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ABSTRACT: Mapping the spatial and temporal heterogeneities in miscible polymer blends is
critical for understanding and further improving their material properties. However, a
complete picture on the heterogeneous dynamics is often obscured in ensemble
measurements. Herein, the spatial and temporal heterogeneities in fully miscible
polystyrene/oligostyrene blend films are investigated by monitoring the rotational diffusion
of embedded individual probe molecules using defocused wide-field fluorescence microscopy.
In the same blend film, three significantly different types of dynamical behaviors (referred to
as modes) of the probe molecules can be observed at the same time, namely, immobile,
continuously rotating, and intermittently rotating probe molecules. This reveals a prominent
spatial heterogeneity in local dynamics at the nanometer scale. In addition to that, temporal
heterogeneity is uncovered by the nonexponential characteristic of the rotational
autocorrelation functions of single-molecule probes. Moreover, the occurrence probabilities
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of these different modes strongly depend on the polystyrene: oligostyrene ratios in the blend films. Remarkably, some probe
molecules switch between the continuous and intermittent rotational modes at elevated temperature, indicating a possible alteration
in local dynamics that is triggered by the dynamic heterogeneity in the blends. Although some of these findings can be discussed by
the self-concentration model and the results provided by ensemble averaging techniques (e.g., dielectric spectroscopy), there are
implications that go beyond current models of blend dynamics.

B INTRODUCTION

Mixing two or more polymers usually results in macro-phase
separation. There exists, however, a small class of polymers,
with not too different polarizabilities, that upon mixing, form
thermodynamically miscible blends. The latter have received
much attention in academia and, not unexpectantly, less
attention in industry.' "> The physical properties of these
blends are often linked to those of each individual component;
however, it is hardly a linear sum-up, resulting in extra
complexity in predicting the blend properties compared with
their pure polymer counterparts.” > For instance, the glass
temperature (Tg) is an important parameter for evaluating the
dynamics of polymers or polymer blends. It was traditionally
believed that a miscible polymer blend possesses a single T,.
However, both a broadened Tgm’14 and two calorimetric
Tgsls_18 or two separate segmental processes that reflect the
component’s segmental dynamics have been reported in
miscible polymer blends. The presence of two distinct
segmental dynamics in a fully miscible polymer blend is
known by the term “dynamic heterogeneity”.' ™

The dynamic heterogeneity in a miscible polymer blend is
controlled by the dynamic asymmetry, i.e., the difference in the
glass temperatures of the parent homopolymers.'””"*~*!
Along these lines, Harmandaris et al. have reported a perfectly
miscible blend of polystyrene and oligostyrene that possesses
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large dynamic asymmetry as revealed both in dielectric
spectroscopy measurements and in the molecular dynamics
simulation.” The blend shows a bimodal segmental relaxation
process, implying dynamic heterogeneity.’

Bulk measurements of the dynamics in homopolymers reveal
the heterogeneous nature of the segmental dynamics as
evidenced by the broadening of the structural relaxation on
approaching T, from higher temperatures. Nonetheless, with
the exception of a few systems (poly(n-butylmethacrylate)
(PnBMA)), it is unknown how the heterogeneity can be
resolved because of spatial and temporal averaging in bulk
measurements. Single-molecule spectroscopy and microscopy
are able to provide information on structures and dynamics
with high spatial and temporal resolutions while avoid
ensemble averaging.””~>* Local dynamics of a polymer have
been studied by following the rotational diffusion of single
molecules embedded in a polymer matrix.””"*° The
reorientation of these embedded single molecules is largely
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derivative (PDI) dye molecule. (c) Schematic view of experimental samples. (d) Typical defocused image of single PDI molecules embedded in a
PS/0S blend film with ~1 um defocusing toward the sample. (e) Transition dipole moment of a single PDI molecule presented by using in-plane
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Figure 1. (a) Chemical structure of polystyrene (PS, n & 56) and oligostyrene (OS, n = 3). (b) Chemical structure of the perylene diimide
angles as well as an averaged image for each row.
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Figure 2. Three typical rotational diffusion behaviors of single PDI molecules coexisting in all PS/OS blend films with different compositions at
296-315 K. (a—c) Trajectories of ¢, 6, and @ as a function of time and (d—f) the corresponding 3D projection maps. These trajectories and 3D
projection maps indicate the diffusion behaviors of a continuously rotating molecule (panels (a, d)), an intermittently rotating molecule (panels (b,
e)), and an immobile molecule (panels (¢, f)). The blue color is used to highlight the orientation states with a longer dwell time.

