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THE BOUNDED HEIGHT CONJECTURE FOR SEMIABELIAN

VARIETIES

LARS KÜHNE

Abstract. The Bounded Height Conjecture of Bombieri, Masser, and Zannier states that
for any sufficiently generic algebraic subvariety of a semiabelian Q-variety G there is an
upper bound on the Weil height of the points contained in its intersection with the union of
all algebraic subgroups having (at most) complementary dimension in G. This conjecture
has been shown by Habegger in the case where G is either a multiplicative torus or an abelian
variety. However, there are new obstructions to his approach if G is a general semiabelian
variety. In particular, the lack of Poincaré reducibility means that quotients of a given
semiabelian variety are intricate to describe. To overcome this, we study directly certain
families of line bundles on G. This allows us to demonstrate the conjecture for general
semiabelian varieties.

A generalization of the classical Manin-Mumford conjecture is the following theorem, which
was proven by Raynaud [51, 52] for abelian varieties, by Laurent [39] for algebraic tori, and
by Hindry [26] in general. We recall that a semiabelian variety G over a field k is a connected
smooth algebraic k-group that is the extension of an abelian variety by a torus.

Theorem 1. Let G be a semiabelian variety over Q with torsion points Tor(G) ⊆ G(Q). For
any algebraic subvariety X of G, there are finitely many connected algebraic subgroups Gi of
G and finitely many torsion points xi ∈ Tor(G) such that

⋃n
i=1(Gi + xi) is the Zariski closure

of X ∩ Tor(G).

More recently, another type of intersections in semiabelian varieties has been widely stud-
ied. These intersections are with algebraic subgroups instead of torsion points. Of course,
investigating the intersection of X with a single such subgroup is a dreary task. However, very
interesting phenomena appear when intersecting X ⊆ G with the countable union G[s] of all
algebraic subgroups having codimension ≥ s for some fixed integer s.

Since the pioneering work of Bombieri, Masser, and Zannier [5] in this direction, two choices
of s are of paramount importance. If s = dim(X) + 1, an algebraic subgroup H ⊂ G of
codimension ≥ s usually does not meet X at all. The intersection X∩G[s] may nevertheless be
dense in the Zariski topology – even in generic cases. If X is not contained in a proper algebraic
subgroup of G, conjectures of Pink [50] and Zilber [68] imply that this never happens. Such
statements about “unlikely intersections” are still unsettled problems, on which the reader
finds a comprehensive overview in [67]. This article treats the other important and related
case where s = dim(X). In this case, a generic subgroup H ⊂ G of codimension ≥ s intersects
X already in finitely many points, and X ∩G[dim(X)] can be dense with respect to the Zariski
topology of X . The gist of the Bounded Height Conjecture (BHC) stated below is that the
Weil height of the Q-points in X ∩G[dim(X)] should be nevertheless bounded from above.

In order to state this conjecture, we have to introduce some additional notions to tackle also
non-generic cases. A closed irreducible subvariety Y ⊆ G is called s-anomalous if there exists
a connected algebraic subgroup H ⊆ G satisfying

(1) max{0, s− codimG(H)} < dim(Y )
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and a point y ∈ Y (Q) such that Y ⊆ H + y (i.e., Y is contained in a translate of H). In
this situation, we say that Y is associated with H . By X(s) we mean the union of all positive
dimensional closed irreducible s-anomalous subvarieties contained in X . It is a corollary of
Kirby’s work [30] that X(s) (resp. X \X(s)) is a Zariski closed (resp. Zariski open) subset of X
(cf. [12, Proposition 2.6]). In addition, a proof allowing to determine X(s) effectively was given
by Bombieri, Masser, and Zannier [6] for tori and carried over to abelian varieties by Rémond
[55].

Let now G be a semiabelian variety over Q and X a closed irreducible subvariety of G. To
be able to work with heights, we choose a compactification G of G (i.e., an open immersion
G →֒ G such that G is proper). Let L be a line bundle on G of G. Finally, let hL : G(Q) → R

be a Weil height associated with L. We can now state the

Bounded Height Conjecture (BHC). The height hL is bounded from above on the set
(X \X(dim(X)))(Q) ∩G[dim(X)](Q).

This conjecture was first proposed by Bombieri, Masser, and Zannier [6] in the case where
G is an algebraic torus. Even before this, they had provided a proof if G is an algebraic torus
and X is a curve [5]. The extension of their conjecture from tori to semiabelian varieties is
merely formal and can be found in Habegger’s article [23], where a proof of the BHC for abelian
varieties is given. It is also envisaged in [12, Théorème 1.4]. This extension is in fact natural
as semiabelian varieties have proven to be the right object for many standard conjectures
in diophantine geometry (e.g. Manin-Mumford, Mordell-Lang, Bogomolov). In addition, they
appear naturally as Jacobians of semistable curves (cf. [8, Example 9.2.8]) like abelian varieties
do for smooth curves so that they still retain a connection with the original study of rational
points on curves. We also mention intermediate results in the direction of the BHC given by
Bombieri, Masser, and Zannier [7], Maurin [42, 43], Viada [59], and Zannier [66]. Finally, let
us indicate that the conjecture becomes quite generally false if dim(X) is replaced with any
s < dim(X).

In parallel to his work on the BHC for abelian varieties, Habegger [24] obtained a complete
proof of the conjecture for tori. Regarding the general case of the BHC, no further progress
was made since his two breakthrough articles [23, 24]. In fact, several additional problems
precluded further generalizations up to now. These problems originate from the “mixed”
nature of semiabelian varieties (i.e., the additional structures induced by the non-triviality of
the extension constituting the semiabelian variety). The aim of this article is to solve these
problems. Its main result, Theorem 2 below, yields the BHC in general. In line with [23],
we actually prove a stronger version of the BHC here. To announce it, we introduce certain
“height cones”; for each subset Σ ⊂ G(Q) and each real number ε > 0, we define such a height
cone by setting

(2) C(Σ, hL, ε) =
{
x ∈ G(Q) | ∃ a ∈ Σ, b ∈ G(Q) : x = a+ b and hL(b) ≤ εmax{1, hL(a)}

}
.

Theorem 2. Let G be a semiabelian variety and G a compactification endowed with an ample
line bundle L. Furthermore, let X be a closed subvariety of G. In addition, assume that G, G,
L, and X are defined over Q. Let hL be a Weil height associated with L. For each integer s,
there exists some ε > 0 such that hL is bounded from above on (X\X(s))(Q)∩C(G[s](Q), hL, ε).

The above Theorem 2 is proven in the course of Section 7. We sketch the proof to compare
our approach with the one of Habegger from [23, 24]. However, not all new obstructions are yet
present in this case (see Section 8 and the more involved Example 32 in particular). Ignoring
some preliminary reductions (Section 7.1), the proof consists of three major steps, which we
outline successively in the following.

In the first step (Section 7.2), we pass from algebraic subgroups H to a family of Q-
line bundles parameterized by bounded subsets K in a (subcone of a) finite-dimensional Q-
vector space VQ. This means that with each point φ ∈ VQ is associated an element of
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PicQ(Gφ) = Pic(Gφ)⊗Z Q for some compactification Gφ of G, which usually depends itself on
φ. Subsequently, we use the boundedness of K to approximate its members by finitely many
Q-line bundles on various compactifications of G (Lemma 25). In order to reduce book-keeping
to a minimum while still presenting the main new ideas, we let E be an elliptic curve and as-
sume for now that G is the extension of E2 by a 2-dimensional torus G2

m. Even more, we
consider only 2-dimensional subgroups H ⊂ G[2] that are extensions of E by a 1-dimensional
torus Gm.

To start with, we replace the subgroups H ⊂ G[2] under consideration by their associated
quotients πH : G → G′ = G/H . A point x ∈ G(Q) lies on a subgroup H if and only if it is

contained in the kernel of πH . One can choose compactifications G, G
′
of G, G′, an algebraic

map πH : G → G
′
extending πH , and an ample line bundle L′ on G

′
such that x ∈ ker(πH)

implies

(3) ĥπ∗
HL

′(x) = 0

where ĥπ∗
HL

′ : G(Q) → R is the Néron-Tate height associated with the line bundle π∗
HL

′ (see
Section 3 for this notion).

Let us first consider exclusively the case where G is the trivial extension G2
m × E2. All

quotients of G are then likewise trivial extensions; this allows us to restrict to surjective ho-
momorphisms ϕ : G → G′ = Gm × E. Any such homomorphism extends to an algebraic map

ϕ : GΓ(ϕtor)
→ G

′
= P1 ×E for some “graph” compactification GΓ(ϕtor)

of G (see Construction

7). Fixing once and for all an ample line bundle L′ on G, each ϕ ∈ V = Hom(G,G′) yields a

line bundle ϕ∗L′ ∈ Pic(G
Γ(ϕtor)

). Homogenity allows us to associate also a Q-line bundle φ
∗
L′

with each quasi-homomorphism

φ ∈ VQ = HomQ(G,G
′) = Hom(G,G′)⊗Z Q;

to be precise, we have φ
∗
L′ ∈ PicQ(GΓ(n·φtor)

) = Pic(GΓ(n·φtor)
)⊗Z Q with n being a denomi-

nator of ϕ (i.e., n is an integer such that n · φ ∈ Hom(G,G′)). In this way, we obtain a Q-line
bundle for each point of V . Let V ◦ ⊂ V be the subset of “surjective” quasi-homomorphisms
(i.e., those elements φ ∈ HomQ(G,G

′) for which there exists an integer n ≥ 1 such that n · φ
is a surjective homomorphism G→ G′).

For our purposes, some manipulation of homomorphisms (cf. Lemma 24) allows to further
restrict to a bounded subset K ⊂ V ◦ such that the distance between K and V \ V ◦ (with
respect to any linear norm on V ) is strictly positive. This allows us to eventually arrange
for the following assertion, which corresponds to our Lemmas 25 and 26: For each δ > 0,
there exist finitely many “surjective” quasi-homomorphisms φ1, . . . , φK ∈ V ◦ and a constant
c(δ) > 0 such that, for every x ∈ H ⊂ G[2](Q) with H as above, we have

(4) ĥ(φk)∗L′(x) ≤ δĥL(x) + c(δ)

for some k ∈ {1, . . . ,K}. Comparing this inequality with (3), we notice that passing to a

finite family of Q-line bundles worsens the bound but that the dependence on ĥL(x) can be
curbed by choosing δ sufficiently small. So far, this is just Habegger’s argument as in [23, 24],
although the focus in his work is more on HomQ(G,G

′) than on the associated Q-line bundles
on compactifications of G.

Every split semi-abelian variety can be essentially treated in this way, relying solely on quasi-
homomorphisms. For general extensions G ∈ Ext1(E2,G2

m), however, a shift to Q-line bundles
instead of quasi-homomorphism becomes essential. Indeed, the quotients of such a semiabelian
variety G regularly fall into infinitely many different isogeny classes; compare the footnote
on p. 29 for the simpler case Ext1(E,G2

m). This means that a basic premise of Habegger’s
approach is not satisfied for general extensions. In fact, repeating the above procedure does
not lead to finitely many line bundles. Consequently, it does not yield an inequality like (4)
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with a uniform constant c(δ). To circumvent this problem, we define suitable Q-line bundles
directly on G. These should generalize pullbacks of line bundles along quasi-homomorphisms.

There are some indications on how to write down such line bundles. First, it is a well-
known fact that a homomorphism ϕ between semiabelian varieties is describable in terms of the
induced homomorphism ϕtor between their maximal subtori and the induced homomorphism
ϕab between their underlying abelian varieties (see Lemma 1). In the situation above, it is
hence natural to consider a family of Q-line bundles parameterized by the Q-vector space

VQ = HomQ(G
2
m,Gm)×HomQ(E

2, E),

though not every pair (φtor, φab) ∈ V comes from an actual quasi-homomorphism between
semiabelian varieties. Second, a result of Knop and Lange [33, Theorem 2.1] states that
linearized line bundles on compactifications of G retain a “product-like” shape even if G is a
non-trivial extension and there is no section G→ G2

m of the inclusion G2
m →֒ G.

The already mentioned results of Section 2 (especially Construction 6) allow us to define for
each (ϕtor, ϕab) in

V = Hom(G2
m,Gm)×Hom(E2, E)

a compactification GΓ(ϕtor)
of G, which only depends on (the graph of) ϕtor : G

2
m → Gm, and

a Q-line bundle L(ϕtor,ϕab) on GΓ(ϕtor)
. For each homomorphism ϕ : G → G′ with restriction

ϕtor : G
2
m → Gm to maximal subtori, there furthermore exists an extension ϕ : GΓ(ϕtor)

→ G
′

such that ϕ∗L′ = L(ϕtor,ϕab) for some ample line bundle L′ on G
′
. The line bundles L(ϕtor,ϕab)

play a prominent role in our proof, generalizing the pullbacks ϕ∗L′ from the split case G =
G2
m × E2. Surprisingly, there is neither need for a homomorphism ϕ : G → G′ nor for a

semiabelian variety G′ to define them. Naturally, some checking is necessary to guarantee that
they simulate pullbacks along homomorphisms sufficiently well (see e.g. Lemmas 10, 11 and
12).

For the next two steps of the proof, we can revert to the general case of Theorem 2. In the
second step of the proof (Section 7.3), we establish two concurring height bounds similar to
[23, 24]. However, the non-homogenity of the canonical height on semiabelian varieties, which
decomposes into a linear and a quadratic part, is yet another problem. A sensible choice of line
bundles is needed to counterbalance this in the height estimates (cf. the proof of Lemma 26).
The first of the two said height bounds is similar to (4). The second opposing height bound is a
consequence of Siu’s numerical bigness criterion ([58, Corollary 1.2]). To apply Siu’s criterion,
we need to estimate two types of intersection numbers related to the line bundles L(ϕtor,ϕab)

and the Zariski closure of X in G
Γ(ϕtor)

(Lemma 28). Subject to sufficiently strong estimates

on these intersections numbers (as stated in Lemmas 29 and 30), we already finish the proof
of Theorem 2 at this point by combining the two opposite height bounds.

