizing entangled biphotons, in the parameter
regime of interest, interact only via two-quantum interactions, which
allows the joint-excitation manifold to be truncated at the level of the
double polaritons. The spectral weights of the resultant delocalized
polariton states have respective contributions from both the exciton
and cavity modes, as determined by the exciton–cavity coupling
matrix elements. For the simulation, we vary the cavity mode fre-
quency and the coupling strength parameters according to
ωI
c (cm

�1) ¼ 15:0� 103, ωII
c (cm�1) ¼ 15:4� 103, ωIII

c (cm�1) ¼
15:7� 103 and gIc (cm

�1) ¼ 0:1� 103, gIIc (cm�1) ¼ 0:25� 103,
gIIIc (cm�1) ¼ 0:5� 103, which generates nine distinct cases (hereaf-

ter denoted as, e.g., {ω(i)
c , g(j)c } with i, j running over I�III) for the

pairwise combination of the parameters. In Fig. 2, we present the
single polariton energy levels while the central frequencies are
scanned for three parametric cases of the exciton–cavity coupling
strengths, i.e., gI�III

c . The emergent sidebands, along the three vertical
lines, at non-equidistant energies from the central spectral region are
the states whose dynamics are of central interest to the present study.
With the increase of exciton–cavity coupling strengths, the sidebands
appear at distant energies. These two observations, combined

together, affirm that the exciton–cavity hybridization dominantly
takes around the resonances, as expected.

The external biphoton–polariton interaction is treated within
the dipole approximation and the corresponding Hamiltonian
Hint(t) ¼ E(t)~X

y
(t)þ Ey(t)~X(t), in the interaction representation, is

defined as

Hint(t) ¼
X
j

X
n,n0¼g,s,d;n=n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πωj=V

q� �
aj e

�iωj td p(n)p(n0 )Xp(n)p(n0 )

� exp (iω p(n0 )p(n) t)þ h:c: (2)

In the above, we have defined the dipole weighted inter-manifold
polariton transition operators, ~X ¼P

n,n0¼g,s,d;n=n0 dp(n)p(n0 )Xp(n)p(n0 ) ¼
dp(n)p(n0 ) jp(n)ihp(n

0)j and introduced the decomposition of the entan-
gled biphoton field E(t)¼P

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2πωj=V)

p
ajexp(� iωjt)þh:c: in

the external photon modes aj has been introduced. The mode
quantization volume and the Fourier expansion frequency for the
photon modes are denoted as V and ωj, respectively.

III. ENTANGLED BIPHOTON ASSISTED
MULTIDIMENSIONAL SPECTROSCOPY

In the prescribed measurement configuration, i.e., in Fig. 3, the
signal is detected in the transmitted mode configuration and dis-
persed in two parametric frequency dimensions (Ω2, Ω1) after one
of the two beams pass through the cavity, which hosts the quantum
aggregate. The pump-probe analog signal is defined by taking all
possible polariton–biphoton interactions into account where the role
of pump and probe originating from either of the two beams are

FIG. 2. The progression of bare polariton energy levels with respect to the cavity frequencies is presented, with the parametric variation of the cavity coupling strengths
(gIc�gIIIc , from the right to left) in between panels. The insets, in each panel, display the spectrally congested energy ranges [i.e., ΔEp(s) (cm

�1) [ {14:9, 16:0}� 103].
The vertical lines represent the cavity frequencies ωI

c�ωIII
c used in the simulation while the light gray lines denote the reference uncoupled cavity and exciton energy

levels.
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interchanged. The monitored signal, S(Ω2, Ω1), is defined as the rate
of change of the photon number operator in the transmitted mode
at the detector D2 (ED2 ), where the parametric frequencies Ω1(Ω2)
corresponds to the monitoring at detectors D1(D2), as shown in the
scheme in Fig. 3.50 Following a straightforward manipulation, we
have, S(Ω2, Ω1) ¼ �Im4N

