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A B S T R A C T   

Alpha-band oscillatory activity is involved in modulating memory and attention. However, few studies have 
investigated individual differences in oscillatory activity during the encoding of emotional memory, particularly 
in sleep paradigms where sleep is thought to play an active role in memory consolidation. The current study 
aimed to address the question of whether individual alpha frequency (IAF) modulates the consolidation of 
declarative memory across periods of sleep and wake. 22 participants aged 18–41 years (mean age = 25.77) 
viewed 120 emotionally valenced images (positive, negative, neutral) and completed a baseline memory task 
before a 2hr afternoon sleep opportunity and an equivalent period of wake. Following the sleep and wake 
conditions, participants were required to distinguish between 120 learned (target) images and 120 new (dis-
tractor) images. This method allowed us to delineate the role of different oscillatory components of sleep and 
wake states in the emotional modulation of memory. Linear mixed-effects models revealed interactions between 
IAF, rapid eye movement sleep theta power, and slow-wave sleep slow oscillatory density on memory outcomes. 
These results highlight the importance of individual factors in the EEG in modulating oscillatory-related memory 
consolidation and subsequent behavioural outcomes and test predictions proposed by models of sleep-based 
memory consolidation.   

1. Introduction 

The neural basis of sleep-associated memory consolidation has 
garnered significant attention within cognitive neuroscience (for re-
view, see Rasch and Born, 2013), with it now being well established that 
sleep benefits hippocampus-dependent (i.e., declarative) memory 
(Ellenbogen et al., 2006; Klinzing et al., 2016). However, despite the 
large body of literature detailing the mechanisms underpinning the role 
of sleep in memory, only a small portion of studies have investigated 
individual differences in encoding and sleep-related memory processing 
in humans (e.g., Fenn and Hambrick, 2012; Schabus et al., 2008; 
Wislowska et al., 2017). One promising individual trait marker of 
cognitive function is the individual alpha frequency (IAF), often para-
meterised as the maximum (i.e. peak) power value within the alpha 
band (~8–13 Hz) during resting-state measurement (Bazanova and 
Vernon, 2014; Grandy et al., 2013a; Klimesch, 1999). While IAF is 

known to differ among individuals and is correlated with memory and 
general intelligence (Klimesch, 1999), the relation between encoding- 
and sleep-related memory processing and IAF remains unknown. Here, 
we aim to determine whether IAF – as a proxy of inter-individual dif-
ferences in information processing – interacts with oscillatory mecha-
nisms of sleep-associated memory consolidation to influence human 
declarative memory. We also examine whether the emotional valence of 
to-be-learned information interacts with IAF to influence behavioural 
outcomes after sleep, given that emotional information is often priori-
tised over neutral stimuli during encoding (Murty et al., 2010) and 
sleep-based memory processing (Bennion et al., 2015; Sterpenich et al., 
2009). 

1.1. Sleep-related memory consolidation 

During sleep, memory processing involves the replay of neural firing 
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patterns present during encoding, with this reactivation possibly 
reflecting the transmission of information from the hippocampal com-
plex to neocortex for long-term storage (Hanert et al., 2017; Helfrich 
et al., 2019). Such hippocampal-cortical communication, as posited by 
the Active System Consolidation model (Born and Wilhelm, 2012; Rasch 
and Born, 2013), is facilitated by three cardinal oscillatory rhythms 
during slow wave sleep (SWS): hippocampal sharp-wave ripples (~200 
Hz), which are nested within thalamic spindles (~12–16 Hz), which are 
in turn nested in the up-state of neocortically generated slow oscillations 
(SOs; ~0.5–1 Hz; Helfrich et al., 2018; Staresina et al., 2015). In addi-
tion to supporting gist abstraction (Chatburn et al., 2014), rule gener-
alisation (Batterink et al., 2014; Cross et al., 2020; Lutz et al., 2018) and 
in transforming episodic memory traces (Inostroza and Born, 2013), 
sleep has also been shown to preferentially consolidate emotional over 
neutral information (Diekelmann et al., 2009; Groch et al., 2013; 
Hutchison and Rathore, 2015; Payne et al., 2015); however, a recent 
meta-analysis (Lipinska et al., 2019) found mixed results, with sleep also 
benefiting the consolidation of neutral over emotional information (e.g., 
Cellini et al., 2016). 

Of the physiological processes active during sleep, rapid eye move-
ment sleep (REM) has been implicated in emotional memory consoli-
dation (cf. Morgenthaler et al., 2014), particularly via REM theta 
oscillations, which are proposed to represent homeostatic processes of 
emotional brain regulation and have been linked to the synchronisation 
of emotional information between the amygdala and hippocampus 
(Groch et al., 2013; Wagner et al., 2001; Diekelmann et al., 2009; 
Hutchison and Rathore, 2015; Prehn-Kristensen et al., 2013). However, 
REM neurophysiology is unlikely to solely explain sleep-related 
emotional memory consolidation (Morgenthaler et al., 2014). Alterna-
tively, according to the Synaptic Homeostasis Hypothesis (Tononi and 
Cirelli, 2014), SOs during SWS may facilitate the consolidation of 
emotional information through decreasing synaptic connectivity and 
selectively refining emotional over neutral memory representations, 
while spindles serve to promote memory consolidation via synaptic 
long-term potentiation (Morgenthaler et al., 2014; Payne et al., 2015; 
Walker, 2010). As such, it is possible that both SWS oscillatory activity 
(e.g., SOs and spindles) and REM theta oscillations are important for the 
consolidation of emotional memory (Cunningham et al., 2014; Hutch-
ison and Rathore, 2015). 

Evidence also indicates that shorter sleep durations, such as an af-
ternoon nap, are also effective in stabilising new information (e.g., 
Nishida et al., 2009; Payne et al., 2015). An afternoon nap occurs at a 
different circadian phase than nocturnal sleep and is typically domi-
nated by non-rapid eye movement (NREM) sleep (Payne et al., 2015). 
Afternoon naps also allow relatively better control of potential 
time-of-day effects on performance, and if sleep facilitates long-term 
memory through a process of active consolidation, then emotional 
memory should benefit from an afternoon nap compared to an equiva-
lent period of wake. However, while the SWS and REM oscillatory 
mechanisms underpinning the emotional modulation of memory are 
beginning to be well characterised (e.g., Cairney et al., 2014; Groch 
et al., 2015; Hutchison and Rathore, 2015), far less is known regarding 
individual differences in information processing and cognitive ability 
and their influence on sleep-associated memory consolidation. 

1.2. Individual differences in sleep-related memory consolidation 

Of the studies examining individual differences in sleep and memory, 
baseline memory performance (Wislowska et al., 2017), general intel-
ligence (g; Fenn and Hambrick, 2015), working memory capacity (Fenn 
and Hambrick, 2012) and interindividual sleep spindle differences 
(Schabus et al., 2008) have been shown to modulate memory change 
over sleep relative to wake. For example, a higher working memory 
capacity is predictive of greater memory retention across sleep (Fenn 
and Hambrick, 2012), suggesting that beneficial effects of sleep on 
memory may partially rely on individual differences in the formation 

and maintenance of stimulus representations during online information 
processing. Further, individuals with higher g show greater memory 
gains across sleep (Fenn and Hambrick, 2015), indicating that interin-
dividual differences in g may reflect online and sleep-related cognitive 
processing capacities. It should also be noted that sleep spindles have 
been related to broad cognitive functioning (for review, see Fernandez 
and Luthi, 2020, & Ujma, 2018), including general intelligence (Fogel 
and Smith, 2011), and the development of sensory-motor functioning 
and working memory in children (Chatburn et al., 2013). However, 
while these studies have provided important initial insights into the 
interindividual factors modulating sleep and memory, little is known 
regarding the neurobiological factors underpinning such interindividual 
differences, particularly during online information processing. 

One potential neurobiological candidate reflecting interindividual 
differences in information processing and cognition is IAF, the pre-
dominant frequency of alpha-band oscillations (~8–13 Hz; Klimesch, 
1999). Research reveals that IAF is predictive of both perceptual (Cecere 
et al., 2015; Samaha and Postle, 2015) and higher-order cognitive task 
performance (Bornkessel et al., 2004; Bornkessel-Schlesewsky et al., 
2015; Klimesch et al., 2006), with low IAF individuals showing slower 
processing speeds (Klimesch et al., 1996), and lower performance on 
both memory tasks (Klimesch, 1999; Klimesch et al., 1993) and mea-
sures of general intelligence (Grandy et al., 2013a). IAF is also highly 
heritable (Posthuma et al., 2001), demonstrates high test-retest reli-
ability and declines with age (Grandy et al., 2013b), partially explaining 
age-related reductions in cognition over the lifespan (e.g., Bornkes-
sel-Schlesewsky et al., 2015). From this perspective, IAF may serve as a 
useful proxy for general cognitive and brain functioning, including in-
dividual differences in both working and long-term memory and mea-
sures of general intelligence; however, its relation to sleep-associated 
memory consolidation remains virtually unknown. 