dependent on the dynamics of the surrounding polymer matrix Returning to the issue of dynamic heterogeneity in miscible
and thus can be used to probe the structural (segmental) polymer blends, nothing is known about the extent Of spatial
relaxation of the surrounding matrix at the nanometer scale. and temporal heterogeneities related to the individual
Particularly, the three-dimensional (3D) evolution of single- component dynamics. Given the mixing of segments within

. . L . . the relevant length scale (the Kuhn length according to the
molecule orientations can be visualized using single-molecule

self-concentration model of Lodge and McLeish),*” the
expectation is that spatial and temporal heterogeneities of
the individual components will be further enhanced.

In this work, we investigated the spatial and temporal
heterogeneities in thin blend films of polystyrene (PS) and

defocused wide-field fluorescence microscopy (SMDWM)

with a sub-micrometer spatial resolution,®*™***~% providing
a powerful tool for investigating spatial and temporal

heterogeneities related to the glass temperature.’"*
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Figure 3. Typical defocused wide-field fluorescence images of single molecules (a) in the pure PS films, (b) in the blend films of 75 wt % PS, and
(c) 25 wt % PS at a temperature of 296 K. These images are formed by accumulating 100 frames of respective defocused imaging sequences. (d—f)
3D projection maps of the orientation for the molecules circled in panels (a—c) over time. Orientations of each molecule every 50 ms are
represented by dots of a single color. These dots circled on the 3D projection maps in panels (e, f) indicate immobile molecules, while all other

dots indicate continuously rotating and intermittently rotating molecules.

oligostyrene (OS) that are dynamically heterogeneous by
means of SMDWM. By acquiring time-sequenced defocused
images, it was found that the single molecules embedded in the
blend film exhibit clearly different dynamical behaviors,
revealing spatial heterogeneity. In addition, the non-exponen-
tial characteristic of the rotational autocorrelation function of
these single molecules from this study indicates temporal
heterogeneity. To further examine the evolvement of the
heterogeneity, a temperature-dependent investigation was
carried out, revealing the temporal transitions between
different types of dynamical behaviors of the probe molecules.

B RESULTS AND DISCUSSION

PS/OS Blends and Defocused Imaging. The PS/OS
blends used in this work are composed of PS (M,, = 6140 ¢
mol™', D = 1.04) and oligomer OS (M,, = 370 g mol ™!, D =
1.00). The chemical structure of PS and OS is presented in
Figure la. The two components are perfectly miscible but with
very different Tis (difference in glass temperatures, AT, =122
K). This induces a strong dynamical asymmetry in the blends.
Blends were prepared in toluene with a PS to OS weight ratio
of 75:25, 50:50, or 25:75. The perylene diimide derivative
(PDI, chemical structure shown in Figure 1b) molecules were
then added as ogytical nanoprobes for long-period single-
molecule imaging.”"~****~* This mixture was subsequently
spin-coated onto a cleaned glass coverslip, obtaining a ~300
nm-thick PS/OS blend film (schematic image shown in Figure
1c). The details of the sample preparation are presented in the
Experimental Section.

3D orientation information of single PDI molecules can be
extracted from the defocused fluorescence images (a typical
defocused image shown in Figure 1d). As illustrated in the left
part of Figure le, the 3D orientation of a transition dipole can
be described using in-plane (¢) and out-of-plane () angles in
a polar coordinate system. The 3D angular displacement (@)
of a PDI molecule could be illustrated in this coordinate as
shown in the right part of Figure le. Defocused patterns of a

molecular transition dipole with various ¢ and 6 angles are
numerically obtained according to the reported model (Figure
1£).*° By comparing an acquired defocused pattern of a PDI
molecule with the simulated ones (pattern matching), the 3D
orientation of this molecule (¢ and @ angles) can be
determined (see the Experimental Section for details of
defocused imaging analysis).