Ð1
�1 dt4 hEy

D2
(t4)P(3)(t4)i, where the

P(3)(t) is the time-dependent polarization operator expanded to the
third order in the polariton–biphoton source field interaction. The
averaging is carried out over the joint initial state configuration of
the polariton and biphoton state. The parameter N , the number
density of the emitters (cavity confined quantum aggregates), is
taken as a scaling parameter in this work. The signal is evaluated
algebraically by carrying out the dual-field perturbation expansion of
the polarization operator51,52 which yields

S(Ω2,Ω1)¼ Im 4N(i)3
ð1
�1

dt4

ð1
�1

dt3

ð1
�1

dt2

ð1
�1

dt1

�θ(t42)θ(t23)θ(t31)h~X(t1)~X(t3)~Xy
(t2)~X

y
(t4)ihEy(t1)Ey(t3)

�E(t2)E(t4)iþθ(t42)θ(t21)θ(t13)h~X(t3)~X(t1)~Xy
(t2)~X

y
(t4)i

� hEy(t3)Ey(t1)E(t2)E(t4)iþθ(t42)θ(t43)θ(t31)h~X(t1)~X(t3)

� ~X
y
(t4)~X

y
(t2)ihEy(t1)Ey(t3)E(t4)E(t2)iþθ(t42)θ(t41)θ(t13)

�h~X(t3)~X(t1)~Xy
(t4)~X

y
(t2)ihEy(t3)Ey(t1)E(t4)E(t2)i:

(3)

In the above, the Heaviside functions, θ(tij)¼ θ(ti� tj), determine the
ordering among the successive polariton–biphoton interactions in
each convolutional term, alternatively termed as pathways. The

signal evaluation can be aided by the modular, dual-field diagram-
matic notation, as shown in Fig. 3. Here, the evolution of the
dual-Hilbert space fields is represented on the contour that keeps
track of the contour-time variables. The polariton–biphoton source
field interactions are represented via the wiggly external lines going
into (away from) the loop denoting polariton excitation (deexcitation)
processes. The interaction with the signal mode occurs at the end of
the left-branch of the contour as a matter of convention. Field interac-
tions within a branch of the contour are time-ordered. The intervals
between the two interactions occurring the left(right) branch involve
a retarded(advanced) polariton propagator Gp(n)p(g) (ω)(G

y
p(n)p(g)

(ω)) The
frequency arguments of the polariton Green’s function cumulatively
account for all the previous interactions. The different diagrams are
generated by considering permutations of all the inter-branch
interactions other than the one associated with the signal genera-
tion. In the signal evaluation above, we only focused on the set of
pathways where the successive polariton–biphoton interactions of
the type, hEy(τ4)Ey(τ3)E(τ2)E(τ1)i, were included. The neglected
Raman interaction pathways (i.e., interactions of the type,
hEy(τ4)E(τ3)Ey(τ2)E(τ1)i) offer additional insights into the dephasing
mechanism induced by the polariton–polariton interactions. The
latter may be observed by varying the corresponding photon–photon
hole entanglement in the biphoton source field.53,54

A. Entangled biphoton source properties

The entangled biphoton sources can be generated by inducing
a higher-order nonlinear interaction, namely, the spontaneous
parametric downconversion (SPDC) process within the birefringent
material55,56 via a suitable classical pump pulse. The SPDC results

FIG. 3. (a) The schematic setup of the
proposed signal measurement tech-
nique is presented where the detector
D1(D2) monitors frequency at ω1(ω2).
In this work, the time delay has been
set to zero. (b1)–(b4) The superopera-
tor Schwinger–Keldysh diagrams for
the corresponding polariton space
pathways which describe the pro-
cesses contributing to the signal are
displayed. The rules for the diagram-
matics have been described in the text.
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in the emission of entangled biphotons, which are spectrally corre-
lated in a non-classical manner within a specific temporal window.
These spectral and temporal correlation properties may be exam-
ined and characterized by employing the photon coincidence
counting measurements.57 To this end, we introduce the biphoton
field amplitude function as jψ (2)i ¼ (χ(2)=

