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Abstract. Moser derived a normal form for the family of four-dimensional, quadratic,

symplectic maps in 1994. This six-parameter family generalizes Hénon’s ubiquitous 2d

map and provides a local approximation for the dynamics of more general 4d maps.

We show that the bounded dynamics of Moser’s family is organized by a codimension-

three bifurcation that creates four fixed points—a bifurcation analogous to a doubled,

saddle-center—which we call a quadfurcation.

In some sectors of parameter space a quadfurcation creates four fixed points from

none, and in others it is the collision of a pair of fixed points that re-emerge as two or

possibly four. In the simplest case the dynamics is similar to the cross product of a

pair of Hénon maps, but more typically the stability of the created fixed points does

not have this simple form. Up to two of the fixed points can be doubly-elliptic and be

surrounded by bubbles of invariant two-tori; these dominate the set of bounded orbits.

The quadfurcation can also create one or two complex-unstable (Krein) fixed points.

Special cases of the quadfurcation correspond to a pair of weakly coupled Hénon

maps near their saddle-center bifurcations. The quadfurcation also occurs in the

creation of accelerator modes in a 4d standard map.

Keywords: Hénon map, symplectic maps, saddle-center bifurcation, Krein bifurcation,

accelerator modes, invariant tori
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1. Introduction

Multi-dimensional Hamiltonian systems model dynamics on scales ranging from

zettameters, for the dynamics of stars in galaxies [1, 2], to nanometers, in atoms and

molecules [3, 4]. Hamiltonian flows generate symplectic maps on Poincaré sections [5,

§9.14], and numerical algorithms for these flows can be symplectic [6, 7]. Symplectic

maps also arise directly in discrete-time models of such phenomena as molecular

vibrations [8,9], stability of particle storage rings [10,11], heating of particles in plasmas

[12], microwave ionization of hydrogen [13] and chaos in celestial mechanics [14]

A map f : R2n → R2n is canonically symplectic for coordinates x ∈ Rn and

momenta y ∈ Rn if its Jacobian matrix, Df(x, y), satisfies

DfTJDf = J, J =

(
0 −I
I 0

)
, (1)

where J is the Poisson matrix. In particular this implies that the map is volume

preserving: det(Df) = 1.

Perhaps the most famous symplectic map is the area-preserving map introduced by

Hénon in 1969 as an elemental model to inform his studies of celestial mechanics [15].

This map is also the simplest nonlinear symplectic map, since it contains a single

quadratic term, and yet—as Hénon showed—every quadratic area-preserving map can

be reduced to his form [16].

Quadratic maps are useful because they model the dynamics of smooth maps in

the neighborhood of a fixed point or periodic orbit. For example, quadratic terms in

the power series give a local description of the dynamics near an accelerator mode of

Chirikov’s standard map [17]. More generally, any symplectic diffeomorphism can be

C∞ approximated by a polynomial map on a compact set [18].

Higher-dimensional analogues of Hénon’s map were proposed in [19], and similar

maps were used to study the stickiness of regions near an elliptic fixed point [20], the

resonant formation of periodic orbits and invariant circles [21–24], bifurcations due to

twist singularities [25], and the dynamics near a homoclinic orbit to a saddle-center fixed

point [26]. Such maps model a focussing-defocussing (FODO) magnet cell in a particle

accelerator and have been used to study the structure of bounded orbits, the dynamic

aperture, and robustness of invariant tori [27–30].

In 1994, Moser [31] showed that every quadratic symplectic map on R2n is conjugate

to the form

f = α ◦ σ ◦ β. (2)

Here α, β : R2n → R2n are symplectic maps, β is linear and α is affine, and

σ : Rn × Rn → Rn × Rn is a symplectic shear:

σ(x, y) = (x, y −∇V (x)), (3)

where V : Rn → R is a cubic potential. There are several immediate consequences of

this representation. Firstly, if the quadratic map f has finitely many fixed points, as it
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generically will, then there are at most 2n [31]. Note that more generally a quadratic

non-symplectic map on a 2n-dimensional space could have as many as 22n isolated fixed

points. Secondly, since the inverse of σ is also a quadratic shear of the same form

(replace V by −V ), the inverse of any quadratic, symplectic map is also quadratic.

More generally, the inverse of a quadratic diffeomorphism could be a polynomial map

of higher degree [32, Thm 1.5]; for example, the inverse of the volume-preserving map

(x, y, z, w) 7→ (x, y + x2, z + y2, w + z2) has degree eight. The form (2) also applies to

cubic maps, but not to higher degree polynomial maps [33].

In this paper we study the dynamics of Moser’s map in four dimensions. The normal

form for the 4d case is reviewed and slightly transformed for convenience in §2. We argue

in §3 that its fixed points are most properly viewed as arising from a bifurcation in which

they emerge from a single fixed point as parameters are varied away from a codimension-

three surface. Since this bifurcation often results in the creation of four fixed points, we

call it a quadfurcation, with thanks to Strogatz who, “with tongue in cheek,” proposed

the term in an exercise for 1d odes in his well-known textbook [34, Ex. 3.4.12].

As we will see in §3.1, the unfolding of the quadfurcation in Moser’s map can lead

to (i) the creation of four fixed points from none, or (ii) a collision and re-emergence

of two pairs of fixed points, or (iii) even the collision of a pair leading to four fixed

points. The stability of these fixed points is investigated in §3.2. The unfolding of the

quadfurcation along paths in parameter space is studied in §3.3-§3.4. When the map is

reversible, §3.5, additional cases occur including the simplest one: the Cartesian product

of a pair of area-preserving maps. We investigate the creation of families of invariant

two-tori, as expected from KAM theory, around doubly elliptic fixed points in §3.6. In

§3.7 we observe that these bubbles of elliptic orbits strongly correlate with the regions

of bounded dynamics.

Since Moser’s map is affinely conjugate to the general quadratic, symplectic map,

it must have a limit in which it reduces to a pair of uncoupled Hénon maps—we show

this in §4. Finally, we show in §5 that the dynamics near an accelerator mode of the 4d

standard map (Froeschlé’s map [35]), can be modeled by Moser’s map, and indeed, the

local dynamics reduces to a coupled version of the Hénon maps obtained in the previous

section.

2. Moser’s quadratic, symplectic map

2.1. Four-Dimensional Normal Form

For the two-dimensional case, the map (2) can be transformed by an affine coordinate

change to the Hénon map H,

H(x, y) = (−y + ah + x2, x), (4)

with a single parameter ah. When this map has an elliptic fixed point (for −3 < ah < 1),

it is conjugate to the map whose dynamics were first studied by Hénon [15]. By a similar



The Quadfurcation in Moser’s Map 4

transformation Moser showed [31] that in four dimensions, (2) can generically be written

as

(x′, y′) = f(x, y) = (C−T (−y +∇V (x)), Cx), (5)

where

C =

(
α β

γ δ

)
,

V = A1x1 + A2x2 + 1
2
A3x

2
1 + ε2x

3
1 + x1x

2
2,

(6)

and x ≡ (x1, x2) ∈ R2, y ≡ (y1, y2) ∈ R2. Here there are two discrete parameters,

ε1 ≡ det(C) = αδ − βγ = ±1, and ε2 ≡ ±1 or 0. The remaining six parameters are

free. It is convenient to think of the six real parameters of f as (A1, A2, A3) and (α, δ, µ),

where

µ = β + γ. (7)

Indeed, given these six, and the sign ε1, we can determine the off-diagonal elements of

C from

β, γ = 1
2
µ±

√
ε1 − αδ + µ2/4. (8)

The choice of the sign here is unimportant since this simply replaces C with CT , and

the resulting map is conjugate to the inverse of (5); see §2.3. Note that (8) has real

solutions only when µ2 ≥ 4(αδ − ε1), and that C is symmetric only at the lower bound

of this inequality.

The map (5) is easily seen to be symplectic (1) as it is the composition of the

symplectic shear (3), the Poisson map, J(x, y) = (−y, x), and the linear symplectic map

(x, y) 7→ (C−Tx,Cy).

2.2. Shifted Coordinates

As a first step in the analysis of the dynamics of (5), we will study its fixed points. To do

this it is convenient to define shifted variables and parameters. There is a codimension-

three set of parameters where the map has exactly one fixed point, and focussing on

this set simplifies the calculations more generally.

For any matrix C and when ε2 6= 0, the map (5) has exactly one fixed point at

xQ = (δ, 1
2
µ),

yQ = CxQ,
(9)

when the parameters (A1, A2, A3) of the potential (6) take the values

AQ
1 = 3δ2ε2 + 1

4
µ2

AQ
2 = δµ,

AQ
3 = 2α− 6δε2.

(10)
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To see this, and to simplify the computations it is convenient to shift coordinates so

that the origin is at the point (xQ, yQ) and to define new shifted parameters:

(ξ, η) = (x− xQ, y − yQ),

a = A1 − AQ
1 + δ(A3 − AQ

3 ),

b = A2 − AQ
2 ,

c = A3 − AQ
3 .

(11)

In these new coordinates, (5) becomes

(ξ′, η′) = M(ξ, η) = (ξ + C−T (−η + Cξ +∇U(ξ)), Cξ), (12)

where the new potential,

U = aξ1 + bξ2 + 1
2
cξ2

1 + ε2ξ
3
1 + ξ1ξ

2
2 , (13)

is the same as V from (6) upon replacing (A1, A2, A3) by (a, b, c). This shifted form

of Moser’s quadratic, symplectic map is convenient because several computations can

be carried out more easily and many of the expressions we obtain below will be more

compact.

The map (12) is generated by the discrete Lagrangian

L(ξ, ξ′) = (ξ′ − ξ)TCξ − U(ξ), (14)

through the equation

η′dξ′ − ηdξ = dL(ξ, ξ′).

In other words the map is implicitly defined by η = −∂ξL(ξ, ξ′) and η′ = ∂ξ′L(ξ, ξ′). This

means that M is exact symplectic [36], and of course, that it preserves the symplectic

form dξ ∧ dη. Note also that if we denote an orbit of (12) as a sequence

{(ξt, ηt) ∈ R4 | (ξt, ηt) = M(ξt−1, ηt−1), t ∈ Z} (15)

and define the action of a finite portion by

A =
k−1∑
t=j

L(ξt, ξt+1),

then each stationary point of A, for fixed endpoints, is a segment of an orbit with the

momentum determined by ηt+1 = Cξt.

2.3. Second Difference Form and ODE Limit

The shifted form (12) of Moser’s map can be written as a second difference equation.

Denoting an orbit as (15), then ηt = Cξt−1 and the map (12) is equivalent to

CT (ξt+1 − ξt)− C(ξt − ξt−1) = ∇U(ξt). (16)
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One immediate consequence of (16) is that the replacement C → CT is clearly equivalent

to inverting the map. Therefore the invariant sets of the Moser map with C → CT are

the same as those of the original map. Similarly, note that the replacement C → −C
together with ξ → −ξ and c → −c leaves the Moser map invariant. We will also use

the form (16) in §3.2 and §3.7.

To emphasize the different roles of the symmetric and antisymmetric parts of C,

let
C = Cs + Ca,

Cs ≡ 1
2
(C + CT ) =

(
α µ/2

µ/2 δ

)
,

Ca ≡ 1
2
(C − CT ) =

(
0 ν/2

−ν/2 0

)
,

(17)

where ν = β − γ and, as before µ = β + γ. Then (16) becomes

Cs(ξt+1 − 2ξt + ξt−1)− Ca(ξt+1 − ξt−1) = ∇U(ξt). (18)

In this form the map closely resembles a pair of second order differential equations.

Indeed in a neighborhood of the origin in the phase space, (ξ, η), and in the space

of the new parameters, (a, b, c, ν), (18) approaches a Lagrangian system of ODEs. To

see this, formally introduce a parameter h, and scale

(a, b, c, ν)→ (h4a, h4b, h2c, hν).