Although IAF has yet to be explicitly related to sleep oscillatory ac-
tivity, there are numerous sources of evidence which would suggest this 
is a reasonable belief to hold. As IAF is positively related to (working) 
memory performance and general intelligence measures, both of which 
modulate sleep-associated memory consolidation, IAF may also modu-
late memory encoding and subsequent consolidation during sleep. 
Further, neurophysiological evidence has linked wake alpha oscillations 
with sleep-based spindle oscillations (for full discussions, see Cox et al., 
2017; Bazanova and Vernon, 2014; see also Lechinger et al., 2015). If 
sleep plays an active role in memory consolidation through specific 
patterns of oscillatory activity (i.e., thalamic spindles, SOs, REM theta 
activity), and if IAF modulates online information processing (e.g., 
including attention and perception), IAF should further modulate 
memory performance by interacting with sleep-based oscillatory 
activity. 

IAF is considered a marker of attentional control, with higher-IAF 
individuals exhibiting better attentional gating control (i.e., a better 
ability to filter irrelevant stimuli and inhibit task-irrelevant cortical 
networks; Klimesch, 2012). As such, IAF may also modulate interindi-
vidual differences in emotional memory by reflecting attentional 
discriminatory mechanisms that prioritise emotional over neutral in-
formation at encoding and during sleep-associated memory consolida-
tion (e.g., Saletin and Walker, 2012). Specifically, emotional 
information attracts more elaborative encoding strategies, such as 
autobiographical and semantic elaboration, as well as selective 
enhancement of encoding processes through arousal activation (Crow-
ley et al., 2019) and pre-activation of task-relevant networks (Jann et al., 
2010). The resulting induced facilitation of emotional item encoding 
leads to improved consolidation via activation of the basolateral 
amygdala and medial temporal lobe (LeDoux, 2007; McGaugh, 2004), 
enabling stronger sleep-related memory consolidation of emotional over 
neutral information. However, the relation between IAF and emotional 
modulation of information across sleep has not been studied. 
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1.3. The current study 

The present study aimed to determine whether IAF facilitates sleep- 
related memory consolidation by interacting with sleep neural oscilla-
tory mechanisms and whether this facilitation is higher for emotional 
compared to neutral stimuli. To this end, participants completed a 
memory task involving images of varying valence. Immediate and 
delayed recall tasks were completed to assess memory before and after 
an intervening 2hr afternoon nap and equivalent period of wake. We 
recorded electroencephalography (EEG) during eyes open and closed 
resting-state periods to estimated participants’ IAF values. EEG was also 
recorded continuously during the sleep period, with which we quanti-
fied theta spectral activity (~4–7 Hz) during REM. Using an automated 
detection algorithm, we also estimated spindle and SO density during 
SWS and examined the relationship between IAF, emotional valence and 
sleep EEG oscillatory mechanisms on memory performance using linear 
mixed-effects modelling. 

It was hypothesised that condition (sleep, wake), IAF and emotional 
valence (positive, negative, neutral) would interact in their effect on 
emotional memory performance. Specifically, it was predicted that 
memory performance (d’ scores) would be greater after sleep compared 
to wake (H1), and that this effect would be further accentuated for 
emotional compared to neutral information (H2). Further, we sought to 
examine whether IAF and sleep physiology interact to influence 
memory. 

2. Method 

2.1. Participants 

Participants included 22 right-handed healthy adults (10 male) 
ranging from 18 to 41 years old (mean age = 25.77). A power analyses 
using G*Power 3 (Faul et al., 2007) of a previous study examining the 
impact of sleep on emotional memory (partial ɳ2 = 0.20 based on Payne 
et al., 2008) suggested a sample size of 12 would be adequate to detect 
similar sized effects in a repeated measures design (1-β = 0.80, α = . 05). 
All participants reported normal or corrected-to-normal vision and 
hearing and had no current or past psychiatric conditions, substance 
dependence or abuse, intellectual impairment and were not taking 
medication that influenced sleep and neuropsychological measures. One 
participant failed to return for the second session, resulting in a final 
sample size of 21 (9 male; mean age = 25.95). All participants provided 
informed consent and received a AUD$40 honorarium. Ethics for this 
study was granted by the University of South Australia’s Human 
Research Ethics committee (I.D: 0000032556). 

2.2. Design 

This study was a repeated measures within-subjects experimental 
design with two conditions (sleep, wake). Each condition was counter-
balanced across participants and separated by one week to control for 
condition order effects and to avoid interference between task sets. 
Conditions included:  

a) Sleep condition: Participants underwent learning with an immediate 
retrieval task followed by a 2hr sleep opportunity. A delayed 
retrieval task occurred 30 min after waking.  

b) Wake condition: Participants underwent learning with an immediate 
retrieval task. This was followed by a delayed retrieval task after a 
2hr wake period. 

2.3. Materials and measures 

2.3.1. Demographic measures 
Participants completed a paper questionnaire containing questions 

on age, sex, ethnicity, highest level of education achieved and recent 

(<24hr) alcohol and caffeine consumption, as caffeine and alcohol are 
known to influence performance on cognitive tasks (e.g., Keenan et al., 
2014). All participants reported no consumption of alcohol the previous 
evening or caffeine on the day of testing. 

2.3.2. Screening and control measures 
The Pittsburgh Sleep Quality Index (PSQI; Buysse et al., 1989) was 

used to screen for sleep quality. Participants’ PSQI scores ranged from 1 
to 5 (M = 3.4, SD = 1.50), indicating good sleep quality. The Weschler 
Abbreviated Scale of Intelligence (WASI-II) was used to index intellec-
tual ability, as intelligence may influence memory retention and per-
formance on memory tasks (Conway et al., 2003), and is correlated with 
IAF (Grandy et al., 2013a). The WASI-II provides an estimate of 
full-scale IQ (FSIQ). Participants’ mean FSQI score was 114 (SD =
16.44), placing participants in a high range of intellectual functioning 
(Wechsler, 2011). The visual analogue scale for sleepiness (VASS) was 
also used to index sleepiness. The VASS is comprised of a 100 mm scale 
with “sleepy/drowsy” and “alert/awake” for endpoints to denote a 
continuum of state sleepiness. Participants indicated where on the line 
they judged their current state of sleepiness prior to the start and end of 
each learning and recall session. Scores were determined as mm distance 
from the left pole to the participants’ mark, indicating degree of sleep-
iness as a percentage, with lower scores indicating greater sleepiness. 

2.3.3. Polysomnography (PSG) 
PSG was recorded using the Compumedics Grael High-Definition 

PSG 24-bit amplifier (Compumedics Pty Ltd., Melbourne, Australia). 
Electrodes were arranged according to the International 10–20 System 
(American Electroencephalographic Society, 1994) at the following lo-
cations: FP1, FP2, F3, F4, C3, C4, T7, T8, P3, P4, P7, P8, O1, O2. In 
addition to left and right electro-oculography (EOG), sub-mental elec-
tromyography (EMG) and electrocardiography (ECG), EEG was recor-
ded and referenced to contralateral mastoids and sampled at a rate of 
1064 Hz with a bandpass filter from DC to 143 Hz. All impedances were 
kept at or below 10 kΩ throughout recording periods. All sleep data were 
scored by an experienced sleep technician according to standardised 
criteria (Berry et al., 2012) with EEG viewed with a high pass filter of 
0.3 Hz and a low pass filter of 35 Hz. The following sleep parameters 
were derived from PSG recordings: time in bed, total sleep time (TST), 
sleep onset latency (SOL; time from lights out to the first epoch of sleep), 
REM onset latency, sleep efficiency (SE) [(total sleep time/time in bed) x 
100], wake after sleep onset, total arousal index, duration and percent of 
TST spent in each sleep stage. 

2.4. Emotional memory task 

480 pictures were used from the International Affective Picture 
System (IAPS; Lang et al., 2008), which were divided into two parallel 
sets, counterbalanced across the Sleep and Wake conditions. The IAPS 
are rated for emotionality based on two dimensions (valence: 1 = un-
pleasant, 9 = pleasant; arousal: 1 = calm, 9 = excited) by a normative 
adult sample (Lang et al., 2008). Mean valence and arousal ratings of the 
stimuli have high internal consistency (a = 0.94) and split-half reli-
ability (rs = 0.94). 