In the third and last step of our proof (Section 7.4), we estimate these intersection numbers.
Homogeneity, or the lack hereof, is once again an issue. Serious difficulties seem to arise
when trying to obtain lower bounds on intersection numbers by counting torsion points as
in [23, 24]. Although some technical tools such as [23, Proposition 3] were already written
up more generally than strictly necessary in order to foster future generalizations, it is not
clear whether this can be done at all. Therefore, we provide an alternative to this argument
(Lemma 29) based on hermitian differential geometry (see also Sections 4 and 6 for details). In
fact, this alternative is strikingly simple in the special case of abelian varieties treated in [23].
We obtain the sought-after lower bounds on intersection numbers by integrating appropriately
chosen (1, 1)-forms. These (1, 1)-forms are defined in Section 5 as real interpolations of Chern
forms associated with specific hermitian metrics on the line bundles L(ϕtor,ϕab). On the level of
(1, 1)-forms, balancing the different homogeneities of the “toric” and “abelian” contributions
is an easy task (see e.g. our definition (66)).
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Whereas the definition of the used (1, 1)-forms and the verification of their basic properties
is almost trivial for abelian varieties (Section 5.2), tori and hence general semiabelian varieties
demand considerably more work (Section 5.1). The reason for this is that any invariant hermit-
ian metric on the line bundles under consideration is merely continuous and leads to a singular
Chern current supported on the maximal compact subgroup KG ⊆ G(C) (see e.g. [11, Lemme
6.3]). A singular Chern current being detrimental for the application of Ax’s Theorem [1] in
Section 6, we have to work with a less natural non-invariant hermitian metric instead. For the
Chern forms associated to such a metric, establishing some natural properties is a non-trivial
task; the reader may compare the proof of Lemma 17 with the evident relation (39).

It should be mentioned that Chern forms were also used by Maurin [43], Rémond [55], and
Vojta [62] to control intersections numbers appearing in diophantine geometry. In particular,
both [43] – in the case of tori – and [62] – in the case of semiabelian varieties – endow line
bundles with non-invariant hermitian metrics. Apart from this, it seems that the overlap of
their work with our Sections 5 and 6 is rather narrow. It is nevertheless noteworthy that Ax’s
Theorem plays an essential role here as it does in the work of Habegger [23, 24] and Rémond
[55]. In contrast to Lemma 29, our proof of the supplementary upper bounds on intersection
numbers in Lemma 30 uses algebraic intersection theory [17] to avoid problems steming from
the non-compactness of G.

Finally, it should be mentioned that a previous announcement [36] stated a non-optimal
version of the first step in the proof of Theorem 2. This included a non-effective compactness
argument ([36, Lemma 2]), which is replaced here by the simpler Lemma 25. The improve-
ment is due to the systematic avoidance of quasi-homomorphisms. Related to this is our
Section 8. Not being logically necessary for the main proof, it illustrates why a direct use
of quasi-homomorphisms as in [23, 24] proves difficult. Quintessentially, the surjective quasi-
homomorphisms from a fixed semiabelian variety G to other semiabelian varieties are more or
less parameterized by the Q-points of certain algebraic varieties (Theorem 3). However, these
varieties are generally rather complicated. This is in stark contrast to the special cases of both
tori and abelian varieties, where they are just affine linear spaces. Since the set of quotients,
or dually the set of algebraic subgroups, of a fixed semiabelian variety G is interesting in var-
ious situations beyond the results of this article (e.g., in the Manin-Mumford conjecture or
more generally in the Zilber-Pink conjectures), adding these findings here seemed beneficial to
further investigations. To my knowledge, neither a statement like Theorem 3 nor an explicit
non-rational counterexample as in Example 32 is anywhere mentioned, or even hinted at, in
the literature so far.

It may well be that the general framework of our method (i.e., the use of bounded families of
Q-line bundles in combination with real interpolations of Chern forms) gives also some leeway
in problems where no group structure is present.

Notations and conventions. Algebraic Geometry (General). Denote by k an arbitrary
field. By a k-variety, we mean a reduced scheme of finite type over k. By a subvariety of a
k-variety we mean a closed reduced subscheme. Note that a subvariety is determined by its
underlying topological space and we frequently identify both. The tangent bundle of a k-variety
X is written TX and its fiber over a point x ∈ X(k) is denoted by TxX . Furthermore, Xsm

denotes the smooth locus of X .
Meromorphic functions. For every k-varietyX , we write KX for the sheaf of its meromorphic

functions (cf. [41, Definition 7.1.13]). With each meromorphic function f ∈ Γ(X,KX), we
associate the complement D(f) of its zero set (i.e., those points x ∈ X such that fx /∈ mxOX,x).

Products and projections. For any product Y1 ×k · · · ×k Ym of algebraic varieties, we write
pri (i = 1, . . . ,m) for the projection Y1 ×k · · · ×k Ym → Yi without further specification of the
varieties Yi. This leads to multiple different usages of the same notation pri, sometimes close
to each other. However, this should nowhere cause confusion if context is taken into account.
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Algebraic groups. An algebraic k-group is a group scheme of finite type over Spec(k). We
refer to [18, Exposé VIA] for the basic properties of algebraic k-groups. An algebraic k-subgroup
of an algebraic k-group G is a k-subscheme H such that the group law of G induces a group
law on H . Note that H is necessarily Zariski closed in G ([18, Corollaire VIA.0.5.2]) and of
finite type over Spec(k). Left-multiplication by an element g ∈ G(k) is written lg : G → G.
More generally, we use the same notation lg for the left-multiplication with respect to an action
G×X → X .

A split k-torus is an algebraic k-group that is isomorphic to some direct product of copies
of multiplicative groups Gm. A k-torus is an algebraic group G such that its base change Gksep

to the separable closure ksep of k is a split torus. A linear k-algebraic group is an algebraic
k-group whose underlying scheme is both affine and connected.

For fixed algebraic k-groups G1 and G3, the isomorphism classes of Yoneda extensions

(5) 0 G1 G2 G3 0

form an abelian group Ext1k(G1, G3) with respect to Baer summation (cf. [49, Section I.3]).
We write [n]G for the multiplication-by-n map on any commutative algebraic group G. The

notation ·G : G×G→ G is used for the group law of G and eG : k → G denotes the identity of
G. We omit the reference to G in these notations when this group can be inferred from context.
We write A∨ for the dual abelian variety associated with an abelian variety A. Pulling back
line bundles along a homomorphism ϕ : A → B induces a homomorphism ϕ∨ : B∨ → A∨ of
the associated dual abelian varieties.

Line bundles and linearizations. Line bundles are denoted by capital italic letters L,M, . . .
whereas the corresponding calligraphic letters L,M, . . . are reserved for the invertible sheaves
formed by their sections. The line bundle dual to L is written L∨. In the situation where we
have an algebraic groupG acting on a schemeX , we use Mumford’s definition of G-linearization
([46, Definition 1.6]) for general OX -modules. For an invertible sheaf L on X , a G-linearization
corresponds to an action ̺ : G× L→ L such that the projection L→ X is G-equivariant. We
refer to [46, Section 1.3] for details. Given a G-linearized line bundle (L, ̺) we write (L, ̺)⊗n

for the line bundle L⊗n with the T -linearization induced by ̺. If ϕ : H → G is a homomorphism
from another algebraic group H , Y a scheme with H-action and f : Y → X a ϕ-equivariant
algebraic map, we write f∗(L, ̺) for the line bundle f∗L with the induced H-linearization. For
a G-equivariant closed immersion ι : Y →֒ X , we also write (L, ̺)|Y instead of ι∗(L, ̺).

Chern classes. With a line bundle L on a projective variety, we associate a first Chern
class c1(L) in the sense of [17]; we refer the reader to there for an exposition on the basic
properties of Chern classes and the basic intersection theory we are using. We denote by [X ]
the k-cycle class associated with an irreducible algebraic variety X of dimension k (in some
ambient projective variety).

Complex points and analytifications. Throughout this article, we choose once and for all an
embedding Q →֒ C. For every Q-variety X , we consider its complex points X(C) as a complex
(analytic) space (see [19] for this notion), the analytification of X . By our above convention
on varieties, X(C) is in fact reduced.

Complex spaces, differential forms, and currents. Let S be a reduced complex (analytic)
space. Recall that this means that S is locally biholomorphic to a closed analytic subvariety V
in a complex domain U ⊂ Cn. A function f on S is smooth (resp. holomorphic, meromorphic)
if, for each such sufficiently small local chart, it is the restriction of a smooth (resp. holomorphic,
meromorphic) function on U . In the same way, we use local charts to define plurisubharmonic
functions on S as restrictions.

Similarly, a smooth differential form ω on S is a differential form on the smooth locus Ssm

of S with the following additional property: S can be covered by local charts V ⊂ U ⊂ Cn as
above such that for each such chart the differential form ω|V sm is the restriction of a smooth
differential form on U . There are also well-defined linear operators d and dc = i/2π(∂ − ∂)
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on the smooth differential forms on S. For each local chart V ⊂ U ⊂ Cn, these are simply
the restrictions of the operators of the same name on Cn. A differential form ω on S is called
closed (resp. exact) if dω = 0 (resp. there exists a differential form ω′ on S such that dω′ = ω).

A line bundle L over S is a complex analytic space over S such that S can be covered by
open subsets U with L|U = U ×C. A smooth hermitian metric on L is a smooth (in the above
sense) function ‖ · ‖ : L→ R whose restriction to each fiber over S is a hermitian metric. With
such a metric, we can define a Chern form c1(L, ‖·‖) in the usual way; if s : U → L is a non-zero
holomorphic section over some open subset U ⊂ S, we set c1(L, ‖ · ‖)|U = ddc(− log ‖s‖). This
construction yields a smooth differential form c1(L, ‖ · ‖) on S.

1. Preliminaries on Semiabelian Varieties

1.1. Basics. Recall that a semiabelian variety G over k is a connected smooth algebraic k-
group that is the extension

(6) 0 T G A 0

of an abelian variety A by a torus T . Any homomorphism from a smooth linear algebraic group
to an abelian variety is the zero homomorphism (see e.g. [13, Lemma 2.3]). Therefore, any
smooth linear algebraic subgroup of Gmust be contained in T . It follows that T is the maximal
smooth linear algebraic subgroup of G. We hence call T the toric part of G and G→ G/T = A
(or just A) the abelian quotient of G. For a semiabelian variety G over k, we write ηG for the
Yoneda extension class in Ext1k(A, T ) described by (6). Each homomorphism ϕ : A→ B (resp.
ϕ : T → S) of abelian varieties (resp. tori) induces a pullback ϕ∗ : Ext1k(B, T ) → Ext1k(A, T )
(resp. a pushforward ϕ∗ : Ext1k(A, T ) → Ext1k(A,S)).

The Weil-Barsotti formula (see [49, Section III.18] or the appendix to [45]) gives a canonical
identification Ext1k(A,Gm) = A∨(k). If T is split (i.e., T = Gtm) we make frequent use of the
identify Ext1k(A,G

t
m) = Ext1k(A,Gm)t = (A∨)t(k). The pullback

(7) ϕ∗ : Ext1k(B,G
t
m) −→ Ext1k(A,G

t
m)

along a homomorphism ϕ : A → B corresponds to the t-fold product ϕ∨ × · · · × ϕ∨ of the
dual morphism ϕ∨ : B∨ → A∨. Pushforwards also allow a simple description. Indeed, let ϕ :
Gtm → Gt

′

m be the homomorphism described by ϕ∗(Yv) =
∏t
u=1X

auv
u in standard coordinates

X1, . . . , Xt (resp. Y1, . . . , Yt2) on Gtm (resp. Gt
′

m). Then, the pushforward

(8) ϕ∗ : Ext1k(A,G
t
m) −→ Ext1k(A,G

t′

m)

corresponds to the homomorphism (A∨)t → (A∨)t
′

sending (η1, . . . , ηt) to (
∑t

u=1 auvηu)1≤v≤t′ .
As for abelian varieties, one calls two semiabelian varieties G,G′ isogeneous if there exists

an isogeny G→ G′ (i.e., a surjective homomorphism G→ G′ with finite kernel). Evidently, the
multiplication-by-n homomorphism [n] of a semiabelian variety is an isogeny. As for abelian
varieties, this yields an equivalence relation on semiabelian varieties.

Finally, we note that quotients as well as smooth algebraic subgroups of a semiabelian
variety are themselves semiabelian varieties (cf. [9, Corollary 5.4.6]). In particular, the algebraic
subgroups appearing in Theorem 2 are all semiabelian varieties because a well-known result
of Cartier ([18, Corollaire VIB.1.6.1]) states that all algebraic k-groups are smooth if k has
characteristic 0.

1.2. Homomorphisms and quasi-homomorphisms. We recall the fundamental result on
homomorphisms between semiabelian varieties.

Lemma 1. Let G (resp. G′) be a semiabelian variety over k such that A (resp. A′) is the
abelian quotient and T (resp. T ′) is the toric part of G (resp. G′). For any homomorphism
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ϕ : G→ G′ there exist unique homomorphisms ϕtor : T → T ′ and ϕab : A→ A′ such that

(9)

0 T G A 0

0 T ′ G′ A′ 0

ϕtor ϕ ϕab

is a homomorphism of exact sequences. Furthermore, the induced map

(10) Hom(G,G′) −→ Hom(T, T ′)×Hom(A,A′), ϕ 7−→ (ϕtor, ϕab),

is an injective homomorphism with image

(11) {(ϕtor, ϕab) ∈ Hom(T, T ′)×Hom(A,A′) | (ϕtor)∗ηG = (ϕa)
∗ηG′ in Ext1k(A, T

′)}.

This lemma is well-known in the literature (see e.g. [2] or [60]). In fact, the existence of a pair
(ϕab, ϕtor) follows directly from the fact that any map from a smooth linear algebraic group
to an abelian variety is zero ([13, Lemma 2.3]) and its uniqueness is obvious. The remaining
assertions can be shown by standard homological algebra in the category of commutative
algebraic k-groups, which is abelian by a result of Grothendieck [18, Théorème VIA.5.4.2]. By
the snake lemma, the homomorphism ϕ is surjective (resp. an isogeny) if and only if both ϕtor

and ϕab are surjective (resp. isogenies). All of this is contained in [56, Chapter VII], described
in a pre-schematic language.

In the situation of Lemma 1 we call ϕtor (resp. ϕab) the toric (resp. abelian) component
of ϕ. In addition, we say that ϕ is represented by the pair (ϕtor, ϕab) and, conversely, that
(ϕtor, ϕab) represents ϕ. We state an immediate consequence of Lemma 1 for later reference
as a separate lemma.

