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Abstract: One of the main challenges in 3d-3d correspondence is that no existent ap-

proach offers a complete description of 3d N = 2 SCFT T [M3] — or, rather, a “collection

of SCFTs” as we refer to it in the paper — for all types of 3-manifolds that include, for

example, a 3-torus, Brieskorn spheres, and hyperbolic surgeries on knots. The goal of this

paper is to overcome this challenge by a more systematic study of 3d-3d correspondence

that, first of all, does not rely heavily on any geometric structure on M3 and, secondly,

is not limited to a particular supersymmetric partition function of T [M3]. In particular,

we propose to describe such “collection of SCFTs” in terms of 3d N = 2 gauge theories

with “non-linear matter” fields valued in complex group manifolds. As a result, we are

able to recover familiar 3-manifold invariants, such as Turaev torsion and WRT invariants,

from twisted indices and half-indices of T [M3], and propose new tools to compute more

recent q-series invariants Ẑ(M3) in the case of manifolds with b1 > 0. Although we use

genus-1 mapping tori as our “case study,” many results and techniques readily apply to

more general 3-manifolds, as we illustrate throughout the paper.
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1 Introduction and motivation

3d-3d correspondence, originally proposed in [1], relates (quantum) topology of 3-manifolds

to physics of 3-dimensional supersymmetric gauge theories in various backgrounds.

In particular, to an arbitrary 3-manifold M3 and a choice of ADE type group G it

assigns a topological invariant T [M3, G] valued in 3d N = 2 superconformal field theories.

Over the years, it has been shown that many numerical and homological 3-manifold in-

variants that admit an indepenent mathematical definition factor through T [M3, G], in a

sense that they can be computed as partition functions and spaces of BPS states of the
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theory T [M3, G]. Among the invariants discussed in [1] are the moduli space of a theory

on a circle (with KK modes included) and the so-called “K-theory version” of the vortex

partition function. Both will be the key players here, albeit the latter will be replaced by

its close cousin Ẑa(q) := ẐS1×qD2(Ba). More recently, T [M3] has been studied in many

other backgrounds, with and without additional defects, boundaries, etc.:

SW

3-manifold

M3

//
3d N = 2 theory

T [M3]

55

//

))

$$

Mflat(M3, GC)

...

Ẑa(q)

Here, and mostly throughout this paper, we assume M3 is closed. If the boundary ∂M3 6= ∅,
then T [M3] is, in fact, a boundary condition in 4d N = 2 theory [2, 3]. And, similarly, if M3

is the boundary of a 4-manifold, then T [M3] comes equipped with a 2d N = (0, 2) boundary

condition [4]. This leads to far-reaching implications and ensures that the QFT3-valued

invariant T [M3] is functorial.

Among other things, the functoriality requires the vacua of 3d N = 2 theory T [M3]

on a small circle to contain all flat connections on M3, reducible and irreducible, abelian

and non-abelian1

Mvacua (T [M3, G]) ⊃ Mflat (M3, GC) (1.1)

The same conclusion follows from [5, 6] and can also be seen via exchanging the order of

compactification on S1 and M3. Of course, on each branch of vacua (1.1) the theory can

be simpler than the full theory T [M3]. For example, the analysis in section 2 suggests

that, for G = SU(2), the Coulomb branch theory of T [M3, G] is determined by its abelian

version T [M3, U(1)], and

MCoulomb (T [M3, SU(2)]) =
C×Mflat (M3, U(1)C)

Z2
(1.2)

Unfortunately, no similar proposal for the “Higgs branch” of T [M3] is known at present.

In the special case of 3-manifolds with non-empty toral boundaries, the construction [2]

offers the best candidate for the Higgs branch of the 3d N = 2 theory T [M3]. (See also [7–

12] for a discussion in the class of manifolds, mostly with boundary, that will be close to

our prime examples here.) This construction does not include abelian flat connections,

which are crucial for computing WRT invariants and Floer homology of M3 from T [M3].

1The precise role of Mvacua(T [M3, G]) will be explained in section 2; for now the reader can think of it

as a target space of the effective two-dimensional theory.
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Mistaking this Higgs branch theory for T [M3] would be analogous to mistaking the Higgs

branch theory [13] of “class S theory” for the class S theory itself [14, 15]. Yet, in the

literature on 3d-3d correspondence, this distinction is sometimes overlooked and T [M3] is

(incorrectly) replaced by its Higgs branch theory.

One goal of the present paper is to correct this fallacy. In fact, abelian flat connec-

tions (1.2) will play a crucial role in all aspects of the story. For example, they will enter

our study of new q-series invariants Ẑa(M3; q) that, at roots of unity, are supposed to be

related to more traditional Witten-Reshetikhin-Turaev (WRT) invariants [16, 17]. How

these invariants, old and new, are encoded in the data of 3d N = 2 theory T [M3] is by now

fairly well understood for 3-manifolds with b1 = 0 (i.e. for rational homology spheres), and

one of our main goals is to explore the novelties of 3d-3d correspondence for 3-manifolds

with b1 > 0. A new feature of 3-manifolds with b1 > 0 is that their moduli spaces of

flat connections have positive dimension. The simplest class of such manifolds consists of

mapping tori, obtained by identifying two boundaries of the mapping cylinder Σ × I via

an orientation-preserving homeomorphism ϕ ∈ MCG(Σ). Specifically,

M3 = Σ× [0, 1]/ ∼ , (x, 0) ∼ (ϕ(x), 1) (1.3)

where, in general, Σ can be any orientable surface, possibly with punctures. It is well

known [18] that even among mapping tori of genus 1 — with Σ = T 2 and M3 labeled

by a choice of ϕ ∈ SL(2,Z) — there are examples of pairs, M3 and M ′3, that can not be

distinguished by WRT invariants (see also [19]). It therefore raises a natural questions

whether such pairs can be distinguished by the q-series invariants Ẑa. Our results indicate

that the answer to this question may, surprisingly, be “yes” in a rather interesting way

that involves abelian flat connections and labels “a” of Ẑa as key ingredients.2

Another motivation and another aspect of 3d-3d correspondence where abelian flat con-

nections are unavoidable has to do with twisted indices and the Heegaard Floer homology

HF+(M3). It makes a subtle and surprising appearance in the study of q-series invariants

Ẑa(q), for reasons which are not completely clear at present. One possible explanation

could involve a relation between HF+(M3) and homology groups categorifying Ẑa(q), sim-

ilar to the relation between the corresponding knot homologies, namely the knot Floer

homology and the Khovanov homology. We hope that our study, focused on 3-manifolds

with b1 > 0, will serve as a useful step in future developments and better understanding of

such questions.

An added benefit of discussing in parallel rather different looking invariants Ẑa(M3)

and HF+(M3) in the context of 3d-3d correspondence is that it sheds light on the following

important question: what does a 4d TQFT categorifying Ẑa(M3) associate to Σ? By

general rules of extended TQFT it should be a category, in which 3-manifolds bounded by

Σ define objects, and Hom spaces correspond to gluing along Σ. So, the question really

is: concretely, what is this category associated to Σ? This is precisely where mapping

tori (1.3) are helpful. The category in question has MCG(Σ) as a group of autoequivalences,

2In particular, we expect theories T [M+
3 ] and T [M−3 ] to be different, where M±3 are mapping tori with

monodromies ±ϕ.
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SCFT

Figure 1. A cartoon illustrating different branches of vacua in a SCFT. Aside from the original

SCFT, one can also speak of a theory on each given branch.

cf. [20, 21], and the trace functor associated with ϕ should return Q-cohomology of T [M3]

on R ×D2. When ϕ = 1, this trace (decategorification) map is simply the Grothendieck

group.

The paper is organized as follows. We start in section 2 by analyzing more care-

fully what role the moduli space of GC flat connections on M3 plays in 3d N = 2 theory

T [M3, G]. In particular, we ask whether quantum corrections can modify the semi-classical

picture (1.2) by lifting some of the vacua, and how the vacua of 3d theory (not compactified

on a circle) differ from (1.2). The first approximation to the answer can be gleaned from

the fact that, when T [M3, G] is compactified on a circle of a finite but small radius, the ef-

fective theory is two-dimensional and explores all of its vacua due to long-range fluctuation.

Therefore, Mvacua is better viewed as a “target space” than the “space of vacua.” More

interestingly, for G = U(1) and also in many cases for G = SU(2), we find that Mvacua

has the interpretation directly in three dimensions, as a target space of 3d N = 2 the-

ory T [M3, G] itself, with non-trivial interacting SCFTs residing at singularities of Mvacua.

A better and more accurate version of this 3d interpretation is that T [M3, G] should be

viewed not as a single SCFT, but rather as a collection of SCFTs parametrized by points

of the moduli space of GC flat connections on M3. We refer to this collection of SCFTs as

a “sheaf” of SCFTs.

Then in section 3 we explore Ẑb(q) invariants for some class of 3-manifolds with positive

first betti number, namely plumbings with loops and 0-surgery on knots. One important

lesson we learn is that in order to reproduce WRT invariants for such three-manifolds it is

not enough to use abelian Ẑb that were introduced in [22], but rather, we need more blocks

that we call almost abelian. Moreover for 0-surgery on knots we observe a nice interplay

between these Ẑb and FK , a two-variables series recently introduced in [23].

In section 4 we discuss twisted indices of T [M3] on different manifolds and their relation

to known topological invariants such as Turaev torsion and Heegaard Floer homology. We

conclude in secton 5 with a brief summary of possible generalizations and future directions.
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2 “Coulomb” and “Higgs” branches

In standard terminology [24], a Higgs branch usually refers to vacua parametrized by

scalar fields in matter multiplets where gauge group is completely broken. In contrast, a

Coulomb branch is parametrized by scalars in vector multiplets which leave a non-trivial

abelian part of the gauge symmetry unbroken. A natural adaptation of this terminology

to 3d-3d correspondence, at least for G of rank 1, would mean that branches of the moduli

space (1.1) where flat connections have a stabilizer of positive dimension (i.e. reducible flat

connections) play the role of Coulomb branches, while irreducible flat connections should

be viewed as analogues of Higgs branches. This terminology is consistent with the uses of

“Coulomb” and “Higgs” in theories with small amounts of supersymmetry, see e.g. [25] for

the context of 3d N = 2 physics relevant to us here.

In general, the space of flat connections on any manifold can be described by ho-

momorphisms from its fundamental group to the gauge group, modulo conjugations. In

particular,

Mflat (M3, GC) = Hom
(
π1(M3), GC

)
/ conj. (2.1)

2.1 T [M3] as a “sheaf” of SCFTs

In string theory and in quantum field theory, one of the standard tools is a compactification

on a circle S1 or, more generally, on a manifold Mn of dimension n. This tool is very useful

because it relates the physics of theories in dimension d and d − n. In particular, for

d−n > 2, field configurations of a d-dimensional theory that satisfy the required equations

of motion along Mn become classical vacua of the effective (d− n)-dimensional theory.

With sufficiently large amount of supersymmetry, one can be sure that all such vacua

are present in the quantum theory as well, and each choice of vacuum, i.e. each choice of the

background on Mn, then flows to a SCFTd−n(v) parametrized by v ∈ Mvacua. Depending

on the context, Mvacua can be either a discrete set of points (e.g. different flux sectors) or

a continuum (parametrized by moduli), or a union of components of both types.

Typically, generic points on the continuum part of Mvacua correspond to relatively

simple SCFTs, which become more interesting interacting SCFTs at special loci of this

moduli space. A priori, all such SCFTs can be quite different and each SCFT only captures

the physics of its local neighborhood on Mvacua. In order to describe the global structure

of the effective (d−n)-dimensional theory one therefore needs a collection of SCFTs glued

together in a way reminiscent of a sheaf. In the physical problem at hand, the “stalk” at

a given point v ∈Mvacua provide a local description that is captured by the SCFT at this

point, but its global structure describes the way these local patches are glued together.3

3Note, that the data of a SCFT at a given point v ∈ Mvacua is encoded in an algebra, namely its OPE

algebra. It also knows about the SCFTs in the neighborhood of v, but cannot reach points far in the space

of vacua Mvacua; for this one needs to use several charts which agree on overlaps. Although this structure

is reminiscent of the mathematical notion of a sheaf, the analogy is not quite precise since in the present

physical setup it is not clear what algebraic structure is assigned to a general open set on Mvacua. For this

reason, we use the word “sheaf” in quotes when applied to the collection of SCFTs parametrized by points

of Mvacua and glued together.
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This way of looking at the physics of the partially compactified theory is, in fact, rather

common, although perhaps not phrased in exactly this language. Consider for example,

successive compactifications of the six-dimensional (2, 0) theory on circles. At first step, one

finds a maximally supersymmetric Yang-Mills theory, with a dimensionful gauge coupling

constant determined by the size of the circle. Then, a further compactification on another

S1 gives a maximally supersymmetric (N = 4) theory in four dimensions. Unless the

size of the circle(s) is taken to zero, one of the scalar fields in the effective 4d theory is

G-valued, parametrized by holonomy of the 5d gauge field A. (The other five scalars are

Lie(G)-valued, as in the original 5d theory.) As a result, the moduli space of the effective

4d theory is C∗ × C2 when G = U(1) and

C∗ × C2

Z2
(2.2)

when G = SU(2). The neighborhood of each orbifold point here is well described by 4d

N = 4 super-Yang-Mills (SYM) theory which has the moduli space of vacua C3/Z2. The

latter, clearly, does not capture the low-energy physics at arbitrary points of (2.2) and

one needs two copies of 4d N = 4 SYM to describe the effective physics of 5d theory

compactified on a circle of a finite size.

Similarly, the next step, i.e. a further compactification of the 6d (2, 0) theory on a

third circle of small but finite size gives a collection of SCFTs with very rich BPS spectra.

By definition, this data is T [M3, G] with M3 = T 3. When G = U(1), the moduli space of

this three-dimensional theory (in flat space) is C × (C∗)3, where two copies of C∗ can be

understood as holonomies of 5d gauge field along the two cycles of T 2 = S1×S1 paired up

with 5d scalars, whereas the third copy of C∗ is parametrized by the dual 3d photon (which

is also a periodic scalar in three dimensions) paired with a non-compact scalar [25]. This

field content can be equivalently summarized in a form of four 3d N = 2 chiral multiplets,

three of which are C∗-valued and one is C-valued. This is the same as the moduli space of

vacua — or, rather, the target space — of the 3d theory on a circle, cf. (2.5).

As we explain later in this section, in the non-abelian case too, namely for G = SU(2),

the moduli space of 3d theory in flat space is the same as, cf. (1.2),

Mvacua =
(C∗)3 × C

Z2
(2.3)

It has 8 singular point, each described by a copy of 3d N = 8 ABJM theory [26]. Again,

each ABJM theory only provides a local description of its local neighborhood, modeled on

a space of vacua C4/Z2. If we restrict our attention to only one copy of ABJM theory, we

loose the fact that there are additional singular points. In order to recover them all, we

need to patch eight copies of the ABJM theory into a “sheaf” of SCFTs T [M3].

This example of T [M3] with M3 = T 3 will be a useful prototype for what to ex-

pect in the case of general 3-manifolds. In particular, our next goal is to show that

Mvacua (T [M3, U(1)]) can be always understood as a space of vacua of 3d theory in flat

space (i.e. on R3), for any M3.

– 6 –
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N=4 N=4

N=2

4d
theory

4d
theory

3d
wall

Figure 2. For genus-1 mapping tori, T [M3] can be constructed from 1
4 -BPS walls in 4d N = 4

theory. Note, the 4d N = 4 theory in question is 5d super-Yang-Mills on a circle of finite radius,

and 3d walls preserve only 4 out of 16 supercharges, i.e. N = 2 supersymmetry in three dimensions.

2.2 Moduli spaces for G = U(1)

Abelian version of 3d-3d correspondence is a useful guide to the general case. In particular,

it can often shed light on what algebraic structures in 3d N = 2 theory T [M3, G] one

should expect for different constructions of 3-manifolds, how much supersymmetry the

basic ingredients preserve, etc.

For G = U(1), the theory T [M3] is defined as the effective 3d theory on a single five-

brane, partially twisted along the 3-manifold M3. Since in this case the 6d theory on the

five-brane world-volume is Lagrangian — namely, it is a theory of a free 6d (0, 2) tensor

multilet — the resulting 3d theory T [M3] can be simply obtained by the usual rules of the

Kaluza-Klein (KK) reduction.

In particular, due to the partial topological twist along M3, three out of five real

scalars in 6d theory turn into a 1-form on M3; its KK modes contain b1 scalars and become

supersymmetric partners of b1 vector fields which are KK modes of the tensor field in six

dimensions. The other two scalars of the 6d theory can be combined into one complex

scalar. It has only one obvious KK mode which is a complex scalar field φ0 in a 3d chiral

multiplet that we denote Φ0. The field φ0 has a simple geometric interpretation; it describes

the displacement of the five-brane along R2 ⊂ R5 transverse to the five-brane world-volume

R3 ×M3 ⊂ R5 × T ∗M3.

To summarize, we conclude that the spectrum of light dynamical fields in the 3d N = 2

theory T [M3] includes b1 abelian vector multiplets (without Chern-Simons couplings) and

a free chiral multiplet Φ0. When 3d theory is considered on a circle, i.e. on S1 ×R2, these

fields contribute factors (C∗)b1 and C to the space of vacua (1.1). Or, directly in 3d, one can

dualize U(1) gauge fields into compact (i.e. periodic, circle-valued) scalars via dAi = ∗dφi.
One then finds b1 copies of the dual photon multiplet, each of which is a 3d N = 2 chiral

multiplet with C∗-valued complex scalar [25].