Stimuli were displayed via OpenSesame v.2.9.7 (Mathôt et al., 2012) 
and were categorised into three groups (i.e., negative, neutral, positive) 
according to their mean valence values. All stimuli were counter-
balanced based on arousal. In accordance with recommendations by 
Sassenhagen and Alday (2016), means and standard deviations for 
valence and arousal values per stimulus category (positive, negative, 
neutral) and set (A, B) were generated to ensure that they were not 
overlapping (see Table 1 for the descriptive statistics of the stimuli used 
in Set A and Set B). As is clear from Fig. 1A, the valence values for 
negative, neutral and positive stimuli are largely non-overlapping, 
indicating that negative stimuli were more negatively valenced than 
neutral and positive stimuli, and that positive stimuli were more 
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positively valenced than neutral and negative stimuli. Further, Fig. 1B 
indicates that positive and negative stimuli were more arousing than 
neutral stimuli, and that positive and negative stimuli arousal values 
were overlapping. 

During the learning tasks, 120 stimuli for each set, each containing 
40 neutral, 40 positive and 40 negatively valenced images, were pre-
sented sequentially for participants to learn, followed by an immediate 
retrieval task to gain a recognition baseline. During the learning phase, 
participants were instructed to attend to each image and to memorise it 
for later testing. The delayed retrieval task occurred post experimental 
conditions. The immediate and delayed retrieval tasks contained the 120 
target pictures shown during learning intermixed with the 120 distractor 
pictures shown during the immediate retrieval task (see Fig. 2 for a 
schematic representation). Following presentation, participants judged 
whether pictures were targets (old; i.e., seen during learning) or dis-
tractors (new; i.e., not seen during learning). Pictures were pseudo- 
randomised at each time of testing, such that no more than two pic-
tures of the same emotion followed. Testing time for each experimental 
task was approximately 20–30 min. 

Table 1 
Means and standard deviations of the valence (1, negative to 9, positive) and 
arousal (1, calming to 9, highly arousing) values of the learning and recall 
stimuli in Set A and Set B.   

Set A Set B 

Negative Neutral Positive Negative Neutral Positive 

Learning 
Valence 3.28 

(.67) 
5.01 
(.26) 

6.94 
(.62) 

3.31 
(.65) 

5.04 
(.26) 

7.03 
(.65) 

Arousal 5.24 
(.87) 

3.41 
(.80) 

4.70 
(1.05) 

5.25 
(.82) 

3.51 
(.85) 

4.68 
(1.05)  

Recall 
Valence 3.22 

(.71) 
4.98 
(.25) 

7.00 
(.65) 

3.29 
(.67) 

5.05 
(.24) 

7.00 
(.67) 

Arousal 5.21 
(.87) 

3.44 
(.78) 

4.70 
(1.00) 

5.28 
(.94) 

3.53 
(.93) 

4.70 
(1.03) 

Note. Standard deviations are in parentheses. Valence and arousal scores were 
derived from the 9-point version of the self-assessment manikin (Lang et al., 
2010). 

Fig. 1. Density plots illustrating the difference in the distribution of valence (A) and arousal (B) values for each valence category (negative, neutral, positive) and 
stimulus set (A, B). Higher scores on Figure A indicate more positive valence values, while lower scores indicate more negative valence values. Higher scores on 
Figure B indicate more arousing values, while lower scores indicate less arousing values. 

Fig. 2. (A) Schematic representation of the learning task. Stimuli were presented for 1000 ms. Each stimulus was preceded by a 500 ms fixation cross with a temporal 
jitter of ±100 ms and with an inter-trial interval (ITI) of 1500 ms; (B) Schematic representation of the retrieval task. Stimuli were presented until button press with a 
timeout at 5000 ms, preceded by a 500 ms fixation cross with a jitter of ±100 ms. Participants then indicated whether the stimulus was old or new. Images are taken 
from Creative Commons for illustrative purposes, as the IAPS are restrictively licensed and not available for general distribution. 
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2.5. Procedure 

Participants attended the laboratory at approximately 11:45 h and 
were taken through to the testing rooms for PSG/EEG set-up. Resting 
state EEG activity was recorded during quiet sitting with eyes open 
(focussing on a fixation cross centred on a computer monitor) and eyes 
closed for 2 min, respectively. Participants then completed the learning 
task by approximately 13:30 h, followed by the immediate recall task. 

During the wake condition, participants remained in the laboratory 
and were administered the WASI-II and were permitted to engage in 
non-strenuous activity (e.g., reading, talking between other participants 
and experimenters, drawing). During the sleep condition, participants 
were given a 120-min sleep opportunity between the hours of 14:30 h 
and 16.30 h. Nap success rate was 100% (defined as obtaining at least 
10 min of sleep, per Alger et al., 2012). PSG data were used to verify 
sleep periods. Participants engaged in non-strenuous activity for 30 min 
after the nap until testing to alleviate inertia effects on memory per-
formance (Cairney et al., 2014; Payne et al., 2008; Tassi and Muzet, 
2000). At approximately 17:00 h, participants completed the delayed 
retrieval task (see Fig. 3 for study protocol). 

3. Data analysis 

3.1. Behavioural data 

Memory performance was calculated based on signal detection the-
ory (Stanislaw and Todorov, 1999). Hit Rate (HR) and False Alarm rate 
(FA) were computed to derive the discrimination index (d’), defined as 
the difference between the z transformed probabilities of HR and FA (i. 
e., d’ = z[HR] – z[FA]). Adjustment of extreme values (i.e., HR and FA 
values of 0 and 1) was made using the recommendations of Hautus 
(1995). Difference scores were calculated by subtracting Immediate 
testing d’ scores from Delayed testing d’ scores in order to estimate 
changes in memory retention across the sleep and wake periods. 

3.2. EEG pre-processing and analysis 

3.2.1. Individual alpha frequency estimation 
Resting-state EEG pre-processing was conducted using customised 

scripts programmed in MATLAB® (R2015a, The MathWorks, Inc., 
Natick, MA, USA). EOG and parieto-occipital EEG channels (P3-M2, P4- 
M1, O1-M2, and O2-M1) were imported into MATLAB via the EEGLAB 
toolbox (v.13.6.5b; Delorme and Makeig, 2004) and subjected to 
zero-phase, finite impulse response highpass (passband edge: 1 Hz, − 6 
dB cutoff: 0.5 Hz) and lowpass (passband edge: 40 Hz, − 6 dB cutoff: 45 
Hz) Hamming-windowed sinc filters (implemented via the 

pop_eegfiltnew function of the firfilt plugin; v1.6.1). An automated 
artifact detection routine (implemented via the pop_continuousartdet 
function in ERPLAB; Lopez-Calderon and Luck, 2014) was applied in 
order to exclude blinks and other sources of signal contamination. The 
peak-to-peak threshold for artifact rejection was set at ± 75 μV, and 
applied within a 500 ms sliding window (50% overlap). EOG channels 
were removed from the data following artifact rejection. 

IAF estimates were obtained using restingIAF v1.0.3 (Corcoran et al., 
2019), an open-source package available from https://github.com/corc 
orana/restingIAF. This automated IAF estimation routine uses a 
Savitzky-Golay filter (frame length = 11 frequency bins, polynomial 
degree = 5) to smooth the power spectral density (PSD). It then searches 
the first derivative of the smoothed PSD for evidence of peak activity 
within a defined frequency interval (here, 7–13 Hz). Given the low 
number of parieto-occipital channels available for analysis (i.e., 4), the 
minimum number of valid channel estimates required to estimate IAF 
was set to 1. Peak frequencies were calculated from eyes-closed rest-
ing-state recordings (estimates from the Sleep and Wake conditions were 
grand-averaged, unless only one estimate was available). All other 
analysis parameters were per default settings (see Corcoran et al., 2018). 

3.2.2. Sleep EEG analyses 
Sleep EEG analyses were performed to examine the association be-

tween IAF and emotional memory consolidation with specific sleep 
oscillatory parameters during both SWS (i.e., spindles and SO density) 
and REM (i.e., theta power). Analyses were performed using the SpiSOP 
toolbox (https://www.spisop.org; RRID: SCR_015673), run in MATLAB 
2016b (Mathworks, Natick, USA) and Fieldtrip (Oostenveld et al., 
2011). Briefly, the EEG data were downsampled from 1064 Hz to 128 Hz 
to reduce computational intensity. PSD estimates were then calculated 
on consecutive 5 s intervals, which overlapped by 4 s. Intervals were 
tapered by a single Hanning window before applying a fast Fourier 
transformation that resulted in interval power spectra with a frequency 
resolution of 0.2 Hz. Power spectra were then averaged across all blocks 
(Welch’s method) and normalised by the effective noise bandwidth to 
obtain PSD estimates for theta activity (4–8 Hz) during REM based on 
channel C3. 