ffiffiffiffi
A

p
) Ep

P
k1,k2

sinc
(Δωtd=2) exp (� iΔωtd=2)sinc(Δk� Lz=2) exp (� iΔkLz=2)jk1, k2i,
where the biphoton field state jk1, k2i is defined over the non-
separable states (indexed by their modes ki) satisfying the
quasi-phase-matching condition Δk ¼ kp � k1 � k2. The amplitude
function encodes crucial information about the entangled biphoton
generation process. It is parameterized by the nonlinear susceptibil-
ity of the material (χ(2)), length of the SPDC crystal along the prop-
agation direction (Lz), the entanglement volume (A), the mean
interaction time within the crystal (td), and the pump pulse enve-
lope function (Ep). The latter makes an allowance for the range of
the frequencies (Δω ¼ ωp � ω1 � ω2) over which the biphoton
spectrum can be spread. Together, they determine the quantitative
nature of the entanglement properties in the joint spectral–tempo-
ral domain. The introduction of the amplitude function further
allows for the factorization of the multi-point biphoton field
correlation functions using the following properties, hvacjE(t1)
E(t2)jψ (2)i ¼ F(t1, t2)þ F(t2, t1) and hψ (2)jEy(t1)Ey(t2)jvaci ¼
F*(t1, t2)þ F*(t2, t1). In the above, the auxiliary function F(t1, t2) is

defined as F(ti, tj) ¼
P

ij
2πχ(2)Ep

V

ffiffiffiffiffiffiffi
ω1ω2
ATb

q
rect (ti�tj)

Tb
�e�i(ωi ti) e�i(ωj tj),

where the ωi(ωj) are the biphoton frequencies, Tb ¼ (1=v1 � 1=v2)Lz
is the entanglement time where the material-dependent group
velocities of the frequency components of the biphoton field within
the crystal are denoted as v1(v2), and the shifted rectangle function
is defined as rect(x) ¼ 1, for 0 � x � 1 and rect(x) ¼ 0, outside
the range. The factorization properties of the field correlation
functions determine the manner in which the bare polariton Green’s
functions are correlated with the biphoton field. The components of
the polariton Green’s functions represent the spectral amplitudes asso-
ciated with the polariton modes. Therefore, the entanglement time Tb

can be used to govern the redistribution of the spectral amplitudes
arising from different propagation intervals and to provide a way for
exerting control over the correlation between the different polariton
modes. The ability to parametrically manipulate the biphoton field
correlations to achieve control over the desired components of the
polariton Green’s functions remain the central aim of the correlated
spectroscopies such as the one described in this study.

In order to find an expression for the signal that explicitly dem-
onstrates the differential manner of interaction between the ampli-
tudes of the entangled biphoton fields and the polariton modes, the
signal in Eq. (3) can be represented in the following form:

S(Ω2, Ω1) ¼ Im 4N(i)3
ð1
�1

dt4

ð1
�1

dt3

ð1
�1

dt2

ð1
�1

dt1

� θ(t42)θ(t23)θ(t31)h~X(t1)~X(t3)~Xy
(t2)~X

y
(t4)iF*(t3, t1)F(t4, t2)þ θ(t42)θ(t21)θ(t13)h~X(t3)~X(t1)~Xy

(t2)~X
y
(t4)i

� F*(t1, t3)F(t4, t2)þ θ(t42)θ(t43)θ(t31)h~X(t1)~X(t3)~Xy
(t4)~X

y
(t2)iF*(t3, t1)F(t2, t4)þ θ(t42)θ(t41)

� θ(t13)h~X(t3)~X(t1)~Xy
(t4)~X

y
(t2)iF*(t1, t3)F(t2, t4): (4)

In this expression, the corresponding multi-time polariton space
correlation functions are weighted by the biphoton correlation
functions with different time arguments. Signatures of the interfer-
ence between these pathways are encoded in the final signal. The
magnitude of interference contributions are related to the enhance-
ment or suppression of the individual polariton Green’s function
components, which will be explored in detail in Sec. III B.