Another, less obvious factor in Mvacua is the set of discrete vacua that comes from

the torsion part of H1(M3,Z). One way to see it is to note that, for G = U(1), all

– 7 –



J
H
E
P
0
9
(
2
0
2
0
)
1
5
2

representations of π1(M3) into GC factor through its abelianization, H1(M3,Z). Therefore,

in this case (2.1) is the complexification of the Pontryagin dual of H1(M3,Z),

Mflat (M3,C∗) = (C∗)b1 × TorH1(M3,Z)∨ (2.4)

Note, that it properly accounts for all vacua of T [M3], except the ones parametrized by vevs

of Φ0 (which, of course, is not too surprising since Φ0 is not affected by the topological twist

and represents a different sector of the theory, independent of complex GC connections).

Taking into account Φ0, we get the complete moduli space

Mvacua = C × (C∗)b1 × TorH1(M3,Z)∨ (2.5)

Since the fields parametrizing various components are independent, the resulting set of

vacua is simply a product. The derivation of (2.5) and the final result are completely

general; they apply to an arbitrary closed oriented 3-manifold M3. In particular, they

illustrate the assertion made earlier, namely that Mvacua can be viewed as the space of

vacua of 3d theory on a circle as well as in flat space-time. To be more precise, these two

moduli spaces are related by T-duality or mirror symmetry, which relates dual photons φi
and holonomies of the abelian gauge fields Ai on a circle.4 It also helps to anticipate the

subtleties of such relation in the non-abelian case.

Now, let us specialize to the case of genus-1 mapping tori and see how (2.5) can be

reproduced from the structure of a torus bundle. First, we can reduce 5d maximally

supersymmetric gauge theory with gauge group G on a torus Σ = T 2, the fiber of M3. We

obtain a maximally supersymmetric 3d gauge theory with the same gauge group, where

two scalar fields are compact, parametrized by G-valued holonomies along the generators

of H1(Σ) ∼= Z2. They naturally combine with two non-compact, Lie(G)-valued scalars to

form a bosonic content of 3d N = 4 hypermultiplet with values in

C∗ × C∗ ∼= Mflat (Σ, GC) (2.6)

on which MCG(Σ) = SL(2,Z) acts in an obvious way. The rest of the fields comprise 3d

N = 4 vector multiplet.

In order to make contact with the space of vacua (2.5), we need to compactify this 3d

N = 4 theory further on a circle S1 with a monodromy (“duality wall”) by the element

ϕ ∈ MCG(Σ). The reduction of the 3d N = 4 vector multiplet contributes to the moduli

space of vacua a factor C × C∗, independent of the choice of ϕ. On the other hand, the

target space of the hypermultiplet is projected onto the fixed point set of the map ϕ acting

on (2.6).

This is in perfect agreement with (2.5). Indeed, the homology H1(M3) has three

obvious generators, namely the generators of H1(Σ) ∼= Z2 and H1(S1) ∼= Z, with a matrix

of relations given by ϕ− 1. They fit into the following long exact sequence (see e.g. [28]):

. . . −→ Hn(Σ)
ϕ∗−1−−−−−→ Hn(Σ) −→ Hn(M3) −→ Hn−1(Σ)

ϕ∗−1−−−−−→ . . . (2.7)

4See e.g. [27].
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from which it follows that, for genus-1 mapping tori,

H1(M3) = Z⊕ coker(ϕ∗ − 1) ⇒ b1(M3) =


1 if tr(ϕ) 6= 2

2 if tr(ϕ) = 2, ϕ 6= 1

3 if ϕ = 1.

(2.8)

In other words, there are three possible cases:

• b1 = 1. This is the generic case.

• b1 = 2. In this case, ϕ ∈ SL(2,Z) is conjugate to T p =
(

1 p
0 1

)
, with p 6= 0, and M3

can be also viewed as a degree-p circle bundle over T 2. In latter presentation, its

homology H1(M3) = Z ⊕ Z ⊕ Zp can be also computed via the Leray-Serre spectral

sequence.

• b1 = 3. In this very special case M3 = T 3.

Here we used the standard notations for generators of SL(2,Z), which satisfy S2 = −1 =

(ST )3 and can be represented by matrices5

S =

(
0 −1

1 0

)
, T =

(
1 1

0 1

)
(2.9)

In what follows, we also denote by U a 2 × 2 matrix representing ϕ ∈ SL(2,Z). It can

always be expressed as a word in S and T :

U = ST a1ST a2 . . . ST an (2.10)

for some a1, . . . , an ∈ Z. Using the following simple rule

T a =
a• (vertex with framing a)

S = (edge)
(2.11)

we can graphically represent a genus-1 mapping torus associated with (2.10) by a plumbing

graph:

a1 a2
· · ·

an (2.12)

The meaning of such graphs will be explained in section 3.2, where we also consider gen-

eralizations. For now, we only note that, in terms of the linking matrix of this graph,

Q =



a1 −1 0 · · · −1

−1 a2 −1
...

0 −1
. . . 0

...
. . .

. . . − 1

−1 · · · 0 −1 an


(2.13)

5Hopefully, this will not cause a confusion between elements T p =
(

1 p
0 1

)
and p-dimensional tori, denoted

in a similar way.

– 9 –
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Figure 3. The structure of the moduli space of flat GC = SL(2,C) flat connections on Σ = T 2.

Over each of the four orbifold points of the “semisimple” branch (2.19), with x = ±1 and y = ±1,

one finds the corresponding “unipotent” branch.

we have

H1(M3,Z) = Z× Zn/QZn (2.14)

In particular, when Q is nondegenerate, TorH1(M3,Z) = Zn/QZn.

Comparing (2.14) with our discussion around (2.5), we obtain a concrete description

of the 3d N = 2 theory T [M3, U(1)]:

T [M3, U(1)] =
U(1)n+1 gauge theory with a matrix of Chern-Simons

levels Q and a free chiral multiplet Φ0
(2.15)

Another useful description, that follows from Zn/QZn ∼= Z2/(U − 1)Z2, is

T [M3, U(1)] =
U(1)3 gauge theory with a matrix of Chern-Simons

levels U − 1 and a free chiral multiplet Φ0
(2.16)

According to [29, 30], the R-charge of the chiral multiplet Φ0 is

R(Φ0) = 2 (2.17)

2.3 Moduli spaces for G = SU(2)

In this case, the representations of π1(M3) into GC no longer factor through H1(M3,Z),

and the suitable analogue of (2.7) is the following exact sequence:

1 −→ π1(Σ) −→ π1(M3) −→ Z −→ 1 (2.18)

The moduli space of GC = SL(2,C) flat connections on Σ = T 2 consists of several

components: the main “semisimple” component and four “unipotent” components Di,

i = 1, . . . , 4. The semisimple component is simply a quotient of (2.6):

C∗ × C∗

Z2
(2.19)

by the Weyl group W = Z2, which acts on (x, y) ∈ C∗×C∗ via (x, y) 7→ (x−1, y−1). Here, x

and y are to be understood as holonomy eigenvalues of the SL(2,C) flat connection along

A and B cycles of Σ = T 2. When x = ±1 and y = ±1 (with independent signs), the

quotient space (2.19) is singular. It has four orbifold points of the type C2/Z2, i.e. A1

Kleinian singularities. Over each of these orbifold points, a new branch of complex flat

connections opens up, as illustrated in figure 3.
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Namely, when x = ±1 and y = ±1, one can deform the SL(2,C) holonomies A = ±1

and B = ±1 into an upper-triangular form

A =

(
±1 u

0 ±1

)
, B =

(
±1 v

0 ±1

)
(2.20)

which we shall call “unipotent” whenever |u|2 + |v|2 6= 0. Since the two commuting

holonomies A and B are defined only up to conjugation by SL(2,C) matrices, it is easy to

see that the two complex off-diagonal values u and v are defined only up to simultaneous

multiplication by a non-zero complex number, (u, v) ∼ (λu, λv) with λ ∈ C∗. Therefore,

for each choice of (independent) signs in (2.20), the corresponding unipotent branch is

Di =
C2 − {0}

C∗
∼= CP1 i = 1, . . . , 4 (2.21)

To summarize, the moduli space of flat GC = SL(2,C) flat connections on Σ = T 2 has the

following structure:

Mflat (Σ, GC) ∼=
C∗ × C∗

Z2
∪

4⋃
i=1

Di (2.22)

Note, the unipotent components Di are not disjoint from the semisimple component. This

is clear before modding out by the GC symmetry, when the two branches simply touch

each other as Coulomb and Higgs branches often do. And, even after the conjugation by

GC, the four components Di can also be interpreted as exceptional divisors associated with

resolution of four C2/Z2 singularities.

The moduli space of GC = SL(2,C) flat connections on the mapping cylinder Σ× I of

the element U =
(
a b
c d

)
∈ SL(2,Z) is the correspondence

ρ(U) : Mflat (Σ, GC) → Mflat (Σ, GC) (2.23)

which acts on the main (semisimple) component (2.19) in the obvious way

ρ(U) :
(C∗ × C∗) /Z2 → (C∗ × C∗) /Z2

(x, y) 7→ (xayb, xcyd)
(2.24)

Therefore, apart from the holonomy around the base circle, the moduli space of flat GC
connections on the mapping torus (1.3) is given by the intersection of the graph of function

ρ(U) with the diagonal ∆ : Mflat (Σ, GC) → Mflat (Σ, GC). These are the fixed points of

the map ρ(U). In particular, according to (2.24), the moduli space of flat GC connections

on the mapping torus coming from (C∗ × C∗) /Z2 ⊂Mflat (Σ, GC) has the form

M+ × C∗

Z2

⋃ M−
Z2

⊂ Mflat (M3, GC) (2.25)

where M± is defined to be the fixed point set of the simpler version of (2.24):

ρ(U)± :
C∗ × C∗ → C∗ × C∗

(x, y) 7→ (x±ay±b, x±cy±d)
(2.26)
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component signs in (2.20) parity constraints fixed points of ρ(U)

D1 (+,+) none

(
a b

c d

)(
u

v

)
= z2

(
u

v

)

D2 (+,−)
b = even

(
a −b

−c d

)(
u

v

)
= z2

(
u

v

)
d = odd

D3 (−,+)
a = odd

(
a −b

−c d

)(
u

v

)
= z2

(
u

v

)
c = even

D4 (−,−)
a+ b = odd

(
a b

c d

)(
u

v

)
= z2

(
u

v

)
c+ d = odd

Table 1. Fixed points of the map ρ(U) on the “unipotent” components Di. The fixed points exist

only when suitable parity constraints are satisfied. The system of equations in the last column is

the analogue of (2.27). Here, z denotes the holonomy eigenvalue of SL(2,C) flat connection along

the base circle in (1.3).

Note, that M+ × C∗ is simply the moduli space of complex abelian flat connections (2.4)

discussed earlier, and M− is its close cousin comprised of flat connections twisted by the

generator of the Weyl group

M± =

{
(x, y) ∈ C∗ × C∗

∣∣∣∣∣ x±a−1y±b = 1

x±cy±d−1 = 1

}
(2.27)

Therefore, the contribution of the first component M+ × C∗ to the moduli space of

vacua (1.1) correspond to the “Coulomb” branch of the 3d N = 2 theory T [M3] on a

small circle (1.2), while the points of M− correspond to Higgs branch vacua. Note, the

latter are “almost abelian”; if not for the twist by the non-trivial Weyl group element, they

would represent reducible complex flat connections on M3.

The action of the mapping class group MCG(Σ) ∼= SL(2,Z) on the other components

Di in (2.22) parametrized by “unipotent” holonomies is slightly more involved and depends

on the choice of signs in (2.20). We summarize the result of this action in table 1, where

the fixed points of the map ρ(U) are listed. It is easy to see that, for generic U with

TrU 6= 2, the solutions for u/v and z are indeed isolated points. These are non-abelian

flat connections on M3.

Also note that, prior to conjugation by SL(2,C), the values of (u, v) parametrize points

on the (“nilpotent”) cone C2, which is enhanced to C3 once we include the nilpotent part

of the center of mass chiral multiplet Φ0. These vacua are connected to the corresponding

points on the semisimple part of the moduli space (2.25), where parity constraints of

table 1 also apply and have a clear meaning. Conjugation by SL(2,C), however, acts

very differently on semisimple and unipotent vacua. In particular, it turns each C3 cone

of unipotent/nilpotent values of A, B, and Φ0 into C3/C∗ ∼= CP2. Even though such

factors can appear for manifolds with TrU = 2 as we will see later, for generic U there is a

constraint on u/v given in table 1. And, when the holonomy along the base of the mapping

torus is diagonal with eigenvalues z, z−1, Φ0 vanishes. Thus, we are still left with isolated

– 12 –



J
H
E
P
0
9
(
2
0
2
0
)
1
5
2

points. Finally, when A and B are ±1 with unipotent holonomy along the base, together

with nilpotent Φ0 it leads to C2/C∗ ∼= CP1.

For now, let us summarize the structure of the moduli space of vacua of T [M3] with

G = SU(2) that we deduced so far for generic TrU 6= 2. Following the general rule

explained earlier, we refer to the vacua represented by abelian (resp. non-abelian) flat

connections on M3 as Coulomb (resp. Higgs) branches. With this nomenclature, the

Coulomb branch vacua correspond to brane configurations in which individual fivebranes

can be separated in transverse directions, whereas turning on vevs of the off-diagonal field

components corresponds to Higgs branch vacua of the fivebrane system, in which individual

fivebranes are bound to each other:

Mvacua (T [M3, SU(2)]) =
M+ × C∗ × C

Z2︸ ︷︷ ︸
“Coulomb”

⋃ M−
Z2

∪ {•, · · · , •} ∪ CP1 ∪ · · · ∪ CP1︸ ︷︷ ︸
“Higgs”

(2.28)

Similarly to the case of T 2, the unipotent components can be thought of as resolutions of

the orbifold singularities. Since this space is Kähler, it can be used as a target space of a

sigma-model with N = 2 supersymmetry. In a variety of questions, this provides a good

approximation to the 3d N = 2 theory T [M3], at least on a circle. Could it be the full

story?

The answer is “yes” in the abelian case, where T [M3] is indeed equivalent to a sigma-

model on (2.5), either via reduction on a circle or via dualizing 3d photons into compact

scalars. These two ways of completing R-valued scalars in 3d vector multiplets into C∗-
valued scalars of twisted chiral multiplets are equivalent (T-dual) in the abelian case. In the

non-abelian case, only the first option is readily available, and moreover the sigma-model

on (2.28) can not be the full story since this space has singularities.

Luckily, the singularities in (2.28) have a clear origin and a familiar form: they arise

from conjugation action by GC = SL(2,C) and appear in ABJM theory of type G (= IR

limit of 3d maximally supersymmetric gauge theory with group G) [26]. This suggests a

non-abelian model that we describe next.

2.3.1 3d N = 2 Skyrme-like models

We wish to realize a 2d N = (2, 2) sigma-model with target (2.28) as a reduction of some

3d theory associated to Σ, namely T [Σ × S1], on a circle, with 2d interfaces (S and T

duality walls) inserted at points on a circle in a periodic arrangement (2.10) as in figure 4.

The 3d theory T [Σ×S1] in question is supposed to be a reduction of 5d maximally su-

persymmetric Yang-Mills theory on Σ of finite size, i.e. with Kaluza-Klein modes included.

In particular, it should enjoy a duality symmetry MCG(Σ) realized by BPS duality walls.

For the moment, let us assume that Σ has arbitrary genus g. Then a compactification

with a partial topological twist along Σ turns two adjoint 5d scalars into a 1-form on Σ,

which complexifies G-valued holonomies of the gauge field. As a result, we get 2g three-

dimensional chiral multiplets with values in GC, on which the gauge symmetry G acts in

a natural way. The 3d theory T [Σ × S1] also has a gauge-invariant superpotential that
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Figure 4. Reducing T [Σ×S1] on a circle, with S and T duality walls inserted at points on a circle.

imposes a constraint
g∏
i=1

AiBiA
−1
i B−1

i = 1 (2.29)

In addition, there are three adjoint scalars of the original 5d theory, which in 3d become

superpartners in a N = 4 vector multiplet. This 3d N = 4 vector multiplet is equivalent

to a 3d N = 2 vector multiplet and an adjoint chiral multiplet that we call Φ0.

In principle, this provides a potential candidate for the 3d N = 2 theory T [Σ×S1, G],

with Σ of arbitrary genus g (and arbitrary non-abelian G of ADE type). As far as we

know, the IR physics of such 3d N = 2 gauged sigma-models, with target spaces that

involve products of several copies of GC, have not been studied so far. Such models are

supersymmetric gauged analogues of 3d Skyrme, WZW-like, and principal chiral mod-

els [31]. Since the complex group manifold GC admits a Kähler metric [32], one should

expect that a sigma-model with this target admits a supersymmetric extension with N = 2

supersymmetry. This is indeed the case, as can be verified by a direct calculation [33].