Lemma 2. Assume that k is algebraically closed. Let G be a semiabelian variety over k
with abelian quotient A and toric part Gtm. For every homomorphism ϕtor : G

t
m → Gt

′

m and
every isogeny ϕab : A → B there exists a semiabelian variety G′ over k and a homomorphism
ϕ : G→ G′ represented by (ϕtor, ϕab).

Proof. Write (ϕtor)∗ηG = (η′′1 , · · · , η
′′
t′) ∈ (A∨)t

′

(k). Since ϕ∨
ab : B∨ → A∨ is an isogeny

(cf. [47, Remark (3) on p. 81]), there exist η′i ∈ B∨(k) such that η′′i = ϕ∨
ab(η

′
i). Let G′ be

the semiabelian variety described by ηG′ = (η′1, . . . , η
′
t′) ∈ (B∨)t

′

(k) = Ext1k(B,G
t′

m). As
(ϕtor)∗ηG = (ϕab)

∗ηG′ , there exists a homomorphism ϕ : G → G′ representing (ϕtor, ϕab) by
Lemma 1. �

We need to work also with quasi-homomorphisms of semiabelian varieties. First of all,
note that for any semiabelian varieties G and G′ the Z-module Hom(G,G′) of homomor-
phisms is torsion-free. Indeed, this is true for both tori and abelian varieties so that we
may infer the general case from Lemma 1. By quasi-homomorphisms we mean the elements
of HomQ(G,G

′) = Hom(G,G′) ⊗Z Q. In analogy to actual homomorphisms, each quasi-
homomorphism is denoted in the form φ : G→Q G

′. By tensoring (10) with Q, we can also as-
sociate with each quasi-homomorphism φ : G→Q G

′ uniquely a toric component φtor : T →Q T
′

and an abelian component φab : A →Q A′. With each quasi-homomorphism φ : G →Q G′ we
can associate a “kernel up to torsion” ker(φ) + Tors(G) in the following way: Let n be a de-
nominator of φ (i.e., n · φ ∈ Hom(G,G′)) and set ker(φ) + Tors(G) = ker(n · φ) + Tors(G).
Additionally, we say that φ is surjective if n · φ is. These definitions are clearly independent of
the chosen denominator n. Albeit a quasi-homomorphism φab ∈ HomQ(A

′, A) does not induce
a pullback as in (7), it gives rise to a homomorphism

(φab)
∗,Q : Ext1k(A,G

t
m)Q = (A∨(k)⊗Z Q)t −→ ((A′)∨(k)⊗Z Q)t = Ext1k(A

′,Gtm)Q.

Similarly, a quasi-homomorphism φt ∈ HomQ(G
t
m,G

t′

m) induces a homomorphism

(φtor)∗,Q : Ext1k(A,G
t
m)Q = (A∨(k)⊗Z Q)t −→ (A∨(k)⊗Z Q)t

′

= Ext1k(A,G
t′

m)Q
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in place of (8).

2. Compactifications

To compactify semiabelian varieties we use a well-known construction proposed by Serre
(cf. [57, Section 3.2] and Serre’s appendix in [64]). Let G be a semiabelian variety over k
with split toric part T = Gtm and abelian quotient A.1 Furthermore, let T be a T -equivariant
compactification of T . This means that we are given a dense open immersion T →֒ T with T a
proper k-variety and that there is an extension ·T : T ×T → T of the group law ·T : T ×T → T .

We endow G×k T with the T -action given by

(12) t · (g, t) = (t ·G g, t
−1 ·T t), t ∈ T (S), t ∈ T (S), g ∈ G(S),

on S-points. It is well-known that the (categorical) quotient GT = G×kT/T in the category of
k-schemes exists and is a proper k-variety (see e.g. [16, 32]). In fact, there exists a (finite) Zariski
covering {Ui} ofA together with compatible T -equivariant trivializations φi : Ui×AG→ Ui×kT
over each Ui. The isomorphisms

φj ◦ φ
−1
i |(Ui∩Uj)×kT : (Ui ∩ Uj)×k T −→ (Ui ∩ Uj)×k T

determine sections tij ∈ Γ(Ui ∩ Uj , T ). The variety G can be described as a gluing of these

trivial T -torsors by means of the Čech cocycle {tij} ∈ Ȟ1({Ui}, T ). (In fact, {tij} is also

the cocycle describing ηG ∈ (A∨)t(k) = Ext1k(A, T ) in the Barsotti-Weil formula.) Via the
extension ·T of the group law ·T , the same Čech cocycle {tij} determines also a gluing of the

k-varieties Ui ×k T , yielding a proper k-variety X and a projection π : GT → A. There is a

canonical map p : G×k T → GT over A such that its base change

p×GT (Ui ×k T ) : (Ui ×A G)×k T −→ Ui ×k T

coincides with the action

Ui ×k ·T : Ui ×k (T ×k T ) −→ Ui ×k T

under the identification Ui×AG = Ui×k T described by φi. Neither GT nor p depends on the
Zariski covering {Ui} as the above is compatible with any further refinement. In addition, the
G-action given by the group law +G : G×G→ G extends uniquely to an action G×GT → GT .

If (M,̺ : T ×k M → M) is a T -linearized line bundle on T , we endow G ×k M with a
T -action in a way similar to (12) and form the quotient G(M,̺) = G×kM/T . Repeating the
above procedure, it is easy to infer that G(M,̺) is a line bundle over GT . One checks also a
compatibility G(M ⊗M ′, ̺⊗ ̺′) ≈ G(M,̺)⊗G(M ′, ̺′) with tensor products.

Lemma 3. Let (M,̺) be an ample T -linearized line bundle on T and N an ample line bundle
on A. Then, the line bundle G(M,̺) ⊗ π∗N (resp. G(M,̺)) is ample (resp. nef).

Proof. By [40, Example 1.2.22], the line bundle M⊗3k is normally generated for sufficiently
large integers k. This allows us to apply [32, Theorem 3.5], which yields that G(M,̺)⊗3k ⊗
π∗N⊗3k = (G(M,̺) ⊗ π∗N)⊗3k is normally generated2 and hence very ample (cf. [48, p. 38]
for this final implication).3

For nefness, let C be a proper curve in GT . We already know that G(M,̺)⊗k ⊗ (π∗N) =

G(M⊗k, ̺⊗k)⊗ (π∗N) is ample for any integer k ≥ 1. Hence, the degree of the 0-cycle class

kc1(G(M,̺)) ∩ [C] + c1(π
∗N) ∩ [C]

1Using descent along a finite Galois extension of k′/k (compare [8, Example 6.2.B]) such that Tk′ splits, one
can get rid of the splitting assumption a posteriori but we do not need this generality.

2We use this notion as in [32, 48]. In particular, it is not required that G
T

is normal.
3The author thanks Friedrich Knop for acknowledging a gap in the proof of [32, Lemma 1.7] and for pointing

out this argument.
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is positive for any k (see e.g. [17, Lemma 12.1]). Dividing by k and taking the limit k → ∞,
we obtain

deg(c1(G(M,̺)) ∩ [C]) ≥ 0,

which means that G(M,̺) is nef. �

We are interested in the behavior of the above constructions with regard to homomorphisms.
For this, let ϕ : G → G′ be a homomorphism of semiabelian varieties with toric component

ϕtor : T → T ′ as in (9). In addition, let T (resp. T
′
) be a T -equivariant (resp. T ′-equivariant)

compactification of T (resp. T ′) so that ϕtor extends to a ϕtor-equivariant map ϕtor : T → T
′
.

Endowing G ×k T (resp. G′ ×k T
′
) with a T -action (resp. T ′-action) as in (12), the ϕtor-

equivariant map ϕ ×k ϕtor : G ×k T → G′ ×k T
′
induces a map ϕ : GT → G′

T
′ . Let now

(M,̺) be a T ′-linearized line bundle on T
′
. We have ϕ∗G′(M,̺) ≈ G(ϕ∗

tor(M,̺)); for the
line bundle G ×k ϕ

∗
torM is the pullback of G′ ×k M along ϕ ×k ϕtor and the induced map

G×k ϕ
∗
torM → G′ ×kM is ϕtor-equivariant.

In these considerations, the case where ϕ is the multiplication-by-n homomorphism [n]G for
a semiabelian variety G with toric part T is of particular importance. To avoid pathologies,
some further technical requirements on both the T -equivariant compactification T and the T -
linearizable line bundle M should be met. First, an extension of [n]T to a map [n]T : T →

T should exist for each integer n. (Such an extension is unique by separatedness.) Under
this condition, there is an extension ϕ = [n]G : GT → GT of [n]G by the last paragraph.

Second, there should be a T -equivariant isomorphism [n]∗
T
M ≈ M⊗|n|. If this is satisfied,

the last assertion of the preceding paragraph specializes to [n]∗
G
G(M,̺) ≈ G([n]∗

T
(M,̺)) ≈

G((M,̺)⊗|n|) ≈ G(M,̺)⊗|n|.
Before introducing the two types of compactifications to be employed in our proof of

Theorem 2, we recall a further notion. Let T be a torus with T -equivariant compactifica-
tion T . Pulling meromorphic functions back fabricates a T -linearization of KT . Denote by

pr2 : T × T → T the projection and by σ : T × T → T the T -action on T . A Cartier di-
visor D on T is called T -invariant if the pullbacks pr∗2D and σ∗D are equal. In this case,
D gives rise to a T -invariant invertible subsheaf O(D) of KT . Hence, there is an induced
T -linearization on O(D). We always mean this linearization when associating a T -linearized
line bundle (L(D), ̺D) with a T -invariant Cartier divisor D. Note that this T -linearization on
O(D) is uniquely characterized by the fact that its rational section 1 ∈ KT (T ) is T -invariant.

Any T -invariant Cartier divisor D on T yields naturally a Cartier divisor on GT . Indeed,

assume that D is represented by (Vj , fj) with Zariski opens Vj ⊂ T . For each Zariski open

Ui ⊂ A this gives a Cartier divisor on Ui×AGT = Ui×k T that is represented by (Ui×k Vj , fj ◦
pr2). By T -invariance, these Cartier divisors glue together to a Cartier divisor G(D) on GT .
Furthermore, it is easy to see that L(G(D)) is isomorphic to G(L(D), ̺D).

Construction 4 (Dt, (Mt, ̺t)). The torus Gm = Spec(k[X,X−1]) has a Gm-equivariant
compactification ι1 : Gm →֒ P1 = Proj(k[Z1, Z2]) with ι

∗
1(Z2/Z1) = X . There is an extension

[n]P1 : P1 → P1 of [n]Gm : Gm → Gm. Let E0 (resp. E∞) be the Gm-invariant Cartier divisor
on P1 represented by

(D(Z1), Z2/Z1) and (D(Z2), 1) (resp. (D(Z1), 1) and (D(Z2), Z1/Z2)).

For the torus T = Gtm, the map ιt = ι1 × · · · × ι1 : G
t
m →֒ T = (P1)t gives a T -equivariant

compactification. Denoting by pri : T = (P1)t → P1 the projection to the i-th component,
we set Dt =

∑
1≤i≤t pr

∗
i (E0 + E∞) and Mt = O(Dt). By the above, there is a natural T -

linearization ̺t = ̺Dt on the associated line bundle Mt that acts trivially on its global section
1 ∈ Mt(T ). Furthermore, from the evident identity [n]∗

T
Dt = |n| · Dt of Cartier divisors
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we obtain an identity [n]∗
T
Mt = M

⊗|n|
t of OX -submodules of KT so that [n]∗

T
(Mt, ̺t) =

(Mt, ̺t)
⊗|n|.

Construction 5 (G, MG, G(Dt)). Given a semiabelian variety G having split toric part
T = Gtm and abelian quotient π : G → A, we use the T -equivariant compactification ιt :
Gtm →֒ (P1)t = T constructed above to obtain a smooth compactification G = GT with

abelian quotient π : G → A. The T -invariant line bundle (Mt, ̺t) yields further a line bundle

MG = G(Mt, ̺t) on G, which satisfies [n]∗
G
MG ≈ M

⊗|n|

G
. In addition, the line bundle MG is

associated with the Cartier divisor G(Dt).
We remark that this compactification also appears in [10, 11, 62, 63] and Serre’s appendix

to [64].

Construction 6 (GΓ(ϕtor)
, MΓ(ϕtor)

, πΓ(ϕtor)
). Assume given a semiabelian variety G with

split toric part Gtm and abelian quotient π : G → A as well as a homomorphism ϕtor ∈

Hom(Gtm,G
t′

m). Let Γ(ϕtor) ⊂ Gtm × Gt
′

m be the graph of ϕtor and Γ(ϕtor) its Zariski closure

in the (Gtm ×Gt
′

m)-equivariant compactification (P1)t × (P1)t
′

.4 The projection to Gtm induces

an identification Γ(ϕtor) = Gtm. In this way, Γ(ϕtor) can be considered as a Gtm-equivariant
compactification of Gtm. As [n]Γ(ϕtor) is just the restriction of [n]Gtm×Gt

′

m
, it clearly extends

to Γ(ϕtor) because [n]Gtm×Gt
′

m
extends to (P1)t × (P1)t

′

. Therefore, there is an extension of

[n]G to the “graph compactification” GΓ(ϕtor)
. To fix notations, we record a self-explanatory

commutative diagram

(13)

(P1)t Gtm Γ(ϕtor) (P1)t
′

G G GΓ(ϕtor)

A A A.

pr2

pr1

π

ι
Γ(ϕtor)

q
Γ(ϕtor)

π
Γ(ϕtor)

idA idA

Construction 4 gives a Gt
′

m-linearized line bundle (Mt′ , ̺t′) on (P1)t
′

. Its (Gtm×Gt
′

m)-linearized
pullback pr∗2(Mt′ , ̺t′) yields a line bundle MΓ(ϕtor)

= GΓ(ϕtor)
(pr∗2(Mt′ , ̺t′)|Γ(ϕtor)

) on GΓ(ϕtor)
.

Setting ϕtor = idGtm , this construction specializes to Construction 5 above (i.e., G ≈ GΓ(idGtm
)

with compatible MG ≈MΓ(idGtm
)).