Here hν represents the deviation from symmetry, so that C → Cs + hCa. Then in the

limit h→ 0, the second difference equation (16) limits on a system of ODEs in a scaled

time τ = ht, and a new variable

ξt → h2q(τ),

This scaling implies that for the potential (13), ∇ξU(ξ) → h4∇qU(q). Moreover, as

h→ 0, the second difference ξt+1 − 2ξt + ξt−1 → h4q̈(τ) +O(h5) and the first difference

ξt+1 − ξt−1 → 2h3q̇(τ) +O(h4). Substituting these into (18), gives the limiting system

Csq̈ − 2Caq̇ = ∇U(q), (19)

as h→ 0. Thus the symmetric part of C corresponds to a mass matrix, multiplying the

acceleration. By contrast, Ca corresponds to a Coriolis-like force, which is proportional

to the velocity.

The system (19) is obtained from the Lagrangian

L(q, q̇) = 1
2
q̇TCsq̇ + qTCaq̇ + U(q). (20)

To convert (19) into a Hamiltonian system define the canonical momenta

p(τ) =
∂L

∂q̇
= Csq̇ − Caq,
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giving a Hamiltonian, H = pq̇ − L, that has Coriolis and centripetal terms:

H(q, p) = 1
2
pTC−sp+ pTC−sCaq − 1

2
qT (CaC−sCa)q − U(q). (21)

Thus Cs is the mass matrix, and U is the negative of the potential energy. The

antisymmetric matrix Cs contributes both a Coriolis-like term, bilinear in q and p,

and a centripetal-like term, quadratic in q. We will use this interpretation, for the case

of symmetric C, in §3.5.

3. Quadfurcation

From the general theory [31] we know that (5) and hence (12) has at most four (isolated)

fixed points. On the codimension-three surface a = b = c = 0 in parameter space there is

a single fixed point (unless ε2 = 0). As we will see below, there are sectors in parameter

space near this surface for which there are no fixed points, and sectors for which there

are four. It seems appropriate to call the creation of four fixed points from none a

quadfurcation. In some cases a quadfurcation can be analogous to a simultaneous pair

of co-located saddle-center bifurcations; however, the stabilities of the resulting fixed

points are usually not those of a pair of decoupled area-preserving maps, namely the

Cartesian product of 2d saddles and centers.

In the following subsections we study the fixed points, their stability, and the

structure of the region of phase space around the elliptic fixed points that contains

bounded orbits.

3.1. Fixed Points

The coordinates, ξ∗, of the fixed points of (12) are critical points of the cubic polynomial

(13). Several contour plots of U(ξ) are shown in Fig. 1. Critical points satisfy the

equations

0 = ∇U(ξ∗) =

(
a+ cξ∗1 + 3ε2ξ

∗2
1 + ξ∗22

b+ 2ξ∗1ξ
∗
2

)
. (22)

Note that the positions are independent of the matrix C, though the momenta,

determined by η∗ = Cξ∗, depend on the full matrix. Note that if ∇U(ξ∗) = 0 for

parameters (a, b, c), then it is also zero at the point −ξ∗ for parameters (a, b,−c) and

at the point (ξ∗1 ,−ξ∗2) for (a,−b, c). Thus we can restrict attention to b, c ≥ 0.

The case a = b = c = 0 is an organizing center for the solutions of (22). In this case

the second component immediately implies that either ξ∗1 = 0 or ξ∗2 = 0. Then, whenever

ε2 6= 0, the first implies that both ξ∗1 = ξ∗2 = 0. We call this the quadfurcation point.

Since the matrix elements (α, δ, µ) are still free parameters, it occurs on a codimension-

three surface in the six-dimensional parameter space. The off-diagonal elements of the

matrix, β and γ, are then fixed up to exchange by the condition det(C) = ε1, (8). In the

parameterization (12) the quadfurcation surface is just the three-plane a = b = c = 0.

In Moser’s original parameterization, this surface is determined by (10).
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More generally if b 6= 0 then (22) implies that ξ∗1 6= 0, so

ξ∗2 = − b

2ξ∗1
. (23)

Substituting into the first component of (22) then shows that ξ∗1 must be a root of the

scalar polynomial

P (v; a, b, c, ε2) = 3ε2v
4 + cv3 + av2 + 1

4
b2. (24)

When ε2 6= 0 this polynomial is quartic, and so has at most four roots. Since P has no

linear term, it has exactly one root in C only when a = b = c = 0, on the quadfurcation

set. When ε2 = 0, P (v) is at most cubic, and there are at most three isolated roots.

Several examples are shown in Fig. 2.

There are various regions in the parameter space (a, b, c) that have different numbers

of fixed points. We now determine the bifurcation sets, which separate these regions:

to find these sets when ε2 6= 0, it is easiest to solve for the surfaces on which there

−1.5

0.0

1.5

−1.5 0.0 1.5

(a) ε2 = 1

ξ1

ξ2

−1.5

0.0

1.5

−1.5 0.0 1.5

(b) ε2 = −1

ξ1

ξ2

−2

0

2

−2 0 2

(c) ε2 = 0

ξ1

ξ2

-9

5

Figure 1: Contour plots of the potential U (13) for (a, b, c) = (−1,−0.3,−1). (a) ε2 = 1. Here

there are four critical points, implying four fixed points of (12). (b) ε2 = −1, two critical points.

(c) ε2 = 0, three critical points.

−0.3

0.0

0.3

−1 0 1

∆ = −1.0

∆ = 0

∆ = 1.3

(a) ε2 = 1

v

P (v)

−1 0 1

∆ = −1.0

∆ = 0

∆ = 1.3

(b) ε2 = −1

v −1 0 1

∆ = −1.0

∆ = 0

∆ = 1.3

(c) ε2 = 0

v

Figure 2: The polynomial P (v) (24) along the curve (a, b, c) = ∆(1, 0.3, 1) as ∆ varies. (a)

ε2 = 1 where four roots are created when ∆ decreases through zero; (b) ε2 = −1 where there

are two roots for any ∆ 6= 0; and (c) ε2 = 0 with one root for ∆ > 0, infinitely many at ∆ = 0,

and three for ∆ < 0.
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are double roots, i.e., P (v) = 0 and P ′(v) = 0. First, P always has a critical point,

P ′(v) = 0, at v = 0, and it has two more critical points if

ε2a < a+(c) ≡ 3
32
c2. (25)

Eliminating v from the two equations P (v) = P ′(v) = 0 gives the discriminant

b2
[
1728ε2b

4 + 9(−3c4 + 48ε2ac
2 − 128a2)b2 − 16a3c2 + 192ε2a

4
]

= 0.

Thus there are double roots at b = 0, and on the surfaces b = ±
√
D±(a, c), where

D±(a, c) =
ε2

384

(
3(c2 − 8ε2a)2 − 64a2 ± |c|√

3
(3c2 − 32ε2a)3/2

)
. (26)

For these surfaces to be real, the radical in (26) must be real, i.e., (25) must be satisfied.

Moreover letting

a−(c) ≡ 1
12
c2, (27)

then D+(ε2a−, c) = 0 and D−(0, c) = 0. To define real-valued functions let

b+(a, c) =

{ √
D+(a, c), a < ε2a−, and ε2a < a+

0, otherwise
,

b−(a, c) =

{ √
D−(a, c), a < 0, and ε2a < a+

0, otherwise
.

(28)

The resulting surfaces are shown in Fig. 3.

If ε2 = 1, then when b > b+ there are no real roots. At the upper surface,

b = b+(a, c), which is nonzero for a < a−, two roots are created. Two additional roots

are created upon crossing b−(a, c), which is nonzero for a < 0, see Table 1. The two

surfaces b±(a, c) intersect at c = 0 on the line a = −
√

3|b|. Crossing this codimension-

two set b− = b+ at c = 0 and moving into the region b < b− thus corresponds to the

simultaneous creation of four fixed points at two different locations, i.e., to a pair of

simultaneous saddle-center bifurcations, as we will see in §3.2.

If ε2 = −1, then (24) has four real roots only if −a+ < a < 0 and b+ < b < b−. Note

that b+ is nonzero only when −a− < a < 0. Inside cusp-like shape formed from the b±
surfaces, as shown in Fig. 3(b), there are four roots. Going outwards from this region,

by either crossing b− or b+, two solutions disappear in a saddle-center bifurcation. Thus

on the surfaces b = b+ or b = b− there are three roots (one of them with multiplicity 2).

When these surfaces merge, on the curve a = −a+ and b = b±(−a+, c) = c2/32, there

are two fixed points:

(ξ∗1 , ξ
∗
2) =

{
c
8
(1,−1), (multiplicity 3)
c

24
(−1, 9), (multiplicity 1)

(ε2 = −1, a = −3b = −a+).

The cases b = 0 and c = 0 require special treatment. When c = 0 but b 6= 0, the

polynomial (24) has no cubic term and the fixed points can be solved for explicitly:

ξ∗1 = ±
√
−1

6
ε2

(
a±

√
a2 − 3ε2b2

)
(c = 0), (29)
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where ξ∗2 is then obtained from (23). Note that there are four possible points here, with

choices for the outer ± and the inner ±. This equation gives real solutions only when

both square roots are real. When ε2 = 1, (29) gives four real solutions if a < −
√

3|b|.
On the boundary a = −

√
3|b|, these four solutions are created in two pairs, at

(ξ∗1 , ξ
∗
2) = ±

√
−a

6

(
1,−
√

3 sgn(b))
)

(ε2 = 1, a = −
√

3|b|, c = 0).

These pairs merge at the quadfurcation point a = b = c = 0. If ε2 = −1 then only

the inner + sign choice is valid and (29) gives two real solutions whenever a or b 6= 0.

Table 1 delineates the possibilities.

If b = 0, then (22) implies that either ξ∗1 = 0 or ξ∗2 = 0. The first component of

(22) is then trivially a quadratic. In this case the four solutions are

(ξ∗1 , ξ
∗
2) =

{ (
0,±√−a

)(
ε2
6

(−c±
√
c2 − 12ε2a), 0

) (b = 0). (30)

Note that when ε2 = 1 there are four real fixed points whenever a < 0, and two in the

range 0 < a < a−. If ε2 = −1, then the first pair is real when a ≤ 0, and the second

pair is real only if a ≥ −a−. Thus there are four real fixed points when −a− < a < 0.

For ε2 = 0 and c 6= 0, the polynomial (24) is cubic, so there is always at least one

fixed point. The critical points of P are at v = 0 and v = −2a/3c, and critical values

0

2

4

b+

b–

ε2= +1

a = –√3b

a = a–
2

2

4

b–

b+

ε2= –1

a = –a–

a = –a+

a = 0

Figure 3: Surfaces in (a, b, c) for which there are double roots of P (24) (a) when ε2 = 1 and

(b) when ε2 = −1. For ε2 = 1, when b is sufficiently positive there are no real solutions, as

b decreases through the b+ surface (28), two solutions are created, and finally when it passes

through through the b− surface there are four solutions. For ε2 = −1, there are two solutions

if b is sufficiently large. An additional two solutions are created upon moving through either of

the b± surfaces.
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Number of Fixed Points

ε2 b c 0 1 2 3 4

1 b > b+ b = b+ b ∈ (b−, b+) b = b− b < b−

0 a > a− a = a− 0 < a < a− a = 0 a < 0

0 a > −
√

3|b| a = −
√

3|b| a < −
√

3|b|
0 0 a > 0 a = 0 a < 0

−1 a /∈ (−a+, 0], b = b+, a ∈ (−a+, 0),

or b /∈ [b+, b−] or b = b− and b ∈ (b+, b−)

0 a /∈ [−a−, 0] a = −a−, 0 a ∈ (−a−, 0)

0 always

0 0 a = 0 a 6= 0

0 a > −a0 a = −a0 a < −a0

0 a = 0 a 6= 0

0 a ≥ 0 a < 0

0 0 a 6= 0

Table 1: Number of fixed points of the map (12) depending upon ε2 and parameters (a, b, c).

Since this number is an even function of b and c, we can assume that both are nonnegative. The

functions b±(a, c) are given by (28), and a±(c) by (25) and (27). The additional rows delineate

special cases when either b or c or both are zero.

P (0) = 1
4
b2 ≥ 0 and P (−2a/3c) = 4

27
a3

c2
+ 1

4
b2. Thus there are three fixed points when

a < −a0 ≡ −3

∣∣∣∣bc4
∣∣∣∣2/3 . (31)

If c = 0, then the polynomial (24) is at most quadratic. It has two solutions if a < 0.