B. Multidimensional signal

The role of the entangled biphoton field can be made more
transparent by evaluating the multidimensional convolution inte-
grals appearing in Eq. (4) using the form of biphoton correlations
function introduced above. Toward that aim, we introduce the
biphoton field modulated polariton Green’s function,
i~Gp(n)p(g) (ω,Tb)¼

Ð1
1 dseiωsGp(n)p(g) (s)rect(s=Tb)¼[exp(izp(n)p(g) )Tb)�1]=

zp(n)p(g) , where the Gp(n)p(g) (s)¼θ(s)exp(�iHp(n)p(g) s�γp(n)p(g) s) is the
time domain bare polariton Green’s function related to its frequency
domain counterpart via the relation, iG(ω)¼ Ð1

�1dsexp(iωs)G(s).
zp(n)p(g)¼(ω�ωp(n)p(g)þiγp(n)p(g) ) is the corresponding term that

captures the dephasing broadened polariton resonances correspond-
ing to the frequency domain polariton Green’s function. The com-
plicated yet discernible appearance of the resonances weighted by
the entanglement time in the expression of ~Gp(n)p(g) (ω,Tb) determines
the functional dependence of the biphoton field modulated polari-
ton Green’s functions and highlights the probe field’s role in allow-
ing specific resonances related to Green’s function to be amplified
or attenuated. The state specific dephasing parameters, given by
γp(n)p(g)¼Γp(n)p(g)þγ*p(n)p(g) , which systematically accounts for the line-
broadening effects arising from intra-manifold polariton transport
effects via the terms Γp(n)p(g) . The latter is related to the polariton
transport matrix elements, which can be obtained from the dissipa-
tion kernel of the kinetic equation that governs the dynamics of the
polariton states as described in the Appendix A. Introduction
of biphoton field modulated polariton Green’s functions into the
Eq. (4) lead to the identification of the parametric frequencies (i.e.,
Ω2¼ω2, Ω1¼ω1) as the central frequencies associated with the
entangled biphotons. The parametric frequencies Ω2¼ω2, Ω1¼ω1

serve as the scanning parameter for the signal. Finally, the compact
sum over states expression of the signal is given as
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S(Ω2 ¼ ω2, Ω1 ¼ ω1) ¼
X

p(g) ,p(s)1 ,p(s)2 ,p(d)

C � ω1ω2 Im d*
p(s)1 p(g)

dp(s)2 p(g)dp(s)2 p(d)d
*
p(s)1 p(d)

(~G
y
p(s)2 p(g) (ω1, Tb)G

y
p(d)p(g) (ω1 þ ω2)~G

y
p(s)1 p(g) (ω2, Tb)

þ ~G
y
p(s)2 p(g) (ω2, Tb)G

y
p(d)p(g) (ω1 þ ω2)~G

y
p(s)1 p(g) (ω2, Tb)þ ~G

y
p(s)2 p(g) (ω1, Tb)G

y
p(d)p(g) (ω1 þ ω2)~Gp(s)1 p(g) (ω1, Tb)

þ ~G
y
p(s)2 p(g) (ω2, Tb)G

y
p(d)p(g) (ω1 þ ω2)~Gp(s)1 p(g) (ω1, Tb)): (5)

In the above expressions, the collective coefficient C ¼
16π2Njχ(2)j2jEpj2=ATbV2 encodes the properties of the classical
laser pump field (i.e., the pump envelope function, Ep), the bire-
fringent material responsible for the SPDC process (i.e., the mate-
rial susceptibility, χ(2)), the entanglement time (Tb), certain
polariton ensemble characteristics (i.e., the number density of the
aggregates, N), and the mode volume of the cavity, V . In the
numerical simulation, while conducting the parametric compari-
son of the signals, the collective coefficient has been taken as a
scaling factor.

The results presented in Figs. 4–6, as mentioned in their
respective descriptions, show three sets of simulation outcomes,
comprised of nine figures each. The sets themselves differ from
each other by the values of the cavity mode frequencies. The
values of the cavity mode frequencies, ωI

c�ωIII
c are chosen to be in

resonance with the lower energy, the central region, and the
higher energy region of the spectral bands of the bare exciton.32

Moreover, within a set, each column is characterized by different
values for the entanglement times given as TI

b ¼ 100 fs, T II
b ¼ 200 fs,

T III
b ¼ 500 fs while the rows account for the variations of the cou-

pling strengths. In other words, in the simulation, each representa-
tive parameter combinations {ωI

c, g
I
c} to {ωIII

c , gIIIc } is studied for
three further variations of the biphoton entanglement times and
has been presented along each column, i.e., making an assignment
{ωI

c, g
I
c , T

I
b} for a particular set.