Relegating a more systematic study of such 3d N = 2 theories with multiple GC-valued

chiral multiplets to future work, in what follows we mainly focus on the case of genus g = 0

(for which the candidate T [Σ× S1] has no GC-valued multiplets) and on the case of genus

g = 1, for which the candidate T [Σ× S1] has two GC-valued matter multiplets, A and B:

T [T 2 × S1] =

3d N = 2 gauged sigma-model with gauge group G

and target space(A,B,Φ0) ∈ GC ×GC × gC

∣∣∣∣∣∣∣
[A,B] = 0

[A,Φ0] = 0

[B,Φ0] = 0


(2.30)

The mapping class group MCG(Σ) = SL(2,Z) acts only on A and B by sending A 7→ AaBb

and B 7→ AcBd. Note, that GC×GC here is a non-abelian analogue of C∗×C∗ from (2.6).

Since T 2 × S1 is simply a 3-torus T 3, the manifest SL(2,Z) symmetry of (2.30) should be

enhanced to SL(3,Z) symmetry in the infra-red.

Indeed, independently of the proposal (2.30), we know that T [M3 = T 3] should have

maximal (N = 8) supersymmetry and enjoy an SL(3,Z) self-duality symmetry. We can

also easily describe its moduli space. For simplicity and concreteness, let us return to the
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ABJM

ABJM

ABJM ABJM

ABJM

ABJM ABJM

ABJM

Figure 5. The moduli space of T [M3, G] with M3 = T 3 and G = SU(2). Shown here is the real

slice of the space C∗×C∗×C∗
Z2

, a three-dimensional “pillowcase.” The eight ABJM theories are at the

eight corners of the pillowcase.

case of G = SU(2). Then, asymptotically, when the vevs of non-compact scalars are large,

the moduli space looks like
(C∗)3 × C

Z2
(2.31)

Here, as in the discussion around (2.3), we use the fact that T [M3 = T 3] is a 5d SYM on

a 2-torus T 2. Holonomies of the 5d gauge field along 1-cycles of the T 2 were precisely the

motivation for (2.30) and account for two out of three C∗ factors in (2.31). These C∗ factors

can be thought of as Cartan components of the fields A and B enforced by commutators

of the 5d theory in a background of large scalar vevs. Large vevs of non-compact scalars

not only mean that all matter fields are simultaneously diagonalizable, but also break the

SU(2) gauge symmetry to a U(1) subgroup. Therefore, in asymptotic region of the moduli

space we can dualize the U(1) photon into a compact (periodic) scalar, which then accounts

for the third C∗ factor in (2.31).

So far, this part of the analysis follows closely [34], where moduli spaces of various rank-

one 3d N = 4 gauge theories were studied. The next step, however, is where T [M3 = T 3]

differs from a typical 3d N = 4 theory. Indeed, while the metric on the moduli spaces

of the latter in general is quantum-corrected, the N = 8 supersymmetry of T [M3 = T 3]

prevents such corrections. Therefore, we conclude that (2.31) is the actual quantum moduli

space of 3d theory T [M3, G] with M3 = T 3 and G = SU(2). Note, unlike Mvacua that

features prominently throughout the paper and refers to the moduli space of a 3d theory

on a circle, here we consider the moduli space of 3d theory in flat space-time, i.e. on R3.

In fact, now is a good time to show that the moduli space of 3d theory T [M3 = T 3]

on a circle also has the form (2.31), thus justifying an earlier claim (2.3). Indeed, a

bonus feature of our above analysis of the moduli space is the evidence for the effective

theory (2.30) in the asymptotic region of the moduli space. Therefore, in order to describe

Mvacua (T [M3]), we can analyze the moduli space of this theory on S1 and make use of

N = 8 supersymmetry, as in the previous discussion. Upon compactification on S1, the 3d

vector multiplet of the theory (2.30) gives rise to a standard 2d N = (2, 2) vector multiplet
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and a 2d chiral multiplet with values in GC, parametrized by the holonomy of A+ iσ along

the S1. If we denote this chiral multiplet by C, then

Mvacua

(
T [T 3, SU(2)]

)
=

=

(A,B,C,Φ0) ∈ GC ×GC ×GC × gC

∣∣∣∣∣∣∣
[A,B] = 0 = [A,Φ0]

[A,C] = 0 = [B,Φ0]

[B,C] = 0 = [C,Φ0]


/
GC ∼=

∼=
C∗ × C∗ × C∗ × C

Z2
(2.32)

This is the same as the moduli space (2.31) of 3d theory T [M3 = T 3] in flat space. (To

be more precise, the two moduli spaces are related by T-duality along one of the S1’s.)

This provides partial evidence for the proposed UV description (2.30) of T [M3, G] with

M3 = T 3 and G = SU(2). The IR description, according to the above analysis, consists of

eight ABJM theories that share the same moduli space (2.31). This is also consistent with

the proposed UV description (2.30), where 8 copies of the ABJM theory reside at the fixed

points of the Z2 Weyl symmetry of G = SU(2). Without loss of generality, we can consider

the singular point at A = B = 1. Near this point we can replace GC-valued fields A = eα

and B = eβ by the Lie algebra valued fields α and β. Therefore, near each singular point,

the physics of (2.30) is well approximated by 3d N = 2 gauge theory with three adjoint

chiral multiplets α, β, and Φ0, which in the IR indeed flows to the ABJM fixed point [26].

It would be interesting to test the proposal (2.30) further by computing various super-

symmetric indices and partition functions in the UV and in the IR. We expect the special

functions of [35, 36] to play a role.

Note, the UV Lagrangian that we proposed here for the theory T [M3] with M3 = T 3 is

based on the flat metric on T 3. However, since 6d fivebrane theory is patrially twisted along

M3, we could use any other metric on M3 = T 3. Since such perturbations are Q-exact, with

respect to the topological supercharges on M3, they do not affect the IR fixed point T [M3],

which still should be a maximally supersymmetric SCFT in three dimensions. However,

such perturbations modify the UV description of the theory T [M3], breaking SUSY down

to N = 2 for a generic choice of metric on M3. Some of such 3d N = 2 theories may provide

a more convenient description of T [M3] for M3 = T 3 and would be well worth investigating.

They could also lead to new examples of RG flows with supersymmetry enhancement.

The moduli spaces (2.31) and (2.32) describe, respectively, the vacua on R3 and on

S1 × R2 of the “sheaf” of SCFTs T [M3], with M3 = T 3, i.e. a genus-1 mapping torus

with U = 1. In order to describe the analogue of (2.32) for a more general mapping torus

with U =
(
a b
c d

)
∈ SL(2,Z), one needs to introduce into 3d theory on S1 × R2 a periodic

arrangement of S and T duality walls located at points on a circle. As a result, the fields

A and B undergo non-trivial monodromies when we go around the base circle, and the

relations [A,C] = 0 = [B,C] in (2.32) are replaced by

CAC−1 = AaBb , CBC−1 = AcBd (2.33)
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with all other details unchanged. These equations for (A,B,C) are, then, simply the

relations in the fundamental group of a genus-1 mapping torus M3:

π1(M3) =
〈
x, y, z

∣∣∣ xy = yx, zxz−1 = xayb, zyz−1 = xcyd
〉

(2.34)

represented by GC-valued matrices:

ρ : π1(M3) −→ GC
x 7→ A

y 7→ B

z 7→ C

(2.35)

Note, the case U =
(

1 p
0 1

)
= T p is somewhat special. As pointed out earlier, this is

precisely when b1(M3) ≥ 2. (In fact, b1 = 2 for p 6= 0.) Moreover, in this case, according

to (2.32)–(2.33), B commutes with both A and C. On one hand, when matrices can be

simultaneously diagonalized (cf. “semisimple” component) the eigenvalues of A, B, and C

take values in C∗, Zp, and C∗, respectively. On the other hand, for unipotent components

B = ±1. Therefore, we conclude that, for a mapping torus of U = T p,

Mflat (M3, SL(2,C)) =
Zp × C∗ × C∗

Z2

⋃
CP1 ∪ · · · ∪ CP1 (2.36)

Moreover, when we take into account the adjoint scalar with diagonal values for abelian

connections and nilpotent values for non-abelian connection we get

Mvacua

(
T [M3, SU(2)]

)
=

Zp × C∗ × C∗ × C
Z2

⋃
CP2 ∪ · · · ∪ CP2 (2.37)

Comparing this result with the derivation of (2.32) suggests that the theory T [M3] for

the mapping torus of U = T p is a deformation of (2.30) by 3d N = 2 supersymmetric

Chern-Simons term at level p.

Note, in the case of mapping tori with U = T p, including p = 0, we have M− ⊂ M+

in (2.28). This is no longer the case for more general choice of the monodromy U , i.e. for

mapping tori with b1(M3) = 1. Indeed, writing

A =

(
x ∗
0 x−1

)
, B =

(
y ∗
0 y−1

)
(2.38)

we see that equations (2.33) become (2.27) for the holonomy eigenvalues x and y.6

Another useful remark is that the role of M+ and M− is exchanged under U 7→ −U .

Since M+ is part of the Coulomb branch and M− is part of the Higgs branch, cf. (2.28),

it is natural to call this map a “mirror symmetry,” by analogy with [37]. Using (2.34) we

can prove the following

6Hopefully, x and y that denote holonomy eigenvalues here will not be mistaken for the generators of

π1(M3) denoted by the same letters in (2.34). They are related, of course, so that there is little danger in

the confusion. And, in this paper, the primary use of x and y is to denote holonomy eigenvalues.
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Lemma 1. For G = SU(2), there is a canonical bijection7

σ : π0 (Mflat(M3(U), GC)) −→ π0 (Mflat(M3(−U), GC)) (2.39)

such that

CS(ρ) = CS(σ(ρ)) mod 1 (2.40)

Proof. First, following the same analysis that led us to unipotent SL(2,C) flat connections

in table 1, one can quickly see that all such complex flat connections on M3(U) are, in fact,

in the same connected components of Mflat(M3(U), GC) as SU(2) flat connections with

holonomies A = ±1 and B = ±1. In the notations (2.35), these SL(2,C) flat connections

have holonomy eigenvalue z along the base circle such that

z4 − tr(U)z2 + 1 = 0 (2.41)

Then, it suffices to prove the statement for SU(2) flat connections. If the fundamental

group of the mapping torus M3(U) is given by (2.34), then in the same conventions that

of M3(−U) is

π1(M3(−U)) =
〈
x, y, z

∣∣∣ xy = yx, zxz−1 = x−ay−b, zyz−1 = x−cy−d
〉

(2.42)

For any ρ ∈ Hom (π1(M3(U)), SU(2)), we can think of ρ′ ∈ Hom (π1(M3(−U), SU(2)) /conj.

determined by

ρ′(x) = ρ(x) , ρ′(y) = ρ(y) , ρ′(z) = jρ(z)

where j ∈ SU(2) is chosen such that jρ(x)j−1 = ρ(x)−1 and jρ(y)j−1 = ρ(y)−1. Gener-

ically, there will be a U(1)-family of such matrices, and they all are conjugate to each

other. For instance, if we take ρ(x) and ρ(y) to be diagonal, then j can be
(

0 eiθ

−e−iθ 0

)
,

and the corresponding homomorphisms are conjugate to each other. The non-generic case

occurs when ρ(x) and ρ(y) are both ±1, and in that case j can be an arbitrary matrix.

For example, we can pick j = 1 in that case. We have just defined a map

Hom (π1(M3(U)), SU(2)) → Hom (π1(M3(−U)), SU(2)) /conj.

This map does not descend to a map

Hom (π1(M3(U)), SU(2)) /conj. → Hom (π1(M3(−U)), SU(2)) /conj.

because, unlike
(

0 eiθ

−e−iθ 0

)
, the matrices

(
eiθ 0
0 e−iθ

)
are all non-conjugate to each other.

Nevertheless, once we pass to connected components, we arrive at the desired canonical

one-to-one correspondence (2.39):

π0 (Mflat(M3(U), GC)) ' π0 (Mflat(M3(−U), GC)) (2.43)

7Here, we use notation π0 to denote the space of connected components, not the space of path-connected

components. The distinction is due to the fact that Mflat(M3, GC) is in general not Hausdorff, at least

naively, due to the unipotent components.
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What is even better, the correspondence holds at the level of the Chern-Simons

functional. That is, for a pair of flat connections A ∈ Mflat(M3(U), GC) and A′ ∈
Mflat(M3(−U), GC) related by the above correspondence, the values of the Chern-Simons

functionals coincide:

CS(A) = CS(A′)

This is because of the fact that M̃3 := M3(U2) is a double cover of both M3(U) and

M3(−U), and A and A′ lift to the same connection, say, Ã on M̃3. Hence, 2CS(A) =

CS(Ã) = 2CS(A′).

The reason A and A′ lift to the same connection on M3(U2) is that they induce,

respectively, a representation of the fundamental groupoid π1(M3(U)) and π1(M3(−U)) to

SU(2). The corresponding representations of π1(M3(U2)) are just their pull-backs. It is

easy to see that these two representations are related by a gauge transformation that is

null-homotopic. Therefore, A and A′ lift to the same connection on M3(U2).

It is a good problem to generalize the analysis in this section to groups of higher rank,

cf. [38, 39]. One novel feature that will play an interesting role in such generalizations is

the existence of non-trivial commuting triples [40, 41].

2.3.2 0-surgeries on knots

Perhaps the simplest 3-manifold with b1(M3) > 0 is M3 = S2×S1. As such, it should then

be our central example, if not the starting point, in the study of 3d-3d correspondence and

q-series invariants of 3-manifolds with b1 > 0. However, M3 = S2 × S1 is not a genus-1

mapping torus. Why do we mention it here, then?

One reason is that M3 = S2 × S1 is indeed a more basic and fundamental example8

since it is a genus-0 mapping torus, i.e. it is part of the family (1.3) with Σ = S2 and

ϕ = 1. Another, less obvious reason is that M3 = S2 × S1 has something in common with

the following genus-1 mapping tori:

M3 =


S3

0(31) if U = −STST =

(
1 1

−1 0

)

S3
0(41) if U = −STST−1 =

(
1 −1

−1 2

) (2.44)

which also can be realized as 0-surgeries on knots (see e.g. [42]). Indeed,

S3
0(unknot) = S2 × S1 (2.45)

is a part of this family too. In fact, all 0-surgeries on knots, M3 = S3
0(K), have the property

H1(M3) = Z and, therefore, also provide many non-trivial examples of 3-manifolds with

b1 > 0.

In table 2 we summarize flat connections on M3 = S3
0(K) for various simple examples

of K. Besides the unknot, the trefoil knot 31 and the figure-eight knot 41 mentioned

8As we will see shortly, the simplicity of this example is very deceptive.
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Figure 6. The 52 knot.

knot Alexander polynomial flat connection CS value

unknot ∆unknot(x) = 1 abelian: 0

31 ∆31(x) = x−1 − 1 + x
abelian: 0

almost abelian: 0, −1
3

41 ∆41(x) = −x−1 + 3− x
abelian: 0

almost abelian: 0, 1
5 , 4

5

52 ∆52(x) = 2x−1 − 3 + 2x
abelian: 0

almost abelian: 0, −1
7 , −2

7 , −4
7

Table 2. Alexander polynomials and flat connections for 0-surgeries on some simple knots. The 0-

surgeries on knots 31, 41, and 52 have 2, 3, and 4 non-abelian flat connections, represented here by

their Chern-Simons values, that are “almost abelian” in the sense briefly mentioned below (2.27)

and explained more fully in section 3. In addition, in all three cases, there are 2 complex flat

connections at the singularities of the abelian branch.

earlier, included in this list is a hyperbolic knot 52, whose 0-surgery is not a mapping torus

(of any genus). All these knots, however, are examples of twist knots which form a natural

generalization of the examples listed in table 2.

A convenient tool in studying complex flat connections on knot surgeries comes from

polynomial knot invariants, such as the Alexander polynomial and the A-polynomial (see

e.g. [43–45]). In particular, it allows to deduce the results of table 2 in our simple examples.

(However, in general, a more direct analysis of (2.1) is required.) For any knot K, the A-

polynomial has the form

A(x, y) = (y − 1)Anab(x, y) (2.46)

where y − 1 = 0 is the locus of abelian flat connections on the knot complement, S3 \K,

whereas Anab(x, y) accounts for other, non-abelian flat connections. Performing a 0-surgery

on the knot K restricts the value of the holonomy along longitude to the identity, i.e. y = 1.