Special cases are again shown in Table 1. Finally, when a = b = c = 0, there is a line of

fixed points at ξ2 = 0. This case (not shown in Table 1) is the only one for which there

are infinitely many fixed points.

3.2. Stability

The stability properties of fixed points of the map (12) are most easily computed using

the second difference form (16). Linearization about a fixed point gives the 2 × 2

eigenvalue problem (
λCT + λ−1C

)
q = Wq, (32)

where W = C + CT +D2U(ξ) is the symmetric matrix

W =

(
2α µ

µ 2δ

)
+

(
c+ 6ε2ξ1 2ξ2

2ξ2 2ξ1

)
. (33)
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Given the coordinate eigenvector q, the momentum components are p = λ−1Cq. A

similar analysis can be used, more generally, for a period-n orbit, see [37, eqs. (21)-

(22)].

Thus for a nontrivial solution of (32), the 2× 2 matrix

N(λ) = λCT + λ−1C −W

must be singular. Since the map is symplectic its eigenvalues must satisfy the reflexive

property: if λ is an eigenvalue, then so is λ−1. This follows for (32) because W T = W

implies that NT (λ) = N(λ−1). As a consequence the characteristic polynomial can be

written as a quadratic in the partial trace ρ = λ+ λ−1:

det(N(λ)) = ε1(ρ2 − Aρ+B − 2) (34)

where we recall that ε1 = detC. The parameters A,B are Broucke’s stability parameters

[38,39]. More generally, these parameters are determined by the linearized map DM at

a fixed point, by A = tr(DM) and B = 1
2

[(tr(DM))2 − tr(DM2)]; equivalently, in terms

of the eigenvalues ρ1,2 of the reduced characteristic polynomial one has A = ρ1 + ρ2 and

B = ρ1ρ2 + 2, or explicitly

ρ1,2 = 1
2

(
A±
√
A2 + 8− 4B

)
≡ λ1,2 + λ−1

1,2, (35)

where λ1,2, λ
−1
1,2 are the two reciprocal pairs of eigenvalues of the characteristic polynomial

of the linearized map.

The (A,B)-plane is divided into seven stability regions as shown in Fig. 4. These

are bounded by the saddle-center (SC), and period-doubling (PD) lines:

SC = B − 2A+ 2 = 0,

PD = B + 2A+ 2 = 0,
(36)

on which there is a pair of eigenvalues at +1 or −1, respectively, and the Krein parabola

(KP )

KP = B − A2/4− 2 = 0 (37)

on which there are double eigenvalues on the unit circle (for B < 6 and |A| < 4) or

real axis (for B ≥ 6 and |A| ≥ 4.). The point (A,B) = (4, 6) corresponds to four

unit eigenvalues. The seven stability regions with different types of linearized dynamics

around the fixed point are labeled by combinations of E (elliptic), H (hyperbolic), and

I (inverse hyperbolic), each involving a pair of eigenvalues (λ, 1/λ), and in the CU

(complex unstable) region, where KP > 0, there is a complex quartet of eigenvalues.

For a general symmetric W , the stability parameters are

A = ε1(w22α + w11δ − w12µ),

B = ε1(det(W )− (β − γ)2) + 2.
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Figure 4: Stability regions for a reflexive, quartic, characteristic polynomial. There are seven

regions, EE, EH, IE, IH, II, HH, and CU, with the configuration of the four eigenvalues as shown

in the representative complex plane insets.

For the matrix (33) these become

A = 4 + ε1

[
δc− (β − γ)2 + (6δε2 + 2α)ξ1 − 2µξ2

]
,

B = 6 + ε1

[
2(δc− (β − γ)2) + 12ε2(ξ1 + δ)ξ1 + 2(2α + c)ξ1 − 4(ξ2 + µ)ξ2)

]
,

(38)

and the saddle-center and period-doubling parameters are

SC = ε1 det(D2U) = ε1(12ε2ξ
2
1 + 2cξ1 − 4ξ2

2),

PD = 16 + 4ε1

(
δc− (β − γ)2 + 3ε2ξ

2
1 + (6δε2 + 2α + 1

2
c)ξ1 − ξ2

2 − 2µξ2

)
.

(39)

In particular, note that the sign of SC depends on the fixed points only through the

sign of the Hessian of the potential (13); for example, if ε1 = 1, then SC > 0 at extrema

and SC < 0 at saddle points of U . Finally, the Krein parameter is

KP =− 1
4
(δc− (β − γ)2)2

+ (cδ − (β − γ)2)(µξ2 − (3δε2 + α)ξ1) + 2ε1cξ1

+ (12ε1ε2 − (3δε2 + α)2)ξ2
1 + 2µ(3δε2 + α)ξ1ξ2 − (µ2 + 4ε1)ξ2

2 .

(40)
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At the quadfurcation, where a = b = c = ξ1 = ξ2 = 0, (38) gives

AQ = 4− ε1(β − γ)2,

BQ = 6− 2ε1(β − γ)2.
(41)

This implies that the quadfurcation point lies on the saddle-center line; indeed from

(39), SC = 0 at this point. When ε1 = 1 (ε1 = −1), then (AQ, BQ) lies below and

to the left of (above and to the right of) the point (4, 6). The quadfurcation occurs at

(4, 6) only when β = γ, i.e., when the matrix C is symmetric, see the discussion in §3.5

below. The quadfurcation occurs below the period-doubling line, i.e., for PD < 0, only

if ε1 = 1 and |β − γ| > 2.

More generally, since fixed points are critical points of U , (22), they can be created

or destroyed only when det(D2U) = 0, which is equivalent to SC = 0 by (39). This

can also be seen upon computing the resultant of SC and P (24)—recall that the

resultant gives the set of parameters on which two polynomials simultaneously vanish.

This resultant is proportional to b4(b2 − b2
−)(b2 − b2

+). Of course, this is what we saw in

Fig. 3—pairs of fixed points are created or destroyed upon crossing the surfaces b = b±
(28).

3.3. Quadfurcation along a Line in Parameter Space

Near the quadfurcation, if we assume that a, b, c = O(∆) for ∆� 1, then ξi = O(
√

∆),

the cubic term involving c in (24) is negligible to lowest order, and the fixed points are

given by (29) to O(
√

∆). Substitution into the stability criteria then gives

SC = ∓4ε1

√
a2 − 3ε2b2 +O(∆3/2), (42a)

PD = 16− 4ε1(β − γ)2 + 8ε1[(3δε2 + α)ξ1 − µξ2]
√

∆ +O(∆), (42b)

KP = (β − γ)2
[
−1

4
(β − γ)2 + (3δε2 + α)ξ1 − µξ2

]
+O(∆). (42c)

Note that the ∓ signs in (42a) correspond to the inner ± in (29), the sign inside

the square root. Using these results, we can get an overview of all possible stability

scenarios of the fixed points created in a quadfurcation, see Table 2 and Fig. 5. As

the quadfurcation point shifts along the SC line, different stabilities occur, but since

SC ∼ ∆ and generically PD − PDQ ∼
√

∆, the branches emerge tangentially to the

SC line (the O(
√

∆) term could vanish, but this is exceptional). Moreover, the sign of

A − AQ depends on the choice of the outer ± sign in (29), so this pair of fixed points

form a parabolic curve that is tangent to the SC line at the quadfurcation point.

Finally, note that when β 6= γ, then KP < 0 at the quadfurcation, and hence a

direct transition to the complex unstable (CU) region is only possible in the symmetric

case for which (AQ, BQ) = (4, 6); this is discussed in §3.5.

For ε2 = 1 the basic structure is the one shown in the fourth column of Table 2 and

Fig. 5(a, c): four new branches emerge from a point on the saddle-center line. In each

case, two of the fixed points are above (SC > 0), and two are below (SC < 0), this line.
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The implication is that when ε1 = 1, and |β − γ| > 2 the quadfurcation occurs below

the PD line and corresponds to the transition

∅ → 2 IE + 2 IH,

i.e., two of the created fixed points are of type IE and two of type IH (this is not shown

in Fig. 5, but compare with Fig. 4). Perhaps the most interesting quadfurcation creates

stable fixed points. This occurs for ε1 = 1 and 0 < |β − γ| < 2, where we have the

transition

∅ → 2 EE + 2 EH. (43)

This is the case shown in Fig. 5(a): as ∆ decreases from zero, the two created EE points

move along the green and black curves in the figure and the two EH points move along

the red and blue curves.

Note that one of the EE points in this figure eventually undergoes a Krein

bifurcation, moving into the CU region. The implication is that the Krein signature

of this point must have been indefinite when it was created in the quadfurcation, since

this signature is constant under parameter variations so long as the stability remains in

the interior of the EE-region in Fig. 4 [39, Sec. III].

Finally, when ε1 = −1 the quadfurcation point is above (A,B) = (4, 6) whenever

β 6= γ, so the transition is

∅ → 2 EH + 2 HH. (44)

This case is shown in Fig. 5(c). Again, a Krein bifurcation, HH → CU, eventually

occurs.

For ε2 = −1 the basic structure is shown in the last column of Table 2 and in

Fig. 5(b, d). There are two fixed points before and after the quadfurcation with positions

given by the inner + sign in (29). Using this and (23), there is no sign choice that

(AQ, BQ) Condition Fixed Points and Stability

on SC ε1 |β − γ| ε2 = 1, a < −
√

3|b| ε2 = −1, a or b 6= 0

> (4, 6) −1 6= 0 2 EH + 2 HH 2 HH

= (4, 6) ±1 0 see §3.5 see §3.5

< (4, 6) 1 < 2 2 EE + 2 EH 2 EH

= (0,−2) 1 2 IE + EE + IH + EH IH + EH

< (0,−2) 1 > 2 2 IE + 2 IH 2 IH

Table 2: Overview of the location of the quadfurcation along the SC line depending on the

the value of ε1 and the asymmetry of C. Stabilities of the fixed points are shown in the

last two columns for a path of the form (a, b, c) = ∆(a∗, b∗, c∗), which has a quadfurcation

at ∆ = 0. For ε2 = 1, four fixed points are created as a becomes negative if a < −
√

3|b|.
Their stabilities are shown in column four. When ε2 = −1, two fixed points exist whenever

a or b 6= 0 and collide at ∆ = 0; their stabilities are shown in the last column.



The Quadfurcation in Moser’s Map 16

−5

0

5

10

−6 −3 0 3 6A

B
CU

EE
EH

(a) ε1 = 1, ε2 = 1

−5

0

5

10

−6 −3 0 3 6A

B

EE
EH

(b) ε1 = 1, ε2 = −1

4

9

14

19

1 4 7 10A

B

CU

EH

HH

(c) ε1 = −1, ε2 = 1

4

9

14

19

1 4 7 10A

B

CU

HH

(d) ε1 = −1, ε2 = −1

Figure 5: Stability of fixed points for (a, b, c) = ∆(1.5, 0.5, 1) with ∆ ∈ [−1, 1] and different

choices of C, ε2, and ε1: (a, b) Case (α, µ, δ, ε1) = (1, 0.1, 0.5, 1). Since |β − γ| ≈ 1.42, the

quadrupling occurs at (AQ, BQ) = (1.99, 1.98). (a) ε2 = +1: creation of four fixed points in the

transition (43) for ∆ < 0. (b) ε2 = −1: the transition (45), before and after the bifurcation one

has two fixed points. (c, d) Case (α, µ, δ) = (1, 2.0,−0.5), ε1 = −1, giving (β, γ) ' (1.71, 0.29)

and the quadrupling occurs at (AQ, BQ) = (6, 10). (c) ε2 = 1: creation of four fixed points (44)

for ∆ < 0. (d) ε2 = −1: the transition (46) two fixed points before and after the bifurcation.

The arrows indicate the direction towards more negative ∆ and in (b, d) the branches for ∆ > 0

are shown as dashed lines.

smoothly connects the (ξ∗1 , ξ
∗
2) branches for ∆ < 0 to ∆ > 0: the fixed points lose

their identity when they collide. The sign choice implies that sgn(SC) = − sgn(ε1).