Dynamical Behavior of Single Molecules in PS/OS
Blend Films. The 3D rotational motions of the embedded
single PDI molecules can thus be monitored as function of
time by analyzing the time sequenced defocused images, as
illustrated in Figure 2. Three types of rotational diffusion
behaviors were found in the blend films: continuous rotating,
intermittent rotating, and immobilized, which coexisted in all
blend films with different compositions and in a temperature
range of 296—315 K. The rotational behavior can be well
illustrated by the trajectories of ¢, 6, and @ as a function of
time, as well as the corresponding 3D projection maps, in
Figure 2. For a continuously rotating molecule, fast
consecutive reorientation of this probe molecule took place
with relatively large angular displacements and is barely
interrupted (the lowest part in Figure 2a). By projecting all
these molecular orientations on a 3D projection map, an
almost complete coverage of the angular space was observed
(Figure 2d). For an intermittently rotating molecule, it
switched between the "slow” (locked orientation, blue traces)
and the "fast” (large 3D angular displacement, red traces)
dynamical states intermittently, as shown in Figure 2b,e. For an
immobile molecule, it remained static in a single fixed
orientation throughout the whole measurement of several
hours, as shown in Figure 2¢f.

These immobile and continuously rotating dynamics
observed in the blend film are similar to those in pure PS
film and pure OS film under the same measurement
conditions, respectively. As shown in Figure S1, all probe
molecules in the bulk PS film kept immobile, while almost all
probe molecules in pure OS film kept rotating continuously.
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Figure 4. Statistics for the probabilities of (a) immobile molecules, (b) intermittently rotating molecules, and (c) continuously rotating molecules
in the blend films of 75, 50, and 25 wt % PS at 296, 300, 305, 310, and 315 K. (d) Rotational autocorrelation function of a single molecule in the
PS/0S blend films and a fitting with KWW stretched exponential function. (e) Arrhenius diagram for the PS/OS bend films with 75, 50, and 25 wt
% PS. The average rotational correlation times, <7.>, were obtained from ~100 molecules in each blend composition at each temperature,
respectively. (f) Calculated <fxyw> parameters obtained from the fitting of KWW stretched exponential functions.

Note that the experiment temperature (296—31S K) is far
below the T, (~358 K) of PS and is far above the T, (~236 K)
of OS. Therefore, no segmental relaxation is present in the
pure PS film while a homogeneous segmental relaxation is
present in the pure OS film.>> The presence of bimodal
relaxation times in the PS/OS miscible blend can be explained
with the self-concentration model.*”**™* According to this
model, the slow component forms a vitreous matrix with
intricate “cavities” in which the fast component is still mobile.
In addition, the local dynamics of the fast component in
polymer blends resembles that in pure polymers.”” It is
reasonable to argue that the PS component (slow component)
in the blend is frozen at the temperature of the measurement,
whereas the OS component (fast component) remains highly
mobile. In previous reports, the segmental relaxation of the fast
component under the constraint of the slow component (more
rigid) has been confirmed in a polymer blend using a
combination of dielectric spectroscopy and nuclear magnetic
resonance.”” Therefore, these continuously rotating (fast
dynamics) and immobile molecules (slow dynamics) are the
natural consequences from the respective local segmental
relaxations of OS and PS components in the surroundings of
PDI molecules.

Spatial Heterogeneity in PS/OS Blend Films. The
defocused images and corresponding 3D projection maps in
Figure 3 demonstrate the typical spatial heterogeneity
observed in single PS/OS blend films and illustrate how the
reorientation behaviors of the probe molecules are dependent
on the blend composition. The orientation evolutions of
randomly picked probe molecules that are highlighted with
circles of different colors in Figure 3a—c are plotted in the 3D
orientation projection maps in Figure 3d—f with corresponding

23934

colors. As a reference, the probe molecules embedded in a pure
PS film remained mostly immobile, as shown in Figure 3a,d.
Because of this immobility, the defocused patterns of the probe
molecules remained almost static and resulted in closely
clustered spots in the 3D-orientation projection for each of the
probe molecules. In contrast, the probe molecules’ reorienta-
tional behaviors in blend films are more dynamic and more
diverse. Figure 3b,c shows the accumulated defocused images
of randomly picked probe molecules in the blend films with 75
and 25 wt % PS. It is noteworthy that some defocused patterns
(molecules 3, 4, and 7 in Figure 3b) appear with closed circular
rings, similar to that in Figure 1f. Such patterns correspond to
the probe molecules that are rotating continuously during the
acquisition of an image frame, thus showing an averaged image
of various orientations. It was also found that the spatial
distribution of the continuously rotating, intermittently
rotating, and immobile molecules is random across the
whole blend films, indicating a prominent spatial hetero-
geneity. From the 3D projection maps shown in Figure 3e/f, it
can also be noted that there are significantly more rotating
molecules in the blend films with 25 wt % PS than that with 75
wt % PS. The statistical results on various rotating behaviors
will be presented in the following paragraphs.

