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ABSTRACT

Whether neural networks can capture relational knowledge is a matter of long-standing
controversy. Recently, some researchers have argued that (1) classic connectionist models can
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handle relational structure and (2) the success of deep learning approaches to natural language

processing suggests that structured representations are unnecessary to model human language.
We tested the Story Gestalt model, a classic connectionist model of text comprehension, and a
Sequence-to-Sequence with Attention model, a modern deep learning architecture for natural
language processing. Both models were trained to answer questions about stories based on
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abstract thematic roles. Two simulations varied the statistical structure of new stories while
keeping their relational structure intact. The performance of each model fell below chance at
least under one manipulation. We argue that both models fail our tests because they can't
perform dynamic binding. These results cast doubts on the suitability of traditional neural
networks for explaining relational reasoning and language processing phenomena.

1. Introduction

The ability to represent and reason in terms of the
relations between objects plays a crucial role across
many aspects of human cognition, from visual percep-
tion (Biederman, 1987) to higher cognitive processes
such as analogy (Holyoak, 2012), categorisation (Medin
et al, 1993), concept learning (Doumas & Hummel,
2013), and language (Gentner, 2016). Furthermore, com-
parative evidence suggests that relational thinking may
be the key cognitive process distinguishing the abilities
of humans from those of other species (Christie &
Gentner, 2010; Penn et al., 2008). Given the relevance
of the capacity to represent and reason about relations
across cognitive domains, several computational
models in cognitive science have sought to capture its
main characteristics and development (e.g. Chen et al,,
2017; Doumas et al., 2008; Falkenhainer et al., 1989;
Halford et al, 1998; Hummel & Holyoak, 1997, 2003;
Kollias & McClelland, 2013; Leech et al., 2008; Lu et al.,
2012, 2019; Van der Velde & De Kamps, 2006).
Computational models of relational thinking differ in
their representational assumptions. In the canonical
view, relational thinking entails using predicate rep-
resentations. A predicate is an abstract structure that
can be dynamically bound to an argument, specifying

a set of properties about that argument (Doumas &
Hummel, 2005). For example, predator(x) specifies a
series of properties about the variable x (e.g. carnivore,
hunts, etc.). Predicate representations have two main
attributes. In the first place, predicates maintain role-
filler independence in that at least some aspect of
the semantic content of the predicate is invariant
with respect to its arguments. For example, predator
(fox) and predator(lynx) will specify the same set of
properties (e.g. carnivore, hunts, etc) about the
objects fox and lynx. In the second place, predicates
can be dynamically bound to arguments, namely,
fillers can be assigned and reassigned to different
roles as needed during processing. That predicates
can be dynamically bound to arguments allow a
given concept to play different roles at different times
or in different situations. For example, in a scene
where a fox is preying on a hen, but then a lynx
comes and eats the fox, the initial binding of fox to
predator (i.e. predator(fox)) is easily broken and new
binding of fox to prey (i.e. prey(fox)) is easily formed.
Models based on predicates or formally equivalent
systems (i.e. systems that perform dynamic binding of
independent representations of roles and fillers, or sym-
bolic systems) successfully account for a wide variety of
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phenomena in the relational thinking literature (for a
review see Forbus et al.,, 2017).

By contrast, traditional Parallel Distributed Processing
(PDP) models explicitly eschew the need for structured
representations (see, e.g. Rogers & McClelland, 2014).
Representations in a PDP model correspond to patterns
of activation across a fixed-size layer of units (i.e. an acti-
vation vector). These representations are unstructured in
the sense that relational roles and objects are not inde-
pendently represented, but instead are represented sim-
ultaneously as a single entity. PDP approaches to
relational thinking seek to obtain relational behaviour
without invoking symbolic machinery (Kollias & McClel-
land, 2013; Leech et al, 2008; St. John & McClelland,
1990; St. John, 1992; Yuan, 2017). The reasoning behind
these models is that if a traditional PDP model success-
fully performs some relational reasoning task, then predi-
cates are not strictly necessary for that task, and, by
extension, might not actually be accurate approxi-
mations of human mental representations. Recently,
some researchers have argued that PDP models are
capable of handling relational knowledge. Particularly,
Rogers and McClelland (2008, 2014) have proposed
that the gestalt models of text comprehension (Rabovsky
et al.,, 2018; Rabovsky & McClelland, 2020; Rohde, 2002;
St. John & McClelland, 1990; St. John, 1992) exhibit suc-
cessful effective role-to-filler binding. The evidence pre-
sented by these models consist invariably on
demonstrations of generalisations to “unseen” sen-
tences. However, as is going to be clear in the simu-
lations of the present work, these “unseen” sentences
consist typically of known combinations of roles and
concept fillers, which allows these models to succeed
in the generalisation tests by memorising combinations
of roles and fillers in the training dataset. As to which
specific mechanism would allow these models to learn
to form role-filler bindings, these researchers usually
appeal to the concept of emergence, arguing that
domain general learning algorithms such as back propa-
gation in conjunction with the distributed nature of the
internal representations of PDP models allows for learn-
ing open-ended relations (Rogers & McClelland, 2014).

Some of the optimism in the connectionist literature is
based, at least partially, on the achievements of deep learn-
ing architectures in natural language processing. For
example, Rabovsky et al. (2018) argue that the success of
Google’s neural machine translation system (Wu et al.,
2016) implies that structured representations are, in fact,
an obstacle to accurately capturing the subtle regularities
of human language (also see Rabovsky & McClelland,
2020). In the present study, we tested the Story Gestalt
(SG) model (St. John, 1992) and a Sequence-to-Sequence
with Attention (Seq2Seq+Attention) model (Bahdanau
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et al, 2015) - the architecture behind Google's neural
machine translation system — in a series of tasks requiring
binding a number of concepts to several roles in a story.
All stories had relational structure in the sense that (1)
the thematic roles were organised in specific ways and
(2) filling the roles with different concepts yielded
different instantiations of the story. In our simulations, we
trained both models in a large number of these stories to
answer questions about the stories and then tested the
models with new (untrained) stories. Importantly, we main-
tained the relational structure of the test stories relative to
the training stories while varying their statistical structure
(by changing the stories’ typical role fillers) in several
ways. Next, we describe the generalities of our task and
each model’s operation in detail.

Our task, based on the original materials of St. John
(1992), consists of answering questions about stories gener-
ated by a series of (5) scripts. All the scripts describe events
as a sequence of propositions where several concepts play
different thematic roles: agent-1, agent-2, topic, patient-
theme, recipient-destination, location, manner, and attri-
bute. As an illustrative example, consider the Restaurant
script (Table 1). This script describes an event where two
people go to a restaurant. Each sentence of the Restaurant
script defines fillers for some roles. To generate a specific
instance of a Restaurant script (i.e. a Restaurant story) the
roles are given values corresponding to specific concepts.
Table 2 (column 1) presents an example of an instantiated
Restaurant story in a pseudo-natural language format. The

Table 1. Restaurant script.
Script

1. (agent-1) and (agent-2) decided restaurant

2. Restaurant quality (expensive/cheap)

3. Distance to restaurant (far/near)

4. (agent-1/agent-2) ordered (cheap-wine/expensive-wine)

5. (agent-1/agent-2) paid bill

6. (agent-1/agent-2) tipped waiter (big/small/not)

7. Waiter gave change to (agent-1/agent-2)

Concept restrictions

The roles agent-1 and agent-2 are never ‘Lois’ or ‘Albert’

Deterministic rule

The quality of the restaurant determines the distance completely:
expensive — far, cheap — near

Table 2. Example of a baseline story (restaurant).

Story Questions Criteria

1. (Anne) and (Gary) decided decided (Anne) and (Gary) decided
restaurant restaurant

2. Restaurant quality quality Restaurant quality
(expensive) (expensive)

3. Distance to restaurant (far) distance Distance to restaurant (far)

4. (Anne) ordered (cheap- ordered (Anne) ordered (cheap-
wine) wine)

5. (Anne) paid bill paid (Anne) paid bill

6. (Anne) tipped waiter (big) tipped (Anne) tipped waiter (big)

7. Waiter gave change to gave Waiter gave change to
(Anne) (Anne)
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first sentence of this story corresponds to the proposition:
agent-1=Anne, agent-2=Gary, topic=decided-to-go,
patient-theme = None, recipient-destination = restaurant,
location = None, manner = None, attribute = None.
Appendix 1 presents all possible concepts values for each
role. Note that our scripts produce stories with no repeated
topic concepts across propositions.