When ε1 = 1, and hence (AQ, BQ) < (4, 6), the fixed points both before and after the

quadfurcation are below the SC line, so the transition is

2 EH→ 2 EH (45)

if |β − γ| < 2. As shown in Fig. 5(b), the fixed points move in towards the SC line

(black and red curves) as ∆ → 0+ colliding at ∆ = 0, and splitting apart again for
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∆ < 0. Similarly, when |β − γ| > 2 the transition corresponds to

2 IH→ 2 IH.

Finally, when ε1 = −1 and (AQ, BQ) > (4, 6), the transition is

2 HH→ 2 HH, (46)

as shown in Fig. 5(d).

It is interesting that all of this structure is quite different from what would be

expected from a pair of decoupled, area-preserving maps undergoing saddle-center

bifurcations, where there can be at most one EE point. This case corresponds to the

special point (AQ, BQ) = (4, 6), which will be treated in §3.5 and applied to the case of

decoupled maps in §4.

3.4. Two to Four Fixed Point Transitions

When a parameter path crosses one of the surfaces b±(a, c) then SC = 0 in (39), and the

resulting saddle-center bifurcation typically creates or annihilates a pair of new fixed

points, one with E eigenvalues and one with H eigenvalues. When ε2 = −1, there are

two fixed points outside the wedge between b+ and b− shown in Fig. 3(b), and so if the

parameter path enters the wedge then two new fixed points are created. If the path

enters the wedge at the quadfurcation point a = b = c = 0, then the two existing

fixed points merge, and the bifurcation—now a quadfurcation—occurs at the origin.

Depending upon β − γ and the sign ε1, the quadfurcation can occur at any point along

the SC line, and so a number of different stability cases can arise.

An example is shown in Fig. 6 for the parabolic path

(a, b, c) = (−0.07 ·∆|∆|, 0.01 ·∆2,∆) (47)

−0.5

0.0

0.5

−0.5 0.0 0.5

EH

EH

(a) ∆ = −0.5

ξ1

ξ2

−0.5 0.0 0.5

(b) ∆ = 0.0

ξ1 −0.5 0.0 0.5

EH

EH

EE
EH

(c) ∆ = 1.0

ξ1

-0.18

0.29

Figure 6: Contour plots of the potential U , Eq. (13), for the path (47) with (α, µ, δ) = (1, 0.1, 0.5),

ε1 = 1, and ε2 = −1. The three panels show ∆ = −0.5, 0, and 1. Two EH fixed points merge in

the quadfurcation at ∆ = 0 and for ∆ > 0 there are four fixed points, one being EE and three

EH.
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Figure 7: Stability diagram for the path (47) with ∆ ∈ [−2, 5] and all other parameters as in

Fig. 6. The two EH fixed points for negative ∆ (dashed curves) merge at the quadfurcation

point ∆ = 0 and lead to four fixed points for ∆ > 0, one with EE and three with EH stability.

For larger ∆ the EE point becomes type CU.

as ∆ varies, with the remaining parameters as shown in the caption. Figure 6 shows

the contours of the potential for ∆ = −0.5, 0, and 1 and Fig. 7 shows the corresponding

stability diagram. There are two fixed points when ∆ < 0 both of type EH; these merge

at ∆ = 0. The quadfurcation corresponds to a transition

2 EH→ 3 EH + EE.

Effectively the original EH pair is reformed and the contour lines near the new EE–EH

pair in Fig. 6(c) resemble those for a local saddle-center bifurcation.

3.5. Krein Collisions, Symmetric C and Reversibility

As we noted in (41), the quadfurcation occurs for a multiplicity four unit eigenvalue only

when the matrix C of (6) is symmetric. This is the only case in which the quadfurcation

can immediately create fixed points of type CU, recall Fig. 4.

As discussed in §2.3 the inverse of the Moser map is conjugate to the original

map upon the replacement C → CT . Therefore, when C is symmetric, the map (5) is

reversible, i.e., it is conjugate to its inverse [40]: S ◦ f = f−1 ◦ S for a homeomorphism

S. For example, the Hénon map (4) is reversible with S(x, y) = (y, x). In general, the

inverse of (12) is

M−1(ξ, η) =
(
C−1η, η + CT (−ξ + C−1η) +∇U(C−1η)

)
.

This map is conjugate to M when C = CT using the reversor

S(ξ, η) = (C−1η, Cξ).
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Thus, as Moser showed [31], if C is symmetric the map (5), or equivalently (12), is

reversible; we do not know if the converse of this statement is true. This reversor is an

involution with the fixed set Fix(S) = {(ξ, Cξ) : ξ ∈ R2}, a 2d plane. All of the fixed

points are thus symmetric.

The quadfurcation is especially interesting in the reversible case since, by (38) and

(42), only then does it occur for the stability parameters (AQ, BQ) = (4, 6). Indeed as in

§3.3, assuming that a, b, c = O(∆) and ξi = O(
√

∆) near the quadfurcation, the Krein

criterion (42c) is zero to O(∆1/2), and the first nonzero terms are

KP = 4αδa− 2(α + 3ε2δ)γb+
(
12ε1ε2 − (α− 3ε2δ)

2
)
ξ∗21 +O

(
∆3/2, (β − γ)2

)
where ξ∗1 is given by (29). The sign of this parameter can change, depending upon the

details. However, note that since KP depends only on ξ∗21 , it does not depend upon the

outer sign in (29). Thus when c = O(∆), the fixed points come in pairs with the same

sign of KP .

When ε2 = 1, the four created fixed points come in pairs with opposite signs of

SC from (42a). Thus there will be a pair of fixed points of type EH. Since the curves

generically emerge tangent to the the SC line, the second pair will both have type CU

or one will be EE and the other HH. For example, a quadfurcation of the form

∅ → 2 CU + 2 EH (48)

is shown in Fig. 8(a). For this case KP = 1
4
(3± 7

√
6)∆ to lowest order, where the sign

is the inner ± sign in (29), implying that the two fixed points with the + sign have

KP > 0 when ∆ < 0 near the quadfurcation and are thus of type CU. In contrast, for

3
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3 4 5 6

EH

CU
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B

(a) ε1 = −1, ε2 = 1

1

6

11

2 4 6

EH

EE

HH

A

B

(b) ε1 = −1, ε2 = 1

Figure 8: Stability of fixed points for symmetric C with ε1 = −1 and ε2 = +1. The

parameters vary along the line (a, b, c) = ∆( 3
2 ,

1
2 , 1) with ∆ ∈ [−1, 0]. (a) The transition (48)

for (α, µ, δ) = (− 3
2 , 1,

1
2 ), giving β = γ = 1

2 . (b) The transition (49) for (α, µ, δ) = ( 3
2 ,
√

23
2 ,

5
4 ),

giving β = γ =
√

23
8 .
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the example shown in Fig. 8(b) the quadfurcation is

∅ → EE + HH + 2 EH (49)

as here KP = ∆
64

(993 − 84
√

46 ± 91
√

6) < 0 when the fixed points exist, ∆ < 0. This

last case is what would happen in a pair of uncoupled 2d maps, and will be seen below

in §4.

As in §3.3, when ε2 = −1, the quadfurcation at ∆ = 0 corresponds to a collision

and re-emergence of a pair of fixed points with sgn(SC) = − sgn(ε1). When ε1 = 1, all

of the fixed points will have stability type EH, and so the transition will be

2 EH→ 2 EH

and thus follows the pattern shown in Fig. 5(b).

However, when ε1 = −1, then sgn(SC) = +1 implying that EE, HH and CU are

all possible. However, since the two fixed points have the + inner sign in (29) they will

have the same sign of KP , so we either have a CU pair or an EE+HH pair. The possible

transitions are

2 CU→ EE + HH, (50)

for which the stability diagram is shown in Fig. 9(a)

EE + HH→ EE + HH, (51)

with stability diagram shown in in Fig. 9(b) and

2 CU→ 2 CU, (52)

with stability diagram shown in Fig. 9(c).
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Figure 9: Stability of fixed points for symmetric C and ε1 = ε2 = −1. The parameters

(a, b, c) = ∆(3
2 ,

1
2 , 1) for (a) and (b), and ∆(2, 12 , 1) for (c), with ∆ ∈ [− 1

2 ,
1
2 ]. The arrows indicate

the direction towards more negative ∆, and branches for ∆ > 0 are shown as dashed lines. (a)

The transition (50) for (α, µ, δ) = ( 1
2 ,
√

6, 1) giving β = γ =
√

3
2 . (b) The transition (51) for

(α, µ, δ) = ( 99
16 ,− 5

2 ,
1
11 ) giving β = γ = − 5

4 . (c) The transition (52) for (α, µ, δ) = (− 3
2 , 1,

1
2 ),

giving β = γ = 1
2 .
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Figure 10: Contour plot of the potential U , Eq. (13). (a) For (a, b, c) = (− 3
4 ,− 1

4 ,− 1
2 )

and ε2 = 1 there are four critical points, which are equilibria of (53). When C > 0, the

maximum, at ξ = (−0.38825,−0.32196), corresponds to a doubly elliptic equilibrium and the

minimum, at ξ = (0.57441, 0.21761), to a doubly hyperbolic equilibrium. As specific example

(α, µ, δ) = ( 5
2 ,
√

6, 1) is used for the matrix C determining the stabilities. (b) Potential for

(a, b, c) = (− 3
8 ,− 1

8 ,− 1
4 ) and ε2 = −1 where there are two critical points; the matrix C,

determining the stabilities, is the same as in (a).

Another technique for analyzing stability in the neighborhood of the quadfurcation

is to use the ODE limit (19) with the Hamiltonian (21). Recall that this limit assumes

that we assume the scaling (a, b, c) → (h4a, h4b, h2c), for h � 1. This scaling differs

from the ∆-scaling by allowing larger relative values for c. The implication of this is that

the term 1
2
cq2

1 in U , which was negligible when c = O(∆), is formally important when

we take c = O(h2). When C is symmetric, Ca = 0, and the Coriolis and centripetal-like

terms vanish, simply giving

H(q, p) = 1
2
pTC−1p− U(q). (53)

When C = Cs is positive or negative definite, then the stability is governed entirely

by the classification of the critical point of U . In particular if C > 0 then since the

potential in (21) is −U , a minimum of U is an HH point, and a maximum is an EE

point. Saddles, correspond to EH points. When C < 0, the minima are HH and

the maxima are EE. This is consistent more generally with (39), which shows that

SC = ε1 det(D2U). Two example contour plots for U are shown in Fig. 10.

3.6. Elliptic Bubbles

To visualize the dynamics near the fixed points of the 4d map we use a 3d phase space

slice [41]. In its simplest form one considers a thickened 3d hyperplane in the 4d

phase space defined by fixing one of the coordinates, e.g., η2 = η?2, to define the slice of
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thickness ε by {
(ξ1, ξ2, η1, η2)

∣∣ |η2 − η∗2| ≤ ε
}
,

Whenever the points of an orbit lie within the slice, the remaining coordinates (ξ1, ξ2, η1)

are displayed in a 3d plot. The parameter ε determines the resolution of the resulting

plot; decreasing ε requires the computation of longer trajectories as the slice condition

is fulfilled less often, but the resulting intersections will be more precise. For example,

if a two-torus intersects the hyperplane, it will typically do so in one or more loops. As

ε grows these loops thicken into annuli in the slice. For further examples and detailed

discussion see [41–46].

For our purposes a slightly more general, rotated slice, defined so as to contain all of

the fixed points, will be more convenient. Because the momenta of the fixed points are

determined by the coordinates through η = Cξ, all fixed points of the 4d map (12) are

contained in a 2d plane. Following the ideas of [41, App. 3], we define new coordinates

(ξ, χ), with χ = η − Cξ, so that the fixed points lie in the two-plane χ = 0. Thus we

define the 3d slice

Γε =
{

(ξ1, ξ2, χ1, χ2)
∣∣ |χ2| ≤ ε

}
so that we get (ξ1, ξ2, χ1) as 3d coordinates. Equivalently, this corresponds to using

non-orthogonal basis vectors given as columns of the block matrix

B = (v1|v2|v3|v4) =

(
I 0

C I

)
.

As these are linearly independent, they can be used to express any point as linear

combination with coefficients (ξ1, ξ2, χ1, χ2). These coefficients can be computed from

the scalar products with the dual basis vectors {vi}, which are the columns of

B−T =
(
v1|v2|v3|v4

)
=

(
I −CT

0 I

)
.