Spindle detection algorithms were based on Mölle et al. (2002) but 
were adapted to account for inter-individual differences in centre spin-
dle frequencies, which is known to differ among individuals (e.g., Cox 
et al., 2017; Klimesch, 2018). Briefly, the EEG signal was band-pass 
filtered using a finite impulse response filter, which was defined based 
on individually estimated centre spindle frequencies. Power spectral 
density plots were generated to visualise peak spindle frequency esti-
mates for each subject. From these, the peak spindle frequency for each 
subject was determined, which we then used to define the spindle 

Fig. 3. Diagram representing the time course of the experimental conditions (sleep, wake) and testing session (learning, immediate and delayed retrieval).  
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frequency range, defined as ± 2 Hz the centre frequency. This approach 
is more sensitive to individual differences in spindle-related analyses, 
rather than applying the canonical 12–16 Hz range to each subject (e.g., 
Helfrich et al., 2019). Then, using a sliding window with a size of 0.2 s, 
the root mean square (RMS) was computed. The resulting signal was 
then smoothed in the same window with a moving average. A spindle 
was detected when the smoothed RMS signal exceeded an individual 
amplitude threshold 1.5 times the standard deviation of the filtered 
signal for 0.5–3 s. Spindle density (i.e., n spindles per 30 s SWS epoch) 
was then calculated for each subject at channel C3 (Carrier et al., 2001; 
Piosczyk et al., 2013; Schabus et al., 2004; Studte et al., 2017; van 
Schalkwijk et al., 2019). 

Finally, SO detection was based on Mölle et al. (2002; also see Ngo 
et al., 2013). Briefly, the EEG signal was high and low pass filtered to 
isolate frequency components in the SO band (i.e., 0.3–3.5 Hz). All 
events with consecutive positive-to-negative zero crossings were then 
flagged, with components with durations corresponding to a minimum 
and maximum SO frequency considered as putative SOs, as per Mölle 
et al. (2002). Slow oscillation density (i.e., n SO events per 30 s SWS 
epoch) was then calculated per subject. 

3.3. Statistical analysis 

Data were analysed using R v.3.4.0 (R Core Team, 2017) and the 
lme4 package (v. 1.1.23; Bates et al., 2015). Linear mixed-effects models 
fit by maximum likelihood were used to examine the relationship be-
tween individual alpha frequency, emotional valence and sleep on 
memory consolidation. Mixed models are an appropriate method for 
analysing data from repeated measure designs, as these designs are 
grouped by subject and appropriately account for within and between 
subject variance (Judd et al., 2012; Van Dongen, Olofsen, Dinges & 
Maislin, 2004). The behavioural model (i.e., no sleep EEG predictors) 
took the following structure: 

dprime ∼ condition ∗ valence ∗ iaf ∗ baseline + fsiq + (1|subj)

where condition is sleep versus wake, valence is the emotional valence of 
the stimulus (positive, negative, neutral), iaf refers to individual alpha 
frequency estimates, baseline is d’ at immediate recall, and fsiq refers to a 
general intelligence quotient estimated from the WASI. Subject ID (subj) 
was modelled as a random effect on the intercept. The sensitivity index 
(d’; dprime) from the delayed retrieval task was modelled as the outcome 
variable. Asterisks denote interaction terms between variables, while +
indicates factors entered into the model as fixed effects without inter-
action terms. 

Critically, the inclusion of baseline performance in the model con-
trols for baseline memory performance at the immediate testing session. 
This approach also reduces the amount of variance in the residual error 
term, increases statistical power, and has been adopted as an alternative 
baselining approach, as for example, in event-related potential research 
(Alday, 2019; see also Cross et al., 2020). Further, the FSIQ scores 
(estimated from the WASI-II) were added into the model as a fixed effect, 
given that individual differences in intelligence modulate a range of 
cognitive processes, including sleep-related memory consolidation 
(Fenn and Hambrick, 2015), and is correlated with IAF (e.g., Grandy 
et al., 2013a). 

Similarly, the sleep EEG model took the following structure: 

dprime dif ∼ iaf ∗ rem ∗ sws ∗ valence + fsiq + (1|subj)

where iaf refers to individual alpha frequency estimates, rem is REM 
theta power, sws is SWS SO density, valence is the emotional valence of 
the stimulus (positive, negative, neutral), and fsiq refers to the general 
intelligence quotient estimated from the WASI. The random effects 
consisted of intercept by subject. The difference in d’ scores between the 
immediate (B) and delayed (D) retrieval tasks was modelled as the 
outcome variable (D – I = dprime_dif). Difference scores in d’ were used 

in the sleep model as the model failed to converge with d’ scores from 
delayed testing as the outcome and baseline d’ as a fixed effect, likely 
based on the smaller number of observations compared to the behav-
ioural model given that the observations nested under the wake condi-
tion were removed. All categorical variables used sum-to-zero coding, 
with the reference level set to − 1. Please also note that more complex 
random effect structures involving random slopes by participant did not 
converge. 

Akaike Information Criterion (AIC; Akaike, 1974) was used to assess 
model fit, while Type II Wald Chi-Square (χ2) tests from the car package 
(Fox and Weisberg, 2011) were used to provide p-value estimates for 
each of the factors. All p-values are 2-tailed, with statistical significance 
determined at α = 0.05. All data are presented as mean and standard 
error (SEM) unless indicated otherwise, and effects were plotted using 
the package ggplot2 (Wickham, 2009). Raincloud plots were produced 
to visualise behavioural data using the code provided by Allen et al. 
(2019). In order to isolate outliers, we used Tukey’s method, which 
identifies outliers as exceeding ±1.5 * inter-quartile range. Graphical 
displays of modelled effects include 83% confidence intervals (CI), the 
non-overlap of which corresponds to the 95% significance level of the 
difference (Austin and Hux, 2002; MacGregor-Fors and Payton, 2013). 
Visualisations of the raw data (e.g., scatterplots) used the conventional 
95% confidence interval, given that these did not include contrasts be-
tween multiple moderating variables and associated significance testing 
of group differences. Finally, we used a “small multiples” approach to 
visualise complex interactions from the linear mixed-effects models. 
Small multiples enable clearer visualisation of complex interaction ef-
fects by slicing data into multiple related grids, thus avoiding 
over-plotting and facilitating exploration of the whole dataset (van den 
Elzen and Wijk, 2013; Tufte, 1983). 

4. Results 

4.1. Preliminary analyses 

Preliminary analyses were conducted to determine whether there 
were differences in levels of self-perceived sleepiness between the Sleep 
and Wake conditions prior to the Immediate and Delayed recall tasks, 
and to report the sleep characteristics of the nap and the distribution of 
IAF estimates. 

Subjects were significantly sleepier during the Sleep (M = 54.57, SD 
= 18.53) than the Wake (M = 64.43, SD = 21.23) condition prior to the 
learning and immediate recall tasks (t(20) = 2.26, p < .001, d = − 0.46). 
There was no difference between the conditions at delayed recall (Sleep: 
M = 61.47, SD = 16.42, Wake: M = 67.64, SD = 15, t(20 = − 1.23, p >
.05, d = − 0.39). A linear regression was conducted to determine 
whether the greater levels of sleepiness in the Sleep group impacted 
immediate memory performance. The results of the regression indicate 
that there was no significant effect of self-reported sleepiness on im-
mediate memory performance (β = − 0.71, p = .66, R2 = − 0.04). 

IAF estimates varied among participants, with a mean IAF estimate 
of 10.40 Hz and a range of 8.50–12.35 Hz. Peak alpha frequency esti-
mates from both the Sleep and Wake conditions are displayed in Fig. 4. 

Sleep variables of total sleep time, sleep onset latency, wake after 
sleep onset and the amount of time and percentage of sleep spent in 
stage 1 (N1), stage 2 (N2), SWS and REM are reported in Table 2. Sleep 
data show the expected proportion of NREM sleep stages (i.e., N1, N2 
and SWS) and minimal REM sleep (Payne et al., 2015). That is, although 
81 percent of participants experienced REM, average time spent in this 
stage was only approximately 8 min. 

4.2. Primary analysis 

4.2.1. Memory consolidation across sleep and wake is modulated by IAF 
The results of the immediate and delayed recall tests are given in 

Table 3 and Fig. 4. Nine of 244 d’ observations were classed as outliers 
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and were removed prior to calculating d’ difference scores (the distri-
bution of data before and after the removal of outliers is depicted in 
Fig. S1). The sleep condition had a higher overall d’ score at delayed 
testing compared to the wake condition. Fig. 5A also demonstrates that 
the sleep condition had less broadly distributed d’ scores across the 
valence categories, particularly for negative stimuli, relative to the wake 
condition. 