For any non-zero integer n, we can relate (GΓ(ϕtor),MΓ(ϕtor)) with (GΓ(n·ϕtor),MΓ(n·ϕtor)).
For this, we define G′ and G′′ to be the semiabelian varieties such that ηG′ = (ηG, (ϕtor)∗ηG)

and ηG′′ = (ηG, (n · ϕtor)∗ηG) in Ext1(A,Gtm × Gt
′

m). The equivariant closed immersions

Γ(ϕtor),Γ(n · ϕtor) ⊂ (P1)t× (P1)t
′

yield closed immersions GΓ(ϕtor)
⊂ G

′
and GΓ(n·ϕtor)

⊂ G
′′
.

In addition, the finite morphism [1](P1)t × [n](P1)t′ yields a finite map ϑn : G
′
→ G

′′
. As

[1](P1)t × [n](P1)t′ restricts to a Gtm-equivariant birational map Γ(ϕtor) → Γ(n · ϕtor), ϑn re-
stricts to a birational map ϑϕtor,n : G

Γ(ϕtor)
→ G

Γ(n·ϕtor)
. Furthermore,

ϑ∗ϕtor,nMΓ(n·ϕtor)
≈ ϑ∗nG

′′
(pr∗2(Mt′ , ̺t′))|Γ(n·ϕtor)

≈ G
′
(pr∗2(Mt, ̺t)

⊗|n|)|Γ(ϕtor)
≈M

⊗|n|

Γ(ϕtor)
.

In addition, there are the evident relations πΓ(ϕtor)
= πΓ(n·ϕtor)

◦ ϑϕtor,n, qΓ(ϕtor)
= qΓ(n·ϕtor)

◦

ϑϕtor,n and ι
Γ(n·ϕtor)

= ϑϕtor,n ◦ ι
Γ(ϕtor)

.

4The reader is warned that the Zariski closure Γ(ϕtor) is not normal, but that we also have no use for its
normality.
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Construction 7 (ϕ : Gϕtor → G
′
). We describe a subcase of Construction 6 for later reference,

enlarging also the commutative diagram (13). In this case, we start with a homomorphism

ϕ : G → G′ of semiabelian varieties with split toric parts T = Gtm and T ′ = Gt
′

m. We obtain
a compactification GΓ(ϕtor)

from Construction 6. Furthermore, the homomorphism ϕ induces

now an even larger commutative diagram

(14)

(P1)t T Γ(ϕtor) (P1)t
′

G G GΓ(ϕtor)
G

′

A A A A′

pr2

pr1

π0 π0

ιϕ

qϕ

πϕ

ϕ

π1

idA idA ϕab

such that there is a decomposition ϕ = ϕ ◦ ιϕ; the map ϕ : GΓ(ϕtor)
→ G

′
here arises naturally

as follows: the toric part ϕtor : Gtm → Gt
′

m of ϕ extends to a ϕtor-equivariant map ϕtor :

Γ(ϕtor) → (P1)t
′

, which is just a restriction of pr2 : (P1)t × (P1)t
′

→ (P1)t
′

. As described

above, this induces a corresponding extension ϕ : GΓ(ϕtor)
→ G

′
of ϕ : G→ G′.

In addition, each line bundle MΓ(ϕtor)
is a pullback ϕ∗MG

′ for some homomorphism ϕ :

G→ G′ of semiabelian varieties. In fact, we can take ηG′ = (ϕtor)∗ηG ∈ Ext1(A,Gt
′

m) and the
homomorphism ϕ : G→ G′ represented by (ϕtor, idA).

3. Heights

We consistently work with (logarithmic) Weil heights and refer to [27, Theorem B.3.6] for
the main features of Weil’s height machinery. In short, it provides for each line bundle L on
a projective Q-variety X a class of height functions hL : X(Q) → R such that any two height
functions attached to (X,L) differ by a globally bounded function on X(Q).

Let G be a semiabelian variety over Q with toric part T and abelian quotient π : G → A.
Assume also given a T -equivariant compactification T of the torus T and a T -linearized line
bundle (M,̺) on T such that [n]T extends to [n]T : T → T and that there is an isomorphism

[n]∗
T
(M,̺) ≈ (M,̺)⊗n. For our purposes, these conditions on T and (M,̺) are always satisfied.

Additionally, we choose a symmetric line bundle N on A. We furnish GT with the line bundle
L = G(M,̺) ⊗ π∗N , which is ample if both M and N are ample (Lemma 3). Weil’s height
machinery supplies us with some height function hL : GT (Q) → R. The function hL is neither
unique nor does it enjoy homogeneity properties like the Néron-Tate height of a symmetric line
bundle on an abelian variety. However, the following lemma remedies this partially. We call a
T -linearized line bundle T -effective if it has a T -invariant non-zero global section.

Lemma 8. For any (M,̺) (resp. N) as above, there exists a function ĥG(M,̺) : GT (Q) → R

(resp. ĥπ∗N : GT (Q) → R) such that

(a) |hG(M,̺) − ĥG(M,̺)| (resp. |hπ∗N − ĥπ∗N |) is globally bounded on G(Q),

(b) ĥG(M,̺)([n]x) = |n|ĥG(M,̺)(x) (resp. ĥπ∗N ([n]x) = n2ĥπ∗N (x)) for any x ∈ G(Q) and
any integer n.

(c) Given a second T -linearized line bundle (M ′, ̺′) (resp. a symmetric line bundle N ′ on
A) as above, we have the additivity relations

ĥG(M⊗M ′,̺⊗̺′) = ĥG(M,̺) + ĥG(M ′,̺′) and ĥπ∗(N⊗N ′) = ĥπ∗N + ĥπ∗N ′ .
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(d) If (M,̺) (resp. N) is T -effective (resp. ample), then ĥG(M,̺)|G(Q) (resp. ĥπ∗N ) is non-
negative.

Furthermore, ĥG(M,̺) (resp. ĥπ∗N ) is uniquely characterized by (a) and (b).

It is natural to work with the unique ĥL = ĥG(M,̺) + ĥπ∗N instead of a non-canonical Weil

height hL. By (a) of the above theorem, their difference is globally bounded on G(Q). As for

abelian varieties, the zero set of ĥL coincides with the torsion points of G if both M and N
are ample and (M,̺) is T -effective.

The assumption of T -effectivity in (d) cannot be relaxed to mere effectivity. In fact, assume
that T = Gtm and let Qi, 1 ≤ i ≤ t, be the line bundles on A such that ηG = (Q1, . . . , Qt) ∈
A∨(k)t = Ext1k(A, T ). For ̺ running through all possible T -linearizations of the trivial line

bundle A1
T
, the line bundle G(A1

T
, ̺) runs through π∗(Qki1 ⊗ · · · ⊗ Qktt ) for arbitrary integers

ki, as a comparison of Čech cocycles shows. Except for this caveat, we do not need this and
leave the verification to the interested reader.

Proof. (a), (b): The first two assertions of the lemma as well as uniqueness can be inferred
directly from [27, Theorem B.4.1] applied to G(M,̺) (resp. N). Indeed, [n]∗

G
G(M,̺) ≈

G(M,̺)⊗n by our assumption (compare Section 2) and [n]∗
G
π∗N ≈ π∗[n]∗AN ≈ π∗N⊗n2

since

N is symmetric. (The result in [27] is stated for divisor classes on smooth varieties but it is
also true for line bundles on general varieties with exactly the same proof. The reader may
compare also [4, Lemma 9.2.4].)

(c): AsG(M⊗M ′, ̺⊗̺′) ≈ G(M,̺)⊗G(M ′, ̺′), the global boundedness of |hG(M⊗M ′,̺⊗̺′)−
hG(M,̺) − hG(M ′,̺′)| is a standard property of the Weil height. As (a) and (b) already char-

acterize ĥG(M⊗M ′,̺⊗̺′) uniquely, we infer the first equality in (c). The second one follows
similarly.

(d): Similarly, one observes that ĥG(M,̺) (resp. ĥπ∗N ) is non-negative if hG(M,̺) (resp. hπ∗N )

is bounded from below on G(Q) (resp. GT (Q)). For the height hπ∗N , this is true because
the ampleness of N implies that N and hence π∗N has empty base locus. By assumption,
we have a T -invariant non-zero global section s : T → M . This gives rise to local sections
s′i = Ui ×k s : Ui ×A GT = Ui ×k T → Ui ×k M = Ui ×A G(M,̺). Due to the T -invariance
of s, the sections s′i glue together to a non-zero global section s′ of G(M,̺). Furthermore,

T -invariance guarantees that sx generates Mx for every x ∈ T (Q). We infer that s′x generates
G(M,̺) for every x ∈ G(Q). Therefore the base locus of G(M,̺) is contained in GT \G and
hG(M,̺)|G(Q) is bounded from below. �

In addition, we have a good functorial behavior of the heights ĥG(M,̺) and ĥπ∗N . To state

precisely what this means, let G (resp. G′) be a semiabelian variety over Q with toric part T
(resp. T ′) and abelian quotient A (resp. A′). Take furthermore equivariant compactifications

T and T
′
so that ϕtor : T → T ′ extends to a ϕtor-equivariant map ϕtor : T → T

′
. In

this situation, we consider a T ′-linearized line bundle (M,̺) on T
′
such that there is a T ′-

equivariant isomorphism [n]∗
T

′(M,̺) ≈ (M,̺)⊗n. We also take a symmetric ample line bundle

N on A′.

Lemma 9. In the situation described in the above paragraph, let ϕ : G → G′ be a homomor-
phism with toric (resp. abelian) component ϕtor (resp. ϕab). For every x ∈ G(Q), we have
then

ĥG′(M,̺)(ϕ(x)) = ĥG(ϕ∗
tor(M,̺))(x) and ĥ(π′)∗N (ϕ(x)) = ĥπ∗(ϕ∗

abN)(x).

Proof. This follows directly from the functorial behavior of the Weil height under pullback and
the uniqueness assertion of Lemma 8. �
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We note a further addendum to Lemma 8, which is specifically related to the line bundles
MG and MΓ(ϕtor)

.

Lemma 10. Let G a semiabelian variety with split toric part Gtm and abelian quotient π :

G→ A. For any ϕtor ∈ Hom(Gtm,G
t′

m), the restriction of ĥM
Γ(ϕtor)

: GΓ(ϕtor)
(Q) → R to G(Q)

is non-negative. In particular, the restriction of ĥMG
to G(Q) is non-negative.

Proof. In Construction 7, it is shown that each MΓ(ϕtor)
is isomorphic to the pullback of a

line bundle of the form MG
′ . Using Lemma 9, it hence suffices to prove the non-negativity of

ĥMG
. This is already in the literature (cf. [11, Lemme 3.9]), but we give the argument here for

completeness because it is a direct consequence of Construction 4. The Cartier divisor Dt on
Gtm is effective and Gtm-invariant so that the constant function 1 ∈ K(P1)t((P

1)t) gives rise to

a Gtm-invariant global section of its associated line bundle (Mt, ̺t). In other words, (Mt, ̺t) is
Gtm-effective and we can use Lemma 8 (d). �

Fix again a semiabelian variety G over Q with toric part Gtm and abelian quotient π :
G → A. Furthermore, let G be a compactification of G and π : G → A its abelian quotient

as in Construction 5. We want to estimate the difference between ĥM
Γ(ϕtor)

and ĥM
Γ(ϕ′

tor)

for two “close” homomorphisms ϕtor, ϕ
′
tor ∈ Hom(Gtm,G

t′

m). Simultaneously, we examine the
corresponding “abelian” analogue. For this purpose, let A′ be a second abelian variety and N
(resp. N ′) an ample symmetric line bundle on A (resp. A′). We choose some linear norms | · |

on Hom(Gtm,G
t′

m) and Hom(A,A′) for quantification.5

Lemma 11. In the above situation, there exist constants c1 and c2 depending only on G, N ,
t′, A′, N ′ and the linear norms | · | on Hom(Gtm,G

t′

m) and Hom(A,A′) such that the following

assertions are true: For any pair (ϕtor, ϕ
′
tor) ∈ Hom(Gtm,G

t′

m)
2 and any x ∈ G(Q), we have

(15) |ĥM
Γ(ϕtor)

(x) − ĥM
Γ(ϕ′

tor)
(x)| ≤ c1|ϕtor − ϕ′

tor| · ĥMG
(x).

Similarly, we have

(16) |ĥπ∗ϕ∗
ab
N ′(x) − ĥπ∗(ϕ′

ab)
∗N ′(x)| ≤ c2|ϕab − ϕ′

ab|
2 · ĥπ∗N (x)

for any pair (ϕab, ϕ
′
ab) ∈ Hom(A,A′)2.

Proof. We prove first the inequality (15). The proof takes place on the “graph compactifica-

tion”GΓ of G where Γ = Γ(ϕtor × ϕ′
tor) ⊂ (P1)t×(P1)t

′

×(P1)t
′

. We denote the projections cor-

responding to these three factors by pri (i = 1, 2, 3). The projections (pr1×pr2)|Γ : Γ → Γ(ϕtor)

and (pr1×pr3)|Γ : Γ → Γ(ϕ′
tor) are G

t
m-equivariant and hence induce maps GΓ → GΓ(ϕtor)

and

GΓ → G
Γ(ϕ′

tor)
, which both restrict to the identity on G. By Lemma 9, we obtain

(17) ĥM
Γ(ϕtor)

(x) = ĥG(pr∗2(Mt′ ,̺t′ )|Γ)
(x) and ĥM

Γ(ϕ′
tor)

(x) = ĥG(pr∗3(Mt′ ,̺t′ )|Γ)
(x)

for any x ∈ G(Q). Similarly, we have

(18) ĥMG
(x) = ĥG(pr∗1(Mt,̺t)|Γ)

(x)

for every x ∈ G(Q).