Figure 11 shows an example of a slice for the map (12) with the parameters of

Fig. 5(a) when ∆ = −0.01. For these parameters the quadfurcation has created two

EE and two EH fixed points that, by construction of the 3d slice, lie in the 2d plane

χ1 = 0. As expected from KAM theory, the EE fixed points should be surrounded

by a Cantor family of two-tori on which the dynamics is conjugate to incommensurate

rotation. By analogy with Moser’s theorem for 2d maps [47], the density of these

tori should approach one as they limit on the EE points providing that the linearized

frequencies are not in a low-order resonance. Indeed, the formal normal form expansion

around a nonresonant EE point is an integrable twist map to all orders [21], and higher-

dimensional results along the lines of Moser’s twist theorem have been proven for elliptic

equilibria of Hamiltonian flows [48, 49]. In the 3d slice each of these tori becomes two

(or more) thin annular rings, which, since we have set ε = 10−6, appear as 1d loops in

the figure [41].
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Figure 11: Three-dimensional phase space slice of the 4d map corresponding to Fig. 5(a) with

parameters (α, µ, δ) = (1, 0.1, 0.5), ε1 = ε2 = 1, and (a, b, c) = (−0.015,−0.005,−0.01). The

small spheres show two EE (red) and two EH (green) fixed points. Also shown are several

selected regular tori (black lines) surrounding the EE fixed points. Each torus is represented by

104 points in the slice with ε = 10−6. These tori are 2d in the 4d phase space and therefore

(usually) lead to a pair of loops in the 3d phase space slice. A projection of one 2d torus is

shown as 106 semi-transparent points with χ2 encoded in color (see color bar). For a rotating

view see http://www.comp-phys.tu-dresden.de/supp/.

This family of two-tori appears to approximately be limited by the locations of the

EH fixed points. Indeed, since the center-stable and center-unstable manifolds of the

EH points are 3d, they should form boundaries for the elliptic dynamics. Of course, we

expect there will be chaotic orbits near these manifolds, and so the regular 2d tori will

not extend into the chaotic zone. The black loops in the plot are a selection of 2d tori

that are close to the boundary of the regular region. Also shown in the plot is the full

orbit of one of these 2d tori, now projected onto the slice; the projected coordinate χ2

is encoded in color as indicated in the color bar at the right [50].

Figure 12 shows an example of a slice for the transition (51), when the matrix C

is symmetric; the parameters correspond to Fig. 9(b) with ∆ = −0.001, close to the

quadfurcation. For this case there are only two fixed points, one of type EE and the

other of type HH. Here again we see a family of 2d tori surrounding the EE point. This

http://www.comp-phys.tu-dresden.de/supp/
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Figure 12: 3d phase space slice of the 4d map for parameters of Fig. 9(b) with ∆ = −0.001.

The small spheres show an EE (red) and an HH (blue) fixed point. Also shown are slices of

several selected regular tori as in Fig. 11. For a rotating view see http://www.comp-phys.tu-

dresden.de/supp/.

family has a larger extent in the ξ2 direction than in ξ1, and the loops shrink in size as

they become closer to the HH point. Note that now the stable and unstable manifolds

of the HH point are two-dimensional, and so do not form barriers in 4d.

3.7. Bounded Orbits

Moser showed, under a nondegeneracy condition on the quadratic terms, that the domain

of the quadratic map containing bounded orbits is itself bounded [31]. To obtain an

explicit bound we consider the second-difference form (16), rewriting it as

CT ξt+1 + Cξt−1 = A+Dξt +Q(ξt), (54)

where A = (a, b)T is a constant vector and the linear and quadratic terms are

Dξ ≡
(

2α + c µ

µ 2δ

)(
ξ1

ξ2

)
,

Q(ξ) ≡
(

3ε2ξ
2
1 + ξ2

2

2ξ1ξ2

)
.

Using this form we can prove the following.

http://www.comp-phys.tu-dresden.de/supp/
http://www.comp-phys.tu-dresden.de/supp/
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Theorem 1. When ε2 = ±1, all bounded orbits of the map (54) are contained in the

disk ‖ξ‖ ≤ κ, where

κ ≡ 1
2τ

(
κ2 + 2κ3 +

√
(κ2 + 2κ3)2 + 4τ

√
a2 + b2

)
, (55)

with τ = 1 for ε2 = 1 and τ =
√

2
3

for ε2 = −1, and we define

κ2 ≡ ‖D‖F =
√

(2α + c)2 + 2µ2 + 4δ2,

κ3 ≡ ‖C‖F =
√
α2 + β2 + γ2 + δ2.

(56)

Proof. When ε2 = 1 the norm of the quadratic terms has the lower bound

‖Q(ξ)‖2 = 9ξ4
1 + 10ξ2

1ξ
2
2 + ξ4

2 = (9ξ2
1 + ξ2

2)‖ξ‖2 ≥ ‖ξ‖4 = ρ4,

where we denote ‖ξ‖ = ρ.

Using the triangle inequality on (54) gives

‖CT ξt+1‖+ ‖Cξt−1‖ ≥ ‖Q(ξt)‖ − ‖Dξt‖ − ‖A‖. (57)

Define κ2,3 > 0 so that

‖Dξ‖ ≤ κ2ρ; ‖CT ξ‖, ‖Cξ‖ ≤ κ3ρ.

For example we can use the Frobenius norms of these matrices to give (56) (or the

operator norm, in terms of the singular values). Putting the bounds into (57) gives

κ3(ρt+1 + ρt−1) ≥ ρ2
t − κ2ρt − ‖A‖. (58)

Let κ > 0 be chosen such that whenever ρ > κ, then ρ2−κ2ρ−‖A‖ > 2κ3ρ. Solving this

quadratic, as an equality, gives (55). Using this in (58) implies that whenever ρt > κ,

ρt+1 + ρt−1 > 2ρt. (59)

Now there are two possible cases:

• Suppose that ρt ≥ ρt−1. Then by (59) whenever ρt > κ, we have ρt+1 > 2ρt−ρt−1 ≥
ρt. This implies that the sequence {ρt} is strictly increasing with t. If this monotone

sequence is bounded, it must approach a limit ρt → ρ∗, which must be a solution

of (58) as an equality. But this implies ρ∗ = κ, and we have assumed ρt > κ. Thus

{ρt} is unbounded as t→∞.

• Alternatively, suppose that ρt < ρt−1. Again, by (59) whenever ρt+1 > κ we have

ρt−1 > 2ρt − ρt+1 > ρt. Thus the sequence {ρt} strictly increases as t decreases.

Again, this implies that ρt is unbounded, now as t→ −∞.
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Together, these imply the theorem when ε2 = 1.

If ε2 = −1, then we can see that ‖Q(ξ)‖2 ≥ 2
3
ρ4, indeed

‖Q(ξ)‖2 − 2
3
(ξ2

1 + ξ2
2)2 = 25

3
ξ4

1 − 10
3
ξ2

1ξ
2
2 + 1

3
ξ4

2 = 1
3
(5ξ2

1 − ξ2
2)2 ≥ 0.

Thus the analysis above works, if we replace κ by the larger solution to

τρ2 − (κ2 + 2κ3)ρ− ‖A‖ = 0

with τ =
√

2
3
, giving (55) again.

Note that if ε2 = 0, then

‖Q(ξ)‖2 = 4ξ2
1ξ

2
2 + ξ4

2 = ξ2
2(4ξ2

1 + ξ2
2),

which does not obey a bound of the form needed in the proof of Th. 1. Thus the

theorem does not apply to this case. Indeed, we showed in §3.1 that if ε2 = 0, then

when a = b = c = 0 there is a line of fixed points, recall the discussion in §3.1.

A good way to visualize the distinction between bounded and unbounded orbits

for a given parameter set is an escape time plot, see Fig. 13. In this plot, a grid of

initial points of the form (ξ, η) = (ξ, Cξ) are iterated until ‖ξ‖ > κ and the required

time to escape is encoded in color. Points that have not escaped within 104 iterations

are displayed in white. Some of these points lie on a family of regular 2d tori in the

neighborhood of the EE fixed point; these will never escape. Points near the boundary

of the white region may eventually escape, and indeed, even arbitrarily close to an EE

fixed point there are initial conditions that are expected to escape for extremely large

times by means of Arnold’s exponentially-slow diffusion mechanism [51–54].

We can quantify the size of the region of “bounded orbits” under parameter

variation by computing the area of the white region in a 2d-plane of initial conditions

like that in Fig. 13. For this we choose initial conditions in the two-plane (ξ, Cξ), with ξ

varied on a grid of 3000×3000 points within the box −1
2
κ < ξi <

1
2
κ, and iterate at most

5000 steps. Orbits that remain within the disk ‖ξ‖ ≤ κ are counted, and the resulting

area is denoted Areg. This area varies as fixed points undergo various bifurcations. A

1d cut through parameter space, Fig. 14, shows how Areg varies with the parameter a

(here b = c = 0.01). Insets in the figure show escape time plots, like that in Fig. 13, for

some selected parameters. There is a strong correlation of the area with the structure

of the region of stable orbits around the EE point, as we discuss further below.

In Fig. 15 we show Areg as a function of the two parameters a and b, setting c = b.

Note that there are apparently no bounded orbits when b > b+ (28), where there are

no fixed points, nor when b & 0.6 or a < −1.5. The largest bounded area occurs

in the region near the origin in the (a, b) plane; recall that the origin corresponds to

the quadfurcation since c = b. The dotted curve corresponds to parameters for which

PD = 0, the period-doubling bifurcation (42b). To the left of the PD curve, the EE

fixed point becomes IE and Areg decreases quickly to 0. To the right of the PD curve
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Figure 13: Plot of the escape time tesc encoded in color for initial conditions defined via (ξ1, ξ2)

with η = Cξ. Initial conditions whose orbits have not escaped within 104 iterations are colored

in white. In the region surrounding the EE fixed point one has a large region of non-escaping

orbits. Further away one observes a complicated fine-structure of escaping and non-escaping

orbits. Parameters are: (α, µ, δ) = (1, 0.1, 0.5), ε1 = ε2 = 1, and (a, b, c) = (−0.25, 0.05, 0.05).

and for b < b−, the four fixed points have the stabilities EE, EH, EH, and CU. On the

curve b = b− the EH and CU fixed points coalesce; however, since there are no bounded,

regular orbits in a neighborhood these fixed points, this transition does not influence

Areg.

At several places in Fig. 14 and along several curves in Fig. 15 one observes a

substantial decrease in the bounded area. Several of these can be related to those

parameters for which the linearization about the elliptic-elliptic fixed point fulfills a

low-order resonance. For such a point the four eigenvalues have the form λ1,2 = e2πiν1,2 ,

and the conjugate/inverse values λ̄1,2 = 1/λ1,2. Each frequency, ν1,2, describes the rate

of rotation around the fixed point in the 2d invariant planes spanned by the eigenvectors

of the corresponding conjugate pair of eigenvalues. These can be written in terms of the

partial traces, ρ1,2, recall (35), as

ν1,2 = 1
2π

arccos
(

1
2
ρ1,2

)
.
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0.1

0.2

−1.5 −1.0 −0.5 0.0a
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Figure 14: Area of bounded initial conditions (ξ, Cξ), determined from a grid in the ξ-plane for

|ξi| < κ/2, under variation of a with b = c = 0.01, and ε2 = 1; the matrix C is as in Fig. 13. The

insets show escape time plots for a neighborhood of the EE fixed point. Note that for all a-values

in the figure there are four fixed points (shown as small black crosses in the insets), which, as a

decreases, move out of the shown square. A movie of escape time plots as a function of a can

be found in the supplementary material at http://www.comp-phys.tu-dresden.de/supp/.

The frequencies (ν1, ν2) of an EE fixed point fulfill a resonance condition when

n1ν1 + n2ν2 = m, (n1, n2) ∈ Z2\{0, 0}, m ∈ Z. (60)

Without loss of generality, we can set gcd(n1, n2,m) = 1, and m ≥ 0. We refer to such

a resonance as an n1 : n2 : m resonance.