In order to determine whether emotional memory consolidation 
differed over a period of sleep and wake, we examined whether Valence 
(positive, negative, neutral) and Condition (sleep vs wake) modulated d’ 
scores. Linear mixed-effects modelling revealed a main effect of Condi-
tion (χ2(1) = 8.04, p = .004), with the Sleep condition having a higher d’ 
score relative to the Wake condition. This effect is illustrated in Fig. 5B, 

Fig. 4. Individual (peak) alpha frequency (IAF) estimates from eyes-closed resting-state recordings prior to the Sleep (red, solid lines) and Wake (black, dashed lines) 
conditions. Note that resting-state data were missing for participant 4 during the Wake condition. Participant 3 did not demonstrate evidence of a distinct alpha peak 
during the Sleep condition resting-state recording, hence IAF was estimated on the basis of the Wake condition peak frequency. a.u. = arbitrary units. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
Descriptive statistics for sleep parameters and correlations with the difference 
between d’ at delayed and baseline testing as a proxy for memory change.  

Sleep 
Parameters 

Mean 
Minutes 
(SEM) 

% in Stage 
(SEM) 

Correlations with d’ 

r p 
(uncorrected) 

p 
(Holm) 

TST 91.45 (5.76)  .13 .31 1.00 
SOL 13.64 (3.07)  -.20 .12 .77 
WASO 15.10 (3.86)  -.06 .64 1.00 
N1 7.07 (1.20) 8.12 (1.19) -.44 <.001 .005 
N2 46.76 (3.67) 51.78 

(2.92) 
-.26 .04 .32 

SWS 29.04 (3.53) 31.33 
(3.52) 

.21 .11 .77 

REM 8.57 (1.73) 8.77 (1.72) .30 .02 .18 

EEG 
Parameter 

Mean 
(SEM) 

Range    

SWS Spindle 
Density 

2.18 (0.12) 1.11–3.10 -.07 .61 1.00 

SWS SO 
Density 

2.27 (0.10) 1.44–3.17 -.08 .55 1.00 

REM Theta 
Power 

4.11 (0.40) 1.76–7.43 .11 .44 1.00 

Note. SEM = standard error of the mean. TST = total sleep time; SOL = sleep 
onset latency; WASO = wake after sleep onset; N1 = stage 1; N2 = stage 2; SWS 
= slow wave sleep; REM = rapid eye movement sleep; SWS = slow wave sleep; 
REM = rapid eye movement sleep. Correlations represent the relationship be-
tween percent of time spent in each sleep stage and d’. Significance values in the 
last column on the right are Holm-Bonferroni corrected (Holm, 1979). 

Table 3 
Mean d’ scores by Condition (sleep, wake), Time (immediate, delayed) and 
Valence (positive, negative, neutral). Standard errors are given in parentheses.  

Condition Time Valence Mean (SEM) 

Sleep Immediate Negative 2.23 (.10) 
Neutral 2.64 (.12) 
Positive 2.43 (.14) 

Delayed Negative 1.79 (.13) 
Neutral 2.19 (.15) 
Positive 2.08 (.16) 

Wake Immediate Negative 2.35 (.14) 
Neutral 2.55 (.15) 
Positive 2.55 (.15) 

Delayed Negative 1.76 (.17) 
Neutral 1.91 (.21) 
Positive 1.84 (.17) 

Note. SEM = standard error of the mean. 
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where the sleep condition had higher d’ scores for all three valence 
categories compared to the wake group, suggesting sleep preserves 
memory to a stronger degree relative to an equivalent period of wake, 
and supporting H1 that memory performance (d’) would be greater after 
sleep compared to wake. 

The main effect of Valence (χ2(2) = 1.68, p = .43) and the Condition 
× Valence interaction (χ2(2) = 0.78, p = .67) were nonsignificant, 
suggesting that any potential effect of emotional valence is sufficiently 
small or variable that we could not detect its impact on behavioural 
memory performance across the 2-hr afternoon nap compared to an 
equivalent period of wake (Lehmann et al., 2016). Thus, H1 that memory 
would be greater after sleep compared to wake was supported; however, 
H2 that memory would be greater for emotional compared to neutral 
information and this effect would be accentuated after sleep compared 
to wake was not supported. 

Next, we examined whether IAF explains differences in memory 
between the sleep and wake conditions. Critically, there was a signifi-
cant Condition x Time x IAF × Baseline interaction (χ2(1) = 6.15, p =
.01), which is resolved in Fig. 6. In both sleep and wake conditions, 
higher baseline d’ scores predicted higher delayed d’ scores. For the 
wake condition, higher IAF estimates were associated with lower d’ 
scores (i.e., worse memory) irrespective of baseline memory perfor-
mance. However, for the sleep condition, a higher IAF estimate pre-
dicted improved d’ scores at delayed testing when baseline memory 
performance was low, while the reverse was observed when baseline 
memory performance was high. 

Together, these results indicate that IAF differentially modulates 
memory across a period of sleep relative to wake, such that a higher IAF 
may facilitate sleep-related memory consolidation when baseline 
memory performance is suboptimal. By contrast, when baseline memory 
performance is high, we see a beneficial influence of low IAF on sleep- 
related memory consolidation (for a full summary of all main effects, 
interactions and a model summary, see Tables S1 and S2 in the sup-
plementary materials, respectively). 

4.2.2. Individual alpha frequency modulates spindle-related emotional 
memory consolidation 

To examine whether the positive behavioural effect of sleep on 
memory was driven by underlying neural oscillatory mechanisms, we 
examined the effect of IAF, sleep spindle density and SO density, and 

REM theta power on d’ scores for each valence category. The first model 
focussed on the interaction between IAF, SWS Spindle Density and 
Valence. Importantly, the IAF x Spindle Density × Valence interaction 
was significant (χ2(2) = 6.64, p = .03), which is resolved in Fig. 7. As is 
clear from Fig. 7, when IAF is low (i.e., 9.5 Hz) and Spindle Density is 
high, memory retention for negative and neutral stimuli is low. This 
pattern of results reversed when IAF was high (i.e., 11 Hz): an increase in 
IAF and Spindle Density predicted an increase in memory scores for 
negative and neutral stimuli, but predicted a decrease in memory for 
positive stimuli. Together, these results suggest that IAF modulates 
spindle-related memory consolidation of stimuli differing in emotional 
valence, partially addressing our research question of whether IAF and 
sleep physiology interact to influence memory (for a full summary of all 
main effects, interactions and a model summary, see Tables S3 and S4 in 
the supplementary materials, respectively). 

4.2.3. Slow oscillations, REM theta power and individual alpha frequency 
jointly predict memory 

Given the proposed individual and interactive roles of slow wave and 
REM sleep in the consolidation of (emotional) memory, and the influ-
ence of IAF on information processing, we now examine whether: (1) 
IAF modulates the separate effects of slow wave and REM sleep on 
emotional memory consolidation, and; (2) whether the interactive effect 
of slow wave and REM sleep on emotional memory consolidation is 
modulated by IAF. The broad purpose of this analysis was to examine 
our research question of whether IAF and sleep physiology interact to 
influence memory. 

We implemented a linear mixed-effects model to examine changes in 
memory across sleep, quantified as changes in d’ from immediate to 
delayed testing, as a function of Valence (negative, neutral, positive), 
IAF, SWS Slow Oscillation Density and REM Theta Power. The random 
effects consisted of intercept by subject. There was a main effect of IAF 
(χ2(1) = 28.24, p < .001), with a higher IAF predicting a negative 
change in d’ scores. There were also significant main effects of SWS Slow 
Oscillation Density (χ2(1) = 8.41, p = .003) and REM Theta Power (χ2 
(1) = 38.64, p < .001), with higher SO density predicting negative 
changes in d’ scores, while greater REM theta power was associated with 
a positive change in d’ scores (for visualisation of main effects, see 
Fig. 8). 