Using standard coordinates Xu, 1 ≤ u ≤ t, (resp. Yv, 1 ≤ v ≤ t′,) on Gtm (resp. Gt
′

m), we
write

ϕ∗
tor(Yv) = Xa1v

1 Xa2v
2 · · ·Xatv

t (resp. (ϕ′
tor)

∗(Yv) = X
a′1v
1 X

a′2v
2 · · ·X

a′tv
t ), 1 ≤ v ≤ t′,

5A natural choice of norm for Hom(A,A′), using the Rosati involution on A × A′, is introduced in [23,
Section 4]. As there, however, we have no need to choose any particular norm.
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with integers auv (resp. a′uv). Our strategy is to compare the restriction of the line bundles
pr∗1(Mt, ̺t)

⊗l, l sufficiently large, and pr∗2(Mt′ , ̺t′) ⊗ pr∗3(Mt′ , ̺t′)
⊗−1 on Γ. In fact, we claim

that both

(19) (pr∗1M
⊗l
t ⊗ pr∗2Mt′ ⊗ pr∗3M

⊗−1
t′ )|Γ and (pr∗1M

⊗l
t ⊗ pr∗2M

⊗−1
t′ ⊗ pr∗3Mt′)|Γ

are Gtm-effective with respect to the induced linearizations. In this case, Lemma 8 (c, d) implies
that

(20) |ĥG(pr∗2(Mt′ ,̺t′ )|Γ)
(x) − ĥG(pr∗3(Mt′ ,̺t′ )|Γ)

(x)| ≤ l · ĥG(pr∗1(Mt,̺t)|Γ)
(x)

for each x ∈ G(Q) ⊂ GΓ(Q). Using the equalities (17) and (18), the inequality (15) can be
derived from (20) if we have adequate control on l. For this, we note that pr∗1(Lt, ̺t)|Γ (resp.
pr∗2(Lt′ , ̺t′)|Γ, pr

∗
3(Lt′ , ̺t′)|Γ)) can be defined by means of the Gtm-invariant Cartier divisor

pr∗1Dt|Γ (resp. pr∗2Dt′ |Γ, pr
∗
3Dt′ |Γ). We next describe these divisors explicitly and start with

giving a covering of Γ. With each (t+ 2t′)-tuple m of numbers mr ∈ {−1, 1}, 1 ≤ r ≤ t+ 2t′,
we associate a Zariski open

Um = Γ ∩
⋂

1≤u≤t

D(pr∗1X
mu
u ) ∩

⋂

1≤v≤t′

D(pr∗2Y
mv+t
v ) ∩

⋂

1≤v≤t′

D(pr∗3Y
mv+t+t′
v ).

Evidently, pr∗1Dt|Γ is represented by (Um, fm) with

fm = pr∗1(X
−m1
1 X−m2

2 · · ·X−mt
t )

and pr∗2Dt′ |Γ (resp. pr∗3Dt′ |Γ) is represented by (Um, gm) (resp. (Um, g
′
m)) with

gm =
∏

1≤v≤t′

pr∗2(Y
−mv+t
v ) (resp. g′m =

∏

1≤v≤t′

pr∗3(Y
−mv+t+t′
v )).

The meromorphic function 1 ∈ KΓ(Γ) gives a Gtm-invariant rational section of O(pr∗1Dt|Γ),
O(pr∗2Dt′ |Γ) and O(pr∗3Dt′ |Γ) by our choice of linearizations. It thus also gives a Gtm-invariant
rational section of O(l ·pr∗1Dt|Γ+pr∗2Dt′ |Γ−pr∗3Dt′ |Γ) and O(l ·pr∗1Dt|Γ−pr∗2Dt′ |Γ+pr∗3Dt′ |Γ),
to which the line bundles in (19) are associated. For Gtm-effectivity, we may hence prove that
it is actually a global section. In other words, we have to prove that both f lm · gm · (g′m)−1 and

f lm · (gm)−1 · g′m are regular on Um. Let us remark first that for lv = max1≤u≤t{|auv − a′uv|}
the meromorphic function

f lvm · pr∗2(Yv)pr
∗
3(Yv)

−1 =
∏

1≤u≤t

pr∗1(X
su
u ), su = −mulv + (auv − a′uv),

is regular on Um; for pr∗1(X
−mu
u ) is regular on Um ⊂ D(pr∗1(X

mu
u )). Similarly, the meromorphic

function f lvm · pr∗2(Yv)
−1pr∗3(Yv) is regular on Um. We write gm · (g′m)−1 =

∏t′

v=1 hm with

hm = pr∗2(Y
−mv+t
v )pr∗3(Y

mv+t+t′
v )

and claim that f lvm ·hm is regular on Um. If mv+t = mv+t+t′ = 1 or mv+t = mv+t+t′ = −1, this
follows directly from our previous remark. In case mv+t = −1 and mv+t+t′ = 1, the function

f lvm · hm = pr∗2(Yv)
2 ·
(
f lvm · pr∗2(Yv)

−1pr∗3(Yv)
)

is regular by our remark and the fact that pr∗2(Yv) is regular on Um ⊂ D(pr∗2(Yv)
−1). The

case mv+t = 1 and mv+t+t′ = −1 can be handled in the same way, establishing our claim. In
conclusion, the condition

(21) l ≥
∑

1≤v≤t′

lv =
∑

1≤v≤t′

(
max
1≤u≤t

{|auv − a′uv|}

)

suffices to ensure the regularity of f lm · gm · (g′m)−1. The same argument shows that each

f lm · (gm)−1 · g′m is regular on Um. Combining (20) and (21), we obtain (15).
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The inequality (16) boils down to

|ĥN ′(ϕab(y))− ĥN ′(ϕ′
ab(y))| ≤ c2|ϕab − ϕ′

ab|
2 · ĥN (y), y = π(x),

where ĥN and ĥN ′ are now just the Néron-Tate heights on the abelian varieties A and A′. This
follows straightforwardly from the fact that the map

Hom(A,A′) −→ Pic(A), ϕab 7−→ ϕ∗
abN

′,

is quadratic, which is a direct consequence of the Theorem of the Cube ([47, Corollary II.6.2]).
The reader may refer to [23, p. 417] for details. �

Finally, we state a lemma on the behavior of the heights ĥ
Γ(ϕtor)

with respect to the group

law. Again, there is an “abelian” analogue and we mention this also for later reference.

Lemma 12. For any ϕtor ∈ Hom(Gtm,G
t′

m) and any points x, y ∈ G(Q), we have ĥM
Γ(ϕtor)

(xy) ≤

ĥM
Γ(ϕtor)

(x) + ĥM
Γ(ϕtor)

(y). Similarly, we have ĥπ∗N (xy) ≤ 2ĥπ∗N (x) + 2ĥπ∗N (y).

Note that this statement includes the fact that

(22) ĥMG
(xy) ≤ ĥMG

(x) + ĥMG
(y)

for all x, y ∈ G(Q) (set ϕtor = idGtm
). Most of our proof is actually about establishing this

inequality, which has been already provided in the literature (see e.g. [53, Corollaire 3.1]).
Nevertheless, we give a proof here both for completeness and because it is very close to the
proof of Lemma 11 above.

Proof. For the first assertion, it suffices to prove (22). In fact, each MΓ(ϕtor)
is isomorphic to

some pullback ϕ∗MG
′ along a homomorphism ϕ : G → G′ to another semiabelian variety G′

(see Construction 7). In order to prove (22), we use the same strategy as for Lemma 11. This
means we consider the Zariski closure Γ ⊂ ((P1)t × (P1)t) × (P1)t of the graph of the group
law ·T : Gtm × Gtm → Gtm. Again, we denote the projection to the i-th component by pri
(i = 1, 2, 3). For this, we use standard coordinates Xu, 1 ≤ u ≤ t, on Gtm (and on its extension
to (P1)t). Note that (pr∗3Xu) = (pr∗1Xu)(pr

∗
2Xu) on Γ.

With each (3t)-tuple m ∈ {−1, 1}3t of numbers mr ∈ {−1, 1}, 1 ≤ r ≤ 3t, we associate a
Zariski open. To wit, we define

Um = Γ ∩
⋂

1≤u≤t

D(pr∗1X
mu
u ) ∩

⋂

1≤u≤t

D(pr∗2X
mu+t
u ) ∩

⋂

1≤u≤t

D(pr∗3X
mu+2t
u ).

It is easy to see that each pr∗iDt|Γ (i = 1, 2, 3) is represented by (Um, f
(i)
m ), where

f (i)
m = pr∗i (X

−m1+(i−1)t

1 X
−m2+(i−1)t

2 · · ·X
−mt+(i−1)t

t ).

Consequently, the restriction of pr∗1Dt +pr∗2Dt − pr∗3Dt to Γ is represented by (Um, f
(1)
m · f

(2)
m ·

(f
(3)
m )−1). The meromorphic function f

(1)
m · f

(2)
m · (f

(3)
m )−1 equals

pr∗1(X1)
−m1+m2t+1 · · · pr∗1(Xt)

−mt+m3tpr∗2(X1)
−mt+1+m2t+1 · · · pr∗2(Xt)

−m2t+m3t .

By definition, each pr∗i (Xu)
−mu+(i−1)t , i ∈ {1, 2, 3}, 1 ≤ u ≤ t, is regular on Um. Since

−mu + m2t+u ∈ {0,−2mu} and −mt+u + m2t+u ∈ {0,−2mt+u}, we infer the regularity of

f
(1)
m ·f

(2)
m ·(f

(3)
m )−1 on Um. As in the proof of Lemma 11, we see that this implies that 1 ∈ KΓ(Γ)

is a T -invariant global section of O(pr∗1Dt + pr∗2Dt − pr∗3Dt). Thus, the first assertion follows
from Lemma 8 (d). For the second assertion, it suffices to note the equivalence of the assertion
with

ĥπ∗N (π(x) + π(y)) ≤ 2ĥπ∗N (π(x)) + 2ĥπ∗N (π(y)).

Indeed, this inequality follows directly from the parallelogram law for the Néron-Tate height
[27, Theorem B.5.1 (c)] and its non-negativity for symmetric line bundles. �
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4. Hermitian Differential Geometry

In the next two sections, we make extensive use of hermitian differential geometry at the level
of rather explicit computations on semiabelian varieties. To avoid permanent interruptions in
these, we recall here the necessary abstract framework separately. The reader is referred to
[61, Section 3.1] as well as [20, Section 0.2] and [29, Section 1.2] for details.

Let Y be a complex manifold (e.g., Xsm(C) for a complex algebraic variety X). To Y is

associated its real tangent bundle TRY , its holomorphic tangent bundle T 1,0
C Y (e.g., TxX(C)

for a smooth complex algebraic variety X) and its anti-holomorphic tangent bundle T 0,1
C Y . As

real vector bundles, all three can be canonically identified (cf. [20, p. 17]) and we do so from
now on. In this way, we obtain an almost complex structure I : TRY → TRY (i.e., a linear map
I : TRY → TRY such that I2 = −idTRY ) from the multiplication-by-i (resp. multiplication-by-

(−i)) homomorphism on the complex vector bundle T 1,0
C Y (resp. T 0,1

C Y ). A (1, 1)-form of real
type on Y is an alternating R-bilinear pairing

ω : TRY ×Y TRY −→ R× Y

such that ω(I(·), I(·)) = ω(·, ·). Under the identification T 1,0
C Y = TRY , this corresponds to an

alternating R-bilinear pairing

ω : T 1,0
C Y ×Y T

0,1
C Y −→ R× Y

such that ω(i(·), i(·)) = −ω(·, ·).6 The Chern forms of hermitian line bundles are the basic
examples of such (1, 1)-forms. More generally, for any smooth function λ : Y → R the (1, 1)-
form ddcλ (dc = i/2π(∂ − ∂)) is always of real type. To such a (1, 1)-form ω is associated a
symmetric R-bilinear pairing

gω : TRY ×Y TRY −→ R× Y, (v, w) 7−→ ω(v, Iw).

In fact, this establishes a one-to-one correspondence between (1, 1)-forms of real type and

symmetric R-bilinear forms on TRY . Using our identification of TRY with T 1,0
C Y and T 0,1

C Y , the
(1, 1)-form ω is positive (resp. semipositive) in the ordinary sense (e.g. [29, Definition 4.3.14])
if and only if gω is positive definitive (resp. positive semidefinite). We note that for a smooth
function λ : Y → R, the (1, 1)-form ddcλ is semipositive if and only if λ is plurisubharmonic
(cf. [21, Theorem K.8]).

For later reference, we remark that for any smooth function f : Y → R the (1, 1)-form
ω = i(∂f ∧ ∂f) is of real type and

(23) gω =
1

2

(
∂f ⊗ ∂f + ∂f ⊗ ∂f

)
;

for this is a local assertion that reduces by linearity to the fact that the (1, 1)-form

ω = i · (αdzi ∧ dzj + αdzj ∧ dzi), α ∈ C,

on Cn is of real type and the fact that

idzi ∧ dzj(v, Iw) =
1

2
(dzi(v)dzj(w) + dzj(v)dzi(w)) , v, w ∈ TR,xC

n, x ∈ Cn.

To a (1, 1)-form ω of real type is also associated a hermitian form (with respect to I)

(24) Hω : TRY ×Y TRY −→ C× Y, (v, w) 7−→ gω(v, w) − i · ω(v, w),

and this can be also seen to be a one-to-one correspondence. Indeed, ω = −Im(Hω).

6One frequently identifies a (1, 1)-form ω of real type with its scalar extension ωC : TCY ×Y TCY → C× Y ,

TCY = TRY ⊗R C. Since the restriction to TRY ×Y TRY or T 1,0
C

Y ×Y T 0,1
C

Y retains all information, we allow

ourselves to switch tacitly between ω and ωC.
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Let Z be a complex submanifold of a complex manifold Y and ω a (1, 1)-form of real type
on Y . Restricting and taking exterior products, we obtain an alternating R-multilinear map

(ω|Z)
∧ dim(Z) : (TR,xZ)

2 dim(Z) −→ R

for each x ∈ Z. If the restriction of the R-bilinear form gω,x to TR,xZ is moreover positive
definite, we have a non-zero Riemannian volume form ([25, pp. 361-362])

vol(gω,x) : (TR,xZ)
2 dim(Z) −→ R.

By [61, Lemma 3.8], vol(gω,x) agrees with dim(Z)!−1(ω|Z)∧ dim(Z). If ω is continuous, this im-

plies immediately that there is a euclidean neighborhoodU of x in Z such that
∫
U (ω|Z)

∧ dim(Z) >
0.

To use this argument effectively, we need a criterion to check whether the restriction of gω,x
to TR,xZ is positive definite. For an arbitrary R-bilinear form g on a real vector space V , we
define its kernel by

ker(g) = {v ∈ V | ∀w ∈ V : g(v, w) = 0}.