Each script implements a tree structure where each
node represents a proposition and each branch of the
tree represents a story. The scripts also implement
rules that specify the probability of transitioning from
one node to another conditioned on the value of a char-
acter or location role. For example, a rule in the Restau-
rant script (see Table 1) specifies that if the restaurant
is expensive, it will be located far away.

We trained the models in two different conditions. In the
concept restricted condition, some character or object names
were never used in specific scripts. For example, in the Res-
taurant stories the characters Lois and Albert were never
used to fill the roles agent-1 or agent-2 (see Table 1;
Appendix 2 presents detailed descriptions of the remaining
scripts, their concept restrictions and rules). In the concept
unrestricted condition, all concepts were used in all stories.
Stories in both conditions were generated according to
the following procedure: (1) a script is chosen at random,
(2) a sequence of propositions is generated by traversing
the probabilistic tree structure of a script and (3) character
and vehicles names are given specific values (respecting
the script’s deterministic rule and the script’s concept
restrictions in the concept restricted condition).

To get a criterion for each model’s performance, we
designed a baseline test. In this test, we presented the
models trained in the unrestricted condition with
concept unrestricted stories and asked questions about
the stories. The questions corresponded to the concepts
filling the topic role. The models generated an answer in
the form of a full proposition. The correct answer was the
full proposition in which the topic concept was involved.
For example, if a proposition in a restaurant story stated
that the “waiter gave change to Anne” and the model
was asked about the “gave” proposition the correct
answer was “waiter gave change to Anne”. Because in
our stories there was no repeated topics the correct
answer was unequivocal. Table 2 presents an example of
a Restaurant baseline story, its questions and their corre-
sponding correct answers.

2. Models
2.1. Story Gestalt model

The SG model (St. John, 1992, see Figure 1) integrates a
sequence of propositions into a distributed

representation of a story, which is then used to answer
questions about the story. The model represents all prop-
ositions in its input layer through 137 localist units
coding for each possible filler of each role (e.g. there is
a unit coding for Albert-agent and another unit coding
for Albert-recipient). To represent a complete prop-
osition, the units coding for the concept filling each
role are activated. For example, a representation of the
sentence ‘Anne and Gary decided to go to the restaurant’
would consist of a vector of 137 units where the three
units coding for Anne-agent, Gary-agent, decided-topic
and restaurant-location are set to 1 and all other units
are set to O (Figure 1 A).

Figure 1(B) illustrates the SG model’s architecture. The
model is composed of two subsystems. The first “com-
prehension” subsystem (input proposition, combination
and gestalt layers) receives each proposition of a story
one at the time as input. The activation in the proposition
layer feeds forward to the combination and gestalt layers
(100 units each). The gestalt layer has recurrent connec-
tions to the combination layer, which allows the model
to form a representation of the story presented so far
(see Figure 1 (). The second “query” subsystem
(gestalt, question, extraction and output proposition
layers) receives as input the activation of the gestalt
layer and the question layer. The question layer (34
units) consists of a vector of units representing all topic
concepts in a localist fashion. The extraction layer (100
units) combines the activation of the gestalt and ques-
tion layers and feeds forward to the output layer,
which has the same dimensionality as the input layer.

To train a single story the model is presented with
increasing longer sequences of the story propositions
and, after each successive sequence, is asked about the
last proposition. For example, imagine a story composed
by the last three propositions of the Restaurant story in
Table 2 (i.e. “Anne paid bill”, “Anne tipped waiter big”,
“waiter gave change to Anne”). This story would be
trained by presenting the model with the sequences:
[“Anne paid bill”], [“Anne paid bill”, “Anne tipped waiter
big”] and ["Anne paid bill", “Anne tipped waiter big”,
“waiter gave change to Anne”]. The question for each
sequence would be the topic concept of the last prop-
osition of the sequence (i.e. “paid”, “tipped” and “gave”)
and the target (i.e. what the model was trained to
output) would be the last proposition of each sequence
(i.e. “Anne paid bill", “Anne tipped waiter big”, “waiter
gave change to Anne”). The difference between the
actual output and the target is used to train the model
through a standard gradient descent algorithm. Once
trained, the model can recover the full proposition
associated with each topic of a story. For example, if a
trained SG model is presented with the complete
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Figure 1. Story Gestalt model: (A) an example of a proposition as represented in the input layer; (B) model architecture; (C) model’s

operation unfolded over time. See text for details.

sequence of sentences in Table 2 and then asked about
the topic “decided” (by activating the corresponding loc-
alist unit in the question layer) the model would output
an activation vector corresponding to the proposition
“Anne and Gary decided to go to the restaurant”.

St. John (1992) showed that the SG model can recover
missing sentences from a story, review its predictions as
it encounters new propositions and resolve pronouns.
For example, if the model is presented with the complete
sequence of propositions on Table 2 except for the third
(“distance to restaurant far”) and is asked about the topic
“distance”, the model would output an activation vector
corresponding to the proposition “distance to restaurant
far” because in its training data expensive restaurants are
always far away (see Table 1).

2.2. Sequence-to-sequence with attention model

In order to test the performance of a contemporary
deep learning system on our task, we implemented a
version of the Seq2Seg+Attention model (Bahdanau
et al., 2015, see Figure 2) - a deep neural network archi-
tecture designed originally to solve machine translation
problems. In translation problems, a source sentence in

a given language (e.g. English) has to be translated into
a different language (e.g. French). Typically, the source
and target sentences have different lengths. In
general, a Seq2Seq model consist of an encoder
network and a decoder network. Both are recurrent
neural networks with their own independent time
steps (t for the encoder and t’ for the decoder in
Figure 2 B). The encoder transforms the input sequence
into a sequence of fixed-size vectors and the decoder
processes these transformed vectors to get the output
sequence. Two important features of this model are
the use of Word2Vec representations for the input
words (Mikolov et al,, 2013) and an attention mechan-
ism that allows the model to selectively ‘attend’ to
different parts of the encoder’s output (Bahdanau
et al., 2015).

Word2Vec embeddings (Mikolov et al., 2013) are
dense distributed representations obtained by extracting
the activation vector of the hidden layer of shallow
neural network trained to predict the surrounding
words given an input word in large corpus of text.
Word2Vec representations maintain the distributional
patterns of similarity between words, such that words
used in similar contexts have similar representations
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ism. See text for details.

(however, see Nematzadeh et al., 2017, for evidence of
discrepancies between the patterns of similarity
between Word2Vec representations and the patterns of
similarity in human word association data). Our version
of the Seq2Seqg+Attention model represents a single
word at each time step t through a layer with localist
units for each unique word in the data set (105 units).
To represent a word the corresponding unit is given an
activation of 1 while all other units are given an acti-
vation of 0 (i.e. a one-hot vector). This one-hot vector is
transformed into a Word2Vec embedding (size 300) by
a single feed-forward layer with a fixed set of weights
(see Figure 2 A). We did not allow the training process
to change these weights.

The encoder (bottom part of Figure 2B) corresponds
to a bidirectional long short-term memory neural
network (Bidirectional LSTM, Graves & Schmidhuber,
2005). The Bidirectional LSTM is composed of two
LSTM neural networks (250 units each in our model).
The first LSTM reads the input from the beginning until
the end of the sequence while the second reads the
sequence in a backward fashion. At each time step t
both LSTMs produce their own output. The full output
of the encoder is the concatenation of the outputs of
the forward and backward LSTMs. The encoder’s
output at each time step t can be understood as a
summary of all precedent and following words to the
current word with an emphasis on the words surround-
ing it (Bahdanau et al., 2015).

The attention mechanism (center part of Figure 2B
and Q) corresponds to a feed-forward neural network
that, at each decoder’s time step t/, takes as input the
decoder previous state sy, and all encoder outputs a,
to ar (see Figure 2 Q). This feed-forward network pro-
duces a single number e; for each encoder’s output.
This number is intended to capture the degree of align-
ment between the current word in the decoder with
each word in the input sequence. This alignment score
is normalised using a softmax function, yielding a
single attention weight w; for each encoder’s output.
The output of the attention mechanism is a context
vector ¢;, which corresponds to the summation of all
encoder’s outputs weighted by their corresponding
attention weight. In short, the vector c; represents a
summary of the input words with an emphasis on the
words that “correspond” better with the current output
word.