We also observed a significant IAF x SWS Slow Oscillation Density 

Fig. 5. (A) Sensitivity index (d’) scores (x-axis) for Valence across the Sleep (left) and Wake (right) conditions at Immediate (bottom) and delayed (top) testing 
sessions. Individual data points represent the mean for each participant. Visualisation was generated based on code by Allen et al. (2019). (B) Modelled relationship 
between d’ scores at delayed testing, Condition (sleep, wake; x-axis) and Valence (negative, neutral, positive). 
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interaction (χ2(1) = 5.73, p = .01). As shown in Fig. 9A, low IAF values 
and high SO density predicted lower d’ scores, while this effect reduced 
with high IAF and high SO density estimates. Further, REM Theta Power, 
SWS Slow Oscillation Power and IAF interacted to predict d’ scores (χ2 
(1) = 5.71, p = .01). As shown in Fig. 9B, low SWS SO density, low IAF 
and high REM theta power predicted high d’ scores, while high IAF, high 
SWS SO density and REM theta power had little effect on d’ scores. These 
results suggest that IAF differentially modulates the separable effect that 
SWS and REM have on the consolidation of emotional information, and 
that SWS and REM interact to predict memory consolidation. 

Critically, the four-way interaction between IAF, REM Theta Power, 

SWS Slow Oscillation Power and Valence was also significant (χ2(2) =
10.39, p = .005). As shown in Fig. 10, IAF was positively related to 
memory retention for positively valenced stimuli when SWS SO density 
was high and REM theta power was low (bottom left panel). This rela-
tionship reverses when REM theta power and IAF are high and SWS SO 
density is low (top right panel; for a full summary of all main effects, 
interactions and a model summary, see Tables S5 and S6 in the sup-
plementary materials, respectively). 

Fig. 6. | Estimated marginal means for d’ scores at delayed testing by IAF (x-axis) and valence (negative = purple solid line, neutral = dashed pink line, positive =
grey dotted line). Facets represent predicted values per unit increase in baseline d’ scores from low (left, 1.5) to high (right, 3.5). Shaded regions indicate the 83% CI. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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4.2.4. Relationship between individual alpha frequency and sleep 
parameters 

As an exploratory analysis, we examined correlations between IAF 
estimates and sleep EEG metrics to assess whether individual differences 
in IAF predicts sleep oscillatory activity. We did not correct for multiple 
comparisons, as to not imply that our analyses were confirmatory. 
Instead, we focus on effect size estimates, and report all relevant sta-
tistical information. This supports recommendations for exploratory 
analyses to focus on effect size estimates (e.g., r, R2), rather than on 
significance levels (Szucs and Ioannidis, 2017; also see Jach et al., 2020 
for a similar approach). There was a small positive correlation between 
spindle density and IAF (r = 0.19, p = .42, 95% CI = [-0.28, 0.60]), and a 
moderate positive correlation between spindle amplitude and IAF (r =
0.43, p = .06, 95% CI = [-0.02, 0.74]). There was also a moderate 
positive correlation between SWS SO density and IAF (r = 0.31, p = .19, 
95% CI = [-0.16, 0.67]); however, there was a large positive correlation 

between REM theta power and IAF (r = 0.64, p = .005, 95% CI = [0.23, 
0.85]). These relationships are illustrated in Fig. 11. 

5. Discussion 

Here, we paired an affective memory task with EEG and a nap 
paradigm in order to determine the relationships between the emotional 
valence of encoded stimuli, individual EEG factors related to informa-
tion processing and sleep in predicting memory outcomes. The results of 
this study inform these relationships, indicating a significantly greater 
preservation of encoded material across sleep relative to a wake period, 
regardless of the emotional valence of the material. Results also inform 
our understanding of the role of individual EEG factors in sleep and 
memory consolidation, indicating a role of IAF in modulating the effects 
of sleep micro- and macro-structural variables in determining memory 
outcomes. Collectively, these results highlight the importance of 

Fig. 7. Estimated marginal means for d’ difference score (delayed recall – immediate recall d’ scores; y-axes) by SWS spindle density (x-axis) and valence (negative 
= purple solid line, neutral = dashed pink line, positive = grey dotted line). Facets represent predicted values per unit increase in individual alpha frequency from 
low (left, 8.5 Hz) to high (right, 11 Hz). Shaded regions indicate the 83% CI. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 

Fig. 8. Estimated marginal means for d’ difference scores (delayed recall – immediate recall d’ scores; y-axes) by (A) individual alpha frequency (x-axis), (B) SWS SO 
density (x-axis) and (C) REM theta power (x-axis), and valence (negative = purple solid line, neutral = dashed pink line, positive = grey dotted line). Shaded regions 
indicate the 83% CI. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 9. (A) Estimated marginal means for d’ difference score (delayed recall – immediate recall d’ scores; y-axes) by SWS SO density (x-axis) and valence (negative =
purple solid line, neutral = dashed pink line, positive = grey dotted line). Facets represent predicted values per unit increase in individual alpha frequency from low 
(left, 9.5 Hz) to high (right, 11 Hz). (B) Estimated marginal means for d’ difference score (delayed recall – immediate recall d’ scores; y-axes) by REM theta power (x- 
axis). Facets represent predicted values per unit increase in individual alpha frequency from low (top left, using 9.5 Hz as a canonical value) to high (top right, using 
11 Hz as a canonical value), and SWS SO density from low (top right, 1.9) to high (bottom right, 2.6). Shaded regions indicate the 83% CI. 
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individual factors in the EEG in predicting the trajectory a given enco-
ded item will take through sleep-based memory consolidation. 

5.1. The influence of sleep on (emotional) memory consolidation 

Sleep resulted in relatively diminished forgetting, regardless of 
emotional valence. This is in keeping with previously published work on 
the broad role of sleep in memory consolidation; the mean differences 
between our sleep and wake conditions are consistent with the ~10% 
improvement in recognition scores, as reported in Rasch and Born 
(2013). We observed a negative correlation between the percentage of 
time spent in N1 sleep and d’ scores, and this likely reflects N1 sleep as a 
marker of sleep disruption (Berry et al., 2012), whereby greater N1 
likely limited the opportunity for (N)REM sleep-associated memory 
consolidation. It should be noted, however, that we did not find a sig-
nificant effect of valence in the consolidation of emotional memories. 

There are potentially two main reasons for this. Firstly, participants 
were aware that they were to be tested on the recognition of encoded 
images. This expectancy may have interfered with the priority given to 
images regardless of emotional tone, thus ablating whatever emotional 
priority may have naturally occurred with the intervention (Groch et al., 
2015). Secondly, the negative images used in this study may not have 
been sufficiently negative to prompt a priority consolidation based on 
the valence of the images. Similarly, we did not use affective fore-
ground/background imagery (Payne et al., 2012; Payne et al., 2008). 
Furthermore, the influence of participants’ awareness of being tested on 
learned material and affective valence are known to influence memory 
performance (Bennion et al., 2016; Groch et al., 2016), and might 

differentially modulate the effects of sleep and wake. While it has been 
reported that predictions evoked by intentional coding paradigms do not 
critically affect sleep groups, they have been found to enhance the 
rehearsal of target content during waking delay periods (Cunningham 
et al., 2014). Moreover, cognitive states (e.g., motivation) might have 
played a more dominant role in organising information processing 
during sleep (Bennion et al., 2016). Consequently, a sleep relative to a 
wakeful delay period may have furnished distinct contributions to the 
consolidation of memorised items. This possibility presents an inter-
esting opportunity for future research. In sum, preferential consolidation 
of neutral and negative images as found in our higher IAF subjects may 
be due to processes other than emotional tone. 

5.2. IAF and the modulation of sleep-associated memory consolidation 

Our results indicate a complex relationship between IAF, REM theta 
power, SO density and sleep spindle density in determining the success 
or failure of recognition of encoded images across sleep. In both 
behavioural and sleep-oscillation based models, high IAF individuals 
recognised more neutral and positive images than low IAF individuals. 
This is the first study to report categorical differences in the operation of 
memory consolidation based on individual differences in the EEG, and 
there are two main potential explanations of this observation: first, that 
higher IAF individuals have faster (higher average frequency) brain 
activity in general, thus allowing more iterations of trace replay in the 
same amount of time; and thereby greater memory retention. We have 
also noted that IAF does not modulate differences in the recollection of 
negative imagery. It could be proposed that negatively valenced 

Fig. 10. Estimated marginal means for d’ 
difference score (delayed recall – immediate 
recall d’ scores; y-axes) by individual alpha 
frequency (x-axis) and valence (negative =
purple solid line, neutral = dashed pink line, 
positive = grey dotted line). Facets represent 
predicted values per unit increase in REM 
theta power (low = top left; high = top 
right), and SWS SO density from (low = top 
right; high = bottom right). Shaded regions 
indicate the 83% CI. (For interpretation of 
the references to colour in this figure legend, 
the reader is referred to the Web version of 
this article.)   
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memories are the more efficacious items for the human brain to encode, 
and that the greater recognition of neutral and positive memories 
demonstrated by high IAF individuals results from faster trace replay 
allowing more room for ‘less important’ memories to be consolidated in 
comparison to lower IAF individuals. 