While resonances are dense in frequency space, those with small order, |n1|+ |n2|,
are of particular relevance. For example the large white region in Fig. 15 starting for

b = 0 at a ≈ −0.75 corresponds to the 1 : 2 : 1 resonance. This is also manifested

in the broad minimum with Areg ≈ 0 in Fig. 14. The other prominent minimum near

a ≈ −0.5 is caused by the 2 : 2 : 1 resonance. In these two cases Areg is reduced for

parameters near those fulfilling the resonance condition. For other indicated resonances,

i.e., 3 : 2 : 1, −1 : 3 : 1 and 3 : 1 : 1, the density is only reduced on one side of the

bifurcation. In the examples this happens for smaller a, and sometimes—as for the

3 : 2 : 1 resonance—it occurs quite some distance away.

Higher order resonances, |n1|+ |n2| ≥ 5, should be less important in changing Areg.

The results of [21] lead to the expectation that the EE point remains stable, and that

http://www.comp-phys.tu-dresden.de/supp/
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Figure 15: Area Areg of bounded initial conditions as a function of (a, b) with c = b and ε2 = 1.

The matrix C is defined by (α, µ, δ) = (1, 0.1, 0.5), and ε1 = 1, as in Fig. 5(a, b). The curves b±
represent the crossing of the surfaces (28) with the plane c = b. Thus there are four fixed points

when b is below b− and two when b− < b < b+. Upon crossing the (dotted) PD curve from right

to left, the EE fixed point becomes IE and Areg rapidly drops to zero. The blue dashed-dotted

curves show several resonances (60), labeled n1 : n2 : m, of the EE fixed point.

for a single resonance the bifurcation creates a pair of invariant 1d tori, one normally

hyperbolic and one normally elliptic (at least in the normal form). Further away from

the bifurcation of the EE fixed point the geometry is described by bifurcations of families

of 1d tori, see [43] and references therein. When the frequency passes through a double

resonance, so that νi = pi/qi are rational, then one expects four periodic orbits to be

created [21,55]. According to [21] their stability is either EE + 2 EH + HH or 2 EH +

2 CU, see [42] for an illustration of the geometry in the first case.

Two further examples of Areg are shown in Fig. 16 with the same parameters as

in Fig. 15, except for Fig. 16(a) c = 5b and for Fig. 16(b) the parameter c = 2 is

fixed. In the latter case the parameter plane no longer intersects the quadfurcation

point (a = b = c = 0), so that the curves b± do not intersect at the origin in the figure.

In Fig. 16(a) the line b = 0 corresponds to the one in Fig. 15 so that the same resonances

are still relevant. These now extend to the region b > 0, bending strongly to the right.

The same overall resonance structure is also visible in Fig. 16(b).
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Figure 16: Area Areg of initial conditions on the 2d plane η = Cξ inside the box |ξi| ≤ κ/2 (on

a 3000× 3000 point grid) that remain within the disk ‖ξt‖ ≤ κ for t ≤ 5000. Variation of (a, b)

with (a) c = 5b and (b) c = 2. The remaining parameters are the same as in Fig. 15. The curves

b± represent the crossing of the surfaces (28) with the plane c = b or 5b, respectively. Thus there

are four fixed points when b is below b− and two when b is between b− and b+. To the left of

the (dotted) PD line the EE fixed point has become EI.

4. Coupled Hénon Maps

Since Moser’s map, (5) or equivalently (12), is the generic, four-dimensional quadratic

map, there must be parameters for which it corresponds to a pair of uncoupled quadratic

maps. In this section, we show that this is possible for ε2 = 1 and special choices of

the matrix C, depending on ε1. The sign ε1 corresponds to positive and negative Krein

signatures. These Hénon maps are uncoupled when c = 0, but when c is nonzero the

resulting coupling is, as we will see in §5, precisely what is needed to describe the

dynamics in the neighborhood of an accelerator mode of a 4d standard map. Whether

there are other possibilities for which the Moser map has uncoupled dynamics with

respect to some invariant canonical planes on which the dynamics is conjugate to

Hénon maps is presently not clear and left for future study.

Dynamics of a pair of coupled Hénon maps has been studied previously for

example in [19–24, 27–30], particularly in regard to models of storage rings for particle

accelerators.

4.1. Decoupled Limits: Hénon Maps

To find parameter values for which the Moser map is decoupled, we search for a

coordinate transformation that reveals the invariant planes. This transformation should

be affine in order to maintain the quadratic form. So that the resulting map is symplectic

with the standard Poisson matrix (1) and to maintain the momentum-coordinate split

for the Hénon form, we start with the linear transformation:

(ξ, η) = S(q, p) = (Aq, ρA−Tp),
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where A is invertible and ρ > 0. This transformation is symplectic-with-multiplier,

DSTJDS = ρJ . In the new coordinates the map (12) becomes

q′ = q + Ĉ−T (−p+ Ĉq +∇qÛ(q)),

p′ = Ĉq,

where

Ĉ =
1

ρ
ATCA, Û(q) =

1

ρ
U(Aq),

so that ∇qÛ(q) = 1
ρ
AT∇ξU(Aq). In order that the map be decoupled in the new

coordinates, any cross terms in the new potential Û should be zero. This can be

accomplished for (13) only if ε2 = 1, c = 0, and A is proportional to a rotation by

angle π/3. We can normalize the amplitude of the quadratic terms in the new map by

setting ρ = 1/
√

12 choosing

A = ρ

(
1 1

−
√

3
√

3

)
to give

Û(q) = (a−
√

3b)q1 + (a+
√

3b)q2 + 1
3
(q3

1 + q3
2).

The transformation is thus fixed by this choice. In order that the resulting map be

decoupled, Ĉ must be diagonal, e.g.,

Ĉ =

(
ε1 0

0 1

)
, (61)

where detC = det Ĉ = ε1 = ±1. In order for this to be the case, the original C must

take one of two forms:

ε1 = 1 : C =

(√
3 0

0 1√
3

)
, (62a)

ε1 = −1 : C =

(
0 1

1 0

)
. (62b)

Note that one could also replace Ĉ by −Ĉ in (61), but by the symmetries discussed in

§2.3, this gives nothing new.

With this we get the transformed map

q′1 = 2q1 + ε1(−p1 + a−
√

3b+ q2
1)

p′1 = ε1q1

q′2 = 2q2 − p2 + a+
√

3b+ q2
2

p′2 = q2.
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This is not quite in the Hénon form (4), but a final affine transformation q →
(q̂1 − ε1, q̂2 − 1) and p→ p̂− (1, 1) brings the map to the form

q̂′1 = ε1(−p̂1 + 1 + a−
√

3b+ q̂2
1)

p̂′1 = ε1q̂1

q̂′2 = −p̂2 + 1 + a+
√

3b+ q̂2
2

p̂′2 = q̂2.

(63)

Note that after this transformation we obtain, when ε1 = 1, a pair of uncoupled maps of

the Hénon-form (4). However, when ε1 = −1, the first canonical pair has the Hénon form

only upon a mirroring transformation, e.g., (q̂1, p̂1)→ (−q̂1, p̂1); the point is that in the

canonical coordinates, the (q̂1, p̂1) components “rotate” under the map in the opposite

sense from (q̂2, p̂2).

The component maps have saddle-center bifurcations along the lines a = ±
√

3b,

creating pairs of fixed points for each component when a < ±
√

3b, respectively.

However, in order that the 4d map have a fixed point, both components must have

fixed points, implying that a < −
√

3|b|. This bifurcation occurs on the same line that

appear in Fig. 3(a) when c = 0.

When the maps are decoupled, and a < −
√

3|b| the four newly created fixed points

have types EE, EH, EH and HH. In particular the EE point is located at

ε1q
∗
1 = p∗1 = 1−

√√
3b− a,

q∗2 = p∗2 = 1−
√
−
√

3b− a.

In the original variables, the fixed points of these maps are given by (29) since this

corresponds to c = 0. The doubly elliptic fixed point remains stable in the rectangle

−4 +
√

3|b| < a < −
√

3|b|

since the individual maps have period-doubling bifurcations at a = −4 ±
√

3b,

respectively.

Recall that for a symplectic map (1), with a doubly elliptic fixed point z∗, the

quadratic form q(v) = vTJDf(z∗)v is an invariant of the linearized dynamics. This

implies stability when the form q is definite [39,56]: an EE fixed point cannot cross the

KP = 0 line in Fig. 4 into the CU region. Equivalently, the Krein bifurcation cannot

occur if the symmetric matrix

Q = 1
2
[JDf(z∗)−DfT (z∗)J ]

is definite. At an elliptic-elliptic point for (63), Q becomes

Q =


Ĉ

−ε1q
∗
1 0

0 −q∗2
−ε1q

∗
1 0

0 −q∗2
Ĉ

 ,
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where Ĉ is given in (61). When (63) has an EE point then q∗2i < 1. This implies that

Q is positive definite when ε1 = 1, but has a pair of negative eigenvalues when ε1 = −1.

Thus, only in the latter case, can coupling lead to a Krein bifurcation.

Indeed, we can see this if we re-introduce coupling by allowing c 6= 0. The same

transformations that lead to (63) can be applied if we still take ε2 = 1 and C to be one

of the matrices (62). The result is the pair of coupled Hénon maps

q̂′1 = ε1

(
−p̂1 + ah1 + q̂2

1 +
c

2
√

3
(q̂1 + q̂2)

)
,

p̂′1 = ε1q1,

q̂′2 = −p̂2 + ah2 + q̂2
2 +

c

2
√

3
(q̂1 + q̂2),

p̂′2 = q̂2,

(64)

where

ah1 = 1 + a−
√

3b− ε1 + 1

2
√

3
c,

ah2 = 1 + a+
√

3b− ε1 + 1

2
√

3
c.

(65)

The stability of the fixed points for this map can be conveniently obtained from

the results for the Moser map (12). For ε1 = ε2 = 1 and the diagonal matrix in (62a),

the stability parameters (38) become

A = 4(1 +
√

3ξ1) +
c√
3
,

B = 6 +
2c√

3
(1 +

√
3ξ1) + 4

√
3ξ1(2 +

√
3ξ1)− 4ξ2

2 .

Since the quadfurcation occurs for a = b = c = 0, ξ1 = ξ2 = 0, it always occurs at the

point (AQ, BQ) = (4, 6) for this C, as more generally true for the symmetric case in

§3.5. For this case the Krein parameter (40) is always nonpositive:

KP = −4ξ2
2 − c2/12, (66)

even when the maps are coupled again by nonzero c. This reflects the fact that for the

two 2d uncoupled maps the elliptic motions in (p̂1, q̂1) and (p̂2, q̂2) have the the same

orientation. This is not changed by the coupling when ε1 = +1, and a CU instability is

not possible. This case corresponds to the transition (49) with a stability diagram like

that shown in Fig. 8(b) and neither the EE nor the HH fixed point may turn CU.

For the case ε2 = 1, and ε1 = −1, for the matrix in (62b), we similarly obtain

A = 4(1 + ξ2),

B = 6− 12ξ2
1 + 8ξ2 + 4ξ2

2 − 2cξ1.

Now the Krein parameter becomes

KP = −2ξ1(6ξ1 + c), (67)
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which potentially may have either sign. So when the rotation directions for the two

canonical planes are opposed, the coupling terms make a Krein bifurcation possible as

c crosses zero. Thus the initial quadfurcation may correspond to the transition ∅ → EE

+ HH + 2 EH, as in Fig. 8(b), and both the EE and HH might later become CU. In

addition a direct transition to 2 CU + 2 EH is possible, which is analogous to the A-B

diagrams shown in Fig. 8(a) for the fully coupled case.

4.2. Numerical illustration

Let us now illustrate the dynamics near the uncoupled case. Figure 17 shows the area,

Areg, of bounded orbits for the two cases (62) of the matrix C. In these figures, the

maps are uncoupled along the line b = 0 since we choose c = 2b. As in Figs. 15 and 16

one observes clear drops of Areg along curves in the (a, b) plane. When b = 0 both plots

in Fig. 17 agree so that also the association to the relevant resonances is the same. For

both panels, the b− line corresponds to a saddle-center bifurcation, but in Fig. 17(a) two

fixed points with stabilities EH and HH disappear upon reaching b− from below; thus

the decrease in the number of fixed points has no significant influence on the size of Areg.