This preserves the entire abelian branch, y−1 = 0, and also the non-abelian flat connections
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with the meridian holonomy eigenvalue x that solves

Anab(x, 1) = 0 (2.47)

For example, for the trefoil knot K = 31 we have Anab(x, y) = y + x6, so that on

(C∗ ×C∗)/Z2 parametrized by (x, y) the equation (2.47) has three solutions. One of these

solutions, namely x = ±i, is precisely the solution to (2.27) forM−(S3
0(31)), with U given

in (2.44). In other words, this is what we call an “almost abelian” flat connection. The

other two solutions to (2.47) are complex non-abelian flat connections on M3 = S3
0(31),

which are connected to the abelian branch. In fact, such non-abelain flat connections (or,

rather, the corresponding values of x) are precisely the roots of the Alexander polynomial

(cf. (2.41)):

∆K(x2) = 0 (2.48)

These properties hold true for 0-surgeries on arbitrary twist knots, including 41 and 52

listed in table 2. Namely, the roots of the Alexander polynomial are in 1-to-1 correspon-

dence with the solutions to (2.47) that represent complex non-abelian flat connections on

S3
0(K) connected to the abelian branch, whereas all almost abelian flat connections have

x = ±i. The union of these two disjoint sets accounts for all solutions to (2.47) when K is a

twist knot. In fact, for twist knots, the multiplicity of the root Anab(±i, 1) = 0 determines

the total number of (branches of) almost abelian flat connections on M3 = S3
0(K), which

equals

1 + (multiplicity of i) = # of almost abelian flat connections (2.49)

In the case of the 0-surgery on the unknot (2.45), the moduli space of SL(2,C) flat

connection can be obtained directly from (2.1). Indeed, since for M3 = S2 × S1 the

fundamental group π1(M3) = Z is abelian, one might expect the space of vacua to consist

entirely of the Coulomb branch, cf. (2.28),

Mvacua

(
T [S2 × S1, SU(2)]

) ?
=

C∗ × C
Z2

(2.50)

While in this simple example it is clear that T [S2× S1] should be a 3d theory with N = 4

supersymmetry — because the holonomy of M3 = S2×S1 is reduced — it is less clear what

this theory is. A simple 3d N = 4 theory that has Coulomb branch (2.50) is 3d N = 4

SQED with gauge group G = SU(2) and Nf = 2 flavors [34]. This theory, however, also

has a Higgs branch for which there is no room in T [S2 × S1].

A more promising candidate for T [S2 × S1] — that can be justified either via string

dualities or by extrapolating the family of Lens space theories T [L(k, 1)] all the way to

k = 0 — is a 3d N = 4 pure super-Yang-Mills (SYM) with gauge group G = SU(2).

At low energies, it reduces to a 3d N = 4 sigma-model on the Atiyah-Hitchin manifold

MAH [46], which is the Coulomb branch of this gauge theory [34]. Indeed, by viewing S2

as a (M-theory) circle fibration over an interval, one can reduce N M5-branes wrapped

on S2 × S1 to a 5d SYM on D4-branes on an interval [47] or, upon further reduction and

T-duality on S1, to a D3-D5 brane system that describes N monopoles in SU(2) gauge

theory [48, 49]. Either way, for N = 2, one finds a 3d N = 4 sigma-model on MAH.
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Note, however, that MAH is very different from (2.50), even asymptotically. This, by

itself, is not necessarily a problem since (1.1) involves the moduli space of vacua of 3d

theory on a circle of small but finite size. In fact, since the resulting theory is basically a

2d theory (with a tower of KK modes), the proper interpretation ofMvacua (T [M3]) should

be as a target space of 2d N = (2, 2) sigma-model. And, it is entirely conceivable for two

2d N = (2, 2) sigma-models with different target manifolds to be equivalent as quantum

theories. Therefore, one might expect that, after putting 3d N = 4 SYM on a small circle,9

either quantum corrections change it into a theory equivalent to the sigma-model on (2.50),

or this is not the right candidate for T [S2 × S1] altogether.

While the answer to this question is not clear at present, we will try to shed light on

it by considering various partition functions of M3 = S2 × S1 in sections 3 and 4.

3 WRT invariants and q-series Ẑa(M3)

Given a choice of the gauge group G the invariants of Witten [16] and Reshetikhin-

Turaev [17] assign a complex number WRT(M3, k) ∈ C to a closed 3-manifold and an

integer k ∈ Z, called the “level” (or, equivalently, a root of unity q = e2πi/k). These

invariants form a TQFT, i.e. they can be constructed via cutting and gluing. Since the

early days of WRT invariants, one of the long-standing problems — especially important

for categorification — was to find an extension of this TQFT to generic values of q.

Recent developments suggest an answer to this question in the form of a TQFT denoted

Ẑ, which is essentially a concrete realization of complex, analytically continued Chern-

Simons theory with gauge group GC to generic values of |q| < 1. The resulting theory has all

the desired properties of a TQFT; it allows surgery operations as well as gluing 3-manifolds

with boundary into closed ones, and it fits into the framework of 3d-3d correspondence via

the so-called “half-index” partition functions:

TrHD2 (−1)F qR/2+J3 = partition function on S1 ×q D2 (3.1)

The half-index of a 3d N = 2 theory, introduced in [50], is a combined index of a 3d theory

together with a choice of 2d N = (0, 2) boundary condition,10 cf. figure 7. (See also [52–

57] for many further developments and calculations of (3.1) in various examples.11) It

basically is a 3d analogue of the elliptic genus of 2d theories. In particular, it enjoys hidden

9For comparison, the semi-classical moduli space of vacua in 2d N = (4, 4) super-Yang-Mills with gauge

group G = SU(2) is C2/Z2.
10Earlier precursors to the half-index, that do not discuss 2d N = (0, 2) theory on the boundary, include

K-theoretic vortex partition functions of 3d N = 2 theories on R2×q S1 [1] and holomorphic blocks [51]. In

these partition functions, the choice of the boundary condition is associated with 3d N = 2 “bulk” theory

itself, rather than an additional 2d N = (0, 2) boundary theory coupled to it.
11It would be interesting to extend the existing calculations of the half-index to broader classes of ex-

amples. First, it would be interesting to study more general types of boundary conditions, such as more

general non-abelian 2d N = (0, 2) boundary theories. Secondly, it would be interesting to consider more

general families of 3d N = 2 theories. For example, in the previous section we encountered a class of

3d N = 2 theories with “non-linear” matter multiplets valued in GC group manifolds. We are not aware

of systematic calculations of the half-index in such examples, and studying them would certainly help to

understand 3d-3d correspondence better.
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Figure 7. Counting operators on the boundary of half-space R2 × R+ leads to combined 2d-3d

half-index on S1×D2. In radial quantization, the boundary is foliated by concentric circles, which

form T 2 boundary of S1 ×D2.

modularity properties of the type that first appeared in Ramanujan’s “lost” notebook and

are commonplace in logarithmic CFTs.

Our main goal in this section is to explore the properties of Ẑ for 3-manifolds with

b1 > 0. As we shall see, there are many new features, which include a surprising role played

by “almost abelian” flat connections. In practice, Ẑ can be computed on either side of the

3d-3d correspondence. The computation on the T [M3] side requires knowing complete

3d N = 2 theory (that has all branches of vacua) as well as the explicit description of

the 2d N = (0, 2) boundary conditions. This is how the calculations of Ẑ were done at

early stages, in simple examples of 3-manifolds [53, 54]. The list of examples is constantly

growing [58]. However, since the systematic construction of the complete 3d N = 2 theory

T [M3] for general M3 is still not known, this approach is obviously challenging. Luckily,

these direct computations based on T [M3] were useful ‘test cases’ for other methods of

computing Ẑ(M3), including the TQFT like structure on the 3-manifold side of the 3d-3d

correspondence.

Originally inspired by physics, the methods of computing Ẑ(M3) on the M3 side of

the 3d-3d correspondence use structural properties that can be given precise mathematical

meaning: resurgent analysis [45, 59–61], q-difference equations that come from quantization

of A-polynomial curves [23], etc. During the past several years, these methods allowed to

compute Ẑ(M3) for much more general examples of 3-manifolds, including the hyperbolic

ones, and, more importantly, allowed to formulate the structural properties — such as

gluing formulae — as a set of axioms that define Ẑ as a (decorated) TQFT. Based on this

approach, the most powerful method of computing Ẑ(M3) available at present involves

computing the invariant first for a knot complement using the R-matrix for quantum group

at generic q [62] and then applying the surgery formula [23]. It also appears as one of the

most promising mathematical formulations of these q-series invariants and its efficiency

by far surpassed the direct computation of (3.1) based on T [M3]. Therefore, one might

hope to use these powerful methods — some of which we review in more detail later in

this section —- to learn about 3d N = 2 theory T [M3] and its systematic construction for

general M3.

In order to learn something about 3d N = 2 theory T [M3] from Ẑ(M3), we need to

know what information about T [M3] is captured by its half-index (3.1). In particular,
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how do different branches of the theory T [M3] contribute to the invariant Ẑ(M3)? In a

general 3d N = 2 theory, the half-index (3.1) counts operators that obey a shortening

condition E − R − J3 = 0 or, equivalently, operators in cohomology of the fermionic

generator Q+ of the 2d N = (0, 2) supersymmetry algebra preserved by the boundary

condition [50, 52, 54, 55]. (See also discussion below, e.g. around (4.17).) Naturally, the

result is a non-trivial function of both 3d N = 2 bulk theory as well as the choice of 2d (0, 2)

boundary condition. However, as argued in [54] (based on an earlier work [45]), several

nice things happen for a special (finite!) set of 2d boundary conditions that correspond

to maximally degenerate vacua of 3d N = 2 theory. When 3d N = 2 theory has a gauge

theory description, these are the vacua where at least the Cartan part of gauge symmetry is

unbroken, i.e. the “Coulomb branches,” and the corresponding boundary conditions impose

Neumann boundary conditions on 3d N = 2 vector multiplets [4, 54] or, equivalently,

Dirichlet boundary conditions on dual photon multiplets.

From our discussion in section 2, we know that in 3d-3d correspondence the torsion

part of H1(M3) labels different components of the Coulomb branch of T [M3], whereas the

free part of H1(M3) controls the dimension of the Coulomb branch, which for G = SU(2)

is indeed parametrized by b1 dual photons. These dual photons contribute to the half-

index (3.1) through the fermion modes (and their derivatives), whereas the discrete data

that label the components of the Coulomb branch become the labels of the special 2d

(0, 2) boundary conditions Ba. Therefore, with these special boundary conditions, the

half-index (3.1) roughly counts the Coulomb branch operators. A simple illustration is the

half-index of the abelian theory (2.15) with Neumann boundary conditions for 3d N = 2

vector multiplets and for the chiral multiplet Φ0, a simple prototype for many calculations

in this section.

Of course, compared to theories with larger amount of supersymmetry, e.g. [63], where

one can be very precise about Higgs or Coulomb branch operators contributing to different

types of SUSY indices, in 3d theories with only N = 2 supersymmetry this characterization

can only be approximate at best. And, as we explain in this section, not only Higgs vacua

of 3d N = 2 theory contribute to the half-index (3.1), but they in fact also give rise to

special 2d (0, 2) boundary conditions akin to those arising from Coulomb branch vacua.

3.1 “Almost abelian” flat connections

In section 2, we already encountered a particular class of complex flat connections which,

for G = SU(2), under the map U 7→ −U correspond to abelian flat connections on a

“mirror” mapping torus, cf. (2.39) and Proposition 1. Concretely, the components of such

“almost abelian” flat connections on a mapping torus (1.3) form a set

π0Malmost ab.
flat (M3, SL(2,C)) = π0M− ∼= coker (−U − 1) (3.2)

where, as usual, U denotes a 2 × 2 matrix representing ϕ ∈ SL(2,Z). This has to be

compared with the set

π0Mab.
flat (M3, SL(2,C)) = π0M+

∼= coker (U − 1) (3.3)
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which, for 3-manifolds with b1 = 0, is the labeling set of the invariants Ẑb(M3, q), that is

the set where labels a take their values.

The main result of this section (if not of the entire paper!) is to provide evidence

that, for manifolds with b1 > 0, the set of values of the label a should be extended to

include certain very special non-abelian flat connections that we call “almost abelian” —

namely, (3.2) in the case of genus-1 mapping tori — if we wish to construct Ẑb(M3, q) with

the following properties:

• cutting/gluing operations that are necessary for defining a 3d TQFT (i.e. building

closed 3-manifolds from open ones),

• topological invariance (e.g. invariance under 3d Kirby moves),

• relation to WRT invariants,

• integrality of the coefficients,

• convergence (as a q-series) inside the unit disk, |q| < 1.

Among these, the topological invariance and integrality of the coefficients are expected to

be the most important and manifest properties. Although the relation to WRT invariants

was a big part of the original motivation for introducing Ẑb(M3, q) invariants, it is expected

to be more subtle, especially because quantum groups at generic q naturally produce non-

semisimple (logarithmic) tensor categories when q goes to a root of unity. (See [64] for

a discussion in the present context and references therein.) Nevertheless, the relation to

WRT invariants still remains a large part of our interest here and we wish to understand

the structure of this relation for 3-manifolds with b1(M3) > 0.

The general form of the relation between Ẑb(M3) and WRT(M3), including the case

b1(M3) > 0, was proposed in [54]. This proposal is well tested for manifolds with b1(M3) =

0, but not so much for manifolds with b1(M3) > 0. By studying a large variety of examples

with b1(M3) > 0, in this paper we find the following refinement / modification to the

conjecture in [54]:

Conjecture 1. For any 3-manifold M3

WRT(M3, k) =
( −i√

2k

)1−b1 ∑
a

e2πikCS(a)
∑
b

Sab Ẑb(q)
∣∣∣
q→e

2πi
k

(3.4)

where a and b run over (almost) abelian flat connections on M3.12

Note that sometimes the naive radial limit of the right-hand side in this conjecture is ill-

defined, while the left-hand side makes perfect sense. That is why by q → e2πi/k limit we

actually mean a zeta-regularized value.

Compared to [54], our Conjecture 1 contains two new elements: i) the extended sum-

mation range that includes almost abelian flat connections, and ii) the explicit coefficients

12More precisely, the labels a and b run over sets of the same cardinality, yet of possibly different nature,

in view of [23].
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Sab for almost abelian flat connections. Their counterparts for abelian flat connections have

a clear physical interpretation. For example, why the sum runs over a ∈ H1(M3)/Z2 — or,

more generally, over a ∈ SymNH1(M3) for G = U(N) — can be explained using resurgence

in Chern-Simons theory [45], or using interpretation via BPS state / curve counting [54]

that in the presence of a special Lagrangian submanifold M3 depends on [∂Σ] ∈ H1(M3),

as well as from the perspective of 3d N = 2 theory T [M3] where abelian flat connections

appear as degenerate vacua. Similarly, the coefficients Sab for abelian flat connections

admit a physical interpretation [53, 64]. In the case of almost abelian flat connections,

however, we do not have the corresponding analogues. In particular, we do not know a

physical derivation of the coefficients Sab obtained below on the 3-manifold side of the

3d-3d correspondence, i.e. via direct comparison of WRT(M3) with the limiting values of

Ẑb(M3). And, we offer only a partial argument why, physically, the range of summation

in (3.4) should be extended to include almost abelian flat connections.13 It would be highly

desirable to understand both of these elements better from the perspective of the 3d N = 2

theory T [M3].

For example, for genus-1 mapping tori (2.10) with TrU 6= ±2 (all such M3 have b1 = 1),

the labels a and b run over the union of the two sets (3.3) and (3.2) which are, respectievly,

the sets of abelian and almost abelian flat connections. Correspondingly, the “S-matrix”

S that appears in (3.4) is block-diagonal,

S =

abelian almost abelian( )
S(+) 0 abelian

0 S(−) almost abelian
(3.5)

so that (3.4) in this case takes the form

WRT(M3, k) =
∑

abelian

e2πikCS(a)S(+)
ab Ẑ

(+)
b

∣∣∣
q→e

2πi
k

+
∑

almost abelian

e2πikCS(a)S(−)
ab Ẑ

(−)
b

∣∣∣
q→e

2πi
k

(3.6)

As we will see through many examples below, this structure applies to a more general class

of 3-manifolds described by plumbing graphs.

The invariants Ẑ
(±)
b are quite simple for genus-1 mapping tori in question. Before

we write down the explicit expressions, however, let us note that the set of abelian flat

connections (3.3) can be equivalently described as Zn/QZn, where Q is the matrix intro-

duced (2.13). This description, better adapted to (2.12), was already used in section 2.2.

The set of almost abelian flat connections (3.2) has a similar description. Namely, we have

cokerQ± ∼= coker (±U − 1) (3.7)

13In fact, in section 3.4 we discuss a potential alternative to Conjecture 1 where the sum over almost

abelian flat connections appears as an artifact of integrating over continuous variables xi ∈ C∗.
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where, in the notations (2.10)–(2.12),

Q± =



a1 −1 0 · · · ∓1

−1 a2 −1
...

0 −1
. . . 0

...
. . .

. . . − 1

∓1 · · · 0 −1 an


(3.8)

Therefore, we can describe the sets of abelian and almost abelian flat connections, as well

as other ingredients in (3.6), either in terms of n × n matrices Q± or in terms of 2 × 2

matrix U =
(
a b
c d

)
. These two descriptions, of course, are compatible with each other. For

example, we have

| detQ±| = | det(±U − 1)| = |2∓ (a+ d)| . (3.9)

which express the total number of abelian and almost abelian flat connections in these two

descriptions.

Let’s denote by σ(s) = b
(s)
+ − b

(s)
− the signature of Qs. Now, we are ready to write14

Ẑ
(±)
b =

 (−1)
b
(+)
+ ±1

2 e
πi
4

(σ(±)−σ(+))q
3σ(+)−

∑
v av

4 if b = 0 ∈ Zn/Q+Zn or b = 0 ∈ Zn/Q−Zn

0 otherwise

(3.10)

as well as the remaining ingredients of (3.6). The Chern-Simons invariant of the abelian

flat connection a ∈ Zn/Q+Zn ∼= Z2/(U − 1)Z2 is

CS(a) = −(a,Q−1
+ a) = −((U − 1)−1a, Sa) (3.11)

and, similarly, for the almost abelian a ∈ Zn/Q−Zn ∼= Z2/(−U − 1)Z2 we have

CS(a) = −(a,Q−1
− a) = ((U + 1)−1a, Sa) (3.12)

For convenience, both expressions are written in terms of n× n matrices Q± and in terms

of 2× 2 matrix U . In the same way we can write the S-matrix (3.5):

S(±)
ab =

e4πi(a,Q−1
± b) + e−4πi(a,Q−1

± b)

|StabZ2(a)|
√
| detQ±|

=
e4πi((±U−1)−1a,Sb) + e−4πi((±U−1)−1a,Sb)

|StabZ2(a)|
√
| det(±U − 1)|

(3.13)

where StabZ2(a) is the stabiliser of a under the action of the Weyl group: a → −a. The

fact that (3.6) is satisfied with all these ingredients (3.10)–(3.13) is a classic result of [65];

see also [60, 66–69] for recent work on WRT invariants of mapping tori.