In our applications, ω is always semipositive so that gω is positive semidefinite. For a positive
semidefinite bilinear form g, we have

(25) ker(g) = {v ∈ V | g(v, v) = 0}

and hence that ker(g|W ) = ker(g) ∩W for any R-linear subspace W ⊂ V . Consequently, the
restriction of gω,x to TR,xZ is positive definite if and only if ker(gω,x) ∩ TR,xZ = {0}. Finally,
let us note that for any positive semidefinite R-bilinear forms g1, g2 on V their sum g1 + g2 is
also a positive semidefinite R-bilinear form and (25) implies that

(26) ker(g1 + g2) = ker(g1) ∩ ker(g2).

Finally, let us remark that ker(ωx) = ker(gω,x) for each (1, 1)-form of real type on Y and every
point x ∈ Y – under the condition that we consider ω as a bilinear form on TRY . We use this
fact to simplify our notion in Section 6.

5. Weil Functions, Hermitian Metrics and Chern Forms

We provide here the necessary tools for Section 7.4, in which bounds on certain intersections
numbers are established. Our approach is to endow all line bundles under consideration with
smooth hermitian metrics so that intersection numbers become integrals of the associated
Chern forms. Throughout this section, we hence take k = C as our base field. A major
issue is to interpolate between the Chern forms of different line bundles. For this purpose,
we introduce certain explicit smooth (1, 1)-forms of real type, namely the “toric” (1, 1)-forms
ω(φtor) in Subsection 5.1 and the “abelian” (1, 1)-forms ω(N ;φab) in Subsection 5.2.

5.1. “Toric” (1,1)-forms. Our first aim is to endow the line bundlesMG from Construction 5
with a hermitian metric and to compute the associated Chern forms. Functoriality allows us to
endow additionally the line bundles MΓ(ϕtor)

from Construction 6 with a hermitian metric. A

closer look at the associated Chern forms leads us to introduce the “toric” (1, 1)-forms ω(φtor).
Our main instrument are Weil functions, on which the reader may find details in [37, Chapter

10] and [38, Chapter I]. Let X be a complex algebraic variety and D a Cartier divisor on X .
In this situation, a function λ : (X \ supp(D))(C) → R is called a Weil function for D(C) if
every point x ∈ X(C) has an open neighborhood U (in the euclidean topology) such that

(27) λ = − log |f |+ α on U \ supp(D)(C)

with f a meromorphic function on U such that div(f) = D|U (as formal sums of irreducible
analytic varieties on U) and α a continuous function on U . Furthermore, λ is called a smooth
Weil function if α can be even assumed smooth on U . Every (smooth) Weil function λ :
(X\supp(D))(C) → R associated withD yields a (smooth) hermitian metric g on the associated



BHC FOR SEMIABELIAN VARIETIES 19

line bundle L(D). In fact, its sections O(D) form a OX -submodule of KX and we can just set
gx(f) = e−λ(x)|f(x)| for any meromorphic function f on U and any x ∈ X(C) in its domain of
definition. To a smooth Weil function λ for D is associated a smooth closed (1, 1)-form of real
type, namely the Chern form c1(L(D), g) of the associated smooth metric on L(D). On an
open euclidean neighborhood U such that (27) is true, we have c1(L, g) = ddcα. Additionally,
ddcα = ddcλ outside supp(D)(C).

We now record a standard result on Weil functions. Let D be a Cartier divisor on a complex
projective variety X and λ be a Weil function for D. Assume that D is the difference D1−D2

of two effective Cartier divisors D1, D2 with disjoint supports. From [37, Propositions 10.2.1
and 10.3.2], we infer that sup{λ, 0} (resp. − inf{λ, 0}) is a Weil function for D1 (resp. D2).
The next lemma provides a smooth variant of this observation in the same situation.

Lemma 13. In the situation described above, assume additionally that λ is a smooth Weil
function. Then, log(1+ e2λ)/2 (resp. log(1+ e−2λ)/2) is a smooth Weil function for D1 (resp.
D2).

Proof. By assumption, we know that for each x ∈ X(C) there exists an open euclidean neigh-
borhood U , a meromorphic function f representing D on U and a smooth function α satisfying
(27). Since D1 and D2 have disjoint supports, we may shrink U to guarantee that it is relatively
compact and that its topological closure U does not intersect supp(D1)(C) or supp(D2)(C).
Suppose U ∩ D1 = ∅ (resp. U ∩ D2 = ∅). Then, |f | ≥ ε > 0 (resp. |f | ≤ ε−1) for some
sufficiently small ε > 0. Furthermore, 1 (resp. f) is a local equation for D1. Note that
β = log(1+ |f |−2e2α)/2 (resp. β = log(|f |2 + e2α)/2) is a smooth function on U .7 In addition,

1

2
log(1 + e2λ) = − log |1|+ β (resp.

1

2
log(1 + e2λ) = − log |f |+ β),

This demonstrates that 1
2 log(1+e

2λ) is a smoothWeil function forD1. Similarly, 1
2 log(1+e

−2λ)
can be shown to be a smooth Weil function for D2. �

Let us next recollect a fundamental result of Vojta [62]. Let G be a semiabelian variety with
split toric part T = Gtm and abelian quotientA. Recall from Construction 5 its compactification
G as well as the Cartier divisor G(Dt) on G. With pru : (P1)t → P1 being the projection to
the u-th component as in Construction 4, we set Du,0 = G(pr∗uE0) and Du,∞ = G(pr∗uE∞) so

that G(Dt) =
∑t

u=1(Du,0 +Du,∞).

Lemma 14. For each divisor Du,0 − Du,∞, 1 ≤ u ≤ t, there exists a unique smooth Weil
function

λu : G(C) \ supp(Du,0 −Du,∞)(C) −→ R

that satisfies
λu(x+ y) = λu(x) + λu(y)

for all x, y ∈ G(C). In addition, eλu is locally the absolute value of a meromorphic function.

Outside supp(Du,0 −Du,∞)(C), we have locally λu = log |f | for some holomorphic function
f . This implies ddcλu = 0 on G(C).

Proof. This is stated in [62, Proposition 2.6] except for the assertion about eλu . Inspecting
(2.6.3) in the proof of the said proposition, one sees that it suffices to prove the same assertion
for the Néron function λ(s) (cf. [37, Theorem 11.1.1]) attached to the divisor (s) on A. As
s is a rational section of an algebraically trivial line bundle by construction, the divisor (s)
is algebraically equivalent to the zero divisor. The explicit formula for λ(s) in terms of a
normalized theta function ([37, Theorem 13.1.1]) directly yields the assertion in this case; the
hermitian form H in the formula is zero because (s) ∼alg 0 (cf. [3, Proposition 2.2.2]). �

7Note that z 7→ |z|2 = x2 + y2 is smooth at z = 0 in contrast to z 7→ |z| =
√

x2 + y2. This rules out the

straightforward choice log(1 + eλ) (resp. log(1 + e−λ)).



20 LARS KÜHNE

Using the Weil functions λu we can define a subgroup

(28) {x ∈ G(C) | λ1(x) = λ2(x) = · · · = λt(x) = 0} ⊂ G(C).

This coincides with the maximal compact subgroup KG of G(C). Indeed, any homomorphism
KG → R vanishes by compactness so that λu|KG = 0. By uniqueness, the restriction of λu to
the maximal torus T (C) equals − log |Xu| (in standard coordinates X1, . . . , Xt). Hence, the
subgroup in (28) is topologically a fiber bundle with compact fiber (S1)t, S1 = {z ∈ C | |z| = 1},
over the compact base A(C). Therefore, it is compact itself and hence contained in KG. As
G(C) is Hausdorff, its maximal compact subgroupKG is a closed subgroup. Using [25, Theorem
II.2.3] and counting dimensions, we see that KG is a real Lie subgroup of (real) dimension
2 dim(A) + t.

Recall that MG is the line bundle associated to the T -invariant Weil divisor G(Dt). By
Lemmas 13 and 14, the function

(29) λ =
1

2

t∑

u=1

(
log(1 + e2λu) + log(1 + e−2λu)

)

is a smooth Weil function for G(Dt). For the associated smooth hermitian line bundle, which
is denoted MG in the sequel, we have

c1(MG) =
1

2

t∑

u=1

(
ddc log(1 + e2λu) + ddc log(1 + e−2λu)

)
on G(C).

The Weil functions of Lemma 14 also satisfy some functoriality. To be precise, let ϕ : G→ G′

be a homomorphism of semiabelian varieties with toric component ϕtor : T = Gtm → T ′ = Gt
′

m.

Let Xi (resp. Yj) be the standard algebraic coordinates on Gtm (resp. Gt
′

m) and write ϕ∗
tor(Yv) =

Xa1v
1 · · ·Xatv

t with integers auv. Lemma 14 supplies Weil functions λ′v, 1 ≤ u ≤ t′, on G′ and
there is an identity

(30) ϕ∗λ′v = λ′v ◦ ϕ = a1vλ1 + a2vλ2 + · · ·+ atvλt on G(C).

Indeed, the equality is valid on T since the restriction of λu (resp. λ′v) to the maximal torus

T (C) ≈ (C×)t (resp. T ′(C) ≈ (C×)t
′

) is (− log |Xu|) (resp. (− log |Yv|)) as we noted above. It
is also true on KG because ϕ(KG) ⊂ KG′ . As KG and T (C) generate G(C) as a group, (30) is
true for all of G(C). Note that ϕ∗λ′v is independent of the abelian component of ϕ. Abusing
notation, we therefore write ϕ∗

torλ
′
v instead of ϕ∗λ′v. Even more, we can use (30) to formally

define φ∗torλ
′
v : G(C) → R, v = 1, . . . , t′, for an arbitrary φtor ∈ HomR(G

t
m,G

t′

m).
We now apply the results of the previous paragraph to endow the line bundles MΓ(ϕtor)

,

ϕtor ∈ Hom(Gtm,G
t′

m), with hermitian metrics. For this, we use the homomorphism ϕ : G→ G′

from Construction 7 with ϕ∗MG
′ ≈MΓ(ϕtor)

. We may endowMΓ(ϕtor)
with a hermitian metric

such that ϕ∗MG
′ ≈ MΓ(ϕtor)

. Since the isomorphism between ϕ∗MG
′ and MΓ(ϕtor)

is unique

up to multiplication with a non-zero constant, this singles out a hermitian metric on M
Γ(ϕtor)

up to a non-zero constant scaling factor. Regardless of this indeterminate scaling factor, we
have an identity of Chern forms c1(MΓ(ϕtor)

) = ϕ∗c1(MG
′). Thus,

(31) c1(MΓ(ϕtor)
) =

1

2

t′∑

v=1

(
ddc log(1 + e2ϕ

∗
torλ

′
v ) + ddc log(1 + e−2ϕ∗

torλ
′
v )
)

on G(C).

Since the indeterminacy in the metric is negligible for our purposes, we suppress it in writing
MΓ(ϕtor)

for any hermitian line bundle as constructed above. Again, the right hand side of (31)

depends only on ϕtor and is moreover well-defined for any φtor ∈ HomR(G
t
m,G

t′

m). In other
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words, we can associate with each φtor ∈ HomR(G
t
m,G

t′

m) a (1, 1)-form

ω(φtor) =
1

2

t′∑

v=1

(
ddc log(1 + e2φ

∗
torλ

′
v ) + ddc log(1 + e−2φ∗

torλ
′
v )
)

on G(C). (Note that we do not claim that ω(φtor) extends to any compactification of G(C).

In the proof of Lemma 17 we give such an extension in the case where φtor ∈ Hom(Gtm,G
t′

m),
but we neither can prove the existence of an extension in general nor do we need it.) In the
remainder of this section, we establish basic properties of this (1, 1)-form.

Lemma 15. Each ddc log(1 + e±2φ∗
torλ

′
v ), 1 ≤ v ≤ t′, is a semipositive (1, 1)-form of real type

on G(C). Consequently, ω(φtor) is a semipositive (1, 1)-form of real type.

Proof. It suffices to prove that log(1 + e±2φ∗
torλ

′
v ) is a plurisubharmonic function. This follows

directly from ddcλu = 0 (i.e., both λu and −λu are plurisubharmonic on G(C)) and the fact
that log(1 + ex) is a convex monotonously increasing function (cf. [21, Theorem K.5 (d)]). �

Furthermore, the map φtor 7→ ω(φtor) is continuous with respect to the euclidean topology

on HomR(G
t
m,G

t′

m) ≈ Rt×t
′

and the usual topology on smooth (1, 1)-forms (cf. [14, Section I.2]
and [54, Section 1.46]). By Lemma 14, there exists locally on G(C) a non-zero holomorphic

function κu such that eλ
′
u = |κu|. From λ′u = log(|κu|2)/2, we deduce

∂λ′u =
κu∂κu
2|κu|2

=
∂κu
2κu

and ∂λ′u =
κu∂κu
2|κu|2

=

(
∂κu
2κu

)
.

Using Lemma 16 below, we hence obtain

(32) ddc log(1 + e2φ
∗
torλ

′
v ) + ddc log(1 + e−2φ∗

torλ
′
v ) =

2i(∂φ∗torλ
′
v ∧ ∂φ

∗
torλ

′
v)

π(1 + e2φ
∗
torλ

′
v )(1 + e−2φ∗

torλ
′
v )
.

Lemma 16. Let κ1, . . . , κm be zero-free holomorphic functions on an open subset U ⊂ Cn.
Then,

ddc log(1 + |κ1|
a1 · · · |κm|

am) =
i

4π

|κ1|a1 · · · |κm|am

(1 + |κ1|a1 · · · |κm|am)2

(
m∑

u=1

au∂κu
κu

∧
m∑

u=1

au∂κu
κu

)

for any real numbers a1, . . . , am.

Proof. Without loss of generality, we assume that all a1, . . . , am are non-zero. To simplify our
notation, we set f(z) = |κ1|a1 · · · |κm|am . First, we note that ∂|κ|q = ∂(κκ)q/2 = q

2 |κ|
q−2κ∂κ =

q
2 |κ|

q
(
∂κ
κ

)
(resp. ∂|κ|q = q

2 |κ|
q
(
∂κ
κ

)
) implies that

∂f(z) = f(z) ·
m∑

u=1

(
au∂κu
2κu

)
(resp. ∂f(z) = f(z) ·

m∑

u=1

(
au∂κu
2κu

)
).