The decoder (top part of Figure 2B) corresponds to a
standard LSTM network (200 units) followed by feed-
forward layer with softmax activation. This layer has a
unit for each unique word in the data set (105 units) so
that the decoder’s output at each time step corresponds
to a probability distribution over the dataset vocabulary.
The model’s answer at each time step is taken to be the
word with maximum predicted probability. As this model
is designed to receive words as inputs, during training
we feed the propositions of our task to the model one
word at the time. For each unfilled role we presented
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Figure 3. Training process for the Seq2se2+Attention model. See text for details.

the special (NONE) word. After presenting the complete
story, we input a special word (Q) to demarcate the
beginning of the question, then we input the topic ques-
tion, and finally we input a special word (GO) to tell the
model to start the decoding process. The target output
was the sequence of words corresponding to the full
proposition involving the topic concept. The difference
between the actual output and the target was used to
train the model in the same way as in the SG model.
Figure 3 presents an example of this process. Here, the
Seq2Seqs+Attention model (represented by the box) is
presented with the complete sequence of words corre-
sponding to the Restaurant story in Table 2. The model
is asked about the “decided” topic and it responds by
outputting the sequence of words corresponding to
the proposition “Anne and Gary decided to go to
restaurant”.

3. Simulation 1

In contrast to previous research with Gestalt models
(Rabovsky et al., 2018; Rohde, 2002; St. John & McClel-
land, 1990; St. John, 1992), our manipulations aimed to
disentangle the task’s relational structure from its statisti-
cal structure. Specifically, our tests were designed to
keep the relational structure of the test stories constant
relative to the training data while varying their statistical
properties. In short, these tests relied on capturing bind-
ings between roles and fillers in specific instances while
ignoring the statistical regularities from the training data.
We termed our first test concept violation. In this test, we
trained the models in the concept restricted condition
and then tested them with stories where the agent-1,
agent-2 or the patient-theme roles were filled by the
restricted concepts. The questions consisted on all the
topic concepts of the propositions in which the restricted
concepts were used. A role-based answer to the question
is required using the restricted concept to fill the corre-
sponding role. Table 3 presents an example of a Restau-
rant concept violation story. In this example, the
concepts Albert and Lois had never appeared as agents
in any Restaurant story during the model’s training.
The model was then tested using a story in which
Albert or Lois appeared as agents in a Restaurant story

by asking, for example, about the “tipped” proposition.
The correct (role-based) answer was “Lois tipped waiter
big”. Note that, while the model was trained in stories
where Lois appeared as an agent in other locations,
and had been trained to output that someone tipped
big with other agents, it had never been trained to
output the exact proposition “Lois tipped waiter big”.
Table 3 also presents all the story questions and their cor-
responding role-based answers.

In our second test, termed correlation violation, we
presented the models trained in the concept unrest-
ricted condition with stories where we inverted a
perfect statistical regularity of the story script. For
example, in the Restaurant script the value of the attri-
bute role in the second proposition determines the
value of the attribute role in the third proposition in
that if the restaurant was cheap it was nearby and if it
was expensive it was far away (see Table 1). To create a
Restaurant correlation violation story, we switched the
value of the attribute role in the third proposition (i.e. a
cheap restaurant was now far away, and an expensive
restaurant was now nearby). A role-based answer to
the questions of this test would use the input concept
in the third proposition to fill the attribute role, even
though it corresponds to a violation of a correlation
seen during training. Table 4 presents an example of a
Restaurant correlation violation story, its question and
corresponding role-based answer. In this example, the
model had been trained in Restaurant stories where
expensive restaurants are always far away and cheap res-
taurants are always nearby and the model is tested in a
Restaurant story where an expensive restaurant is close
by. The model is asked about the “distance” proposition

Table 3. Example of a concept violation story (restaurant). Lois
and Albert were restricted from instances of the Restaurant
script during training.
Story

1. (Lois) and (Albert) decided
restaurant

2. Restaurant quality (expensive)

3. Distance to restaurant (far)

4. (Lois) ordered {cheap-wine)

5. {Lois) paid bill

6. (Lois) tipped waiter (big)

7. Waiter gave change to (Lois)

Criteria

(Lois) and (Albert) decided
restaurant

Questions
decided

ordered
paid

tipped
gave

(Lois) ordered (cheap-wine)
(Lois) paid bill
(Lois) tipped waiter (big)
Waiter gave change to (Lois)
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Table 4. Example of a correlation violation story (restaurant).
Criteria

Story Questions

1. (Anne) and (Gary) decided restaurant
2. Restaurant quality (expensive)
3. Distance to restaurant (near)

4. (Anne) ordered (cheap-wine)
5. (Anne) paid bill

6. (Anne) tipped waiter (big)

7. Waiter gave change to (Anne)

distance  Distance to restaurant (near)

and the correct (role-based) answer is that the restaurant
is close by (i.e. “Distance to restaurant near”).

In our third test, termed shuffled propositions, we pre-
sented the models trained in the concept unrestricted
condition with stories where we randomised the order
of the propositions. Recall that in our stories there are
no repeated topic concepts. As a direct consequence, a
role-based answer to a question should use the concepts
of the proposition corresponding to each question to fill
its roles, ignoring the ordering of the propositions. Table
5 presents an example of a Restaurant shuffled prop-
ositions story, its questions and their corresponding
role-based answers. In this example, the model had
been trained in stories that followed the same order of
propositions as the Restaurant script (see Table 1). The
model was presented with sequences of propositions
that corresponded to a standard unrestricted Restaurant
story, with the only difference being that the order of the
propositions was randomised (e.g. the propositions in
Table 5 are exactly the same as the ones on Table 2),
so although the model had received all the individual
propositions of the story during training, the model
was never trained in the specific sequence being
tested. After receiving the propositions, the model was
asked about any of the topics of the story. For
example, when asked about the “quality” topic, the
correct (role-based) answer was the proposition “Restau-
rant quality expensive”. It is worth to note that in all our
tests the correct (role-based) answers required simply
filling the roles of the answer proposition with the con-
cepts that the model had received as input.

Table 5. Example of a shuffled propositions story (restaurant).
Story Questions Criteria

4. (Anne) ordered (cheap- decided (Anne) and (Gary) decided
wine) restaurant

5. (Anne) paid bill quality Restaurant quality
(expensive)

1. (Anne) and (Gary) decided distance Distance to restaurant (far)
restaurant

3. Distance to restaurant (far) ordered (Anne) ordered (cheap-

wine)

7. Waiter gave change to paid (Anne) paid bill
(Anne)

6. (Anne) tipped waiter (big) tipped (Anne) tipped waiter (big)

2. Restaurant quality gave Waiter gave change to

(expensive) (Anne)

3.1. Training

We trained two versions of the SG model, one in
1,000,000 randomly generated concept restricted
stories and another in 1,000,000 randomly generated
concept unrestricted stories. We also trained two ver-
sions of the Seg2se2+Attention model, one in 500,000
randomly generated concept restricted stories and
another in 500,000 randomly generated concept unrest-
ricted stories. We used the Nadam optimisation algor-
ithm (Dozat, 2016) with default learning parameters. All
our models were implemented in Keras (Chollet et al.,
2015) with TensorFlow backend (Abadi et al, 2016).
Full code for all simulations is available from https://
github.com/GuillermoPuebla/RelationReasonNN.

3.2. Results

For each of our tests, we created a dataset of 728 ran-
domly generated stories. This number corresponds to
the number of all possible concept violation stories,
which is the script with the lower number of possible
stories. For all tests we compared the proposition gener-
ated by the model with the role-based answer. We coded
the answer as correct (with a value of 1) if all the concept
fillers in the answer corresponded to the concept fillers in
the role-based answer and as a non-match (with a value
of 0) otherwise. Figure 4 shows the proportion of correct
answers per test and model. Recall that in our baseline
test we presented the models trained in the concept
unrestricted condition with concept unrestricted stories
and asked questions about all the propositions in the

-
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Figure 4. Accuracy per test and model. Both models perform
well in the baseline condition. Furthermore, their performance
was affected differentially in our critical conditions. The Story
Gestalt model was more susceptible to the concept violation
and correlation violation manipulations while the Seq2Seq
+Attention model was more susceptible to the correlation viola-
tion and shuffled proposition manipulations. As none of these
manipulations changed the relational structure of the task,
these results suggest that neither model was able to capture it
during training. Error bars are 95% confidence intervals.
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stories (see Table 2 for an example of a Restaurant base-
line story, its questions and corresponding correct
answers). Because the test stories came from exactly
the same distribution as the training stories this test is
akin to a recall test of the training dataset. As can be
appreciated in Figure 4, both models performed well in
our baseline test. It is noteworthy that the Seq2Seq
+Attention model showed a better baseline performance
than the SG model even though it was trained in half the
number of stories (accuracy of 0.96 vs. 0.92).