Aiming to understand the precise definition/characterization of almost abelian flat

connections on general 3-manifolds, in the rest of this section we extend the notion of the

two sets (3.2) and (3.3) to plumbed 3-manifolds with b1 > 0 and 0-surgeries on some knots.

14This expression for Ẑ
(±)
b can be obtained in several different ways, all of which give the same result,

originate on the 3-manifold side of the 3d-3d correspondence, and will be discussed in some details below.

First, it can be deduced directly from the structure of WRT invariants for genus-1 mapping tori [65–69].

Secondly, it can be obtained via a general formula (3.19) for plumbings with loops which, in turn, can be

derived by extending the arguments in [54], as we explain below. Alternatively, it can be derived using

either the resurgent analysis [45, 59–61] or, in some cases, using surgery formulae and q-difference equations

that come from quantization of A-polynomial curves [23].
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Figure 8. Additional 0-framed unknots for plumbing graph with loops.

3.2 Plumbings with loops

By a theorem of Lickorish and Wallace [70, 71], any closed oriented 3-manifold can be

obtained by performing an integral Dehn surgery on a link in S3. Moreover, any two surgery

descriptions of the same 3-manifold M3 are related by a sequence of Kirby moves [72]. In

this section, we focus on a class of 3-manifolds, plumbings with loops, each of which can

be conveniently described by a decorated graph.

For any graph Γ whose vertices v ∈ V (Γ) are labeled by some integers av ∈ Z, we can

associate a 3-manifold YΓ in the following way:

1. Embed the graph Γ into S3.

2. Add extra 0-framed unknots along the meridians, one for each generator of H1(Γ).

3. Replace each vertex v ∈ V with an unknot Lv with framing av. Link Lv and Lw
when and only when (v, w) ∈ E(Γ).

4. The surgery along the link gives us a 3-manifold YΓ.

Note that we add b1(Γ) number of 0-framed unknots. The choice of generators of H1(Γ)

doesn’t matter, because they’re all equivalent via handle slides. Another way to think about

this is, rather than adding extra b1(Γ) 0-framed unknots, we can think of putting the graph

Γ inside #b1(Γ)(S2 × S1) such that H1(Γ)
ι∗−→ H1(#b1(Γ)(S2 × S1)) is an isomorphism.

What is more important to note is that there are 2b1(Γ) different choices to make a

surgery link out of Γ; they correspond to different choices of twisting each cycle of Γ.

Hence, to make it clear, we should write YΓ,t where t is a twisting data for Γ. A twisting

data t of Γ assigns to each generator c ∈ H1(Γ) a number in tc ∈ 1
4Z/Z in such a way that

if c is a cycle of length m, then tc ∈ (1
2Z + m

4 )/Z. It can be equivalently thought of as

an equivalence class of assignment te ∈ (1
2Z + 1

4)/Z to each edge such that for each cycle

c = [e1, · · · , em], tc =
∑m

i=1 tei . Although the 3-manifold YΓ,t itself is dependent on the

choice of t, its WRT invariant WRT(YΓ) is independent of t.
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The first homology group H1(YΓ) can be easily computed from the plumbing data.

H1(YΓ,t) ∼= Zb1(Γ) × Z|V |/QZ|V | (3.14)

Here, the linking matrix Q of YΓ,t is a symmetric |V | × |V | matrix characterized by

• For each v ∈ V , (v,Qv) = av +
∑

e∈E(v,v) 2(−1)2te− 1
2

• For each v 6= w ∈ V , (v,Qw) =

{∑
e∈E(v,w)(−1)2te− 1

2 if (v, w) ∈ E
0 if (v, w) 6= E

where E(v, w) denotes the set of edges between v and w. For each Z2-flat connection on Γ,

s ∈ Hom(π1(Γ),Z2) ∼= Zb1(Γ)
2 , the corresponding twisted linking matrix Qs is a symmetric

|V | × |V | matrix characterized by the same bullet points, with te replaced by te + se. In

particular, Q0 = Q.

Assume that Qs is weakly negative definite for all s ∈ Zb1(Γ)
2 . Then applying the Gauss

sum reciprocity procedure similar to that of [54] we get15

WRT(k) ∼
(
−i√
2k

)1−b1 ∑
classes of s

∑
a∈CokerQs/Z2

b∈(2 CokerQs+δ)/Z2

e2πik CS(a)SabẐ
(s)
b |q→e 2πi

k
(3.15)

where

δv = 2− deg v, (3.16)

CS(s)(a) = −(a,Q−1
s a), (3.17)

S(s)
ab =

e2πi(a,Q−1
s b) + e−2πi(a,Q−1

s b)

|StabZ2(a)|
√
| det(Qs)|

. (3.18)

Here Ẑb is given by

Ẑ
(s)
b (q) =

(−1)s+b
(0)
+

2b1(Γ)
e
πi
4 (σ(s)−σ(0))q

3σ(0)−
∑
v av

4

× v.p.

∮
|zv |=1

∏
v

dzv
2πizv

(
zv −

1

zv

)2−deg(v)

Θ−Qsb (~z; q) (3.19)

where

Θ−Qb (~z; q) =
∑

l∈2QZV +b

q−
(l,Q−1l)

4 ~zl. (3.20)

While the general formula (3.19) was obtained (on the 3-manifold side of 3d-3d corre-

spondence) by extending the derivation in [54] to plumbings with loops, it has a clear

interpretation as a half-index (3.1) of the theory T [M3]. Namely, the integral over zv is

the contribution of 3d N = 2 vector multiplets, the rational function in the integrand is

15While in this paper we focus on G = SU(2), the generalization to arbitrary gauge group G is the subject

of [38, 39].
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the matter contribution, and the theta-function is the contribution of the 2d N = (0, 2)

boundary condition Bb [53, 54, 58].

Note, this interpretation of (3.19) uses the computation on the 3-manifold side of the

3d-3d correspondence to learn something about 3d N = 2 theory T [M3]. In simple cases,

which so far are limited to plumbings with at most one vertex of valency greater than 2,

there is a direct physical derivation of the theory T [M3] that agrees with the conclusion

based on (3.19). The main challenge in extending this derivation to the entire family of

plumbings with loops is not even in the precise description of 2d N = (0, 2) boundary

conditions — that, based on (3.19), seem to have the same form in this entire class — but

rather in a systematic physical derivation of the 3d N = 2 theory itself, which is invariant

under 3d Kirby moves and includes all branches of vacua. Needless to say, extending this

physical derivation of the 3d N = 2 theory T [M3] and 2d N = (0, 2) boundary conditions

Bb even further, beyond plumbed manifolds is a more important and ambitious goal.

We call the set of labels a “almost abelian” in the following sense: plumbed 3-manifolds

YΓ are naturally torus-fibered over the plumbing graph Γ. Each s ∈ Zb1(Γ)
2 corresponds to

a choice of a W = Z2-flat connection on the plumbing graph. Each label a corresponds to

an abelian flat connections on YΓ twisted by the pull-back of the Z2-flat connection, hence

the name “almost abelian”.

3.2.1 Genus-1 mapping tori

To illustrate how this works in practice, let’s consider genus-1 mapping tori (2.10) with

TrU 6= ±2. They are special cases of plumbings with loops where the plumbing graph is

necklace-shaped. For U = ST a1 · · ·ST an , the corresponding plumbing graph was described

in (2.12). Here let us explain how genus-1 mapping tori have such natural surgery presen-

tations in S2 × S1. In the following we will think of the horizontal direction as S2 and

the vertical direction as S1 (or an interval in S1). Each element of SL(2,Z) can then be

expressed as a tangle (using Lickorish generators [73]). Such correspondence is summarized

in the figure below:

It is a fun exercise to check that S4 = I and (ST )3 = S2 under some sequence of 3d Kirby

moves. It is good to keep track of twists. For each linking (i.e. an edge for plumbing
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graph), we assign a number in 1
4Z/Z as follows:

Of course, for each tangle, only the overall twisting matters. It is easy to check that

S2 = (ST )3 is equivalent to the plumbing graph of I but with a half-twist (meaning that

it is −I).

Using this dictionary, it is easy to see that the element ST a1 · · ·ST an is equivalent to

the following tangle:

ST a1ST a2 ...ST an =

with the total twist factor −n
4 . Hence, the mapping torus MU for U = ST a1 · · ·ST an is

exactly the manifold obtained by a Dehn surgery on S2×S1 along the closure of the above

tangle (plumbing).16 If one needs a surgery presentation inside S3, of course it can be

obtained by including an additional 0-surgery as shown on figure 8. This simple dictionary

between torus bundles and plumbing graphs was described in (2.11).17

From this plumbing graph description of MU , it is straightforward to derive (3.10) and

other formulas for genus 1 mapping tori given in subsection 3.1 from (3.19).

3.2.2 Example: a tadpole diagram

Γ = −
�3 �3

+ (3.21)

This manifold is neither a genus 1 mapping torus nor a surgery on any knot. It has

H1(M3) ∼= Z × Z3. In particular, for G = SU(2) one finds two abelian flat connections

and 14 almost abelian flat connections (after modding out by Weyl symmetry). The cor-

responding q-series invariants are

Ẑ
(+)
0 = −q1/12

[
Ψ

(8)
24 −Ψ

(16)
24

]
(3.22)

Ẑ
(+)
1 = q1/12

[
Ψ

(4)
24 −Ψ

(20)
24

]
16By closure, we mean identifying the top S2 with the bottom one.
17This correspondence holds for n ≥ 2, but for n = 0, 1, we need to the previous (unsimplified) dictionary.

For instance, when U = tp, the surgery link in the above description is not a single vertex.
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and

Ẑ
(−)
0 = q1/12

[
Ψ

(56)
168 −Ψ

(112)
168

]
Ẑ

(−)
1 = −q1/12

[
Ψ

(28)
168 −Ψ

(140)
168

]
Ẑ

(−)
2 = Ẑ

(−)
3 = −1

2
q1/12

[
Ψ

(4)
168 −Ψ

(164)
168 + Ψ

(52)
168 −Ψ

(116)
168

]
Ẑ

(−)
4 = Ẑ

(−)
5 = −1

2
q1/12

[
Ψ

(16)
168 −Ψ

(152)
168 + Ψ

(40)
168 −Ψ

(128)
168

]
(3.23)

Ẑ
(−)
6 = Ẑ

(−)
7 =

1

2
q1/12

[
Ψ

(32)
168 −Ψ

(136)
168 + Ψ

(80)
168 −Ψ

(88)
168

]
Ẑ

(−)
8 = Ẑ

(−)
9 =

1

2
q1/12

[
Ψ

(44)
168 −Ψ

(124)
168 + Ψ

(68)
168 −Ψ

(100)
168

]
Ẑ

(−)
10 = Ẑ

(−)
11 =

1

2
q1/12

[
Ψ

(8)
168 −Ψ

(160)
168 + Ψ

(104)
168 −Ψ

(64)
168

]
Ẑ

(−)
12 = Ẑ

(−)
13 =

1

2
q1/12

[
Ψ

(20)
168 −Ψ

(148)
168 + Ψ

(92)
168 −Ψ

(76)
168

]
written here in terms of the standard false theta-functions,

Ψ(a)
p (q) :=

∑
n∈2pZ+a

sign(n) q
n2

4p (3.24)

3.2.3 Example: double loop

Γ = −�3 �3
+ �3�3

+ �5 (3.25)

As an example of a 3-manifold with b1 = 2 we consider a graph with a single vertex and

two loops. There are four different classes of abelian and almost abelian flat connections

with the following q-series

Ẑ
(++)
(0) = Φ

(0)
1 (3.26)

Ẑ
(+−)
(2r) = Ẑ

(−+)
(2r) = Φ

(r)
5 for r = 0, . . . , 4

Ẑ
(−−)
(2r) = Φ

(r)
9 for r = 0, . . . , 8

(3.27)

where

Φ(r)
p (q) :=

q1/2

2

∑
n∈pZ+r

|n|qn2/p (3.28)

Using zeta-regularized values of Φ
(r)
p (q) at roots of unity, not just the radial limit of it, we

were able to reproduce WRT invariant for this manifold from Ẑ. As in [74, 75], it would

be interesting to study more carefully (and compare) the behavior near q = e2πiτ , with

different rational values of τ ∈ Q.
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Figure 9. 0-surgery on a double twist knot Kn,m can be represented by a plumbing diagram with

one loop. The 52 knot is a double twist knot K2,1.

3.3 0-surgery on knots

In this subsection we study 0-surgeries on knots, which are another class of 3-manifolds

with b1 > 0. Although our main examples, 0-surgery on double twist knots, are plumbings

with loops, viewing them as 0-surgeries turns out to be fruitful and provides a different

perspective.

3.3.1 0-surgery on double twist knots Kn,m

If we replace in (3.21) both of the framing coefficients −3 by 2, we obtain a plumbing

diagram for the 0-surgery on 52 knot, that was included in our list of examples in table 2.

More generally, the 0-surgery on a double twist knot Kn,m admits a plumbing presentation,

illustrated in figure 9. Our example K = 52 is a special case of this infinite family, with

(n,m) = (2, 1). While we mostly focus on 52 knot as an example, all the discussions in

section can be easily generalized to double twist knots K = Kn,m.

As was also mentioned in table 2, for GC = SL(2,C) there is one abelian (trivial)

flat connection on M3 = S3
0(52) and four almost abelian flat connections.18 Therefore,

in this example, we expect one q-series invariant Ẑ(+) and four q-series invariants Ẑ(−).

They can be easily computed from the plumbing graph presentation by using the general

formula (3.19). Let us start with the q-series invariant labeled by a single abelian flat

connection. We find

Ẑ
(+)
0 (q) = −q9/8 Ψ

(1)
2 (3.29)

For the q-series invariants labeled by almost abelian flat connections, the direct application

18In particular, since this plumbing has one loop there are only two values of s, s = + and s = −, just

like for genus-1 mapping tori with b1 = 1.

– 33 –



J
H
E
P
0
9
(
2
0
2
0
)
1
5
2

of (3.19) gives

Ẑ
(−)
0 = −q9/8 Ψ

(7)
14

∣∣∣∣
q→q−1

Ẑ
(−)
1 =

1

2
q9/8

[
Ψ

(1)
14 + Ψ

(13)
14

] ∣∣∣∣
q→q−1

(3.30)

Ẑ
(−)
2 = −1

2
q9/8

[
Ψ

(3)
14 + Ψ

(11)
14

] ∣∣∣∣
q→q−1

Ẑ
(−)
3 =

1

2
q9/8

[
Ψ

(5)
14 + Ψ

(9)
14

] ∣∣∣∣
q→q−1

(3.31)

which, following the rules of [64], should be further re-written as a q-series.

