English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Electrical current generation and proton pumping catalyzed by the ba3-type cytochrome c oxidase from Thermus thermophilus

MPS-Authors
/persons/resource/persons137733

Kannt,  Aimo
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons251940

Becker,  Anja
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137592

Bamberg,  Ernst
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137800

Michel,  Hartmut       
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kannt, A., Soulimane, T., Buse, G., Becker, A., Bamberg, E., & Michel, H. (1998). Electrical current generation and proton pumping catalyzed by the ba3-type cytochrome c oxidase from Thermus thermophilus. FEBS Letters, 434(1-2), 17-22. doi:10.1016/s0014-5793(98)00942-9.


Cite as: https://hdl.handle.net/21.11116/0000-0007-457A-3
Abstract
Several amino acid residues that have been shown to be essential for proton transfer in most cytochrome c oxidases are not conserved in the ba3-type cytochrome c oxidase from the thermophilic eubacterium Thermus thermophilus. So far, it has been unclear whether the Th. thermophilus ba3-type cytochrome c oxidase can nevertheless function as an electrogenic proton pump. In this study, we have combined charge translocation measurements on a lipid bilayer with two independent methods of proton pumping measurements to show that enzymatic turnover of the Th. thermophilus cytochrome c oxidase is indeed coupled to the generation of an electrocurrent and proton pumping across the membrane. In addition to a 'vectorial' consumption of 1.0 H+/e- for water formation, proton pumping with a stoichiometry of 0.4-0.5 H+/e- was observed. The implications of these findings for the mechanism of redox-coupled proton transfer in this unusual cytochrome c oxidase are discussed.