The prominent spectral peak of IAF has been suggested for use as a 
landmark for the custom-fitting of individual frequency band cut-offs in 
the EEG (Klimesch, 1999). A higher IAF individual will therefore have 
higher boundaries of EEG frequency bands in comparison to a lower-IAF 
individual. While the functional implications of this have not been 
studied, it is possible that small improvements in the fit of oscillatory 
dynamics (such as the coupling of hippocampal sharp-wave ripples and 
sleep spindle troughs; Staresina et al., 2015) may result in small benefits 
in the behavioural outcomes associated with them. The functional 
consequences of IAF categories in terms of neural dynamics are an area 
which should be studied in the future; a basic investigation of spindle 
mean frequency as a function of IAF would be an excellent start thereon. 

A second explanation for this interaction is that higher IAF values 
may allow the brain to preferentially encode salient information. This 
would explain the behavioural findings in line with work on emotional 
memory (e.g., Vuilleumier, 2005), but this leads to several greater open 

questions in the sleep and memory literature, namely how a given item 
is tagged for subsequent consolidation. Current work in this area has 
suggested that emotional salience (Payne et al., 2008), as well as schema 
conformance (Durrant et al., 2015) may tag items for consolidation, and 
immediate recall theta power may serve as a biomarker of this tagging 
(Heib et al., 2015), through an interaction with fast sleep spindle ac-
tivity. However, in general, there is a poor understanding of the 
encoding-related EEG factors which predispose an item to be remem-
bered, forgotten or generalized. A promising next step to address this 
issue would be to pair sleep and memory paradigms with a subsequent 
memory approach in order to measure the differential patterns of EEG 
between remembered and forgotten items (as well as those gained 
overnight). 

5.3. Individual alpha frequency, REM theta and slow oscillatory activity 

We have also noted a relationship between REM theta power and 
IAF, which modulated the recognition of emotional images. Although 
we observed a linear increase in REM theta power as a function of IAF, 
the functional effect of this in terms of recognition appears to be centred 
around lower-IAF subjects. There is relatively less data published in the 

Fig. 11. The relationship between IAF and sleep EEG variables. The shaded area indicates the 95% confidence interval. Correlations were not corrected for multiple 
comparisons given the exploratory nature of the analysis and small number of comparisons. 
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literature on the role of REM sleep in memory, although recent accounts 
(Grosmark and Buzsaki, 2016; Hobson and Friston, 2012) have sug-
gested a role of REM sleep in synaptic downscaling (although note also 
Tononi and Cirelli, 2014 for a SWS-based account of the same). This is an 
attractive explanation for our findings regarding our lower-IAF subjects: 
it is possible that lower IAF subjects required synaptic downscaling to 
improve signal to noise ratios and thus obtain a behaviourally measur-
able effect on (emotional) memory recognition; however, this will need 
to be explicitly tested in future work. 

It should also be noted that our data indicate a potentially complex 
relationship between REM theta power, SO density and IAF in deter-
mining memory outcomes. SOs are argued to be involved in consoli-
dating encoded memory representations (Rasch and Born, 2013). High 
IAF individuals may therefore be more efficient at encoding discrete 
stimulus details, allowing SWS memory processes to consolidate a 
greater amount of information. In terms of explaining the four-way 
interaction, it is possible that a higher IAF may result in higher resolu-
tion sampling of stimulus details during encoding, and higher SO density 
resulted in relatively strengthened memory traces across sleep. Low 
REM theta may have indicated a lack of generalisation of encoded traces 
(potentially due to an inhibition of spreading activation thought to arise 
from desynchronization of cortex from the hippocampus; Lewis et al., 
2018), leading to a preferential remembrance of veridically encoded 
memories (for similar findings of REM theta on emotional memory, see 
Kim et al., 2020). 

5.4. Limitations and future directions 

As discussed, one limitation of the current study was minimal REM 
sleep occurring during daytime naps, as well as large variability in the 
time participants slept. These effects make it difficult to establish a true 
effect of REM sleep. Future research using a nocturnal half-night para-
digm would involve presenting participants emotional stimuli before 
either a SWS or REM-rich sleep interval (Groch et al., 2013). Nocturnal 
half-night paradigms account for natural human nocturnal sleep archi-
tecture, and would allow for the systematic investigation between IAF 
and memory consolidation during SWS and REM. 

The adoption of a nocturnal half-night paradigm would be com-
plemented by the use of individual valence reports instead of normalised 
ratings. While the majority of research utilising the IAPS has relied on 
normalised ratings (Bradley and Lang, 1994; Lang and Bradley, 2007), 
there may be large inter-individual variability in the way subjects 
perceive stimuli along the dimensions of valence and arousal (Backs 
et al., 2005). Quantifying emotional memory based on individual 
self-report ratings may increase model sensitivity and the probability of 
detecting emotion-enhanced memory effects, similar to previous 
emotional memory research (for review: Talmi, 2013). 

5.5. Conclusions 

Here, we have used an emotional memory task and EEG to highlight 
several mechanics of memory consolidation in the sleeping brain. We 
have indicated a role of IAF in modulating memory consolidation, in 
coordination with REM theta power and SO density in SWS. Individual 
differences in EEG parameters are rarely considered in sleep and 
memory research, and from this perspective, IAF may provide a valuable 
pathway for investigating inter-individual differences in neural corre-
lates of sleep-facilitated memory consolidation. We have also been able 
to comment on how individual differences in the EEG may influence 
other elements of sleep neurophysiology, and this has also seldom been 
studied in the literature. Future research should be sure to account for 
individual differences as an important factor in sleep and memory 
research. 

Author contribution statement 

ZC – Conceptualization, Methodology, Investigation, Neurophysio-
logical data processing, Statistical Analysis, Writing - Original Draft, 
Writing – review & editing, Visualisation. AS – Conceptualization, 
Methodology, Writing – review & editing. AWC – Neurophysiological 
data processing, Writing – review & editing. AC – Writing – Original 
draft, Writing – review & editing. PA – Statistical analysis, Writing – 
review & editing. SC – neurophysiological data processing, Writing – 
review & editing. MJK – Conceptualization, Methodology, Writing – 
review & editing, Supervision. 

Declaration of competing interest 

The authors declare no competing financial interests. 

Acknowledgements 

We thank Professor Ina Bornkessel-Schlesewsky for helpful com-
ments on an earlier version of this manuscript. We also thank our par-
ticipants for their enthusiastic participation. AWC is supported by an 
Australian Government Research Training Program (RTP) scholarship. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.neuropsychologia.2020.107660. All data, signal pro-
cessing and statistical analysis scripts are available at https://osf.io/4 
m5hr/?view_only=050d6dd270a24490aa683d883a11f937. 

References 

Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Automat. 
Contr. 19 (6), 716–723. https://doi.org/10.1109/TAC.1974.1100705. 

Alday, P.M., 2019. How much baseline correction do we need in ERP research? Extended 
GLM model can replace baseline correction while lifting its limits. Psychophysiology 
56 (12), e13451. 

Alger, S.E., Lau, H., Fishbein, W., 2012. Slow wave sleep during a daytime nap is 
necessary for protection from subsequent interference and long-term retention. 
Neurobiol. Learn. Mem. 98 (2), 188–196. 

Allen, M., Poggiali, D., Whitaker, K., Marshall, T.R., Kievit, R.A., 2019. Raincloud plots: a 
multi-platform tool for robust data visualization. Wellcome open research 4. https:// 
doi.org/10.12688/wellcomeopenres.15191.1. 

Austin, P.C., Hux, J.E., 2002. A brief note on overlapping confidence intervals. J. Vasc. 
Surg. 36 (1), 194–195. 

Backs, R.W., da Silva, S.P., Han, K., 2005. A comparison of younger and older adults’ self- 
assessment manikin ratings of affective pictures. Exp. Aging Res. 31 (4), 421–440. 

Bates, D., Maechler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models 
using lme4. J. Stat. Software 67 (1), 1–48. https://doi.org/10.18637/jss.v067.i01. 

Batterink, L.J., Oudiette, D., Reber, P.J., Paller, K.A., 2014. Sleep facilitates learning a 
new linguistic rule. Neuropsychologia 65, 169–179. 

Bazanova, O.M., Vernon, D., 2014. Interpreting EEG alpha activity. Neurosci. Biobehav. 
Rev. 44, 94–110. 

Bennion, K.A., Payne, J.D., Kensinger, E.A., 2015. Selective effects of sleep on emotional 
memory: what mechanisms are responsible? Translational Issues in Psychological 
Science 1 (1), 79. 

Bennion, K.A., Payne, J.D., Kensinger, E.A., 2016. The impact of napping on memory for 
future-relevant stimuli: prioritization among multiple salience cues. Behav. 
Neurosci. 130 (3), 281.  