It is instructive to compare these results with the surgery formula based on a two-

variable knot invariant FK(x, q) which is annihilated by the quantum A-polynomial and

can be defined using Borel resummation (parametric resurgence) of the n-colored Jones

polynomial [23]:

JKn (e~) =

∞∑
m=0

m∑
j=0

cm,jn
j~m Borel resum

===
FK(x, q)

x1/2 − x−1/2
(3.32)

This Borel-resummed invariant FK(x, q) looks quite different than the colored Jones poly-

nomials themselves, but we conjecture that, analogously to Conjecture 1, it contains all

the information of asymptotic expansions of colored Jones polynomials near each root of

unity:

Conjecture 2. For any color n, the asymptotic expansion of (q
n
2−q−

n
2 )Jn(q) and FK(qn, q)

near each root of unity agree.19 That is, for each root of unity ζ,

(ζ
n
2 e

n~
2 − ζ−

n
2 e−

n~
2 )Jn(ζe~)

perturbatively
=== FK(ζnen~, ζe~) (3.33)

Let’s connect FK with the q-series we obtained above for a 0-surgery. Writing

FK(x, q) =
1

2

∞∑
m=1

fKm (q) ·
(
x
m
2 − x−

m
2
)

(3.34)

the surgery formula applied to M3 = S3
−1/r(K) gives

Ẑ
(ab)
0

(
S3
−1/r(K)

)
= q

1
4r

∞∑
m=1

q
rm2

4
−m

2 (qm − 1)fKm (q) (3.35)

As the surgery coefficient −1/r → 0, i.e. as r → ∞, terms with different values of m in

this formula become separated by infinitely large powers of q. Therefore, it is natural to

expect that for 0-surgery on the knot K, only one value of m contributes to Ẑ
(+)
0

(
S3

0(K)
)
,

namely m = 1 for which the accompanying q-power is the lowest. We formalize this in the

form of the following conjecture:20

19This conjecture is not in contradiction with the volume conjecture, because FK(x, q) is not defined on

q = e2πiz with z ∈ R \Q. Hence the limit limq→1 FK(x, q) = x1/2−x−1/2

∆K(x)
and the limit taken in the volume

conjecture are two limits of different nature. (The first one is radial, whereas the second one is along the

unit circle.)
20For q-series, we use notation ∼= to denote equivalence up to sign and overall q-power.
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Conjecture 3 (0-surgery formula). For any knot K in S3,

Ẑ
(ab)
0

(
S3

0(K)
) ∼= 1

2
fK1 (q) (3.36)

In particular, we have

Ẑ
(+)
0 (S3

0(Km,n)) ∼=
1

2
Ψ(m−1)
m Ψ(n−1)

n (3.37)

This prediction indeed agrees with the direct calculation of f52
1 based on (3.32) and

the double expansion of the colored Jones polynomial:

2 · Jn(52) =

(
−1

2
+

5

8
~− 13

16

~2

2!
+

73

64

~3

3!
− 121

64

~4

4!
+

1135

256

~5

5!
− 9161

512

~6

6!
− · · ·

)
+
x3/2 − x−3/2

x1/2 − x−1/2

(
−1

4
+

7

16
~− 25

32

~2

2!
+

191

128

~3

3!
− 433

128

~4

4!
+

5549

512

~5

5!
− · · ·

)
+
x5/2 − x−5/2

x1/2 − x−1/2

(
1

8
− 1

8
~− 7

64

~2

2!
+

173

128

~3

3!
− 1801

256

~4

4!
+

1151

32

~5

5!
− · · ·

)
+
x7/2 − x−7/2

x1/2 − x−1/2

(
7

16
− 35

32
~ +

315

128

~2

2!
− 521

128

~3

3!
− 1563

512

~4

4!
+

96545

1024

~5

5!
− · · ·

)
+ · · ·

which leads to

f52
1 = −1

2
+

5

8
~− 13

16

~2

2!
+

73

64

~3

3!
− 121

64

~4

4!
+

1135

256

~5

5!
− 9161

512

~6

6!
− · · ·

= −q−1 + 1− q2 + q5 − q9 + q14 − q20 + q27 − q35 + q44 − · · ·
∼= Ψ

(1)
2 (q) (3.38)

It would be interesting to determine other f52
m from this double expansion.

Note, Conjecture 3 only produces Ẑ
(ab)
0

(
S3

0(K)
)

labeled by the abelian flat connection

from the two-variable series FK(x, q). This conjecture can be equivalently formulated as a

statement:

Z
(ab)
0 (S3

0(K)) ∼= Resx=0
x1/2 − x−1/2

x
FK(x, q) . (3.39)

Motivated by this fact and the work of Ohtsuki [76], where perturbative invariants of 3-

manifolds with b1 = 1 are defined, we can try to relate our almost abelian Ẑ’s with other

residues of FK(x, q). Indeed, somewhat surprisingly we find that, for twist knots, we can

recover Z
(−)
0 (S3

0(K)) solely from FK by looking at residues at the roots of ∆K(x):

Conjecture 4.

Z
(−)
0 (S3

0(Kn)) ∼= Resx=x0

x1/2 − x−1/2

x
FKn(x, q) (3.40)

where x0 is a solution21 to ∆Kn(x) = nx+ nx−1 − (2n− 1) = 0.

21It doesn’t matter which solution we choose, as their residues only differ by sign.
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This conjecture suggests a possible connection between almost abelian flat connections and

the “unipotent branch” discussed in section 2.3. Moreover, at least for twist knots, we seem

to be able to recover all Z(−)’s by a similar procedure:

Conjecture 5.

Z(−)
a (S3

0(Kn)) ∼= Resx=x0

x1/2 − x−1/2

x
FKn(x, q)

∣∣∣∣
q→e2πiaq

22 (3.41)

where x0 is a solution to ∆Kn(x) = 0, as in Conjecture 4.

These two conjectures imply that all the information about Ẑ
(±)
a (S3

0(Kn)), labeled by

both abelian and almost abelian flat connections, is contained in the two-variable series

FKn(x, q). They also suggest that residues in (3.40) and (3.41) arise from an x-integral

a la (3.19). Such an integral would naturally have an interpretation of the integral over

the Coulomb branch of 3d N = 2 theory T [M3]. As we learned in section 2, the roots

of the Alexander polynomial are precisely the points on the Coulomb branch of T [M3]

where it meets Higgs branch(es). Therefore, the poles of the x-integral with residues (3.40)

and (3.41) have a very natural physical interpretation as Higgs branch contributions to the

integral over the Coulomb branch. This is similar (and perhaps even related!) to the Higgs

branch contributions to u-plane integrals of 4d N = 2 topologically twisted theories [77, 78].

Below we provide some evidence to Conjecture 4 for the first few twist knots:

K1 = 31:

Resx=(−1)1/3

x1/2 − x−1/2

x
F31(x, q) =

i√
3
q ∼= Z

(−)
0

K−1 = 41:

Res
x= 3+

√
5

2

x1/2 − x−1/2

x
F41(x, q) = − 1√

5
∼= Z

(−)
0

K2 = 52:

Res
x= 3−i

√
7

4

x1/2 − x−1/2

x
F52(x, q)

=
i√
7

(
1

2
− 31~

237
+

481~2

(2472) 2!
− 14939~3

(2673) 3!
+

116077~4

(2674) 4!
− · · ·

)
=

i√
7
q9/8

(
Ψ

(1)
14 −Ψ

(3)
14 + Ψ

(5)
14 −Ψ

(7)
14 + Ψ

(9)
14 −Ψ

(11)
14 + Ψ

(13)
14

) ∣∣∣∣
q→1/q

∼= Z
(−)
0

22The change of variables q → e2πiaq is non-trivial because the residue is not a power series in q but in

q
1

1−4n .
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K3 = 72:

Res
x= 5+i

√
11

6

x1/2−x−1/2

x
F72(x,q)

=
i√
11

(
1

3
− 130~

3311
+

5638~2

(34112)2!
− 81562~3

(34113)3!
+

31876978~4

(37114)4!
−. . .

)
=

i√
11
q4/3

(
Ψ

(4)
33 +Ψ

(10)
33 +Ψ

(16)
33 +Ψ

(22)
33 +Ψ

(28)
33 −Ψ

(32)
33 −Ψ

(26)
33 −Ψ

(20)
33 −Ψ

(14)
33 −Ψ

(8)
33 −Ψ

(2)
33

)∣∣∣∣
q→1/q

∼= Z
(−)
0

Notice how in all these examples the residues of FK(x, q) come accompanied by the appro-

priate prefactor S0b of the S-matrix (3.13)!

It would be interesting to study whether there is a similar structure for other knots.

We speculate that, for an arbitrary knot K, the roots of ∆(x) = 0, modulo x ↔ x−1,

determine different “almost abelian sectors,” and

Resx=x0

x1/2 − x−1/2

x
FK(x, q)

can be resummed into a power series in q1/r, for some integer r which divides the number

of b labels in that sector (before modding out by the Weyl symmetry). As an example, we

study 0-surgery on torus knots in the next subsubsection.

3.3.2 0-surgery on torus knots Ts,t

As our first examples of higher genus mapping tori, we study 0-surgery on torus knots Ts,t;

they are mapping tori of genus

g =
(s− 1)(t− 1)

2
.

Following our observation in the last subsubsection, we expect that each root of ∆(x) = 0

determine an “almost abelian sector”. Indeed, the residues of x1/2−x−1/2

x FTs,t(x, q) all turn

out to be monomials in q of the same power, multiplied by some prefactor:

Resx=x0

x1/2 − x−1/2

x
FTs,t(x, q) = C q

(s2−1)(t2−1)
24st (3.42)

where C = Resx=x0

(x1/2−x−1/2)2

x∆K(x) .23 Therefore we can try to decompose the WRT invariant

into contributions of each pole. We find that the WRT invariants can be decomposed into

the following form:

WRT(S3
0(Ts,t), k) = q

(s2−1)(t2−1)
24st

st−1∑
j=0

aje
2πik j

st

 (3.43)

where aj are Q[ζst]-linear combinations of residues of (x1/2−x−1/2)2

x∆Ts,t (x) . (There are g = (s−1)(t−1)
2

poles up to Weyl symmetry x↔ x−1.) We provide some explicit decompositions below. In

the following, we’ll use notation rτ to denote Resx=e2πiτ
(x1/2−x−1/2)2

x∆Ts,t (x) .

23Yamaguchi’s theorem [79] says that this prefactor is basically the square root of the corresponding

Reidemeister torsion.
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• K = T3,2:

WRT(S3
0(T3,2), k) = −q

2

(
1 + r 1

6
(1 + 2e2πik 1

3 )
)

where r 1
6

= i√
3
.

• K = T5,2:

WRT(S3
0(T5,2), k)

= −q
9
5

2

(
(r 1

10
− r 7

10
) + (r 1

10
+ r 7

10
)e2πik 1

5 + (−r 1
10
− r 7

10
)e2πik 2

5 + (−r 1
10

+ r 7
10

)e2πik 3
5

)
= −q

9
5

2

(
r 1

10
(1 + e2πik 1

5 − e2πik 2
5 − e2πik 3

5 ) + r 7
10

(−1 + e2πik 1
5 − e2πik 2

5 + e2πik 3
5 )
)

where r 1
10

= i
5

√
5− 2

√
5, r 7

10
= i

5

√
5 + 2

√
5.

• K = T4,3:

WRT(S3
0(T4,3), k)

= −q
5
2

2

(
(r 1

12
− r 10

12
+ r 5

12
) + (−r 1

12
+ r 10

12
+ r 5

12
)e2πik 2

12 + 2(r 1
12

+ r 5
12

)e2πik 3
12

+(r 1
12

+ r 10
12

+ r 5
12

)e2πik 6
12 + (r 1

12
− r 10

12
− r 5

12
)e2πik 8

12

)
= −q

5
2

2

(
r 1

12
(1− e2πik 2

12 + 2e2πik 3
12 + e2πik 6

12 + e2πik 8
12 )

+ r 10
12

(−1 + e2πik 2
12 + e2πik 6

12 − e2πik 8
12 )

+r 5
12

(1 + e2πik 2
12 + 2e2πik 3

12 + e2πik 6
12 − e2πik 8

12 )
)

where r 1
12

= i|r 1
12
|, r 10

12
= i

2
√

3
, r 5

12
= i|r 5

12
|, and r 5

12
= r 1

12
+ r 10

12
.

The geometric meaning of these decompositions is not so clear at this moment, but it is

clear from these examples that the residues of (x1/2−x−1/2)2

∆K(x) should play an important role in

analytic continuation of the WRT invariants for general 3-manifolds and its decomposition

into q-series.

3.3.3 Renormalon effects

The q-series invariants Ẑb — or, rather, their linear combinations Za =
∑

b SabẐb, without

a hat — are closely related to Borel resummation of the perturbative series Zpert
a (~) in com-

plex Chern-Simons theory around a flat connection “a” of the form we already encountered

e.g. in (3.32) and (3.38). In particular, the resurgent analysis in complex Chern-Simons

theory [45] suggests that the Borel transform

BZpert
α (ξ) ∼

∑
α

nαβ
ξ − CS(β)

(3.44)
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of a perturbative expansion Zpert
α (~) around a flat connection α has poles at values of the

complex Chern-Simons invariant CS on M3. On the universal cover, each pole is replicated

infinitely many times, in agreement with the fact that CS(β) is only defined modulo Z.

Even though individual residues of these poles are integer, this integrality is usually lost

after taking a sum over the infinite set of poles required in Borel resummation, so that

regularized values of nαβ are no longer integer. Moreover, some flat connections β have the

property that nαβ = 0 for any other α, while nβα can be non-zero.24 Such β then become

the labels (usually denoted a or b) of the q-series invariants Ẑ(M3).

The structure outlined here has been so far tested and made explicit for many 3-

manifolds with b1(M3) = 0. Here, we make initial steps toward extending this analysis

to 3-manifolds with b1(M3) > 0. For example, as an obvious generalization of the above

criterion, it is natural to expect that the set of labels {a} of Za(M3) consists of those flat

connections on M3 — or, perhaps, more generally, poles on the Borel plane — such that

they do not appear as transseries in resummation of all other flat connections. In other

words, the corresponding Stokes/transseries coefficients should vanish

nβa = 0 (3.45)

for any β. (Note, naβ may still be non-zero!) It would be interesting to study this more

systematically and to see if this can provide a more general (geometric) characterization

of “almost abelian” flat connections on arbitrary 3-manifolds.

While our initial analysis indicates that, with some obvious adaptations, much of

this structure applies to 3-manifolds with b1 > 0, we observe new peculiar features. For

example, we find the expected pattern of the poles in the Borel plane, albeit at shifted

values. Without a more detailed analysis, it is not clear whether these poles are “spurious.”

(We will see a hint for this shortly.) Or, if the poles are all meaningful, of the form (3.44),

and there is a systematic explanation for the shift in their position.

Consider, for example, the “pertutbative” expansion of the q-series invariants Ẑ
(+)
0 (q)

and Ẑ
(−)
a (q) for the 0-surgery on the 52 knot, M3 = S3

0(52), in the limit q = e~ = e2πi/k → 1.

For the trivial flat connection, the perturbative expansion of Z
(+)
0

(
S3

0(52)
)

looks like

Z
(+)
0

(
S3

0(52)
)

=
1

2
f1(52) = −1

2
q−1

∞∑
j=0

(−1)jq
j(j+1)

2 = −1

2
q−

9
8 Ψ

(1)
2 (q)

~→0
= − 1

2
q−

9
8

(
1

2
− 1

24
~ +

5

27

~2

2!
− 61

210

~3

3!
+

1385

213

~4

4!
− 50521

216

~5

5!
+ · · ·

)
= − 1

4
+

5

16
~− 13

32

~2

2!
+

73

128

~3

3!
− 121

128

~4

4!
+

1135

512

~5

5!
− 9161

1024

~6

6!
+ · · ·

Multiplying by the factor 1√
k
, which plays an important role and also simplifies the Borel

transform, we get

B

(
1√
k

Ψ
(1)
2

)
(ξ) =

1√
πξ

1

e
√
πiξ + e−

√
πiξ

24In particular, it is typical to see nαβ 6= nβα.
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This expression has poles at
√
πiξ = πi(n+ 1

2), or

ξ

2πi
=

(2n+ 1)2

8
≡ 1

8
mod Z. (3.46)

Similarly, for a = 0, 1, 2, 3, we have:

Z(−)
a

(
S3

0(52)
) ∼= − i

2
√

7

[
q3/8

∑
b=1,3,5,··· ,13

e−2πiab
7 (−1)

b−1
2 Ψ

(b)
14 (q)

]∣∣∣∣
q→q−1

= − i

2
√

7

[
q3/8

∑
j=1,3,5,···

q
j2

56 e−2πiaj
7

]∣∣∣∣
q→q−1

where (. . .)|q→1/q means that we should replace q by q−1 in all terms. At the level of

the perturbative ~-expansion, this means replacing ~ → −~. The Borel transform of the

resulting expression is

B

 −i√
7k

∑
b=1,3,5,··· ,13

e−2πiab
7 (−1)

b−1
2 Ψ

(b)
14

(
−1

k

) (ξ) =
−(−7πξ)−1/2

e−2πia
7

+
√
−πiξ/7 + e2πia

7
−
√
−πiξ/7

It has poles at −2πia7 +
√
−πiξ/7 = πi(n+ 1

2), or

ξ

2πi
= −7

(2n+ 1 + 4
7a)2

8
≡ 1

8
− 2

7
a2 mod Z. (3.47)

Up to a somewhat mysterious shift by 1
8 , the values in (3.46) and (3.47) agree with the

values of CS(α) listed in table 2. For the moment we don’t understand the meaning of

these poles or why there is a shift by 1
8 . We leave this as a question for the future.25

3.3.4 0-surgery on the unknot: M3 = S2 × S1

For the 0-surgery on the unknot (2.45) the plumbing diagram consists of only one vertex:

0• = S2 × S1 (3.48)

A naive application of the integral formula (3.19) — or, rather, its refinement [54] — to

this plumbing graph gives the reduced invariant

Ẑ(q, t) =
1

2

∫
dz

2πiz

(z2; q)∞(z−2; q)∞
(z2tq; q)∞(z−2tq; q)∞

=
(q2t; q)∞(qt; q)∞
(q2t2; q)∞(q; q)∞

=

= 1 + (1− t)q + (2− 3t+ t2)q2 + . . . (3.49)

25One possible explanation for such “spurious poles” is that, while expanding the range of summation

over colors to include 0 and k, they can contribute to abelian and almost abelian part even if the total

contribution is 0. As a small evidence in favor of this scenario, we note that the poles in the Borel

transform indeed cancel out in the combination Z
(+)
0 − i√

7
Z

(−)
0 , when one adds abelian and almost abelian

contributions together. This, however, does not explain the poles in other Z
(−)
a , with a 6= 0, as well as the

shift by 1
8
.
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where, to avoid clutter, we omit the label a ∈ TorH1(M3,Z) = 0. This expression is

precisely the half-index (i.e. a partition function on a solid torus [50]) of a simple 3d N = 2

theory with G = SU(2):

T [S2 × S1, G]
?
=

3d N = 2 gauge theory with gauge

group G and an adjoint chiral Φ0
(3.50)

which is one of the natural candidates for T [S2×S1] and was already mentioned in the end

of section 2. Indeed, the denominator of the integrand corresponds to the contribution of

bosonic (∂nz φ0) operators coming from the adjoint chiral multiplet Φ0, while the numerator

corresponds to the contribution of the derivatives of the gaugino field (Dn
z λ−) coming from

the vector multiplet. After the integration we are left with gauge invariant combinations of

these fields describing meson fields. In computing (3.49), the R-charge assignment (2.17)

of Φ0 was used, instead of a perhaps more natural (for a N = 4 vector multiplet) value

R = 1. The variable t in (3.49) is the fugacity for U(1)β flavor symmetry26

U(1)R U(1)β : Φ0 → eiθΦ0

Φ0 +2 +1
(3.51)

The unreduced invariant (with Cartan components of the adjoint chiral and gauge

multiplet included) corresponding to (3.49) is

Ẑunred(q, t) =
(q2t; q)∞
(q2t2; q)∞

Ẑunred(1/q, 1/t) =
(q−1t−2; q)∞
(q−1t−1; q)∞

(3.52)

Ẑunred(1/q, t) =
(q−1t2; q)∞
(q−1t; q)∞

where the last two expressions can be obtained either with the help of the “cyclotomic

expansion” of [54] or by using the familiar relations (x; q−1)∞ = 1
(xq;q)∞

and (x; q)n =
1

(xqn;q)−n
. Then, according to [54], these building blocks determine the superconformal

index of the theory (3.50):

I(q, t) = Ẑunred(q, t) Ẑunred(1/q, 1/t) =
(q2t; q)∞
(q2t2; q)∞

(q−1t−2; q)∞
(q−1t−1; q)∞

(3.53)

and its topologically twisted index on S1 × S2:

Itop(q, t) = Ẑunred(q, t) Ẑunred(1/q, t) =
(q−1t2; q)3

(q−1t; q)3
(3.54)

that will be discussed further in the next section.