Recall that in our concept violation test we trained the
models in the concept restricted condition and then
tested them with stories where the agent-1, agent-2 or
the patient-theme roles were filled by the restricted con-
cepts." The questions consisted of all the topics of the
propositions in which the restricted concepts were
used and a correct (role-based) answer required using
the restricted concepts to fill the corresponding roles
(see Table 3 for an example of a Restaurant concept vio-
lation story, its questions and corresponding correct
answers). In this test, the SG model was unable to use
the concepts restricted during training to answer the
questions (accuracy of 0.08). Instead, the SG model
almost invariably filled the roles of the restricted con-
cepts with the most common concepts playing that
role during training, which is a direct replication of the
results of (St. John, 1992). For example, if the SG model
was presented with a story like the one in Table 3
where the roles agent-1 and agent-2 corresponded to
the restricted concepts “Lois” and “Albert”, the model
tended to output answers where the agent-1 and
agent-2 were any of the other unrestricted agents (e.g.
“Barbara” or “Clement”). The Seq2Seqg+Attention model
performed significantly better at this test, achieving a
slightly better level of accuracy than in the baseline
test (accuracy of 0.99). The attention mechanism seems
to allow this model to apply its word representations
to sequences where the words appeared in previously
unseen stories.

Recall that in our correlation violation test we pre-
sented the models trained in the concept unrestricted
condition with stories where we inverted a perfect stat-
istical regularity of the story script and asked about the
proposition that violated the perfect statistical regularity.
The correct (role-based) answer is required using the
input concept even though it violated a statistical corre-
lation from the training dataset. For example, because in
the Restaurant script expensive restaurants are always far
away, a Restaurant correlation violation story stated that
an expensive restaurant is close by and the correct
answer to the “distance” question was that the restaurant
is indeed close by (see Table 4). Importantly, both models
performed poorly in the correlation violation test, in
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other words, neither model was consistently able to cor-
rectly process texts that violated a perfect correlation
seen in the training dataset (accuracy of 0.165 and 0.23
for the SG and Seg2Seg+Attention models, respectively).
Such behaviour would seem quite unnatural for a human
reader as it would be analogous to say that my friend
John, who | just saw eating salad at the restaurant, ate
chicken just because I've only seen him eating chicken
in the restaurant in the past. Of course, it is possible to
achieve perfect performance in this test by training the
models in a corpus where all possible role-filler combi-
nations appear in several contexts (e.g. several “estab-
lishments” other than the restaurant that are cheap
and far away, cheap and close by, expensive and far
away and expensive and close by, see e.g. St. John,
1992).2 However, the point of the simulation is that it
shows that the inferences these models can make are
in strictly limited by the statistical structure of its training
corpus. It is noteworthy that the SG model achieved a
higher accuracy than Seq2Seg+Attention model in this
test (although both models performed quite poorly).
We suspect that the more powerful Seq2Seq-+Attention
model is more likely to overfit to a perfect correlation
in the dataset.

Recall that in our shuffled propositions test, we pre-
sented the models trained in the concept unrestricted
condition with concept unrestricted stories where the
order of the propositions was randomised. A correct
(role-based) answer is required to use the concepts of
the proposition corresponding to each question to fill
its roles, ignoring their ordering (see Table 5 for an
example). While the randomisation of the order of the
propositions affected both models, the SG model per-
formed significantly better than the Seq2Seqg-+Attention
model in this test (accuracy of 0.73 vs. 0.39). We hypoth-
esise that the attention mechanism is the main reason
for this difference in performance. Unfortunately,
because of the length of our stories, taking out the atten-
tion mechanism yields the Seq2Seqg+Attention model
unable to pass our baseline test (baseline performance
around 0.5), so for now we were not able to test our
hypothesis directly.

4. Simulation 2

Simulation 1 showed how a series of manipulations that
should not affect a model that learns a relational rep-
resentation of a story affects a classic and contemporary
neural network model of language processing. This
entails that neither model is learning a relation-based
representation of the story, but instead they are relying
on the statistical regularities of the training dataset to
answer the questions. A potential issue with Simulation
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1 is that the training objective of the task is rather indir-
ect: it demands to learn to find the sentence the probe
corresponds to from the test story. Arguably, this does
not necessarily require to learn relationships between
the objects and roles in the story to succeed at training
time (although humans seem to naturally do so in equiv-
alent situations Lake et al., 2019).

To address this potential issue, we adapted the orig-
inal task of St. John (1992) to probe for relational roles
directly. To accomplish this we added five new words
to the models’ vocabulary: agent-1, agent-2, attribute,
manner and patient. In the Story Gestalt model, these
words corresponded to new localist units in the question
layer and in the Seq2Seq+Attention model these words
were added to the Word2Vec embeddings (we used
the embeddings of the words agent and actor for
agent-1 and agent-2, respectively). We trained both
models by presenting stories and asking about a
specific role in the story. The models had to answer
with the concept word that played that role in the
story (see Table 6). In the SG model, this mean to activate
only the corresponding concept unit in the answer layer
(as opposed to activate a group of units representing a
sentence), while in the Seq2Seq+Attention model this
meant to return a single concept word. Because in our
stories the roles are specified at sentence level only a
few roles remain constant in each story. In particular,
the roles agent-1 and agent-2 are always filled by a
single character throughout a story. This means that it
is possible to test for relational generalisation in the
models by training these roles in a set of characters
and test in a disjoint set. Importantly, these characters
are seen during training across all scripts, just not
filling the agent-1 and agent-2 roles. For this manipu-
lation, we created four new characters. The characters
Will and Tina never filled the agent-1 role but were free
to fill the agent-2 role and the characters Alex and Kate
followed the opposite pattern.

Additionally, we sought to measure the models’
answers to direct relational questions when there was
a strong distribution shift at test time with known con-
cepts like in the correlation violation condition of Simu-
lation 1. For this we trained the models to answer
direct relational questions to the role involved in the

Table 6. Example of a relational probe story (restaurant).

Story Questions Criteria
1. (Anne) and (Gary) decided restaurant agent-1 (Anne)
2. Restaurant quality (expensive) agent-2 (Gary)
3. Distance to restaurant (near) attribute (near)

4. (Anne) ordered (cheap-wine)
5. (Anne) paid bill

6. (Anne) tipped waiter (big)

7. Waiter gave change to (Anne)

correlation violation manipulation while maintaining
the same statistical regularities of Simulation 1. For
example, in the restaurant stories we trained the
models to answer a question about the attribute role in
the third proposition. The models had to answer with
the concept that filled that role (i.e. whether the restau-
rant was “near” or “far” which was perfectly predictable
from the quality of the restaurant, see Table 1). At test
time the models were tested in a story where the filler
of the role breaks the perfect correlation in the training
distribution. For instance, the models were asked about
the attribute role in the third proposition in a story
where the restaurant was close by but it was expensive
instead of cheap (see Table 6). Because the correlation
violation manipulation is necessarily script-type specific,
so it is the specific role asked about for each story type
(see Appendix 2 for all the deterministic rules used in
the correlation manipulation for each script type).

4.1. Training

We trained the models on randomly generated batches.
A single batch contained three story-question pairs,
where the story across pairs was the same. The first ques-
tion asked about the agent-1 role, the second about the
agent-2 role and the third about the script-type-specific
role. We trained the SG model in 200,000 batches and
the Seq2Seq+Attention model in 30,000. Both models
achieved ceiling performance during training. We used
the same optimisation algorithm and training par-
ameters as in Simulation 1.