In the figures, the spectral distortion of the sidebands as one
scans the coupling strengths from the lower to higher values, i.e.,
gIc�gIIIc , the existence of which can be inferred from the Fig. 2, is
seen to be more pronounced while moving along the rows, for
each value of the biphoton entanglement times. The scan over the
coupling strengths makes the spectral sidebands appear at
increasingly distant frequencies, as noted in Fig. 2, which partici-
pate in the dynamics by introducing novel multiple-scale dephas-
ing pathways. The gradual onset of these spectral complexities is

FIG. 4. The entangled biphoton assisted multidimensional spectra S(Ω2 ¼ ω2, Ω1 ¼ ω1) have been displayed for the parametric cases with the assignments
{ωI

c , g
I
c}, {ωI

c , g
II
c }, and {ωI

c , g
III
c }, along the rows, for the three variations of biphoton entanglement times, along the columns. The characteristics of some spectral regions

whose qualitative changes have been discussed in the text are indicated by the arrows.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 113102 (2020); doi: 10.1063/5.0012754 128, 113102-7

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


seen by the appearance of the multiple off-diagonal spectral fea-
tures while moving along rows in all the figures (e.g., {ωIII

c , gIc , T
I
b}

to {ωIII
c , gIIIc , T I

b}) in Fig. 6. Further, it can be seen that the off-
diagonal peaks undergo qualitative changes as the biphoton

entanglement time varies, e.g., {ωI
c, g

I�III
c , T I

b} to {ωI
c, g

I�III
c , TIII

b } in
Fig. 4 and quantitative changes, e.g., {ωII

c , g
II�III
c , TI

b} to
{ωII

c , g
II�III
c , TIII

b } in Fig. 5, and {ωIII
c , gI�III

c , T I
b} to {ωIII

c , gI�III
c , T III

b }
in Fig. 6. They are indicative of the inter-manifold polariton

FIG. 5. The entangled biphoton assisted multidimensional spectra S(Ω2 ¼ ω2, Ω1 ¼ ω1) have been shown for the parametric cases with the assignments
{ωII

c , g
I
c}, {ωII

c , g
II
c }, and {ωII

c , g
III
c }, along the rows, for the three variations of biphoton entanglement times, along the columns. The spectroscopic features relevant for the

discussions displaying spectral beating and emergent spectral complexity have been highlighted.

FIG. 6. The entangled biphoton assisted multidimensional spectra S(Ω2 ¼ ω2, Ω1 ¼ ω1) have been presented for the parametric cases with the assignments
{ωIII

c , g
I
c}, {ωIII

c , g
II
c }, and {ωIII

c , g
III
c }, along the rows, for the three variations of biphoton entanglement times, along the columns. The spectroscopic features relevant for the

discussions displaying spectral beating and emergent spectral complexity have been highlighted. Highlighted regions in the spectra offer corroborative evidence for the dis-
cussion regarding the quantitative changes in the off-diagonal features.
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coherence beats where the participating modes can be identified
by the corresponding values in the diagonal. The corresponding
frequencies indicated by the values in the axes can be recovered
via suitable frequency gating of the detected signal. Specifically,
these coherent features between correlated, spectrally distant
modes may be discriminated by using biphoton fields with
larger entanglement times for a chosen set of biphoton frequen-
cies. The argument can be corroborated via observing the
increased visibility of the certain off-diagonal features in the
highlighted regions of the middle row in Fig. 5, and the upper
row in Fig. 6 while moving along the columns. Crucially, in the
former, the middle row, i.e., {ωII

c , g
II
c , T

I
b} to {ωII

c , g
II
c , T

III
b } demon-

strates pronounced beating of the off-diagonal spectral features.
Since the off-diagonal features in each quadrant of the
frequency-correlation plots are indicative of polariton coherence
signatures, it can be inferred that the longer entanglement times
may be useful in the classification of the inter-manifold coherent
contributions among the spectral components, even though the
shorter entanglement times provide a better time-frequency res-
olution, revealing novel pathways. It is also observed that at the
higher coupling strengths, e.g., in the bottom-most rows of Figs. 4–6,
the spectral content of the diagonal spectral–domain does not
undergo significant changes.