The refinement by t, the fugacity for the flavor symmetry U(1)β , is closely related

to the categorification of the q-series invariants Ẑ, see e.g. [53, 54]. In the “unrefined”

26cf. the general discussion in [53, sec.3.4].
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limit t → 1, the difference between reduced and unreduced versions of Ẑ is essentially

in the extra factors of (q; q)∞ = q−
1
24 η(q). Although keeping such extra factors in the

unreduced version of the invariants can make the expressions look bulkier, physically it is

more natural since this is what the half-index of 3d N = 2 theory T [M3] actually computes.

Moreover, these extra factors of (q; q)∞ = q−
1
24 η(q) play an important role in 3d Modularity

Conjecture [64] that relates Ẑ(M3; q) to characters of chiral algebras. In relation to the

WRT invariants of 3-manifolds, however, and their categorification, we usually use the

reduced version of Ẑ(M3; q), which in the present paper means no additional label (unlike

the unreduced version Ẑunred).

3.4 Continuous versus discrete labels

Throughout this paper we considered invariants Ẑb(M3) labeled by discrete set of labels

b when M3 is closed, even if b1(M3) > 0. The continuous variables xi only appeared

at intermediate stages of building closed M3 from 3-manifolds with toral boundaries, cf.

surgery formulae (3.19) or (3.41). As in [44], these C∗-valued variables xi can be interpreted

as holonomy eigenvalues of complex SL(2,C) connections along “meridian” cycles of the

toral boundaries, and the gluing along T 2 boundaries gives rise to xi-integrals.

However, for closed 3-manifolds with b1 > 0, which are of central importance in this

paper, there are some clues suggesting that we might need to add b1 continuous labels,

such that27

Ẑb =

∮ ∏
1≤i≤b1

dxi
2πixi

Ẑb(x1, · · · , xb1) (3.55)

Just as for link complements and more general 3-manifolds with toral boundaries considered

earlier, these additional variables xi ∈ C∗ should be viewed as holonomies of SL(2,C) flat

connections on M3.

Indeed, recall from section 2, that the generic component of the moduli space of

SL(2,C) flat connections on M3 is b1-dimensional. Similarly, in 3d N = 2 theory T [M3],

the continuous variables xi play the role of local coordinates on Mvacua; in particular,

they parametrize the “Coulomb branch” of T [M3] and, from the viewpoint of resurgent

analysis [45], appear on the same footing as discrete labels b in Ẑb and their close cousins

(without a hat),

Za =
∑
b

SabẐb (3.56)

that we already encountered a few times earlier.

Another reason why one may find natural to label Za and Ẑb by continuous variables

xi is that their perturbative expansion in the limit q = e~ → 1 has the “constant term”

(of the order ~0) related to the Reidemeister-Turaev torsion [45]. This property of Za and

Ẑb is inherited directly from the analogous perturbative expansion of the Chern-Simons

27This is supported by recent developments [80] where Ẑ(M3) is realized as a somewhat unusual Rozansky-

Witten theory on M3 and xi are C∗-valued holonomies of the background flat connection on M3 (in general

valued in TC, the maximal torus of GC).
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path integral [16] which they repackage as a trans-series.28 And, since for 3-manifolds

with b1 > 0, the torsion τM3 can be regarded as a function of continuous variables xi,

i = 1, . . . , b1, it is natural to expect Za and Ẑb to have this property too. More precisely [81],

the torsion τM3 is a function of a Spinc structure b with values in Q(H), the ring of fractions

of Z[H], where H = H1(M3). Elements of Q(H), in turn, can be regarded as functions

Hom(Tor(H),C∗) → C(x1, · · · , xb1) . (3.57)

For each character σi ∈ Hom(Tor(H),C∗), τM3(b)(σi) ∈ Fi = Cσi(x1, · · · , xb1) where Cσi
is the cyclomotic field induced by σi. Moreover, this map is H-equivariant, i.e.

τM3(h · b)(σi) = σi(h)τM3(b)(σi) . (3.58)

In the next section, we propose a precise relation between τM3 and the invariants Za and Ẑb.

4 Twisted indices and Hilbert spaces

In general, a d-dimensional quantum field theory (QFT) with sufficient amount of su-

persymmetry that allows a partial topological twist [82] on an arbitrary (d − 1)-manifold

Md−1 (perhaps equipped with an extra structure, e.g. Spin structure) admits a topologically

twisted index, or twisted index for short,

Itop = TrH(Md−1)(−1)F = χ (H(Md−1)) (4.1)

where the space of supersymmetric states H(Md−1) is a Floer-like homology of Md−1.

It can be defined as a Q-cohomology with respect to the supercharge Q preserved by

the partial topological twist on R ×Md−1. For example, in d = 4 this gives a physical

interpretation [83] of the original Floer theory [84] and a physical interpretation [53] of

the Heegaard Floer homology [85] that will be relevant in the rest of this section. When

the QFT in question has global symmetries, the space of states H(Md−1) is graded and,

in such cases, one can introduced additional variables in the twisted index (4.1) that keep

track of these additional gradings.

Equivalently, one can view the twisted index of a d-dimensional QFT as a partition

function of a (d− 1)-dimensional TQFT, with all Kaluza-Klein modes included. This ap-

proach to twisted indices and thinking about the underlying Floer-like homology H(Md−1)

is useful in both Lagrangian and non-Lagrangian theories. Even in Lagrangian theories,

where (4.1) can often be computed by localization techniques, it offers useful insights into

the structure of twisted indices: see [22, 53, 86] for the underlying algebraic structures in

d = 3, d = 4, and d = 5, respectively.

28If “a” denotes an abelian flat connection, then the perturbative expansion in Chern-Simons theory with

compact gauge group G = SU(2) is identical to the perturbative expansion around this flat connection in

Chern-Simons theory with complex gauge group GC = SL(2,C).
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4.1 Twisted Hilbert space on Fg

In d = 3, the first computation of the twisted index (4.1) and its application appeared

in [29]. It is directly relevant to us here since the corresponding 3d N = 2 theory is T [M3]

with M3 = L(k, 1):

T [L(k, 1), G] =
k• =

3d N = 2 super-Chern-Simons

with Gk and an adjoint chiral Φ0
(4.2)

where the charges (weights) of Φ0 under the R-symmetry and the flavor symmetry U(1)β
are the same as in (3.51). For a genus-g Riemann surface Fg (where “F” stands for “fiber,”

as used in more general twisted compactifications), the twisted index of this theory on

S1 × Fg can be expressed as a U(1)β-equivariant integral over the moduli space of Higgs

bundles on Fg,

Itop(S1 × Fg) =

∫
MH(Fg ,G)

Td(MH , β) ∧ ekωI−kβµI (4.3)

This integral makes sense even in the special case k = 0, which corresponds to M3 =

S2 × S1 and for which the naive specialization of the theory (4.2) leads to our earlier

candidate (3.50) for the theory T [S2×S1]. According to [29, 87] (see also [88–91]), twisted

index of this theory, i.e. partition function on S1 × Fg, is given by

ZT [S2×S1](S
1 × Fg) =

1

2

∑
vacua: dW̃=0

Z1-loop|m=0

(
W̃ ′′
)g−1

(4.4)

where W̃ ′′ denotes ∂2W̃
(∂ log z)2 and W̃ ′ = ∂W̃

∂ log z =
∂ logZ1-loop

∂m . For the gauge theory (3.50) we

have

Z1-loop =

(
2− 1

z2
− z2

)1−g

︸ ︷︷ ︸
SU(2) gauge

(
zt1/2

1− z2t

)2m+g−1(
t1/2

1− t

)g−1(
z−1t1/2

1− z−2t

)−2m+g−1

︸ ︷︷ ︸
adjoint chiral Φ0

The Bethe ansatz equation

1 = exp

(
∂W̃
∂ log z

)
=

(
z2 − t
1− z2t

)2

(4.5)

has a total of four solutions z = {±1,±i}, two of which (namely, z = ±1) correspond to the

points on the maximal torus of G = SU(2) fixed by the Weyl group and, therefore, need to

be discarded. The sum over the other two roots of the Bethe ansatz equation gives (4.4):

ZT [S2×S1](S
1 × Fg) =

(
t1/2 + t−1/2

)3−3g
(4.6)

which, for g = 0, agrees with the limit q → 1 of the topologically twisted index (3.54)

computed earlier. And, for g = 1, it also agrees with the Witten index Tr(−1)F of 3d

N = 2 adjoint SQCD with Nf = 1 [92]. (Note, the R-charge assignment does not play a

role in that calculation.)
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From the viewpoint of 3d N = 2 super symmetryalgebra (see e.g. [92]),

{Q±, Q±} = P1 ± iP2

{Q±, Q∓} = −P0

Q+ Q+ Q− Q−
U(1)E −1 −1 +1 +1

U(1)R −1 +1 −1 +1

(4.7)

the twisted index Itop(S1×Fg) ≡ ZT [M3](S
1×Fg) counts the states of 3d N = 2 theory on

Fg that are in cohomology of the supercharge QA = Q− +Q+. Indeed, partial topological

twist along Fg is a 3d version of the standard A-model twist in two dimensions, that replaces

the little group U(1)E by the diagonal subgroup of U(1)E × U(1)R. Under the latter, Q−
and Q+ have zero spin, as one can easily see from (4.7).

In other words, as advertised in (4.1), Itop(S1 × Fg) computes the graded trace over

the “Floer homology” H(Fg) in 3d N = 2 theory. Using modern terminology, one might

call H(Fg) a categorification of the A-model. A chiral multiplet of R-charge R contributes

to this QA-cohomology a boson φ and a fermion ψ, which after the twist transform as

holomorphic sections of K
R/2
Fg
⊗ L(m) and K

1−R/2
Fg

⊗ L(−m), respectively [82, 91, 93, 94]:

Hchiral(Fg) = T + ⊗ . . . ⊗ T +︸ ︷︷ ︸
dimH0(K

R/2
Fg
⊗L(m))

⊗ F ⊗ . . . ⊗ F︸ ︷︷ ︸
dimH0(K

1−R/2
Fg

⊗L(−m))

(4.8)

Adopting notations from Heegaard Floer theory, here we denote a copy of bosonic Fock

space by

T + = 1⊕ φ⊕ φ2 ⊕ . . . ∼= H∗S1(pt) = H∗(CP∞) (4.9)

and for a fermionic Fock space use

F = 1⊕ ψ ∼= H∗(CP1) (4.10)

The Kaluza-Klein spectrum (4.8) can be easily computed directly from the topological

reduction [82] and admits a simple interpretation in the effective 1d quantum mechanics.

Indeed, as explained below (4.7), the partial topological twist along Fg breaks half of the

supersymmetries, preserving only Q− and Q+ that transform as scalars on Fg. Moreover,

it is also easy to see directly from (4.7) that these two supercharges generate an algebra of

N = 2 superconformal quantum mechanics

{Q,Q} = 2H , Q2 = 0 , Q
2

= 0 (4.11)

which in the literature is often called N = 2B since it also appears in a reduction of a 2d

N = (0, 2) theory on a circle, see e.g. [95, 96]. In particular, on a circle of circumference

β → 0, the two standard matter multiplets in a 2d N = (0, 2) theory — namely, chiral

and Fermi — become two types of supermultiplets in N = 2B quantum mechanics, usually

called by the same names. Correspondingly, the indices of these supermultiplets in 1d

quantum mechanics follow directly from the elliptic genera of 2d multiplets [50]:

2d (0, 2) Fermi: θ(x,q)
η(q)

β→0−−−−−→ x
1
2 − x−

1
2 = χ (F)

2d (0, 2) chiral: η(q)
θ(x,q)

β→0−−−−−→ 1
x1/2−x−1/2 = χ (T +)

(4.12)
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where, in the last equality, we draw attention to the fact that these indinces match

Tr (−1)Fxflavor evaluated on (4.9) and (4.10). For this reason, the Floer homology (4.8)

of A-twisted 3d N = 2 theory on Fg can also be interpreted as a field content of the

effective N = 2B superconformal quantum mechanics, in such a way that each T + fac-

tor corresponds to a 1d chiral multiplet and each copy of F corresponds to a 1d Fermi

multiplet.

This language becomes especially convenient in describing the contribution of a 3d

N = 2 vector multiplet to the QA-cohomology H(Fg). The naive analogue of (4.8) reads

T + ⊗ . . . ⊗ T +︸ ︷︷ ︸
g·dimG

⊗ F ⊗ . . . ⊗ F︸ ︷︷ ︸
dimG

(4.13)

where the bosonic and fermionic Fock spaces are generated by the zero-modes of the gauge

connection and gluinos, respectively. However, only gauge-invariant combinations like

mesons, baryons and glueballs can be part of H(Fg), and this requires implementing a

BRST-like reduction on the entire space of states, not just its gauge sector (4.13). A con-

venient way to account for this is to interpret this operation as gauging in the effective 1d

quantum mechanics, where (4.13) is simply a statement that topological reduction of a 3d

N = 2 vector multiplet on Fg results in a 1d vector multiplet and g copies of 1d chiral

multiplet in the adjoint representation of G.

It is useful to note that the superconformal quantum mechanics (4.11) can be conve-

niently described in superspace R(1|2) parametrized by two odd (Grassmann) coordinates

θ, θ and the time coordinate x0. Specifically, it is easy to check that the two supercharges29

Q = i
∂

∂θ
+ θ

∂

∂x0
, Q = i

∂

∂θ
+ θ

∂

∂x0
(4.15)

satisfy the algebra (4.11) and can be distinguished by the R-charge

[R,Q] = −Q , [R,Q] = Q , [R,H] = 0 (4.16)

which, in dimensional reduction from 2d N = (0, 2) algebra, simply comes from the reduc-

tion of 2d R-charge.

Note, in general, the space of states (4.8) is much larger than its contribution to

the index, χ
(
Hchiral

)
=
(
x

1
2 − x−

1
2

)(R−1)(1−g)−m
, which appeared several times in the

calculation of (4.6).

4.2 Twisted Hilbert space on D2

Compared to the Floer homology of T [M3] on Fg, the space of (supersymmetric) states

H(D2) on a 2-disk D2 has new interesting features:

29The covariant superspace derivatives

D = i
∂

∂θ
− θ ∂

∂x0
, D = i

∂

∂θ
− θ ∂

∂x0
(4.14)

obey {D,D} = −2i∂x0 .
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• While H(Fg) depends only on 3d theory, H(D2) depends on 3d theory together with

a choice of 2d boundary condition B at the disk boundary.

• In the case of H(Fg) it is natural to ask how this space depends on the genus g. In the

case of H(D2,B), the analogous question involves introducing Z-grading associated

with U(1)E rotation symmetry of the disk and asking about graded components

of H(D2,B). As we explain shortly, this is equivalent to studying “half-twisted”

theory [97, 98] (a.k.a. “holomorphic twist” [99] of the theory) along 2d part of the

3d space-time or, equivalently, the Omega-background along D2 (which, sometimes,

is denoted D2
q or R2

q).

As for the choice of boundary conditions, following [4, 50], we take B to be invariant

under 2d N = (0, 2) supersymmetry on the boundary. Then, several nice things hap-

pen. Perhaps the most important feature is that the hemispheres around local boundary

operators (illustrated in figure 7) become twisted by U(1)R symmetry precisely as in the

topological index (4.1). In other words, one can say that a holomorphic twist of a 3d N = 2

theory along the boundary induces a topological A-twist along the 2-disks D2 “orthogonal”

to the boundary, cf. figure 7, and vice versa. From the viewpoint of the topological twist

along D2, the half-index of [50] is simply a version of the twisted index (4.1) with Fg = D2

refined30 by the rotation symmetry of the disk.