Since both κu and κ−1
u are holomorphic, we have

∂κ−1
u ∂κu = ∂(κ−1

u ∂κu) = ∂(κ−1
u ) ∧ ∂κu + κ−1

u ∂∂(κu) = 0

and hence

∂∂f(z) = ∂f(z) ∧

(
m∑

u=1

(
au∂κu
2κu

))
+ f(z) · ∂

(
m∑

u=1

(
au∂κu
2κu

))

= f(z)

(
m∑

u=1

au∂κu
2κu

)
∧

(
m∑

u=1

(
au∂κu
2κu

))
.
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We compute

∂∂ log(1 + f(z)) = ∂

(
1

1 + f(z)
∂f(z)

)

=
−1

(1 + f(z))2
∂f(z) ∧ ∂f(z) +

1

1 + f(z)
∂∂f(z)

=

(
−f(z)2

(1 + f(z))2
+

f(z)

1 + f(z)

)( m∑

u=1

au∂κu
2κu

∧
m∑

u=1

(
au∂κu
2κu

))

=
f(z)

4(1 + f(z))2

(
m∑

u=1

au∂κu
κu

∧
m∑

u=1

(
au∂κu
κu

))
.

The assertion follows directly as ddc = (i/2π)(∂ + ∂)(∂ − ∂) = (i/π)∂∂. �

The next lemma establishes an essential homogeneity property for ω(φtor).

Lemma 17. Let G be a semiabelian variety with abelian quotient π : G → A and toric part
Gtm. In addition, let t′ be a non-negative integer and ̟ a smooth closed (1, 1)-form on A(C).

For every φtor ∈ HomQ(G
t
m,G

t′

m), every algebraic subvariety X ⊂ G, and every non-negative
integers s1, s2 satisfying s1 + s2 = dim(X), the integral

∫

X(C)

ω(φtor)
∧s1 ∧ (π∗̟)∧s2

is finite and

(33)

∫

X(C)

ω(n · φtor)
∧s1 ∧ (π∗̟)∧s2 = ns1 ·

∫

X(C)

ω(φtor)
∧s1 ∧ (π∗̟)∧s2

for each non-negative integer n.

Proof. Let us first prove the lemma assuming that φtor = ϕtor ∈ Hom(Gtm,G
t′

m). In this
situation, ω(ϕtor) extends to a smooth closed (1, 1)-form on the (complex) analytic space
GΓ(ϕtor)

(C). Indeed, ω(ϕtor) is precisely defined to agree with the restriction of the smooth

differential form ω̃(ϕtor) = c1(MΓ(ϕtor)
) on GΓ(ϕtor)

(C) ⊃ G(C). Writing X for the Zariski

closure of X in GΓ(ϕtor)
, we have hence

∫

X(C)

ω(φtor)
∧s1 ∧ (π∗̟)∧s2 =

∫

X(C)

ω̃(ϕtor)
∧s1 ∧ (π∗̟)∧s2

because (X \ X)(C) is of positive codimension in X(C). As we are integrating a smooth
differential form over a compact analytic space, the integral on the right-hand side is evidently
finite.

To show the second part of the assertion, still assuming that φtor = ϕtor ∈ Hom(Gtm,G
t′

m),
we start note that also c1(MΓ(n·ϕtor)

) is an extension of ω(n · ϕtor) on GΓ(n·ϕtor)
(C) ⊃ G(C).

In addition, Construction 6 supplies us with a map ϑϕtor,n : G
Γ(ϕtor)

→ G
Γ(n·ϕtor)

, which is

the identity on G. Therefore, the smooth closed (1, 1)-form ω̃(n · ϕtor) = ϑ∗ϕtor,nc1(MΓ(n·ϕtor)
)

extends ω(n · ϕtor) to GΓ(ϕtor)
(C) ⊃ G(C). (Note that both extensions ω̃(ϕtor) and ω̃(n · ϕtor)

are actually unique.)
Denote by π : GΓ(ϕtor)

→ A the abelian quotient. Since the boundary (X \ X)(C) has

measure zero, (33) would follow from the equality

(34)

∫

X(C)

ω̃(m · ϕtor)
∧s1 ∧ (π∗̟)∧s2 = ms1 ·

∫

X(C)

ω̃(ϕtor)
∧s1 ∧ (π∗̟)∧s2 .
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For this, we claim that any function

ρ±v : G(C) → R>0, x 7→ (1 + e±2mϕ∗
torλ

′
v )/(1 + e±2ϕ∗

torλ
′
v )m, 1 ≤ v ≤ t′,

extends smoothly to GΓ(ϕtor)
(C). It suffices to prove that each x ∈ (GΓ(ϕtor)

\ G)(C) has a

(euclidean) neighborhood on which ρ±v extends smoothly. For this, we let ϕ : G→ G′ be again
the homomorphism from Construction 7 so that MΓ(ϕtor)

≈ ϕ∗MG
′ . As before, Lemma 14

affords a Weil function λ′v, 1 ≤ v ≤ t′, for each divisor D′
v,0 −D′

v,∞ on G
′
. Its pullback ϕ∗λ′v

along ϕ : GΓ(ϕtor)
→ G

′
restricts to the function ϕ∗

torλ
′
v : G(C) → R formally defined by (30).

There exists a euclidean neighborhood U of ϕ(x) and a meromorphic function f on U with
div(f) = (D′

v,0 − D′
v,∞)|U such that λ′v + log |f | extends to a smooth function α on U . On

G(C) ∩ ϕ−1(U) ⊂ G
Γ(ϕtor)

(C), we have

ϕ∗
torλ

′
v = λ′v ◦ ϕ = − log |f ◦ ϕ|+ (α ◦ ϕ)

and thus

(35) ρ±v =
1 + |f ◦ ϕ|∓2me±2m(α◦ϕ)

(1 + |f ◦ ϕ|∓2e±2(α◦ϕ))m
=

|f ◦ ϕ|±2m + e±2m(α◦ϕ)

(|f ◦ ϕ|±2 + e±2(α◦ϕ))m
.

Since supp(D′
v,0) ∩ supp(D′

v,∞) = ∅, we have x /∈ supp(D′
v,0) or x /∈ supp(D′

v,∞). Shrinking

U if necessary, we may hence assume that f or f−1 is holomorphic on U . In either case, (35)
yields a smooth extension of ρ±v on ϕ−1(U). By uniqueness, these extensions glue together to
a smooth function ρ̃±v : GΓ(ϕtor)

(C) → R>0. (In fact, ρ̃±v (x) = 1 for all x ∈ supp(D′
v,0)(C) ∪

supp(D′
v,∞)(C) because (1 + emx)/(1 + ex)m → 1 if x→ ±∞.) In addition,

(36) ω̃(m · ϕtor)−mω̃(ϕtor) =
1

2

t′∑

v=1

(
ddc log(ρ̃+v ) + ddc log(ρ̃−v )

)
;

indeed, this equality is obvious on G(C) and any (1, 1)-form on G(C) has at most one smooth
extension to the compactification GΓ(ϕtor)

(C). We deduce from (36) that ω̃(m·ϕtor)−mω̃(ϕtor)

is exact and hence Stokes’ theorem ([20, p. 33]) in combination with a partition of unity implies
(34).

Now, let us consider a general φtor ∈ HomQ(G
t
m,G

t′

m) and a positive integer n that is a

denominator for φtor (i.e., n · φtor ∈ Hom(Gtm,G
t′

m)). Setting Y = [n]−1(X), the restriction
[n]|Y : Y → X is finite étale of degree n2 dim(A)+t. By functoriality (30), we have [n]∗ω(φtor) =
ω(n · φtor) and [n]∗ω(m · φtor) = ω(m · n · φtor). We infer that

n2 dim(A)+t

∫

X(C)

ω(m · φtor)
∧s1 ∧ (π∗̟)∧s2 =

∫

Y (C)

ω(m · n · φtor)
∧s1 ∧ (π∗[n]∗̟)∧s2

and

n2 dim(A)+t

∫

X(C)

ω(φtor)
∧s1 ∧ (π∗̟)∧s2 =

∫

Y (C)

ω(n · φtor)
∧s1 ∧ (π∗[n]∗̟)∧s2 .

Since n · φtor ∈ Hom(Gtm,G
t′

m), this reduces the assertion of the lemma to the already proven
special case. �

5.2. “Abelian” (1,1)-forms. This subsection is the “abelian” equivalent of the last one and
we introduce here (1, 1)-forms ω(N ;φab) analogous to the (1, 1)-forms ω(φtor). In fact, we
construct a (1, 1)-form ω(N ;φab) on A(C) for each φab ∈ HomR(A,A

′), A and A′ abelian
varieties, and each ample line bundle N on A′. Having pullbacks from abelian quotients at
our disposal, it suffices here to work on abelian varieties and the definition is technically less
demanding.

Let ϕab : A→ A′ be a homomorphism of abelian varieties. We choose lattices Λ ⊆ Cg, g =
dim(A), and Λ′ ⊆ Cg

′

, g′ = dim(A′), such that Cg ։ Cg/Λ = A(C) and Cg
′

։ Cg
′

/Λ′ = A′(C)
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are universal coverings. In the sequel, each holomorphic tangent space TxA(C), x ∈ A(C),

(resp. TxA
′(C), x′ ∈ A′(C),) is identified with Cg (resp. Cg

′

) by virtue of this quotient map.

We write ϕ̃ab : Cg → Cg
′

for the lifting of ϕab along the universal coverings.
Let N be an ample line bundle on A′. The Appell-Humbert Theorem (see e.g. [3, Section

2.2]) allows us to describe N in terms of a pair (H,χ) consisting of a hermitian form H :

Cg
′

× Cg
′

→ C such that ImH(Λ′,Λ′) ⊆ Z and a semicharacter χ : Λ′ → S1 for H . It is
well-known (cf. [3, Exercise 2.6.2] and [61, Theorem 7.10]) that N can be endowed with a
metric g such that the Chern form c1(N) of the hermitian line bundle N = (N, g) is given by

(37) c1(N)x : TR,xA
′(C)×TR,xA

′(C) = Cg
′

×Cg
′

−→ C, (v, w) 7−→ −Im(H)(v, w), x ∈ A′(C).

Ampleness of N is equivalent to H being positive definite ([3, Proposition 4.5.2]), which is
equivalent to c1(N) being a positive (1, 1)-form. The pullback of c1(N) along ϕab is given by

(38) ϕ∗
abc1(N)x : TR,xA(C)×TR,xA(C) = Cg×Cg −→ C, (v, w) 7−→ −Im(H)(ϕ̃ab(v), ϕ̃ab(w)),

for each x ∈ A(C). Lifting homomorphisms A → A′ to homomorphisms Cg → Cg
′

of the

universal coverings induces an injection HomR(A,A
′) →֒ HomR(C

g,Cg
′

), φab 7→ φ̃ab. As in

(31), the right hand side of (38) is well-defined for any φ̃ab ∈ HomR(C
g,Cg

′

). For an element
φab ∈ HomR(A,A

′), we hence define the (1, 1)-form ω(N ;φab) on A by demanding

ω(N ;φab)x : TR,xA(C)× TR,xA(C) = Cg × Cg −→ C, (v, w) 7−→ −Im(H)(φ̃ab(v), φ̃ab(w)),

for each x ∈ A(C). Since c1(N) is positive and of real type, ω(N ;φab) is semipositive and
of real type as well. In addition, ω(N ;φab) only depends on φab and the hermitian form H
associated with N (i.e., the Néron-Severi class of N) but we have no use for this fact in the
following. Yet again, the assignment φab 7→ ω(N ;φab) is continuous with respect to the usual
topologies. Finally, there is the obvious homogeneity relation

(39) ω(N ;n · φab) = n2 · ω(N ;φab).

6. Distributions, analytic subgroups, and Ax’s Theorem

In general, the (1, 1)-forms ω(φtor) and ω(N ;φab) introduced in Section 5 have no realization
as Chern forms of hermitian line bundles. As we show in this section, they nevertheless convey
geometric information and are closely connected to the group structure of the semiabelian
variety.

Once again, we consider a semiabelian variety G with abelian quotient π : G → A and
toric part T = Gtm. Let t′ be a non-negative integer, A′ an abelian variety and N an ample

line bundle on A′. For each φtor ∈ HomR(G
t
m,G

t′

m) (resp. φab ∈ HomR(A,A
′)), we have a

semipositive (1, 1)-form ω(φtor) (resp. π
∗ω(N ;φab)) of real type on G(C). Set

ω = c · ω(φtor) + π∗ω(N ;φab)

for some arbitrary positive constant c > 0. (The flexibility provided by c is needed later in
the proof of Lemma 29 in order to remedy the fact that there is no ample line bundle on a
general semiabelian variety that is homogeneous with respect to the multiplication-by-n map
[n].) Since gω(φtor) and gπ∗ω(N ;φab) are positive semidefinite, we infer from (26) that

(40) ker(ωx) = ker(ω(φtor)x) ∩ ker(π∗ω(N ;φab)x) ⊆ TR,xG(C)

for each x ∈ G(C). In addition, ω(I(·), I(·)) = ω(·, ·) implies that ker(ω(φtor)x) is invariant
under I. In fact, both ker(ω(φtor)x) and ker(ω(N ;φab)x) are I-invariant for the same rea-

son. Under our standing identification of TRG(C) and T
1,0
C G(C), this means that ker(ωx) is a

C-linear subspace of T 1,0
C,xG(C). Our next observation is that this yields a left-invariant holo-

morphic distribution (i.e., a holomorphic vector subbundle) ker(ω) ⊂ T 1,0
C G(C), which is a

straightforward consequence of the lemma below.
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Lemma 18. For every x, y ∈ G(C), we have (dly)x ker(ωx) = ker(ωy+x).

Proof. Because of (40), it suffices to prove that
(41)
(dly)x ker(ω(φtor)x) = ker(ω(φtor)y+x) and (dly)x ker(π

∗ω(N ;φab)x) = ker(π∗ω(N ;φab)y+x)

for all x, y ∈ G(C). The latter equality is a direct consequence of the fact that the Chern form
c1(N) on A′(C) is translation-invariant, which can be read off from (37). Using (23), we see
that (32) implies

gω(φtor) =

t′∑

v=1

∂φ∗torλ
′
v ⊗ ∂φ∗torλ

′
v + ∂φ∗torλ

′
v ⊗ ∂φ∗torλ

′
v

2π(1 + e2φ
∗
torλ

′
v )(1 + e−2φ∗

torλ
′
v )

.