IV. DISCUSSIONS AND OUTLOOK

In this communication, we presented a theoretical proposal
for the multidimensional pump-probe analog spectroscopy of the
cavity confined quantum aggregates using systematic variations of
the cavity and entanglement parameters of the external biphoton
source field. Each of the presented cases would constitute an inde-
pendent measurement scheme within a parameter regime where
the quantum coherent effects are known to be manifested in the
cavity–free quantum aggregates. The spectroscopic signature of the
quantum coherent effects appear in the off-diagonal features of the
multidimensional spectra.17,40 It has been shown that similar char-
acteristics emerge in the analyzed polaritonic frequency-correlation
plots, which specifically brings out the information about the
coherent dynamical correlation among the polariton modes in the
presence of phonon interaction. The multiple classical field interac-
tions, although effective, explore a reduced parameter domain of
the polariton kinetics in the joint time–frequency space and hence
may not be capable of deciphering these features. Equation (5) and
the numerical simulations, together, constitute the central result of
this communication.

Toward that end, one may propose an improved representa-
tion of the signal that may resemble the traditional MDCS
counterpart more closely by introducing S(Ωτ , ΩTb ) ¼Ð�1
0 dτ

Ð�1
0 dTexp(iΩTbTb)exp(iΩττ)S(τ, Tb). It will require the

joint variation of the finite time delay (τ), e.g., in Fig. 3, the
entanglement time (Tb), and a double Fourier transform with
respect to the corresponding variables. Given the recent progress
in the shaping of biphoton sources and advancement in the
studies of multidimensional spectroscopies of condensed phase
systems, the proposed scheme is within the realm of experimen-
tal implementation in the near future.58–60

It should also be noted that the system treated in this commu-
nication explores the aggregate–cavity interaction at a theoretical
level where the interactions among the aggregate building blocks
have been neglected. The spatially extended inter-aggregate interac-
tions, in the appropriate parameter regime, can be a source of
crucial local field corrections toward nonlinear responses from col-
lective excitations.61 Such ensemble effects also alter the scaling of
the signal strengths with the number of emitters.

An essential extension of the present work would involve a
comparative study of the real-time evolution of the non-Markovian
density operator.62–65 Such studies would enable a more transpar-
ent interpretation regarding the signatures of the dynamical inter-
ferences present in the observed spectra and provide a gateway to
the verifiable quantum process tomographic schemes.66–69 Further
developments in these directions are under way.
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APPENDIX A: KINETIC EQUATION

The dissipative polariton kinetics is described via a limiting
form of the generalized master equation, which treats the polari-
ton–phonon interactions within the perturbative second Born
approximation and neglects the cavity dissipation. Since the present
study is focused on the ultrafast character of the polariton kinetics
and the exciton–cavity coupling strengths exceed the exciton–
phonon coupling within the parameter regime of interest, such
approximations allow for a physically admissible solution via ensur-
ing the positivity of the polariton density operator at all times. The
exciton–phonon interactions manifest itself in the polariton basis
as the intra-manifold relaxation and both intra-manifold and inter-
manifold dephasing. These phenomena can be captured via the
field-free, operator kinetic equation for the polariton density opera-
tor ρ presented below

dρ(t)=dt ¼ �iLρ(t)�
ðt
�1

dt0Σ(2)(t � t0)ρ(t0): (A1)

In the above, the coherent evolution superoperator, Lρ(s) ¼ Hρ(s)
�ρ(s)H is defined via its commutator acting on the density opera-
tor, and the dissipation kernel superoperator, Σ(2)(t � t0) is given
by

Σ(2)(t � t0)ρ(t0) ¼ �[X p, Dp(t � t0)ρ(t0)� ρ(t0)Dpy(t � t0)]: (A2)