Conversely, the twisted index (4.1) with Fg = D2 can be viewed as a limit of the

S1 ×q D2 partition function (3.1):

Itop(S1 ×D2) = lim
q→1

TrHD2 (−1)F qR/2+J3 (4.17)

Let us choose the conventions such that the N = (0, 2) supersymmetry preserved on the

boundary is generated by Q+ and Q+. According to (4.7), these satisfy the algebra (4.11)

with the Hamiltonian H+ that generates translations along the boundary. The states that

contribute to the elliptic genus Tr (−1)F qH− of the 2d N = (0, 2) boundary theory have

H+ = 0. In the radial quantization, illustrated in figure 7, the solid torus S1×D2 is foliated

by concentric disks embedded in the half-space R2 × R+. At every point on the disk D2,

the anticommutator of the supercharges Q and Q generates a translation orthogonal to the

disk, which rotates as one goes from points at the boundary to the apex (center) of the disk,

where Q = QA and Q = Q†A. Put another way, translations orthogonal to the boundary

of the half-space R2 × R+ are exact in Q+-cohomology, and so is the anti-holomorphic

dependence on z along the R2 parametrized by z and z.

In the context of 3d-3d correspondence, both sides of (4.17) have a simple meaning.

The right-hand side is basically our friend Ẑ(M3) in the limit q → 1. The left-hand side,

on the other hand, is a twisted partition function of T [M3] on S1×Fg with a special choice

of Fg = D2. For general Fg, this twisted partition function is basically determined [53]

by the Reidemeister-Turaev torsion τM3 , a close cousin of the Seiberg-Witten invariants

SW(M3). More specifically, the information about all genus-g twisted partition functions

30equivariant with respect to U(1)E in (4.7).
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is completely contained in MTC[M3], in fact, in the S and T matrices:

Itop(S1 × Fg) =
∑
λ

(S0λ)χ(Fg) (4.18)

The case most directly related to SW invariants / Turaev torsion has χ(Fg) = −1, whereas

the one in (4.17) obviously has χ(D2) = +1. Therefore, one should expect that (4.17)

is roughly inverse of the τM3 . This expectation agrees with the perturbative expansion

of Za, related to Ẑb via (3.56), where τM3 originates from one-loop term in (complex)

Chern-Simons theory.31

Moreover, taking the limit q → 1 directly in the integral formula (3.19) for the plumbed

manifolds leads to ∑
mi∈Z

∫ ∏
i∈vertices

dxi
2πixi

x
∑
j Q

ijmj
i (1− xi)2−deg(i)xbii (4.19)

where b ∈ cokerQ can be interpreted as the label of a Wilson line (that runs orthogonal

to the boundary of the half-space R2 × R+ shown in figure 7). Then, following the same

manipulations as in [53], one can evaluate this infinite sum and the integral. The result

is a finite sum over Bethe vacua, solutions to
∏
j x

Qij

j = 1, which can be identified with

characters σ ∈ Ĥ = Hom(H,C∗) in the Pontryagin dual of H = H1(M3). This sum has

exactly the same form as what one finds for the Turaev torsion of plumbed 3-manifolds [100],

except the exponent deg(i)− 2 is replaced by 2− deg(i) in (4.19).

Therefore, we can summarize this discussion by saying that the Fourier transform of

τM3(b), viewed as a function of Ĥ, is the inverse of (4.17). Equivalently, since the unfolded

S-matrix Sab is independent of q and implements the Fourier transform with respect to

b ∈ H and σ ∈ Ĥ, we can state this as a relation between τM3(b) and Z(M3):

Conjecture 6.
1

τM3(b)(a)
= e2πi(b,Q−1a)Za

∣∣∣∣
q→1

(4.20)

The prefactor on the right-hand side of this relation is introduced to make H-equivariance

of the Turaev’s refined torsion manifest, cf. the discussion in the end of section 3. Also,

note that, since the set of labels a and b on Z and Ẑ is folded with respect to the Weyl

symmetry Z2 : a→ −a, one must either implicitly undo this folding on the right-hand side

of (4.20) or average over the Z2 orbit on the left-hand side.

For example, we can check (4.20) for knot complements. In this case, Z and Ẑ coincide,

and the limit (4.17) gives

x1/2 − x−1/2

∆K(x)
(4.21)

This is precisely 1
τM3

(b) for M3 = S3 \K, up to an overall factor xb that can be interpreted

as a defect (Wilson line) labeled by b.

31In 3d N = 2 theory T [M3], the relation between Za and Ẑb =
∑
a SabZa can be understood in terms

of exchanging the roles of A- and B-cycles of T 2 = ∂(S1 ×D2), see [53] for details.
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A similar case of 0-surgeries on knots suggests that one may want to add a continuous

label x ∈ C∗ to Z(S3
0(K)) and Ẑ(S3

0(K)), such that expressions discussed in this paper are

obtained by integrating over x, as in (3.55). For example, for M3 = S2×S1 = S3
0(unknot),

we have τS2×S1(x) = 1
(x1/2−x−1/2)2 . This is precisely the inverse of the integrand in (3.49),

in the unrefined limit t → 1. It would be interesting to study the relation (4.20) further,

in particular by checking it for other 3-manifolds.

4.3 Twisted Hilbert space on D2 with impurity

The intriguing relation between τM3 and Ẑ(M3) discussed so far is based on (4.17), which

involves partition function (or space of states) on D2 ∼= S2 \ pt and G = SU(2). It

is instructive to compare this with a much more familiar appearance of τM3 in a similar

problem [53] that involves G = U(1) and an extra impurity S+ on D2 ∼= S2 \ pt or,

equivalently, the space of states on S2 \ {p1, p2} or, better yet, S2 \ {p1, p2, p3}.
Let is consider our basic example (2.45) of a genus-0 mapping torus, M3 = S2 × S1,

which also is a 0-surgery on the unknot. Unlike its non-abelian counterpart (3.50), the

abelian version of the theory T [M3, G] with G = U(1) in this case is completely clear. It

is simply a 3d N = 2 super-Maxwell theory and a free chiral multiplet Φ0. The impurity

S+ is a hypermultiplet charged under G = U(1) localized at a point on D2 or, in N = 2

language, a pair of localized chiral multiplets with charges +1 and −1. Therefore, the

contribution of S+ to the twisted Hilbert space consists of two copies of (4.8), and the

total index is ∑
h∈Z

∫
dx

2πix
q−h︸ ︷︷ ︸

T [M3,U(1)]

xh
t

(1− xt)(1− x−1t)︸ ︷︷ ︸
impurity S+

(4.22)

Note that the integrand at t = 1, i.e. the contribution of the impurity S+ in this expression,

can also be interpreted as a contribution of a single vertex in a plumbing graph with Euler

number 0,
0◦ =

x

(1− x)2
(4.23)

Here, following the conventions of [23], we denote by “◦” an unintegrated vertex / unfilled

torus boundary (as opposed to “•,” which denotes Dehn filled torus boundary / integrated

vertex). In these conventions, the complement of the trefoil knot in S3 evaluates to

−2•

−3• •
−1

0◦
=

x ·∆31(x)

(1− x)2
(4.24)

As in (4.22), performing a Dehn filling that yields 0-surgery means integrating over x and

summing over Spinc structures h. This sum and the integral have the combined effect of

replacing x by q: ∑
h∈Z

∫
dx

2πix
q−hxh

∆K(x)

(1− x)(1− x−1)
=

∆K(q)

(1− q)(1− q−1)
(4.25)
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knot K HF+
(
S3

1/r(K)
)

HF+
(
S3
−1/r(K)

)
HF+

(
S3

0(K)
)

3r
1 T +

−2 ⊕ Zr−1
−2 T +

0 ⊕ Zr−1 T +
−1/2 ⊕ T

+
−3/2

3`1 T +
0 ⊕ Zr0 T +

2 ⊕ Zr−1
1 T +

3/2 ⊕ T
+

1/2

41 T +
0 ⊕ Zr−1 T +

0 ⊕ Zr0 T +
1/2 ⊕ T

+
−1/2 ⊕ Z−1/2

Table 3. Heegaard Floer homology for 1/r-surgeries and 0-surgeries behaves “discontinuously” as

1/r → 0, i.e. HF+
(
S3
0(K)

)
can not be viewed as a limit of HF+

(
S3
1/r(K)

)
with r →∞.

This is indeed the Turaev-Milnor torsion of M3 = S3
0(K). Note, since the Alexander poly-

nomial does not distinguish mirror knots, ∆K(x) = ∆K(x), 3-manifolds M3 = S3
0(K) and

M3 = S3
0(K) have the same Turaev torsion, which in turn equals the Euler characteristic of

the Heegaard Floer homology HF+. As illustrated in table 3, though, the Heegaard Floer

homology groups themselves can be quite different. From the viewpoint of 4d TQFT, this

can be understood as a consequence of M4
∼= M ′4, where M4 = S1 ×M3 = S1 × (S3 \K)

and M ′4 = S1 ×M ′3 = S1 × (S3 \K), which holds even when M3 6∼= M ′3.

As in the case of q-series invariants Ẑ(M3) computed by the half-index of T [M3],

integrating over x in (4.23)–(4.24) or, equivalently, filling all the hollow vertices in the

plumbing diagram corresponds to performing a surgery. For example, the following family

of small surgeries on the trefoil knot32

S3
−1/r(3

`
1) = −S3

1/r(3
r
1) = Σ(2, 3, 6r − 1) (4.26)

can be represented by a negative-definite plumbing graph

−2•

−2• −2• •
−2

−2• −2• −2• −2• −3• −2• · · · −2•︸ ︷︷ ︸
r−2 times

Its Heegaard Floer homology, summarized in table 3, is the twisted Hilbert space of

T [M3, U(1)] on a disk D2 with impurity S+ representing a charged hypermultiplet localized

at a point on D2. In particular, it has the “correction term” (a.k.a. d-invariant) ∆ = 2

and HFred

(
S3
−1/r(3

`
1)
) ∼= Zr−1 in degree 1, so that the (regularized) Euler characteristic

in this case is λ(M3) + ∆(M3)
2 = −r + 1, where we used the Casson’s surgery formula to

compute λ
(
S3
−1/r(3

`
1)
)

= −r, see e.g. [104].

Tracing the surgery exact sequence [101, 105], one can see that HF+
(
S3

0(K)
)

contains

extra terms which are in the kernel of maps to HF+
(
S3

1/r(K)
)

for any finite r. This is

similar to how Ẑ
(
S3

0(K)
)

compares to Ẑ
(
S3

1/r(K)
)
. Based on this behavior, it is natural

to conjecture that homology H(M3) categorifying Ẑ(M3) enjoys a surgery exact sequence:

32Our orientation conventions agree with [23, 101–103]. Namely, S3
+1(3r

1) = −Σ(2, 3, 5).
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Conjecture 7. If K ⊂ Y is a knot in an integral homology 3-sphere Y , then we have a

long exact sequence

· · · −→ H (Y ) −→ H (Y0(K)) −→ H (Y+1(K)) −→ H (Y ) −→ · · · (4.27)

5 Generalizations and future directions

The results presented here lead to a variety of natural generalizations and questions for

further study:

• 3d N = 2 gauge theories with non-linear matter: in some of our examples,

we found it useful to describe T [M3] as a gauge theory with chiral matter multiplets

valued in the complex group manifold GC. This might be a promising avenue for

constructing T [M3] in general as well as exploring 3d N = 2 physics on its own

right. It plays an important role for describing the full set of vacua (1.1) based on

the multiplicative, not additive, version of the character variety (2.1). Pursuing this

direction may make contact with interesting recent work [106], which might also be

relevant to higher-genus mapping tori and Heegaard splittings.

• N = 2 S and T walls: as discussed in section 2 (and illustrated in figure 2), the S and

T walls relevant to T [M3] for genus-1 mapping tori are 1
4 -BPS (not 1

2 -BPS), i.e. they

preserve only 3d N = 2 supersymmetry.33 It would be interesting to understand such

N = 2 walls and, possibly, make contact with interesting recent work [107], where a

particular choice was used. Arrangements of walls should obey equivalence relations

(Kirby moves) represented by either known or new dualities of 3d N = 2 theories.

• Heegaard boundary conditions: close cousins of walls and interfaces are 3dN = 2

boundary conditions associated with handlebodies in a Heegaard decomposition of

M3. It would be interesting to understand such boundary conditions, especially

in higher genus, and produce a way to compute Ẑ(M3) using this approach. For

example, for g = 2 one should be able to reproduce the answer for the Poincaré

sphere.

• Boundary conditions for T [M3] itself: aside from developing systematic con-

structions of T [M3] emphasized in the previous bullet points, for aspects of the 3d-3d

correspondence related to Ẑa(M3) it is also important to study the boundary condi-

tions Ba. On the one hand, this can test the expressions for Ẑa(M3) already obtained

by other methods (cf. section 3) and, on the other hand, pave the way to computing

Ẑa(M3) systematically as a half-index (3.1) beyond simple examples of plumbed man-

ifolds. Since for each given M3 there are (infinitely) many dual descriptions of T [M3]

related by Kirby moves, this will necessarily require developing dual descriptions of

2d N = (0, 2) boundary conditions along the lines of [4] and [55]. Among other

things, we hope that further study of the boundary conditions Ba for 3-manifolds

with b1 > 0 can shed light on the role of almost abelian flat connections.

33Recall one of the lessons from section 2: “when in doubt, think of G = U(1).”
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• Bethe vacua and Coulomb branch superpotential: in Kaluza-Klein reduction

on M3, one can think of 3d N = 2 theories with infinitely many fields that correspond

to all GC connections on M3. Integrating out most of these fields, one finds a collec-

tion of SCFTs with finitely many fields, namely T [M3]. On its “Coulomb branch,”

however, one could study the effective twisted superpotential function W̃eff(xi), ob-

tained by integrating out matter fields. The critical points of this function, called

Bethe vacua, are related [53] to simple objects in the category of line operators in

3d N = 2 theory T [M3]. It would be interesting to study this aspect of 3d-3d corre-

spondence further and, in particular, to understand almost abelian flat connections

from this perspective.

• General 3-manifolds with b1 = 1: any 3-manifold with b1 = 1 can be obtained by

a 0-surgery on a null-homologous knot in a rational homology sphere. In particular,

the Ohtsuki’s perturbative series [76] makes sense. We expect that it is possible to

resum the perturbative series into a q1/r-series for some r. This should be a natural

starting point to study Ẑ for more general 3-manifolds with b1 = 1, such as higher

genus mapping tori with b1 = 1.

• Borromean rings and M3 = T 3: 0-surgeries on double twist knots studied in

section 3 are special cases of surgeries on the Borromean rings. This larger class of

examples is the next natural family to consider; it includes a 3-torus M3 = T 3 as

a prominent member, given by a surgery on the Borromean rings with all surgery

coefficients equal to 0. This example is especially interesting since, currently, there

is no robust proposal for what Ẑb(T
3) should be.

• DAHA and toroidal algebras: it is well known [16, 17, 108] that Chern-Simons

TQFT with compact gauge group G has finitely many states on Σ = T 2 which are in

one-to-one correspondence with integrable representations of the affine Kac-Moody

algebra at level k. For example, in SU(2)k Chern-Simons theory, gluing along T 2

involves summing over k+1 states. More generally, the sum runs over elements of the

weight lattice Λ, with level k playing the role of a “cut-off.” This has to be compared

with the infinite-dimensional space of states in 3d TQFT Ẑ on a torus, Σ = T 2. In

fact, these states can be labeled by elements of two copies of the lattice, modulo the

Weyl group. The fact that there is no cut-off is not surprising since the TQFT Ẑ

is supposed to be the “complex Chern-Simons theory,” whose Hilbert space on Σ

is a quantization of a (non-compact!) phase space Mflat(Σ, GC). However, the fact

that gluing along Σ = T 2 involves summing over elements of Λ×Λ∨

Weyl suggests that the

role of the affine Kac-Moody algebra is replaced by a toroidal algebra of some sort,

possibly by a double affine Hecke algebra (DAHA). Further evidence for the latter

can be inferred from the Hilbert space of 6d fivebrane theory on R × Σ × S1 ×q D2

which, for Σ = T 2, turns out to be an infinite-dimensional representation of spherical

DAHA (called the functional representation).

• A category associated to Σ: one of the main motivations for studying the Ẑ-

TQFT is that, based on its physical origin, it is expected to have a categorification,
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i.e. a 4d TQFT that associates graded vector spaces to 3-manifolds and a category

CΣ to Σ. Describing this category, either algebraically or geometrically, would be a

major step toward constructing 4d TQFT categorifying Ẑ. Note, for Σ = T 2, the

Grothendieck group of this category is the infinite-dimensional space of states on a 2-

torus discussed in the previous bullet point. In the language of 3d-3d correspondence,

it asserts

Gr(CΣ) = HT [Σ×S1](D
2) (5.1)

More generally, a homological invariant of a mapping torus (1.3) in this 4d TQFT

should be given by a categorical trace, or Tr ϕ CΣ = HT [M3](D
2).

• 3d Modularity: to shed light on the algebraic structures mentioned in the previous

two bullet points, it would be useful to know what kind of functions Ẑa(M3; q) are,

either in general or for particular classes of 3-manifolds. For 3-manifolds with b1 =

0, an important step in this direction was recently made in [109, 110]. A natural

question, then, is whether a similar analysis can be carried out in the case of 3-

manifolds with b1 ≥ 1 considered here.
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