Figure 4a—c represents the composition- and temperature-
dependencies of the appearance probabilities of immobile,
intermittently rotating, and continuously rotating molecules.
At a given blend composition and temperature, the statistical
data are obtained by analyzing ~300 molecules. It was found
that the occurrence probabilities of immobile molecules
strongly depend on the blend composition rather than on
temperature (Figure 4a). According to the self-concentration
model,” the local composition around any chosen segment is

https://dx.doi.org/10.1021/acsomega.0c03173
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always richer in same species because of chain connectivity.
Therefore, it is reasonable to believe that the immobile
molecules reside in a local PS-rich segment, freezing the
rotational mobility of probe molecules at 296—315 K. It is
therefore not surprising to find a high percentage (~67%) of
the probe molecules being immobile in the blend film with 75
wt % PS, as the higher coverage of PS-rich regions is a logical
consequence of the high PS content in the blend film. The
intermittently rotating molecules can be explained with the
self-concentration model of Lodge and McLeish.”” Because the
local compositions formed by OS-rich regions consist of a few
PS segments, the PS segments in the local compositions affect
the continuous rotation of probe molecules at the experimental
temperature, which leads to the intermittently rotating
behaviors.

In contrast, the occurrence probabilities of the continuously
rotating and intermittently rotating molecules depend not only
on the blend composition but also on the temperature (Figure
4b,c). Interestingly, these two modes can be switched when
varying the temperature of the PS/OS blend. As the
temperature increases, the occurrence probability of inter-
mittently rotating molecules decreases and the occurrence
probability of the continuously rotating one increases in the
same sample area, indicating that some of the probe molecules
switch from the intermittently rotating behavior to the
continuously rotating one at the elevated temperature. The
switching process can occur in the opposite direction by
decreasing the temperature. This thermal-driven switch implies
that these probe molecules locate in a “cooperative volume”
that is formed by the segments from both components. In this
cooperative volume, the segmental relaxation of OS
component is more effective in driving the rotation of probe
molecules at an elevated temperature, leading to a switching of
probe molecules from intermittent rotating to continuous
rotating. The temperature-dependent switching indicates a
possible alteration in local dynamics that is triggered by the
dynamic heterogeneity in the blends. For those molecules
rotating continuously at 296 K, they may locate in the local
compositions formed by OS-rich regions. Therefore, we can
conclude that the observed spatial heterogeneity is coupled
with the dynamic heterogeneity in PS/OS blends.

Temporal Heterogeneity in PS/OS Blend Films. To
further investigate the local relaxation dynamic in the PS/OS
blend films, the rotational correlation time (z,) of probe
molecules was estimated by fitting rotational autocorrelation
function with the Kohlrausch—Williams—Watts (KWW)
stretched exponential function, C(t) = exp [ — (t/Tww) "]
(see the Experimental Section for details) where Ty is the
decay constant, and Pyyw is the stretched exponent which
describes the width relaxation time distribution.”’ ~** Figure 4d
shows a typical autocorrelation curve of a rotating molecule,
and 7, was estimated to be 2.58 s (tiww = 1.33 s, fSww = 0.51)
by using the KWW function. Tables S1—S3 summarize the
averaged rotational correlation time (<z.>) of the molecules
embedded in PS/OS blends with PS percentages of 75, 50, and
25 wt %, respectively. The <7.> were determined by averaging
the 7, values obtained from nearly 100 molecules in a given
blend composition and temperature (the histograms of 7, are
presented in Figure S2). All continuously rotating molecules
and most intermittently rotating molecules were included in
this fitting. The values of <7,> show a clear temperature
dependency, as depicted in the Arrhenius plot in Figure 4e.
Note that the log(1/ < 7.(s) > ) values in the blend films with

75 and S50 wt % PS are slightly longer than that with 25 wt %
PS, indicating faster dynamics in the blend films with the
higher PS content. The faster dynamics corresponds to the
faster dynamics in the OS-rich segment (the fast component)
that are confined by the high percentage PS component (slow
component), in agreement with the literature.”***~>*