4.2. Results

We tested both models on 536 batches of stories where
the filers of the roles corresponded to the usual fillers
seen during training (baseline condition) and on 536
batches where the filers of the roles corresponded to
the role-filler combinations withheld during training
(relational condition). As can be appreciated in Figure
5, both models achieved good performance when the
filers of the roles corresponded to the usual fillers seen
during training. For example, both models would
answer correctly to a question about the role agent-1
when Kate played that role (accuracy of 1.0 in the base-
line condition for the agent-1 role). It is worth noting,
however, that the Seq2Seqg+Attention model performed
slightly worse than the SG model in the baseline con-
dition for the agent-2 role (accuracy of 0.74 vs. 1.0). It is
also clear that both models performed worse when the
agent-1 and agent-2 roles were filled by concepts that
did not play those roles during training. In this case the
Seq2Seqg+Attention model performs slightly better than
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Figure 5. Accuracy per condition, role and model. Both models perform reasonably well in the baseline condition for all roles. For both
models there is a significant drop in accuracy when the agent-1 and agent-2 roles are filled with concepts different than those used in
training (relational condition). For the correlation-violating filler the drop in accuracy is more pronounced for the Seq2Seq-+Attention
model although is still appreciable in the SG model. As in Simulation 2, we probed for relational roles directly, these results strengthen
the conclusion that neither model has grasped the relational structure of the task. Error bars are 95% confidence intervals.

the SG model (accuracy of 0.2 vs. 0.0 for the agent-1 role
and 0.52 vs. 0.18 for the agent-2 role).

Regarding the script-type-specific role, our results
show that both models perform well in the baseline con-
dition (accuracy of 0.96 for both models). In contrast, the
Seq2Seg+Attention model performs significantly worse
than the SG model in the relational condition (accuracy
of 0.02 vs. 0.73). Note that unlike the agent-1 and
agent-2 roles there is not a sharp division in the set of
fillers of the baseline and relational conditions of the
script-type-specific role. Instead, the main challenge of
this test is to answer with the correct filler even though
there is a strong distribution shift in the test stories.
The poor performance of the Seq2Seq+Attention
model in this task suggests that its comparatively
better performance to the SG model in the agent-1
and agent-2 roles does not come from a more relational
representation of the stories per se. The fact that a classic
connectionist model performed better than a modern
deep neural network in this task highlights how
different experimental manipulations have different
(and sometimes surprising) effects on different architec-
tures, which necessitates to perform several tests when
trying to characterise the relational reasoning capabili-
ties of different models.

Overall, the results of this simulation mimic those of
Simulation 1. It is not the case that the structure of the
task and the training objective on Simulation 1 was the
main factor that lead to the non-relational solution
found by the models, as in this simulation we showed
that directly probing for relational roles does not seem
to improve the relational generalisation capabilities of
either model.

5. General discussion

We tested the relational processing capabilities of the SG
model and the Seg2Seq+Attention model, a classic con-
nectionist model of text comprehension and a contem-
porary language processing deep learning architecture,
respectively. In Simulation 1, we varied statistical proper-
ties of the test stories while keeping their relational struc-
ture intact. Our results show that both models are able to
use the statistical regularities of the training data to learn
to answer questions correctly for stories that came from
the same distribution as the training corpus. More impor-
tantly, however, our simulations demonstrate that the
performance of both models is severely affected when
the statistical properties of the test stories differ from
those in the training corpus. Because we kept the rela-
tional structure of the test stories intact, our results
show clearly that these models are not using the rela-
tional information of the stories to answer the questions,
but instead they are relying on the statistical regularities
of the training dataset. In Simulation 2, we showed that
this is true even when the models are asked directly
about relational roles. In addition, although the technical
advances of Seq2Seq+Attention model made it able to
pass our concept violation test in Simulation 1, this per-
formance did not transfer to the direct relational ques-
tions of Simulation 2. Overall, neither model showed a
better capacity to deal with relational reasoning tasks,
as both models performed worse than the other in
some condition of our simulations.

It is worth noting that the Seq2Seq+Attention model
has been highly influential in the machine reading com-
prehension (MRC) literature. Attention mechanisms are a
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key component of virtually all mayor deep learning MRC
architectures (for a review see Zhang et al., 2019). This lit-
erature has also produced a set of databases to test the
reading comprehension capabilities of these systems.
For example, the popular bAbl dataset (Weston et al.,
2016) consists of 20 tasks aimed to test basic forms of
logical understating, such as deduction, induction, com-
pound co-reference and many more. The texts and ques-
tions are generated automatically from a simulation of
characters moving around and manipulating objects in
a simple environment. Another popular dataset, the
Stanford Question Answering Dataset (SQUAD) (Rajpur-
kar et al., 2016), consists of a large set of questions gen-
erated by humans on a collection of passages extracted
from Wikipedia. The answer to each question is a section
of text from the corresponding article. Interestingly,
different researchers have shown that these kinds of
datasets are less rigorous tests of reading comprehen-
sion than previously thought. For example, Kaushik and
Lipton (2018) showed that deep learning architectures
can perform surprisingly well in many MRC datasets
(including bAbI) even without seeing either the input
text or the question. Another example is Jia and Liang
(2017), who showed that deep learning models trained
on SQUAD are susceptible to adversarial attacks that
add untrained sentences, that share words with the
correct answer, to the test texts (Jia & Liang, 2017).
Notably, ungrammatical distractor sentences have a
stronger adversarial effect than grammatical ones,
which suggest that these models are relying in a superfi-
cial strategy to solve the reading comprehension task.
We believe that highly controlled experiments such as
the ones performed in the present research are necess-
ary to evaluate neural network models (deep or other-
wise) of language processing. Fortunately, some MRC
researchers seem to taking this direction (Dunietz et al.,
2020).

Our results are highly consistent with the findings of
Lake and Baroni (2018) and Loula et al. (2018), who
found that sequence-to-sequence models (with and
without attention mechanism) failed at a command-to-
action translation task that required composing the
meaning of new commands formed by using known
primitive concepts combined in ways unseen during
training. Even in the minority of cases their models
showed behaviour that seemed compositional, they
did it in a very non-human way (e.g. in one test their
best performing model could correctly produce the
action sequences corresponding to the instructions
“turn left”, and “jump right and turn left twice”, but not
the one corresponding to “jump right and turn left”).
Hupkes et al. (2019) showed comparable results in an
artificial grammar learning task with a Seq2Seq

+Attention model, a Convolutional Seq2Seq model and
a Transformer model.

Truly compositional behaviour requires independent
representations of objects and roles that can be bound
together dynamically (i.e. compositional representations
require a solution to the binding problem). In particular,
compositionality results when a system can recursively
apply predicate representations over other predicate
representation (e.g. loves(John, loves(Mary, Richard)), for
discussions see Fodor, 1975; Marcus, 2001; Martin &
Doumas, 2019; Tenenbaum et al, 2011). We have
shown that traditional PDP models (including current
deep learning models) do not, as instantiated, perform
dynamic binding. As a consequence, these models sys-
tematically fail when a task requires violating well
learned statistical associations. As such, while there are
certainly instances wherein the representations that
these models learn will produce the same results as com-
positional representations, the resulting representations
are not truly compositional.

One of the most important evolutionary advantages
of relational reasoning is the ability to base inferences
on relational roles disregarding the content of their argu-
ments. This capacity allows us to make relational gener-
alisations to completely new inputs (Penn et al., 2008). As
traditional neural networks can’t, by definition, make use
of untrained units to perform successfully in given a task
(Marcus, 1998), these models rely on spanning the input
space to achieve good generalisation (see Doumas &
Hummel, 2012). Word embeddings like Word2Vec
(Mikolov et al., 2013, cf. Miikkulainen and Dyer (1991))
can be seen as a technique to deal with this phenom-
enon. Even though in our Seq2Seq+Attention model
some concepts were not trained in some contexts, the
vector representation of all concepts of a certain type
(e.g. agents like “Anne” and “Lois”) had similar represen-
tations because they appear in similar contexts in the
Word2Vec training dataset. Another strategy to deal
with new concepts (or new combinations of concepts)
involves directly spanning the input space so that there
are no truly new inputs to the model. For example, it is
standard practice in neural networks research to make
random splits of the data to obtain the training and
test datasets. When the data are instantiations of rela-
tional structures (as in our tasks) this makes very likely
that most objects appear as the fillers of most relational
roles in the training dataset, which transforms the rela-
tional generalisation problem in a interpolation
problem, where the correct answer corresponds to an
intermediate answer between two known cases (see
Lake & Baroni, 2018, for a demonstration of the effects
of random versus systematic splits on the training/test
datasets). It is for this reason that traditional PDP



models (e.g. O'reilly & Busby, 2002) and contemporary
deep learning models (e.g. Hill et al,, 2019) targeted to
solve relational reasoning tasks rely on spanning the
input space in order to achieve high levels of generalis-
ation. Importantly, none of these techniques are sol-
utions to the deeper problem of generalising to new
concepts or new combination of concepts based on
abstract relations.