In contrast, for Fig. 17(b) the fixed points with stabilities EE and EH disappear upon

reaching b− from below, so that only the EH and HH fixed points are left in the region

between b− and b+ and Areg decreases abruptly. In both cases the 0 : 3 : 1 resonance of

the EE fixed point leads to a strong reduction in bounded area as a decreases through

the resonance.

As ε1 = 1 for Fig. 17(a) none of fixed points can become CU. For ε1 = −1, as in

Fig. 17(b), the HH fixed point becomes CU when a is sufficiently negative, but again

this does not significantly influence Areg.
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Figure 17: Area Areg of bounded orbits on the plane η = Cξ for the matrices (62) with ε2 = 1,

c = 2b and for (a) ε1 = 1, and (b) ε1 = −1. The maps reduce to the uncoupled case only along

the axis b = 0, since then c = 0 as well. The curves b± represent the crossing of the surfaces

(28) with the plane c = 2b. Thus there are four fixed points when b is below b− and two when b

is between b− and b+. For both examples, to the left of the (dotted) PD line the EE fixed point

becomes EI. The dashed-dotted line shows the 0 : 3 : 1 resonance near where there is a strong

decrease in Areg.
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ξ1
ξ2

χ1

−0.75

0.75−0.75

0.75

−0.5

0.5

Figure 18: 3D phase space slice and corresponding escape time plot in the η = Cξ plane for

the diagonal matrix C of (62a) with ε1 = 1 and (a, b, c) = (−0.3, 0.1, 0.2). Shown are several

selected regular tori (black lines) near the “outer edge” of the “regular region” surrounding the

EE fixed point. Each torus is represented by 104 points in the slice with ε = 10−6. The four

fixed points are shown as small spheres: EE (red), 2 EH (green), and HH (blue). The coloring

of the escape times is the same as in Fig. 13. For a rotating view see http://www.comp-phys.tu-

dresden.de/supp/.

Figure 18 shows a 3d phase space slice plot and an escape time plot in the (ξ1, ξ2)-

plane for (a, b, c) = (−0.3, 0.1, 0.2) and ε1 = 1. The elliptic-elliptic fixed point is

surrounded by a region of predominantly regular motion as seen by the white region of

non-escaping orbits (within 104 iterations). Corresponding regular 2d tori are shown as

black curves in the slice. Some of these are secondary tori around periodic orbits and

appear as sequences of disjoint loops in the 3d phase space slice. The HH fixed point

and the two EH fixed points approximately limit the region in which the regular orbits

and orbits with longer escape times are contained.

http://www.comp-phys.tu-dresden.de/supp/
http://www.comp-phys.tu-dresden.de/supp/
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5. Accelerator Mode Islands

Accelerator modes are special orbits that occur in action-angle dynamical systems that

are periodic in action as well in angle. For example, Chirikov’s area-preserving map [52]

on (p, q) ∈ R× T can be written

p′ = p+ K
2π

sin(2πq′),

q′ = q + εp mod 1.
(68)

Here we have added an additional parameter, ε = ±1, representing the direction of the

twist; this will be used for the 4d case below. For this system, projecting the “action”

or momentum, p, onto the torus gives a smooth map on (p, q) ∈ T2. An accelerator

mode is a period-T orbit of this projected map that lifts to an orbit on R×T for which

pT = p0 +m,

qT = q0 mod 1
(69)

where m ∈ Z \ 0, i.e., the momentum increases by m each period, so the orbit

accelerates. Such orbits were first studied in [57, 58]. Regular islands surrounding

an elliptic accelerator mode can have a substantial impact on the broader dynamics

of the map. In particular, chaotic trajectories for the lifted map may show super-

diffusive behavior in momentum due to long-time stickiness near the regular islands, see

e.g., [17, 52,59–64].

In this section we consider the 4d symplectic map defined by

p′1 = p1 + 1
2π

[K1 sin(2πq′1) + L sin(2π(q′1 + q′2))] ,

p′2 = p2 + 1
2π

[K2 sin(2πq′2) + L sin(2π(q′1 + q2)′)] ,

q′1 = q1 + ε1p1,

q′2 = q2 + p2,

(70)

where (p, q) ∈ R2 × T2. For the case ε1 = 1, this is the map first studied by

Froeschlé [35, 65], and when ε1 = −1, it has indefinite twist, and is equivalent to the

map studied by Pfenniger [66]. As we will see below, the parameter ε1 is related to the

same parameter of the Moser map (5).

Periodicity in the action variables implies that (70) can be projected onto the four-

torus T2×T2, and—as before—a period-T orbit obeying (69), now with m ∈ Z2 \ (0, 0),

is an accelerator mode. These were first studied in [67] where it was shown that like their

2d counterparts, they can have a substantial effect on the action-diffusion in strongly

chaotic regimes.

For the 2d case, it was first shown in [17] that near the saddle-center bifurcation

that creates an accelerator mode of (68), the dynamics can be approximated by the

Hénon map (4), we recall this derivation in §5.1 below. Since the map (70) consists of

two 2d standard maps that are coupled when L 6= 0, it is perhaps not surprising that

a similar result holds for (70) near the creation of an accelerator mode, see §5.2. When

L � 1, we will relate the local dynamics to the pair of coupled Hénon maps (64), and

hence to the quadfurcation in the Moser map (12).
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5.1. Accelerator Modes for the 2d Standard Map

Let us first recall the relation between the dynamics in the neighborhood of a fixed point

accelerator mode for (68) and the Hénon map. Since the form (4) is different from the

one used in [17], we use a different expansion and coordinate change here.

A fixed point of (68) on the torus must satisfy q′ = q mod 1 and p′ = p mod 1.

From (68) it follows that p = 0 mod 1 so we can take p = p? = 0, and that q must solve

2πm = K sin(2πq) (71)

with m ∈ Z, accounting for the periodic boundary condition in p. For m = 0 one gets

the fixed points (0, 0) and (0, 1
2
), which exist for all values of K. For m 6= 0 one gets

accelerator modes; these exist only for sufficiently large |K|. Restricting to m = 1, and

taking K ≥ 0 gives two solutions

q?× = 1
2π

arcsin
(

2π
K

)
,

q?◦ = 1
2
− 1

2π
arcsin

(
2π
K

)
,

provided that K > 2π. This pair of fixed points is created at K = K∗ = 2π in a saddle-

center bifurcation at (0, 1
4
). The fixed point at (0, q?×) is hyperbolic when K > 2π and

that at (0, q?◦) is elliptic when 2π < K < 2π
√

1 + 4/π2.

To relate the local dynamics to the 2d Hénon map, we transform to coordinates

centered at the bifurcation,

(p̃, q̃) = (p, q)−
(
0, 1

4

)
, K̃ = π(K − 2π),

and assume that there is a formal parameter ∆� 1 so that q̃, p̃, K̃ = O(∆). Expanding

the map (68) in the new coordinates gives, through second order in ∆,

p̃′ = p̃+ K̃
2π2 − 2π2q̃′2

q̃′ = q̃ + εp̃.

Since this is a quadratic area-preserving map, it can be converted by an affine

transformation to the Hénon form (4); here we can use the transformation

p̂ = 1− 2π2εq̃,

q̂ = ε− 2π2(q̃ + εp̃),
(72)

to obtain, in the new coordinates,

q̂′ = ε(1− K̃ − p̂+ q̂2)

p̂′ = εq̂.
(73)

When ε = 1, this is the form (4) with ah = 1 − K̃. When ε = −1 the Hénon map has

the opposite rotation direction. The fixed points of the map (73) occur when K̃ ≥ 0 at

p̂? = εq̂? = 1 ± √1− ah = 1 ±
√
K̃ and correspond to hyperbolic (+) and (initially)

elliptic (−) stability. At ah = −3 the elliptic fixed point undergoes a period-doubling

bifurcation and becomes inverse hyperbolic. This corresponds to K̃ = 4. This value is

close to the actual period-doubling of (68) at K = 2π
√

1 + 4/π2 ≈ 7.448, which gives

K̃ ≈ 3.661.
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5.2. Accelerator Modes for the 4d Standard Map

A fixed point of the map (70) must have p1 = p2 = 0 (mod 1) and thus the coordinates

of fixed point accelerator modes must be solutions of

2πm1 = K1 sin(2πq1) + L sin(2π(q1 + q2)),

2πm2 = K2 sin(2πq2) + L sin(2π(q1 + q2)),
(74)

for m ∈ Z2\(0, 0). When L = 0, (70) reduces to a pair of uncoupled 2d standard maps.

To study the behavior in the neighborhood of an accelerator mode, we consider the

bifurcation that occurs at (K1, K2, L) = (2π, 2π, 0), where q1 = q2 = 1
4
, creating an

m = (1, 1), fixed-point accelerator mode.

Whenever (70) has a fixed point we can evaluate its stability using the parameters

A and B in (34). This leads to the saddle-center parameter (36)

SC = ε1 [K1 cos(2πq1) +K2 cos(2πq2)]L cos (2π(q1 + q2))

+ ε1K1K2 cos(2πq1) cos(2πq2).
(75)

Note that when q1 = q2 = 1
4
, then SC = 0, so the accelerator modes are born on the

SC line. The Krein parameter (37) becomes

KPε1=1 = −1
4

[K1 cos(2πq1)−K2 cos(2πq2)]2 − [L cos(2π(q1 + q2))]2, (76)

or
KPε1=−1 = −1

4
[K1 cos(2πq1) +K2 cos(2πq2)]×
[K1 cos(2πq1) +K2 cos(2πq2) + 4L cos (2π(q1 + q2))] ,

(77)

depending upon ε1. Consequently, when ε1 = 1, KP ≤ 0 and there are no CU fixed

points (recall [37]). However, when ε1 = −1, then KP can have either sign. In both

cases the m = (1, 1) accelerator mode born at L = 0 has KP = 0. Thus these fixed

points are born at (A,B) = (4, 6) with a quadruple unit eigenvalue.

To find a quadratic approximation in the neighborhood of the accelerator mode,

we have to perform similar transformations to the 2d case, namely we expand using

(p̃i, q̃i) = (pi, qi)− (0, 1
4
), K̃i = π(Ki − 2π).

As before we assume that the coordinate and parameter deviations are all of the same

order of smallness, q̃i, p̃i, K̃i, L = O(∆). Expanding (70) then gives, to O(∆2),

p̃′1 = p̃1 +
K̃1

2π2
− 2π2q̃′21 − L(q̃′1 + q̃′2),

p̃′2 = p̃2 +
K̃2

2π2
− 2π2q̃′22 − L(q̃′1 + q̃′2),

q̃′1 = q̃1 + ε1p̃1,

q̃′2 = q̃2 + p̃2.
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Slightly generalizing the transformation (72), we let

p̂1 = 1− 2π2ε1q̃1,

q̂1 = ε1 − 2π2(q̃1 + ε1p̃1),

p̂2 = 1− 2π2q̃2,

q̂2 = 1− 2π2(q̃2 + p̃2).

(78)

This transformation then gives the pair of coupled Hénon maps (64) if we identify

ah1 = 1− K̃1 + (ε1 + 1)L,

ah2 = 1− K̃2 + (ε1 + 1)L,

c = −2
√

3ε1L.

Thus the neighborhood of a fixed point accelerator mode for the Froeschlé map is

described by the Moser map (12) with ε2 = 1, one of the matrices C in (62) and

by (65)

a = −1
2
(K̃1 + K̃2) = π

2
(4π −K1 −K2),

b = 1
2
√

3
(K̃1 − K̃2) = π

2
√

3
(K1 −K2),

c = −2
√

3ε1L.

The implication is that the creation of an accelerator mode for (70) at K1 = K2 = 2π

and L = 0 is locally described by a special case of the quadfurcation of the Moser map.