The dependency of the average stretched exponent
(<Prww>) on component and temperature is shown in Figure
4f. Prww describes the nonexponential behavior that is related
to the temporal heterogeneity of polymer blends. A smaller
Prww indicates a more pronounced temporal heterogeneity in
single-molecule spectroscopy.’” Note that <fgyw> in Figure 4f
is almost independent on temperature, and the standard
deviation of <fgww> is large at all temperatures. These
findings are similar to those observed in the poly(n-butyl
methacrylate) homopolymer near Tg.‘}’2 This temperature-
independent <S> suggests that the temporal heterogeneity
is less pronounced than the spatial heterogeneity within the
time scale of observation.>”

Discussion on the Difference between Single-Mole-
cule Data and Dielectric Spectroscopy Data. To further
understand the dynamics information in the PS/OS blends, the
correlation times for the fast and slow segmental dynamics at
the temperature range of 203—423 K were obtained by
dielectric spectroscopy. Compared with the results measured
with an ensemble averaging technique (dielectric spectroscopy,
as presented in Figure S3, see Supporting Information for
experimental details), the correlation times from SMDWM
measurements are much longer and show weak dependency on
the blend composition and temperature (Figure S4).

These differences can be explained by the following two
arguments. The first relates to the fact that the rotational
diffusions reflect the behaviors of all observed single molecules
and the correlation times were obtained from only a small
proportion of the molecules (the proportion was represented
by N as shown in Tables S1—S3). For example, for the blend
with 75% PS at 296 K, the correlation times were calculated
from the rotating molecules, which accounts for only ~25% of
all the probe molecules. The remaining molecules (~75%) are
immobile (67.5%, as shown in Figure 4a) or intermittently
rotating (~7.5%, due to that their autocorrelation function
does not show a full relaxation), which were excluded in the
calculation of correlation time. Therefore, the correlation times
obtained with SMDWM reveal only part of the blend
dynamics. The second argument relates to differences in the
characteristic length scales as probed by the different
techniques. In the miscible blends of PS/OS, the Kuhn
lengths for PS and OS are 1.48 and ~0.65 nm, respectively.’
Based on the self-concentration model,>® miscible blends can
be envisioned as uniformly distributed rigid balls (mainly
composed of PS) of 1.48 nm and fluid balls (mainly composed
of OS) of ~0.65 nm. The size of PDI probe molecules (~2
nm) exceeds the characteristic lengths of both PS and OS. As
we have shown earlier with respect to the PnBMA study”” with
the combination of DS and SMDWM, the larger size of the
probe molecule will sample differently the segmental dynamics
and results to a longer time scale. This is in line with the
observed longer correlation times in the SMDWM experiment.

Lastly, we note that the SMDWM results go beyond the
current models predicting miscible blend dynamics. Current
models of miscible blend dynamics consider fast and slow
relaxing components within the Kuhn volumes corresponding
to the low- and high-T, components, respectively. Here, the
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switching in the dynamics between the continuously and
intermittently rotating molecules at elevated temperatures and
its relation to the dynamic heterogeneity requires further
consideration by theory and experiment.

B CONCLUSIONS

In conclusion, the spatial and temporal heterogeneities in the
fully miscible blend films of PS and OS have been investigated
by monitoring the rotational diffusion of embedded probe
molecules with SMDWM. Three types of molecular behaviors
have been observed: immobilized, continuously rotating, and
intermittently rotating, and these behaviors distribute
randomly across the blend films, revealing spatial heterogeneity
that can be linked to differences in local compositions. The
immobilized mode is most likely associated with the PS-rich
regions, and the occurrence probability of it depends on the
blend composition rather than temperature. In contrast, the
occurrence probabilities of the continuously and the
intermittently rotating molecules are dependent on both the
blend composition and temperature. Remarkably, these two
modes can switch with temperature, indicating a possible
alteration in local dynamics that is triggered by the dynamic
heterogeneity in the blends. Additionally, the rotational
autocorrelation function reveals nonexponential characteristic
of temporal heterogeneity. Some of these features can be
qualitatively discussed with the help of the self-concentration
model. Our work demonstrates that SMDWM is a powerful
tool to study the complex dynamics in miscible polymer blends
and allows gaining a deeper understanding of spatial and
temporal heterogeneity in dynamically asymmetric yet fully
miscible blends.