However, all of the above is not to say that neural
network models cannot, in principle, integrate oper-
ations that allow them to implement a truly symbolic
dynamic binding system. For example, the symbolic-con-
nectionist models SHRUTI (Shastri & Ajjanagadde, 1993),
LISA (Hummel & Holyoak, 1997, 2003), and DORA
(Doumas et al., 2008; Doumas & Martin, 2018), use time
as a binding signal that allows for role-filler indepen-
dence and dynamic binding.

Interestingly, there has been a resurgence of interest
on the binding problem in the neural networks (Besold
et al, 2017; Franklin et al, 2019) and computational
neuroscience literature (Fitz et al, 2019; Pina et al,
2018). Moreover, relational learning and reasoning
have become a core topic on deep learning research
(Bahdanau et al.,, 2018; Battaglia et al., 2018; Gre et al.,
2015; Hill et al., 2019; Santoro et al., 2017) with some
deep learning architectures starting to implement oper-
ations traditionally associated with symbolic processing
such as a content-addressable memory (Graves et al,
2016; Santoro et al, 2016; Weston et al., 2014).
Whether these non-traditional neural network architec-
tures are capable of relational reasoning remains an
open question that we plan to address in future research.
Our results suggest, however, that for a model to suc-
cessfully account for all aspects of relational processing,
it will need to implement a solution to the binding
problem.

Finally, while we herein illustrate the limitations of tra-
ditional neural networks when facing relational reason-
ing tasks, we hope that the results will motivate
cognitive scientists and machine learning researchers
to tackle the problem of relational learning and reason-
ing by first tackling the problem of dynamic binding. In
the domain of neural network models, doing so will
most likely will require us to go beyond the architectural
constraints of traditional neural networks.

Notes

1. Although these concepts were never used the in the
context of each specific script, they were seen in the
training dataset as a whole. By definition, the output of
any traditional neural network to a completely new
(unseen) concept depends on its initial weights. Given
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that these weights are initialised randomly, the behav-
iour of a neural network regarding an unseen input will
be essentially random (Marcus, 1998).

2. We actually run that simulation and, unsurprisingly,
obtained perfect “generalisation”.

Acknowledgments

The work of Guillermo Puebla was supported by the PhD Scho-
larship Program of CONICYT, Chile. Andrea E. Martin was sup-
ported by the Max Planck Research Group “Language and
Computation in Neural Systems” and by the Netherlands
Organization for Scientific Research (Grant 016.Vidi.188.029).
We thank Hugh Rabagliati for his comments on earlier versions
of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The work of Guillermo Puebla was supported by the PhD Scho-
larship Program of CONICYT, Chile. Andrea E. Martin was sup-
ported by the Max Planck Research Group “Language and
Computation in Neural Systems” and by the Netherlands
Organization for Scientific Research (Grant 016.Vidi.188.029).

ORCID

Guillermo Puebla (= http://orcid.org/0000-0001-7002-7776
Andrea E. Martin (2 http://orcid.org/0000-0002-3395-7234
Leonidas A. A. Doumas 2 http://orcid.org/0000-0002-4048-6282

References

Abadi, M., Barham, P., Chen, J,, Chen, Z, Davis, A, Dean, J,
Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M.,
Levenberg, J., Monga, R, Moore, S., Murray, D. G., Steiner,
B., Tucker, P., Vasudevan, V. Warden, P, ... Zheng, X.
(2016). Tensorflow: A system for large-scale machine learn-
ing. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI'16)
(pp. 265-284).

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine trans-
lation by jointly learning to align and translate. In
Proceedings of ICLR Conference Track, San Diego, CA.

Bahdanau, D., Murty, S., Noukhovitch, M., Nguyen, T. H., de Vries,
H., & Courville, A. (2018). Systematic generalization: What is
required and can it be learned? arXiv preprint arXiv:1811.
12889.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A.,
Zambaldi, V. Malinowski, M., Tacchetti, A, Raposo, D.
Santoro, A., Faulkner, R., Guilcehre, C, Song, F., Ballard, A,
Gilmer, J, Dahl, G. Vaswani, A, Allen, K, Nash, C,
Langston, V. ... Pascanu, R. (2018). Relational inductive
biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261.


http://orcid.org/0000-0001-7002-7776
http://orcid.org/0000-0002-3395-7234
http://orcid.org/0000-0002-4048-6282
http://arXiv:1811.12889
http://arXiv:1811.12889

252 (&) G.PUEBLAETAL.

Besold, T. R, d'Avila, A.,, Bader, S., Bowman, H., Domingos, P.,
Hitzler, P., Kiihnberger, K., Lamb, L. C,, Lowd, D., Machado,
P. de Penning, L., Pinkas, G. Poon, H., & Zaverucha, G.
(2017). Neural-symbolic learning and reasoning: A survey
and interpretation. arXiv preprint arXiv:1711.03902.

Biederman, I. (1987). Recognition-by-components: A theory of
human image understanding. Psychological Review, 94(2),
115-147. https://doi.org/10.1037/0033-295X.94.2.115

Chen, D,, Lu, H., & Holyoak, K. J. (2017). Generative inferences
based on learned relations. Cognitive Science, 41, 1062-
1092. https://doi.org/10.1111/cogs.12455

Chollet, F., & and others. (2015). Keras. https://keras.io.

Christie, S., & Gentner, D. (2010). Where hypotheses come from:
Learning new relations by structural alignment. Journal of
Cognition and Development, 11(3), 356-373. https://doi.org/
10.1080/15248371003700015

Doumas, L. A.,, & Hummel, J. E. (2005). Approaches to modeling
human mental representations: What works, what doesn’t
and why. In K. J. Holyoak & R. G. Morrison (Eds.), The
Cambridge handbook of thinking and reasoning (pp. 73—
94). Cambridge: Cambridge University Press.

Doumas, L. A, & Hummel, J. E. (2012). Computational models of
higher cognition. In Holyoak, K. J., & Morrison, R. G. (Eds.). The
Oxford handbook of thinking and reasoning (pp. 52-66).
Oxford University Press.

Doumas, L. A, & Hummel, J. E. (2013). Comparison and mapping
facilitate relation discovery and predication. PloS One, 8(6),
Article e63889. https://doi.org/10.1371/journal.pone.0063889

Doumas, L. A, Hummel, J. E,, & Sandhofer, C. M. (2008). A theory
of the discovery and predication of relational concepts.
Psychological Review, 115(1), 1-43. https://doi.org/10.1037/
0033-295X.115.1.1

Doumas, L. A, & Martin, A. E. (2018). Learning structured rep-
resentations from experience. Psychology of Learning and
Motivation, 69, 165-203. https://doi.org/10.1016/bs.plm.
2018.10.002

Dozat, T. (2016). Incorporating Nesterov momentum into Adam.
In In Proceedings of ICLR Conference Track, Caribe Hilton,
San Juan, Puerto Rico.

Dunietz, J., Burnham, G., Bharadwaj, A., Chu-Carroll, J., Rambow,
0., & Ferrucci, D. (2020). To test machine comprehension,
start by defining comprehension. arXiv preprint arXiv:2005.
01525.

Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). The struc-
ture-mapping engine: Algorithm and examples. Artificial
Intelligence, 41(1), 1-63. https://doi.org/10.1016/0004-3702
(89)90077-5

Fitz, H., Uhlmann, M., Duarte, R,, Hagoort, P., & Petersson, K. M.
(2019). Neuronal memory for language processing. bioRxiv
546325.

Fodor, J. A. (1975). The language of thought (Vol. 5). Harvard
University Press.