The function, Dp(t) ¼ Ð1
0 dt0X p(t � t0)C(t � t0), is defined

as the convolution of the polariton–phonon coupling operator
(in the Heisenberg representation), (X p(τ)), and the finite
temperature equilibrium correlation function of the phonons,
(C(τ)). The former, in the polariton basis, is given by
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X p
p(n)p(n0 )

(τ) ¼ P
nn0 exp (iω p(n)p(n0 )τ)Xp(n)p(n0 ) while the latter is given by

C(τ)¼ (λ0γ0=2)cot(βγ0=2)exp(�γ0τ)þ
XNb

j¼1

λj
2ζ j

� (coth(iβfþ
j =2)exp(�fþ

j τ)�coth(iβf�
j =2)exp(�f�

j τ))

þ (� iλ0γ0=2)exp(�γ0τ)þ
iλjυ2j
2ζ j

(exp(�fþ
j t)�exp(�f�

j t))

�
X1
n¼1

((4λjγ jυ
2
j =β)(νn=(υ

2
j þν2n)

2�ν2nγ
2
j )

þ (2λ0γ0=β)(νn=(ν
2
n�γ20)))exp(� iνnτ), (A3)

where we have abbreviated, ζ j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(υ2j � γ2j =4)

q
, f+

j ¼ (γ j=2)+ iζ j,
and denoted νn ¼ n(2π=β) (where β ¼ 1=κT , with κ and T being
the Boltzmann constant and the temperature) as Matsubara frequency
terms, which are set at n ¼ 20. Subsequently, while evaluating the
dissipative kernel, an assumption is made about the single time
dependence of the density operator, i.e., ρ(t � t0) � ρ(t), the integra-
tion variable is changed from t0 to τ ¼ (t � t0), and the upper limit is
extended to infinity, leading to an effective Markovian limit. Due to
the latter and the neglect of the effects of the driving on dissipation,
the self-energy terms remain manifestly frequency-independent and
the frequency domain Green’s functions appear in a much simpler
form. Finally, the relevant matrix elements of the dissipation kernel
yield the polariton transport matrix defined as Σ(2)

p(n)p(n)p(n0 )p(n0 )
, whose

limit n ¼ n0 yields the transport related line-broadening contributions
to the polariton dephasing, as mentioned in the Sec. III B, via the
relation, Γ p(n)p(g) ¼ 1

2 (Σ
(2)
p(n)p(n)p(n)p(n) þ Σ(2)

p(g)p(g)p(g)p(g) ). In the above, the
mapping of the tetradic operators is made possible by their identical
indices and the fact that ground polariton state does not participate
in transport, i.e., Σ(2)

p(g)p(g)p(g)p(g) ¼ 0.

APPENDIX B: PHONON PROPERTIES

Here, we present the numerical simulation parameters the 48
phonon modes, which have been used in the simulation (Tables I
and II).

γ j (cm
�1) ¼ 30:0 has been uniformly set for all the multimode

Brownian oscillators. Analogously, the corresponding numerical
values of the overdamped oscillator are taken as λ0 (cm�1) ¼ 37:0
and γ0 (cm�1) ¼ 30:0.
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TABLE I. The list of the υj (cm
−1) parameters corresponding to the multi-mode

Brownian oscillators.

97 604 1143 1354 138 700 1181 1382
213 722 1190 1439 260 742 1208 1487

υj (cm
−1) 298 752 1216 1524 342 795 1235 1537

388 916 1252 1553 425 986 1260 1573
518 995 1286 1580 546 1052 1304 1612
573 1069 1322 1645 585 1110 1338 1673

TABLE II. The list of the λj (cm
−1) parameters corresponding to the multi-mode

Brownian oscillators.

2.324 12 1.171 76 46.794 4 7.799 04 3.975 78 1.379
20.773 8 9.217 94 6.394 26 2.844 68 7.937 3 9.598 13
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8.013 6 7.141 42 20.419 6 22.626 3 5.838 44 7.173 2
1.468 74 12.760 8 7.511 04 7.318 48 4.864 77 6.798 84
40.083 5.971 35 1.772 55 12.454 2 5.271 72 1.622 81
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