Note that the form of the coupled Hénon maps changes for ε1 = ±1, as indicated

in (64). Transforming back to the Moser coordinates shows that the case ε1 = +1

corresponds to the diagonal matrix (62a), and ε1 = −1 to the anti-diagonal matrix

(62b). When ε1 = 1, the Krein parameter is given by (66), which is non-positive in

agreement with (76), so fixed points of type CU are not possible. Since the matrix

(62a) is symmetric, the creation of the accelerator mode follows the pattern shown in

Fig. 8(b) and the EE and HH branches above the SC line must stay outside of the CU

region. When ε1 = −1, however, then there can be a direct bifurcation to CU fixed

points since the Krein parameter (67) does not have a definite sign, in agreement with

(77). Thus the bifurcation may either follow the pattern as shown in Fig. 8(a) with a

direct transition to CU pair, or the one shown in in Fig. 8(b), but with the possibility

that the EE or HH (or both) fixed point may eventually become CU.

5.3. Numerical Illustration

As an example, we consider the case ε1 = 1. When the coupling L = 0, the saddle-

center bifurcations of the 2d maps in (qi, pi) occur at Ki = 2π and correspond to a

quadfurcation of the form (49), i.e.,

∅ → EE + 2 EH + HH.
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When L 6= 0, these fixed points persist because when Ki > 2π they do not have a unit

eigenvalue; moreover when L � 1, the four fixed points will have the same stability

types since the eigenvalues of the linearization are continuous functions of the coupling,

and as noted above, when ε1 = 1 there is no Krein bifurcation. A 3d slice in the phase

space for K1 = 6.4, K2 = 6.5, and L = 0.05 is shown in Fig. 19. The EE fixed point is

surrounded by families of two-tori and some selected examples are shown; as in previous

plots each torus typically intersects the slice in two loops. A corresponding escape

time plot in the (q1, q2)-plane for initial conditions with (p1, p2) = (0, 0) is shown as

a plane in the figure with escape time encoded in color as in the previous plots. The

white region of long-time (here tmax = 104) trapped orbits mainly surrounds the EE

fixed point and corresponds closely to the region containing the regular tori. Note,

p1

q1
q2

−0.04

0.04

0.20

0.32 0.20

0.32

Figure 19: Geometry of accelerator modes in the 4d coupled standard map for ε1 = 1, K1 = 6.4,

K2 = 6.5 and L = 0.05. Shown is a 3d phase space slice |p2| < ε = 10−6 and a corresponding

escape time plot in the p1 = p2 = 0 plane. The EE fixed point (red sphere) is surrounded by

families of regular 2d tori (black curves), each shown with 105 points in the slice. The coloring

of the escape times is the same as in Fig. 13. For a rotating view see http://www.comp-phys.tu-

dresden.de/supp/.

http://www.comp-phys.tu-dresden.de/supp/
http://www.comp-phys.tu-dresden.de/supp/
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however, that initial conditions near the boundary of this region may eventually escape

after some longer transient time. The location of the regular region can be understood

from the case of the uncoupled Hénon maps: for both q1 and q2 there is an interval of

initial conditions with regular motion that is limited by the chaotic dynamics caused

by homoclinic intersections of the stable and unstable manifolds of the hyperbolic fixed

points. The direct product structure of these intervals is still reflected in the weakly

coupled case. Beyond the white region surrounding the EE fixed point there are several

smaller ones. These are mainly due to regular tori fulfilling resonance conditions; for

example, the largest of these smaller regions, located towards the EH fixed point at

(q1, q2) ≈ (0.280.21), is due to a 5 : 0 : 1 resonance. The next smaller white region,

located towards the other EH fixed point at (q1, q2) = (0.22, 0.29), is caused by a 7 : 0 : 1

resonance.

6. Summary and Outlook

In this paper we have studied some of the dynamics of Moser’s 4d quadratic, symplectic

maps, which have a normal form (12) with six parameters a, b, c, α, δ, µ and two

discrete parameters ε1, ε2. We showed that there is a codimension-three submanifold

in parameter space for which Moser’s map has a single fixed point with a pair of unit

eigenvalues. Bifurcations that occur on this submanifold correspond to creation and

destruction of up to four fixed points, the maximum possible number for the map (except

for one singular case). Along paths in parameter space that pass through this singularity

it is possible that four fixed points are created from none—a quadfurcation. For other

paths, two fixed points may be created or collide and emerge as two or four, recall

Fig. 3 and Table 1. Intuitively, the simplest case corresponds to a pair of uncoupled

2d Hénon maps, where a quadfurcation corresponds to choosing parameters so that the

maps have simultaneous, co-located saddle-center bifurcations.

When a fixed point has four distinct eigenvalues on the unit circle (has type “EE”),

then it is linearly stable, and according to KAM theory, is generically surrounded by

a Cantor family of invariant two-tori. We have seen that it is possible for one or two

EE-fixed points to emerge from the quadfurcation. The remaining two fixed points have

at least one hyperbolic pair of eigenvalues. For the case of uncoupled Hénon maps, the

four fixed points correspond to the cross-products of the saddles and centers of the two

area-preserving maps, giving rise to a single EE fixed point, two EH points, and one

HH point. This scenario persists when coupling is added, and describes the creation of

accelerator modes in a 4d standard map near zero coupling. However, this scenario is

rather special from the point of Moser’s map, where one more typically has the creation

of two EE and two EH fixed points, unless the matrix C is symmetric.

For symmetric C, where the map is reversible, the quadfurcation has the special

feature that the fixed points are born with four unit eigenvalues. This allows, for

example, the direct creation of complex unstable, CU, fixed points. It is also of interest

that when C is symmetric, the limiting form of Moser’s map near the quadfurcation
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is a natural Hamiltonian system (53). It is still an open question whether the map is

reversible only when C is symmetric

We showed in Th. 1 that, when ε2 6= 0, there is a ball that contains all bounded

orbits. We observe that orbits that remain bounded are typically associated with the

EE fixed points. The computations suggest that the center-stable manifolds of the

EH points are likely candidates for partial barriers that delineate the boundary of the

region of orbits that have long escape times. In a future paper, we hope to compute

these manifolds to understand better the geometry of the barriers.

There are several other interesting questions left for future studies. For the 2d case,

where the Hénon map provides the universal form for any quadratic area-preserving map,

the algebraic decay of the survival probability for the escape from a neighborhood of

the regular region is well established and understood in terms of partial barriers and

approximately described by Markov models. While for higher-dimensional maps such

power-law stickiness is numerically well established, the mechanism for this is still not

understood. Moser’s map is the prototypical example for the study of the stickiness of a

regular region in 4d. Of course, in this context, Arnold diffusion will also be important.

An interesting related aspect is the study of the accelerator mode islands in 4d,

where the dynamics is much richer than the 2d case, due to the varied classes of stability

and resonances. We leave for future study the form of the local dynamics near accelerator

modes with m1 6= m2, as well as of modes born when L 6= 0, in (74).

Finally, it would be of interest to study similar bifurcations for polynomial maps

of higher degree; for example, the cubic case can be written in the Moser form as a

composition of affine maps with a symplectic shear [33]. And of course, one can wonder

what other exotic local bifurcations may happen in even higher-dimensional symplectic

maps.
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[16] Hénon M 1976 A two-dimensional mapping with a strange attractor Comm. Math. Phys. 50 69–77

https://doi.org/10.1007/BF01608556

[17] Karney C F F K, Rechester A B and White R B 1982 Effect of noise on the standard mapping

Physica D 4 425–438 http://dx.doi.org/10.1016/0167-2789(82)90045-8

[18] Turaev D 2003 Polynomial approximations of symplectic dynamics and richness of chaos in

non-hyperbolic area-preserving maps Nonlinearity 16 123–135 http://dx.doi.org/10.1088/

0951-7715/16/1/308

[19] Mao J 1988 Standard form of four-dimensional symplectic quadratic maps Phys. Rev. A 38 525–526

http://link.aps.org/doi/10.1103/PhysRevA.38.525

[20] Ding M, Bountis T and Ott E 1990 Algebraic escape in higher dimensional Hamiltonian systems

Phys. Lett. A 151 395–400 https://doi.org/10.1016/0375-9601(90)90910-G

[21] Todesco E 1994 Analysis of resonant struture of four-dimensional symplectic mappings, using

normal forms Phys. Rev. E 50 R4298–R4301 http://prola.aps.org/pdf/PRE/v50/i6/

pR4298_1

[22] Todesco E 1996 Local analysis of formal stability and existence of fixed points in 4D symplectic

mappings. Physica D 95 1–12 https://doi.org/10.1016/0167-2789(95)00290-1

[23] Gemmi M and Todesco E 1997 Stability and geometry of third-order resonances in four-dimensional

symplectic mappings Celestial Mech. 67 181–204 https://doi.org/10.1023/A:1008288826727

[24] Vrahatis M N, Bountis T C and Kollmann M 1996 Periodic orbits and invariant surfaces

of 4D nonlinear mappings Int. J. Bif. and Chaos 6 1425–1437 https://doi.org/10.1142/

s0218127496000849

[25] Dullin H and Meiss J 2003 Twist singularities for symplectic maps Chaos 13 1–16 https:

//doi.org/10.1063/1.1529450

[26] Gonchenko S V, Turaev D V and Shilnikov L P 2004 Existence of infinitely many elliptic periodic

https://doi.org/10.1103/PhysRevLett.100.083001
https://doi.org/10.1137/1.9781611974645
https://doi.org/10.1088/0305-4470/39/19/S01
http://iopscience.iop.org/0305-4470/39/19/S03
http://iopscience.iop.org/0305-4470/39/19/S03
https://doi.org/10.1021/j100356a014
https://doi.org/10.1063/1.459840
https://doi.org/10.1016/0167-2789(92)90024-H
https://doi.org/10.1103/PhysRevLett.70.2975
https://doi.org/10.1103/PhysRevLett.70.2975
https://doi.org/10.1016/0167-2789(86)90033-3
https://doi.org/10.1016/0167-2789(86)90033-3
https://doi.org/10.1016/0960-0779(91)90003-R
https://doi.org/10.1086/115978
https://doi.org/10.1090/qam/253513
https://doi.org/10.1007/BF01608556
http://dx.doi.org/10.1016/0167-2789(82)90045-8
http://dx.doi.org/10.1088/0951-7715/16/1/308
http://dx.doi.org/10.1088/0951-7715/16/1/308
http://link.aps.org/doi/10.1103/PhysRevA.38.525
https://doi.org/10.1016/0375-9601(90)90910-G
http://prola.aps.org/pdf/PRE/v50/i6/pR4298_1
http://prola.aps.org/pdf/PRE/v50/i6/pR4298_1
https://doi.org/10.1016/0167-2789(95)00290-1
https://doi.org/10.1023/A:1008288826727
https://doi.org/10.1142/s0218127496000849
https://doi.org/10.1142/s0218127496000849
https://doi.org/10.1063/1.1529450
https://doi.org/10.1063/1.1529450


The Quadfurcation in Moser’s Map 44

orbits in four-dimensional symplectic maps with a homoclinic tangency Proc. Steklov. Inst. of

Math. 244 106–131

[27] Bountis T and Kollmann M 1994 Diffusion rates in a 4-dimensional mapping model of accelerator

dynamics Physica D 71 122–131 https://doi.org/10.1016/0167-2789(94)90185-6

[28] Vrahatis M N, Isliker H and Bountis T C 1997 Structure and breakdown of invariant tori in

a 4-D mapping model of accelerator dynamics Int. J. Bif. and Chaos 7 2707–2722 https:

//doi.org/10.1142/S0218127497001825

[29] Giovannozzi M, Scandale W and Todesco E 1998 Dynamic aperture extrapolation in the presence of

tune modulation Phys. Rev. E 57 3432–3443 https://link.aps.org/doi/10.1103/PhysRevE.

57.3432

[30] Bountis T and Skokos Ch 2006 Application of the SALI chaos detection method to accelerator

mappings Nuclear Inst. and Methods in Phys. Res. Sec. A 561 173–179 https://doi.org/10.

1016/j.nima.2006.01.009

[31] Moser J K 1994 On quadratic symplectic mappings Math. Zeitschrift 216 417–430 https:

//doi.org/10.1007/BF02572331

[32] Bass H, Connell E H and Wright D 1982 The Jacobian conjecture: Reduction of degree and

formal expansion of inverse Bull. Amer. Math. Soc. 7 287–330 https://doi.org/10.1090/

S0273-0979-1982-15032-7
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