Forbus, K. D., Liang, C., & Rabkina, . (2017). Representation and
computation in cognitive models. Topics in Cognitive Science,
9(3), 694-718. https://doi.org/10.1111/tops.2017.9.issue-3

Franklin, N.,, Norman, K. A, Ranganath, C, Zacks, J. M., &
Gershman, S. J. (2019). Structured event memory: A neuro-
symbolic model of event cognition. BioRxiv 541607.

Gentner, D. (2016). Language as cognitive tool kit: How
language  supports  relational  thought.  American
Psychologist, 71(8), 650-657. https://doi.org/10.1037/
amp0000082

Graves, A, & Schmidhuber, J. (2005). Framewise phoneme
classification with bidirectional LSTM and other neural
network architectures. Neural Networks, 18(5-6), 602-610.
https://doi.org/10.1016/j.neunet.2005.06.042

Graves, A, Wayne, G., Reynolds, M., Harley, T., Danihelka, I,
Grabska-Barwinska, A., Colmenarejo, S. G., Grefenstette, E.,
Ramalho, T., Agapiou, J., Badia, A. P, Hermann, K., Zwols, Y.,
Ostrovski, G., Cain, A, King, H., Summerfield, C., Blunsom,
P., Kavukcuoglu, K., & Hassabis, D. (2016). Hybrid computing
using a neural network with dynamic external memory.
Nature, 538(7626), 471-476. https://doi.org/10.1038/
nature20101

Gre, K, Srivastava, R. K., & Schmidhuber, J. (2015). Binding via
reconstruction clustering. arXiv preprint arXiv:1511.06418.

Halford, G. S., Wilson, W. H., & Phillips, S. (1998). Processing
capacity defined by relational complexity: Implications for
comparative, developmental, and cognitive psychology.
Behavioral and Brain Sciences, 21(6), 803-831. https://doi.
org/10.1017/5S0140525X98001769

Hill, F., Santoro, A., Barrett, D., Morcos, A., & Lillicrap, T. (2019).
Learning to make analogies by contrasting abstract rela-
tional structure. In International conference on learning
representations, New Orleans, LA.

Holyoak, K. J. (2012). Analogy and relational reasoning.
In Holyoak, K. J., & Morrison, R. G. (Eds.). The Oxford hand-
book of thinking and reasoning (pp. 234-259). Oxford
University Press.

Hummel, J. E,, & Holyoak, K. J. (1997). Distributed represen-
tations of structure: A theory of analogical access and
mapping. Psychological Review, 104(3), 427-466. https://doi.
org/10.1037/0033-295X.104.3.427

Hummel, J. E.,, & Holyoak, K. J. (2003). A symbolic-connectionist
theory of relational inference and generalization.
Psychological Review, 110(2), 220-264. https://doi.org/10.
1037/0033-295X.110.2.220

Hupkes, D., Dankers, V., Mul, M., & Bruni, E. (2019). The compo-
sitionality of neural networks: Integrating symbolism and
connectionism. arXiv preprint arXiv:1908.08351.

Jia, R, & Liang, P. (2017). . Adversarial examples for evaluating
reading comprehension systems. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language
Processing (pp. 2021-2031). Copenhagen, Denmark.

Kaushik, D., & Lipton, Z. C. (2018, October-November). How
much reading does reading comprehension require? A criti-
cal investigation of popular benchmarks. In Proceedings of
the 2018 conference on empirical methods in natural language
processing (pp. 5010-5015). Association for Computational
Linguistics. https://www.aclweb.org/anthology/D18-1546

Kollias, P., & McClelland, J. L. (2013). Context, cortex, and associ-
ations: A connectionist developmental approach to verbal
analogies. Frontiers in Psychology, 4, 857. https://doi.org/10.
3389/fpsyg.2013.00857

Lake, B. M., & Baroni, M. (2018). Generalization without systema-
ticity: On the compositional skills of sequence-to-sequence
recurrent networks. Proceedings of the 35 th International
Conference on Machine Learning, Stockholm, Sweden.

Lake, B. M, Linzen, T, & Baroni, M. (2019). Human few-shot
learning of compositional instructions. In A. K. Goel,
C. M. Seifert, & C. Freksa (Eds.), Proceedings of the 41st
annual conference of the cognitive science society
(pp. 611-617). Cognitive Science Society. Montreal, QB:
Cognitive Science Society.


https://doi.org/https://doi.org/10.1037/0033-295X.94.2.115
https://doi.org/https://doi.org/10.1111/cogs.12455
https://keras.io
https://doi.org/https://doi.org/10.1080/15248371003700015
https://doi.org/https://doi.org/10.1080/15248371003700015
https://doi.org/https://doi.org/10.1371/journal.pone.0063889
https://doi.org/https://doi.org/10.1037/0033-295X.115.1.1
https://doi.org/https://doi.org/10.1037/0033-295X.115.1.1
https://doi.org/https://doi.org/10.1016/bs.plm.2018.10.002
https://doi.org/https://doi.org/10.1016/bs.plm.2018.10.002
http://arXiv:2005.01525
http://arXiv:2005.01525
https://doi.org/https://doi.org/10.1016/0004-3702(89)90077-5
https://doi.org/https://doi.org/10.1016/0004-3702(89)90077-5
https://doi.org/https://doi.org/10.1111/tops.2017.9.issue-3
https://doi.org/https://doi.org/10.1037/amp0000082
https://doi.org/https://doi.org/10.1037/amp0000082
https://doi.org/https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/https://doi.org/10.1038/nature20101
https://doi.org/https://doi.org/10.1038/nature20101
https://doi.org/https://doi.org/10.1017/S0140525X98001769
https://doi.org/https://doi.org/10.1017/S0140525X98001769
https://doi.org/https://doi.org/10.1037/0033-295X.104.3.427
https://doi.org/https://doi.org/10.1037/0033-295X.104.3.427
https://doi.org/https://doi.org/10.1037/0033-295X.110.2.220
https://doi.org/https://doi.org/10.1037/0033-295X.110.2.220
http://arXiv:1908.08351
https://www.aclweb.org/anthology/D18-1546
https://doi.org/https://doi.org/10.3389/fpsyg.2013.00857
https://doi.org/https://doi.org/10.3389/fpsyg.2013.00857

Leech, R., Mareschal, D., & Cooper, R. P. (2008). Analogy as rela-
tional priming: A developmental and computational per-
spective on the origins of a complex cognitive skill.
Behavioral and Brain Sciences, 31(4), 357-378. https://doi.
org/10.1017/50140525X08004469

Loula, J,, Baroni, M., & Lake, B. M. (2018). Rearranging the fam-
iliar: Testing compositional generalization in recurrent net-
works. arXiv preprint arXiv:1807.07545.

Lu, H., Chen, D., & Holyoak, K. J. (2012). Bayesian analogy with
relational transformations. Psychological Review, 119(3),
617-648. https://doi.org/10.1037/a0028719

Lu, H., Wu, Y. N., & Holyoak, K. J. (2019). Emergence of analogy
from relation learning. Proceedings of the National Academy
of Sciences, 116(10), 4176-4181. https://doi.org/10.1073/
pnas.1814779116

Marcus, G. F. (1998). Rethinking eliminative connectionism.
Cognitive Psychology, 37(3), 243-282. https://doi.org/10.
1006/cogp.1998.0694

Marcus, G. F. (2001). The algebraic mind: Integrating connection-
ism and cognitive science. MIT Press.

Martin, A. E., & Doumas, L. A. (2019). Tensors and composition-
ality in neural systems. Philosophical Transactions of the Royal
Society B: Biological Sciences, 375(1791), Article 20190306.
https://doi.org/10.1098/rstb.2019.0306

Medin, D. L., Goldstone, R. L., & Gentner, D. (1993). Respects for
similarity. Psychological Review, 100(2), 254-278. https://doi.
org/10.1037/0033-295X.100.2.254

Miikkulainen, R., & Dyer, M. G. (1991). Natural language proces-
sing with modular PDP networks and distributed lexicon.
Cognitive Science, 15(3), 343-399. https://doi.org/10.1207/
s15516709cog1503_2

Mikolov, T., Sutskever, I, Chen, K, Corrado, G. S., & Dean, J.
(2013). Distributed representations of words and phrases
and their compositionality. In Advances in neural infor-
mation processing systems (pp. 3111-3119). Stateline, NV.