B EXPERIMENTAL SECTION

Sample Preparation. The PS (M, = 6140 g mol™!, D =
1.04) and oligomer OS (M,, = 370 g mol™!, D = 1.00) were
purchased from Polymer Standards Service GmbH. The glass
temperatures (Tgs) of PS and OS were estimated to be ~358
and ~236 K, respectively, by differential scanning calorimetry
(Pyris1, Perkin-Elmer). The PS and OS blends were prepared
in toluene with a PS to OS weight ratio of 75:25, 50:50, or
25:75. The PDI dyes in toluene were added into the blend
solution, and then the blend solution was further diluted to 1
wt %. The blend films were made by spin-coating 1 wt %
blends with PDI dyes (~107° M) in toluene onto cleaned
cover glasses. The films were annealed for more than 3 h at
~373 K under vacuum to remove the residual solvent. The
elimination of the residual solvent is very critical. If not, the
PDI molecules undergo Brownian motion (translational
diffusion), making it impossible to obtain the correct dynamics
information of polymer blends. The samples were measured
within one day after preparation. The thickness of the PS/OS
blend films was estimated by an atomic force microscope.

Experimental Setup and Procedures. An inverted
microscope (IX71, Olympus) equipped with an oil immersion
objective (Plan Fluorite, Olympus, 1.3-N.A. 100X) and an
EMCCD camera (ImagEM, Hamamatsu) was used to perform
the defocused wide-field fluorescence imaging. The excitation
light from a $32 nm laser (gem$32-smd6000, Laser Quantum)
was circularly polarized by using 4/2 and 1/4 waveplates.
Fluorescence of single molecules was collected by the same
immersion objective and then passed through a dichroic mirror
(2532rdc, Chroma Technology Co.) and a long pass filter

(HQS42LP, Chroma Technology Co.). An additional lens was
used to further magnify the image by 3.3 times, and therefore
an imaging view of 24.6 X 24.6 yum?® is obtained. A quasi total
internal reflection mode (qTIRF) has been employed to
enhance the excitation of molecules oriented along the z-axis.
The excitation field contains only a limited contribution of
radial or z-polarized light when using a standard Kohler
illumination.”” A mantle around the objective and microscope
stage was applied to control the temperature during measure-
ments along with a thermostat water bath. To reduce the effect
of refractive index change with temperature, different types of
immersion oils were used below and above 310 K (DF and
type-37, Electron Microscopy Sciences).

The measurements were performed starting from 315 K and
cooling down with S K temperature steps. At each temper-
ature, the sample was incubated for at least 2 h before
measurements. In order to reduce photo-bleaching of single
molecules, the samples were measured under nitrogen. To
perform defocused imaging, the wide-field system has been
modified by working slightly out of focus with ~1 um
defocused distance. Sequences of defocused images have been
recorded up to 5000—10,000 frames with integration times
between 30 and 100 ms. A home-built MatLab routine was
used to analyze the resulting defocused images according to
the theoretical model.***®

Details of Defocused Imaging Analysis. The defocused
images were analyzed by a pattern matching routine written in
MatLab.*"***%%* The defocused image patterns are roughly
matched with the calculated patterns every 10 degrees in- and
out-of-plane, and then the orientation was further matched by
varying one degree in the in-plane and out-of-plane
orientations. The defocused patterns of the single molecules
in the film depend on the z-position. For single molecules with
different defocused distances, the corresponding pattern matrix
is generated for the fitting (see Supporting Information for
details). The in-plane (¢) and out-of-plane (6) angles are used
to express the 3D orientation of the transition dipole moment
of a single molecule. Note that the z-axis is parallel to the
optical axis and the x—y plane is the sample surface. The 3D
angle displacement is defined by,

@ = arccos (n(t)-n(t + 5t)) (1)

where n(t) is the unit orientation vector of the transition
dipole moment at time t and 6t is the time interval between
consecutive images.

The rotational correlation time was obtained by fitting
autocorrelation functions of <cos®> with the Kohlrausch—
Williams—Watts (KWW)-stretched exponential function,

C(t) = expl—(t/Tyyw) ] @)

where Tiyw is the decay constant and Py is the stretched
exponent, which describes the width of the distribution of
relaxation times. Byyw = 1 corresponds to a single exponential
decay. The correlation time 7. can be calculated by the
following equation,

TCI/ C(t)dt:TMF(l)
0 po\p (3)

where I denotes a gamma function.
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