Berry, R. B., Brooks, R., Gamaldo, C. E., Hardling, S. M., Marcus, C. L., & Vaughn, B. V. 
(2012). The AASM Manual for the Scoring of Sleep and Associated Events. Rules, 
Terminology and Technical Specifications, Darien, Illinois, American Academy of 
Sleep Medicine. 

Born, J., Wilhelm, I., 2012. System consolidation of memory during sleep. Psychological 
research, Psychological Research 76 (2), 192–203. 

Bornkessel-Schlesewsky, I., Philipp, M., Alday, P.M., Kretzschmar, F., Grewe, T., 
Gumpert, M., et al., 2015. Age-related changes in predictive capacity versus internal 
model adaptability: electrophysiological evidence that individual differences 
outweigh effects of age. Front. Aging Neurosci. 7, 217. 

Bornkessel, I.D., Fiebach, C.J., Friederici, A.D., Schlesewsky, M., 2004. “Capacity” 
reconsidered: interindividual differences in language comprehension and individual 
alpha frequency. Exp. Psychol. 51 (4), 279–289. 

Bradley, M.M., Lang, P.J., 1994. Measuring emotion: the self-assessment manikin and the 
semantic differential. J. Behav. Ther. Exp. Psychiatr. 25 (1), 49–59. https://doi.org/ 
10.1016/0005-7916(94)90063-9. 

Z.R. Cross et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.neuropsychologia.2020.107660
https://doi.org/10.1016/j.neuropsychologia.2020.107660
https://osf.io/4m5hr/?view_only=050d6dd270a24490aa683d883a11f937
https://osf.io/4m5hr/?view_only=050d6dd270a24490aa683d883a11f937
https://doi.org/10.1109/TAC.1974.1100705
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref2
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref2
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref2
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref3
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref3
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref3
https://doi.org/10.12688/wellcomeopenres.15191.1
https://doi.org/10.12688/wellcomeopenres.15191.1
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref5
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref5
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref6
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref6
https://doi.org/10.18637/jss.v067.i01
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref8
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref8
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref9
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref9
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref10
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref10
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref10
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref11
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref11
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref11
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref13
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref13
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref14
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref14
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref14
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref14
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref15
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref15
http://refhub.elsevier.com/S0028-3932(20)30332-8/sref15
https://doi.org/10.1016/0005-7916(94)90063-9
https://doi.org/10.1016/0005-7916(94)90063-9


Neuropsychologia 148 (2020) 107660

15

Buysse, D.J., Reynolds, C.F., Monk, T.H., Berman, S.R., Kupfer, D.J., 1989. The 
Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and 
research. Psychiatr. Res. 28, 193–213. 

Cairney, S.A., Durrant, S.J., Hulleman, J., Lewis, P.A., 2014a. Targeted memory 
reactivation during slow wave sleep facilitates emotional memory consolidation. 
Sleep 37 (4), 701–707. https://doi.org/10.5665/sleep.3572. 

Cairney, S.A., Durrant, S.J., Power, R., Lewis, P.A., 2014b. Complementary roles of slow- 
wave sleep and rapid eye movement sleep in emotional memory consolidation. 
Cerebr. Cortex bht349. https://doi.org/10.1093/cercor/bht349. 

Carrier, J., Land, S., Buysse, D.J., Kupfer, D.J., Monk, T.H., 2001. The effects of age and 
gender on sleep EEG power spectral density in the middle years of life (ages 20–60 
years old). Psychophysiology 38 (2), 232–242. 

Cecere, R., Rees, G., Romei, V., 2015. Individual differences in alpha frequency drive 
crossmodal illusory perception. Curr. Biol. 25 (2), 231–235. 

Cellini, N., Torre, J., Stegagno, L., Sarlo, M., 2016. Sleep before and after learning 
promotes the consolidation of both neutral and emotional information regardless of 
REM presence. Neurobiol. Learn. Mem. 133, 136–144. 

Chatburn, A., Coussens, S., Lushington, K., Kennedy, D., Baumert, M., Kohler, M., 2013. 
Sleep spindle activity and cognitive performance in healthy children. Sleep 36 (2), 
237–243. 

Chatburn, A., Lushington, K., Kohler, M.J., 2014. Complex associative memory 
processing and sleep: a systematic review and meta-analysis of behavioural evidence 
and underlying EEG mechanisms. Neurosci. Biobehav. Rev. 47, 646–655. 

Conway, A.R., Kane, M.J., Engle, R.W., 2003. Working memory capacity and its relation 
to general intelligence. Trends Cognit. Sci. 7 (12), 547–552. https://doi.org/ 
10.1016/j.tics.2003.10.005. 

Corcoran, A.W., Alday, P.M., Schlesewsky, M., Bornkessel-Schlesewsky, I., 2018. 
Towards a reliable, automated method of individual alpha frequency (IAF) 
quantification. Psychophysiology. https://doi.org/10.1111/psyp.13064. 

Corcoran, A. W., Alday, P. M., Schlesewsky, M., & Bornkessel-Schlesewsky, I. (2019). 
restingIAF v1.0.3 [software]. Retrieved from https://github.com/corcorana/resti 
ngIAF. doi: 10.5281/zenodo.2575868. 

Cox, R., Schapiro, A.C., Manoach, D.S., Stickgold, R., 2017. Individual differences in 
frequency and topography of slow and fast sleep spindles. Front. Hum. Neurosci. 11, 
433. 

Cross, Z.R., Helfrich, R.F., Kohler, M.J., Corcoran, A.W., Coussens, S., Zou-Williams, L., 
et al., 2020. Slow wave-spindle coupling during sleep predicts language learning and 
associated oscillatory activity. BioRxiv. 

Crowley, R., Bendor, D., Javadi, A.H., 2019. A review of neurobiological factors 
underlying the selective enhancement of memory at encoding, consolidation, and 
retrieval. Prog. Neurobiol. 179, 101615. https://doi.org/10.1016/j. 
pneurobio.2019.04.004. 

Cunningham, T.J., Chambers, A.M., Payne, J.D., 2014. Prospection and emotional 
memory: how expectation affects emotional memory formation following sleep and 
wake. Front. Psychol. 5 (862), 1–9. https://doi.org/10.3389/fpsyg.2014.00862. 

Delorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single- 
trial EEG dynamics including independent component analysis. J. Neurosci. Methods 
134 (1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009. 

Diekelmann, S., Wilhelm, I., Born, J., 2009. The whats and whens of sleep-dependent 
memory consolidation. Sleep Med. Rev. 13 (5), 308–321. https://doi.org/10.1016/j. 
smrv.2008.08.002. 

Durrant, S.J., Cairney, S.A., McDermott, C., Lewis, P.A., 2015. Schema-conformant 
memories are preferentially consolidated during REM sleep. Neurobiol. Learn. Mem. 
122, 41–50. 

Ellenbogen, J.M., Hulbert, J.C., Stickgold, R., Dinges, D.F., Thompson-Schill, S.L., 2006. 
Interfering with theories of sleep and memory: sleep, declarative memory, and 
associative interference. Curr. Biol. 16 (13), 1290–1294. https://doi.org/10.1016/j. 
cub.2006.05.024. 

Faul, F., Erdfelder, E., Lang, A.G., Buchner, A., 2007. G*Power 3: a flexible statistical 
power analysis program for the social, behavioral, and biomedical sciences. Behav. 
Res. Methods 39 (2), 175–191. https://doi.org/10.3758/BF03193146. 

Fenn, K.M., Hambrick, D.Z., 2012. Individual differences in working memory capacity 
predict sleep-dependent memory consolidation. J. Exp. Psychol. Gen. 141 (3), 404. 

Fenn, K.M., Hambrick, D.Z., 2015. General intelligence predicts memory change across 
sleep. Psychon. Bull. Rev. 22 (3), 791–799. 

Fernandez, L.M., Lüthi, A., 2020. Sleep spindles: mechanisms and functions. Physiol. 
Rev. 100 (2), 805–868. 

Fogel, S.M., Smith, C.T., 2011. The function of the sleep spindle: a physiological index of 
intelligence and a mechanism for sleep-dependent memory consolidation. Neurosci. 
Biobehav. Rev. 35 (5), 1154–1165. 

Fox, J., & Weisberg, S. (2011). Multivariate Linear Models in R. An R Companion to 
Applied Regression. (Los Angeles: Thousand Oaks). 

Grandy, T.H., Werkle-Bergner, M., Chicherio, C., Lövdén, M., Schmiedek, F., 
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