Nematzadeh, A, Meylan, S. C,, & Griffiths, T. L. (2017). Evaluating
vector-space models of word representation, or, the unrea-
sonable effectiveness of counting words near other words.
In G. Gunzelmann, A. Howes, T. Tenbrink, & E. J. Davelaar
(Eds.), Proceedings of the 39th Annual Conference of the
Cognitive Science Society (pp. 859-864). Austin, TX:
Cognitive Science Society.

O'reilly, R. C, & Busby, R. S. (2002). Generalizable relational
binding from coarse-coded distributed representations. In
Advances in neural information processing systems (pp. 75-
82). British Columbia, Canada.

Penn, D. C, Holyoak, K. J., & Povinelli, D. J. (2008). Darwin’s
mistake: Explaining the discontinuity between human and
nonhuman minds. Behavioral and Brain Sciences, 31(2),
109-130. https://doi.org/10.1017/50140525X08003543

Pina, J. E,, Bodner, M., & Ermentrout, B. (2018). Oscillations in
working memory and neural binding: A mechanism for mul-
tiple memories and their interactions. PLoS Computational
Biology, 14(11), Article e1006517. https://doi.org/10.1371/
journal.pcbi.1006517

Rabovsky, M., Hansen, S. S., & McClelland, J. L. (2018). Modelling
the N400 brain potential as change in a probabilistic rep-
resentation of meaning. Nature Human Behaviour, 2(9),
693-705. https://doi.org/10.1038/541562-018-0406-4

Rabovsky, M., & McClelland, J. L. (2020). Quasi-compositional
mapping from form to meaning: A neural network-based
approach to capturing neural responses during human

LANGUAGE, COGNITION AND NEUROSCIENCE . 253

language comprehension. Philosophical Transactions of the
Royal Society B: Biological Sciences, 375(1791), Article
20190313. https://doi.org/10.1098/rstb.2019.0313

Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). SQUAD:
100,000+ Questions for Machine Comprehension of Text
Squad: 100,000+ questions for machine comprehension of
text. In J. Su, X. Carreras, & K. Duh (Eds.), Proceedings of the
2016 conference on empirical methods in natural language
processing, EMNLP 2016, Austin, Texas, USA, November 1-4,
2016 (pp. 2383-2392). The Association for Computational
Linguistics. https://doi.org/10.18653/v1/d16-1264

Rogers, T. T., & McClelland, J. L. (2008). Précis of semantic cogni-
tion: A parallel distributed processing approach. Behavioral
and Brain Sciences, 31(6), 689-714. https://doi.org/10.1017/
S0140525X0800589X

Rogers, T. T., & McClelland, J. L. (2014). Parallel distributed pro-
cessing at 25: Further explorations in the microstructure of
cognition. Cognitive Science, 38(6), 1024-1077. https://doi.
org/10.1111/cogs.2014.38.issue-6

Rohde, D. L. (2002). A connectionist model of sentence compre-
hension and production [Unpublished doctoral dissertation].
School of Computer Science, Carnegie Mellon University.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., & Lillicrap, T.
(2016). Meta-learning with memory-augmented neural net-
works. In International conference on machine learning
(pp. 1842-1850). New York City, NY.

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M., Pascanu,
R, Battaglia, P, & Lillicrap, T. (2017). A simple neural
network module for relational reasoning. In Advances in
neural information processing systems (pp. 4967-4976).
Long Beach, CA.

Shastri, L., & Ajjanagadde, V. (1993). From simple associations to
systematic reasoning: A connectionist representation of
rules, variables and dynamic bindings using temporal syn-
chrony. Behavioral and Brain Sciences, 16(3), 417-451.
https://doi.org/10.1017/50140525X00030910

St. John, M. F. (1992). The story gestalt: A model of knowledge-
intensive processes in text comprehension. Cognitive Science,
16(2), 271-306. https://doi.org/10.1207/s15516709cog1602_5

St. John, M. F.,, & McClelland, J. L. (1990). Learning and applying
contextual constraints in sentence comprehension. Artificial
Intelligence, 46(1-2), 217-257. https://doi.org/10.1016/0004-
3702(90)90008-N

Tenenbaum, J. B, Kemp, C, Griffiths, T. L., & Goodman, N. D.
(2011). How to grow a mind: Statistics, structure, and abstrac-
tion. Science, 331(6022), 1279-1285. https://doi.org/10.1126/
science.1192788

Van der Velde, F., & De Kamps, M. (2006). Neural blackboard
architectures of combinatorial structures in cognition.
Behavioral and Brain Sciences, 29(1), 37-70. https://doi.org/
10.1017/50140525X06009022

Weston, J., Bordes, A., Chopra, S., & Mikolov, T. (2016). Towards
Al-complete question answering: A set of prerequisite toy
tasks. In Y. Bengio, & Y. LeCun (Eds.), 4th international confer-
ence on learning representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, conference track proceedings. http://arxiv.
org/abs/1502.05698.

Weston, J., Chopra, S., & Bordes, A. (2014). Memory networks.
arXiv preprint arXiv:1410.3916.

Wu, Y., Schuster, M., Chen, Z, Le, Q. V., Norouzi, M., Macherey,
W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J.,
Shah, A, Johnson, M., Liu, X., Kaiser, t., Gouws, S., Kato, Y.,


https://doi.org/https://doi.org/10.1017/S0140525X08004469
https://doi.org/https://doi.org/10.1017/S0140525X08004469
http://arXiv:1807.07545
https://doi.org/https://doi.org/10.1037/a0028719
https://doi.org/https://doi.org/10.1073/pnas.1814779116
https://doi.org/https://doi.org/10.1073/pnas.1814779116
https://doi.org/https://doi.org/10.1006/cogp.1998.0694
https://doi.org/https://doi.org/10.1006/cogp.1998.0694
https://doi.org/https://doi.org/10.1098/rstb.2019.0306
https://doi.org/https://doi.org/10.1037/0033-295X.100.2.254
https://doi.org/https://doi.org/10.1037/0033-295X.100.2.254
https://doi.org/https://doi.org/10.1207/s15516709cog1503_2
https://doi.org/https://doi.org/10.1207/s15516709cog1503_2
https://doi.org/https://doi.org/10.1017/S0140525X08003543
https://doi.org/https://doi.org/10.1371/journal.pcbi.1006517
https://doi.org/https://doi.org/10.1371/journal.pcbi.1006517
https://doi.org/https://doi.org/10.1038/s41562-018-0406-4
https://doi.org/https://doi.org/10.1098/rstb.2019.0313
https://doi.org/10.18653/v1/d16-1264
https://doi.org/https://doi.org/10.1017/S0140525X0800589X
https://doi.org/https://doi.org/10.1017/S0140525X0800589X
https://doi.org/https://doi.org/10.1111/cogs.2014.38.issue-6
https://doi.org/https://doi.org/10.1111/cogs.2014.38.issue-6
https://doi.org/https://doi.org/10.1017/S0140525X00030910
https://doi.org/https://doi.org/10.1207/s15516709cog1602_5
https://doi.org/https://doi.org/10.1016/0004-3702(90)90008-N
https://doi.org/https://doi.org/10.1016/0004-3702(90)90008-N
https://doi.org/https://doi.org/10.1126/science.1192788
https://doi.org/https://doi.org/10.1126/science.1192788
https://doi.org/https://doi.org/10.1017/S0140525X06009022
https://doi.org/https://doi.org/10.1017/S0140525X06009022
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698
http://arXiv:1410.3916

254 (&) G.PUEBLAETAL.

Kudo, T., Kazawa, H., ... Dean, J. (2016). Google’s neural
machine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Yuan, A. (2017). Domain-general learning of neural network
models to solve analogy tasks-a large-scale simulation. In

G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.),
Proceedings of the 39th annual conference of the cognitive
science society (pp. 2081-2086). Cognitive Science Society.

Zhang, X, Yang, A, Li, S, & Wang, Y. (2019). Machine reading
comprehension: A literature review. arXiv preprint
arXiv:1907.01686.


http://arXiv:1907.01686

	Abstract
	1. Introduction
	2. Models
	2.1. Story Gestalt model
	2.2. Sequence-to-sequence with attention model

	3. Simulation 1
	3.1. Training
	3.2. Results

	4. Simulation 2
	4.1. Training
	4.2. Results

	5. General discussion
	Notes
	Acknowledgments
	Disclosure statement
	ORCID
	References

