Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Resolving the Manganese Oxidation States in the Oxygen‐evolving Catalyst of Natural Photosynthesis

MPG-Autoren
/persons/resource/persons237626

Krewald,  Vera
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons216826

Pantazis,  Dimitrios A.
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Krewald, V., Neese, F., & Pantazis, D. A. (2015). Resolving the Manganese Oxidation States in the Oxygen‐evolving Catalyst of Natural Photosynthesis. Israel Journal of Chemistry, 55(11-12), 1219-1232. doi:10.1002/ijch.201500051.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-44C7-C
Zusammenfassung
A frequent challenge when dealing with multinuclear transition metal clusters in biology is to determine the absolute oxidation states of the individual metal ions and to identify how they evolve during catalytic turnover. The oxygen‐evolving complex of biological photosynthesis, an active site that harbors an oxo‐bridged Mn4Ca cluster as the water‐oxidizing species, offers a prime example of such a challenge that withstood satisfactory resolution for decades. A multitude of experimental studies have approached this question and have offered insights from different angles, but they were also accompanied by incomplete or inconclusive interpretations. Only very recently, through a combination of experiment and theory, has a definitive assignment of the individual Mn oxidation states been achieved for all observable catalytic states of the complex. Here we review the information obtained by structural and spectroscopic methods, describe the interpretation and synthesis achieved through quantum chemistry, and summarize our current understanding of the electronic structure of nature’s water splitting catalyst.