By Lemma 15, each ∂φ∗torλ
′
v ⊗ ∂φ∗torλ

′
v + ∂φ∗torλ

′
v ⊗ ∂φ∗torλ

′
v is a positive semidefinite bilinear

form on TxG(C) and it follows by (26) that

ker(ω(φtor)) =
t′⋂

v=1

ker(∂φ∗torλ
′
v ⊗ ∂φ∗torλ

′
v + ∂φ∗torλ

′
v ⊗ ∂φ∗torλ

′
v).

In addition, (25) implies that

ker((∂φ∗torλ
′
v⊗∂φ

∗
torλ

′
v+∂φ

∗
torλ

′
v⊗∂φ

∗
torλ

′
v)x) = {w ∈ TR,xG(C) | ∂φ

∗
torλ

′
v(w)·∂φ

∗
torλ

′
v(w) = 0}.

Since each φ∗torλ
′
v is real-valued, we have ∂φ∗torλ

′
v(v) = ∂φ∗torλ

′
v(v) and thus

ker((∂φ∗torλ
′
v⊗∂φ

∗
torλ

′
v+∂φ

∗
torλ

′
v⊗∂φ

∗
torλ

′
v)x) = {w ∈ TR,xG0(C) | ∂φ

∗
torλ

′
v(w) = 0} = ker(∂φ∗torλ

′
v).

Note that (∂φ∗torλ
′
v)x is a R-linear map TR,xG(C) → C. As each λ′v is a homomorphism, we

have (φ∗torλ
′
v ◦ ly)(·) = φ∗torλ

′
v(·) + φ∗torλ

′
v(y) and therefore ∂(φ∗torλ

′
v ◦ ly) = ∂φ∗torλ

′
v. We infer

(dly) ker(∂φ
∗
torλ

′
v)x = ker(∂(φ∗torλ

′
v ◦ ly))y+x = ker(∂φ∗torλ

′
v)y+x,

thus establishing the first equation of (41). �

Having proven translation-invariance, we can easily determine the rank of ker(ω) by de-
termining the dimension of ker(ωe). We do this next under some surjectivity assumption
on φtor and φab. To describe this assumption, we recall that the complex exponential map
gives a universal covering C → Gm(C). Taking products, we obtain universal coverings

Ct → Gtm(C) and Ct
′

→ Gt
′

m(C). Each homomorphism ϕtor ∈ Hom(Gtm,G
t′

m) lifts to a linear

map ϕ̃tor : Ct → Ct
′

(cf. [65, Theorems 3.25 and 3.27]). Tensoring with R, we obtain an

injection HomR(G
t
m,G

t′

m) →֒ HomR(C
t,Ct

′

), φtor 7→ φ̃tor, and set

Hom◦
R(G

t
m,G

t′

m) = {φtor ∈ HomR(G
t
m,G

t′

m) | φ̃tor is surjective}.

In Subsection 5.2, we have associated with each φab ∈ Hom(A,A′) a linear map φ̃ab : Cg → Cg
′

and we define similarly

Hom◦
R(A,A

′) = {φab ∈ HomR(A,A
′) | φ̃ab is surjective}.

Lemma 19. If φtor ∈ Hom◦
R(G

t
m,G

t′

m) and φab ∈ Hom◦
R(A,A

′), then ker(ω) has rank (t− t′)+
(dim(A)− dim(A′)) (as a complex vector bundle).

Proof. First, we claim that there is a commutative exact diagram

(42)

0 ker(ω(φtor)|TR,eT (C)) ker(ωe) ker(ω(N ;φab)e) 0

0 TR,eT (C) TR,eG(C) TR,eA(C) 0.
(dπ)e
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Except for the surjectivity of ker(ωe) → ker(ω(N ;φab)e), this is a direct consequence of semi-
positivity and (25). For surjectivity, it suffices to prove that there exists an I-invariant subspace
V ⊂ ker(ω(φtor)e) such that

(43) TR,eT (C)⊕ V = TR,eG(C).

Given such a decomposition, we can find for any v ∈ ker(ω(N ;φab)e) a (dπ)e-preimage w ∈ V .
Furthermore, we have

gω,e(w,w) = c · gω(φtor),e(w,w) + gπ∗ω(N ;φab),e(w,w) = gω(N ;φab),e(v, v) = 0

since w ∈ ker(ω(φtor)e) and (dπ)e(w) = v ∈ ker(ω(N ;φab)e). Recall that the maximal compact
subgroup KG ⊂ G(C) is a real Lie subgroup such that dimR(TR,eKG) = 2 dim(A) + t.

We now claim that V = TR,eKG ∩ I(TR,eKG) ⊂ TR,eG(C) is a suitable choice for (43).
Since each Weil function λu (1 ≤ u ≤ t) is constant zero on KG, both the (1, 0)-forms ∂λu
(1 ≤ u ≤ t) and the (0, 1)-forms ∂λu (1 ≤ u ≤ t) have to vanish on V . This immediately implies
that V ⊂ ker(ω(φtor)e). We already know that λu|T (C) = − log |zu| in standard coordinates
z1, . . . , zt on T (C) = Gtm(C). We compute that

(44) ∂λu|TRT (C) = −dzu/2zu and ∂λu|TRT (C) = −dzu/2zu (1 ≤ u ≤ t),

which shows that the restrictions of ∂λ1, . . . , ∂λt, ∂λ
′
1, . . . , ∂λ

′
t to TR,eT (C) form a C-basis of

HomR(TR,eT (C),C). Since each of these forms vanishes on V (see (28)), we have TR,eT (C) ∩
V = {0}. As dimR(V ) = dimR(TR,eKG ∩ I(TR,eKG)) ≥ 2 dim(A), we obtain the direct sum
decomposition (43).

Using (42), it remains to compute the dimensions of the I-invariant R-linear subspaces

ker(ω(φtor)|TR,eT (C)) and ker(ω(M ;φab)e). For the former one, let us represent φ̃tor ∈ HomR(C
t,Ct

′

)

as a matrix (auv)1≤u≤t,1≤v≤t′ ∈ Rt×t
′

. As in the proof of Lemma 18 above, we have

ker(ω(φtor)|TR,eT (C)) =
t′⋂

v=1

ker((a1v∂λ1 + · · ·+ atv∂λt)|TR,eT (C))

=

t′⋂

v=1

ker(a1vdz1 + · · ·+ atvdzt : TR,eT (C) → C).

Setting dzi = dxi + idyi with dxi, dyi : TR,eT (C) → R, we can rewrite this as

ker(ω(φtor)|TR,eT (C)) =

t′⋂

v=1

ker(a1vdx1 + · · ·+ atvdxt) ∩
t′⋂

i=1

ker(a1vdy1 + · · ·+ atvdyt).

The condition φtor ∈ Hom◦
R(G

t
m,G

t′

m) is equivalent to the matrix (auv) having maximal rank
t′. This implies that the 2t′ real-valued functionals

a1vdx1 + · · ·+ atvdxt, a1vdy1 + · · ·+ atvdyt (1 ≤ v ≤ t′)

on TR,eT (C) are R-linearly independent. From this, we infer

dimR ker(ω(φtor)|TR,eT (C)) = 2(t− t′).

For ker(ω(N ;φab)e), it follows directly from (38) that

gω(N ;φab),e : TR,xA(C)× TR,xA(C) = Cg × Cg −→ C, (v, w) 7−→ Re(H)(φ̃ab(v), φ̃ab(w))

(compare with (24)). Since H is positive definite, so is its real part Re(H). Using (25), we
deduce that

ker(ω(N ;φab)e) = φ̃−1
ab (ker(Re(H))) = φ̃−1

ab ({0}) = ker(φ̃ab).

Finally, φab ∈ Hom◦
R(A,A

′) implies that dimR ker(ω(N ;φab)e) = 2(dim(A) − dim(A′)). �
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In summary, we have proven that ker(ω) ⊂ T 1,0
C G(C) is a left-invariant holomorphic distri-

bution on G(C). By the holomorphic Frobenius theorem ([61, Theorem 2.26]), the distribution

ker(ω) is (holomorphically) integrable since the Lie bracket on T 1,0
C G(C) vanishes. In fact, the

integral manifold of ker(ω) through a given point x ∈ G(C) coincides with the analytic sub-

group x · expG(C)(ker(ω)e) with expG(C) : T
1,0
C G(C) → G(C) being the Lie group exponential

(cf. [25, Theorem II.1.7]).
As indicated in Section 4, we are interested in determining when a submanifold Y ⊂ G(C)

and a point x ∈ Y (C) are such that gω|TR,xY is positive definite. For this purpose, we introduce
an elementary lemma about integrable (holomorphic) distributions.

Lemma 20. Let M be a complex manifold of dimension n, D ⊂ T 1,0
C M an integrable holomor-

phic distribution of rank m on M , Z ⊂M a k-dimensional analytic subvariety and x a point on
Z. Assume that there exists an open neighborhood U ⊂M of x such that dimC(D∩ T 1,0

C,yZ) ≥ l
for any y ∈ Zsm ∩ U . Then, the integral submanifold L ⊂ U of D through x satisfies
dimx(L ∩ Z) ≥ l.

Proof. By shrinking U if necessary, we can assume that there exists a holomorphic flat chart
f : U → Cn−m for D|U . Recall that this means that f is a submersion and that each non-
empty fiber of f is an integral submanifold for D|U . By our assumption, the differential

d(f |Z) : T
1,0
C,yZ → Cn−m has rank ≤ k− l for every y ∈ Zsm∩U . By [22, Lemma L.6], the local

dimension of any fiber f |−1
Z (f(y)) = f−1(f(y)) ∩ Z, y ∈ Zsm ∩ U , is ≥ l everywhere. If x is a

smooth point of Z, this already implies dimx(f
−1(f(x)) ∩ Z) ≥ l. For x in the singular locus,

we use also the upper semi-continuity of the fiber dimension [22, Lemma L.2] to conclude the
proof. �

Finally, we are ready to use Ax’s Theorem to show non-degeneracy in all cases of interest.

Lemma 21. Let X ⊂ G be an algebraic subvariety such that X(s) 6= X for some non-negative
integer s. Then (ω|X)∧ dim(X) 6= 0 for every (φtor, φab) ∈ Hom◦

R(G
t
m,G

t′

m)×Hom◦
R(A,A

′) with
t′ + dim(A′) ≥ s.

Proof. Assume (ω|X)∧ dim(X) = 0, which means that dimC(ker(ωx) ∩ TxX) ≥ 1 for any x ∈
X(C). For each x ∈ X(C), let Lx = x · expG(C)(ker(ω|e)) be the integral manifold of ker(ω)

through x. By Lemma 19, the holomorphic distribution ker(ω) has rank ≤ dim(G) − s and
this is also the dimension of Lx. From Lemma 20, we know that dimx(Lx∩X(C)) ≥ 1. This is
an intersection of an algebraic subvariety with an analytic subgroup in G(C). Applying Ax’s
Theorem ([1, Corollary 1]), we obtain for each x ∈ X(C) an algebraic subgroup H ⊂ G such
that X ⊂ xH and

dim(H) ≤ dim(X) + dim(Lx)− dimx(Lx ∩X(C)) < dim(X) + dim(G)− s.

A comparison with (1) shows that this implies thatX is itself an s-anomalous variety, associated
with H , and hence X = X(s). �

7. Proof of Theorem 2

In this section, all algebraic groups are over Spec(Q) without further mention. As usual, T
denotes the toric part of G and A the underlying abelian variety. Since our base field is Q, the
torus T is split and we keep fixed a splitting throughout this section (i.e., assume T = Gtm).

7.1. Reductions. We start with an elementary observation related to the “height cones”
introduced in (2). Let h, h′ : G(Q) → R be functions satisfying

(45) c3h
′(x)− c4 ≤ h(x) ≤ c5h

′(x) + c6 and h′(x1 + x2) ≤ c7(h
′(x1) + h′(x2)) + c8



28 LARS KÜHNE

for all x, x1, x2 ∈ G(Q) with constants ci > 0 (i ∈ {3, . . . , 8}). For any subset Σ ⊆ G(Q) and
any ε > 0, there is an inclusion

C(Σ, h′, ε′) ⊆ C(Σ, h, ε) ∪ {x ∈ G(Q) | h′(x) < c9}

with ε′ = εc3c
−1
5 /2 and some constant c9 = c9(c3, . . . , c8, ε, ε

′). We leave this straightforward
computation to the reader.

Let G be the compactification of G and MG the line bundle as in Construction 5. Further-
more, let N be a ample symmetric line bundle on A. By Lemma 3, L = MG ⊗ π∗N is an

ample line bundle on G. For Theorem 2, it is sufficient to prove the boundedness of hL on
(X \X(s))(Q)∩C(G[s](Q), hL, ε). In fact, let L′ be an arbitrary ample line bundle on an arbi-

trary compactification G
′
of G and hL′ an associated Weil height. Applying [63, Proposition

2.3] to the identity map idG, which gives a birational map G 99K G
′
, and the line bundles L

and L′ we obtain the first two inequalities in (45). The third inequality follows from applying

the same proposition to the group law +G, understood as a rational map G
′
×G

′
99K G

′
. We

may thus use our above observation to ensure the asserted reduction. Considering also Lemma

8 (a), we see that it even suffices to prove that ĥL = ĥMG
+ ĥN : G(Q) → R≥0 is bounded from

above on (X \X(s))(Q) ∩C(G[s](Q), ĥL, ε).
Our last reduction step is to note that Theorem 2 is easily inferred from the following

proposition, which is shown in the remaining parts of Section 7.

Proposition 22. Let X ⊆ G be an irreducible Zariski closed subset of positive dimension such
that X(s) 6= X. Then, there exists a non-empty Zariski open subset U ⊆ X and some ε > 0

such that ĥL is bounded on U ∩C(G[s](Q), ĥL, ε).

Proof of Theorem 2 (using Proposition 22). We perform an induction on dim(X). Theorem
2 is clearly trivial if X has dimension zero, which starts our induction. Assume now that

X is positive dimensional and that the assertion of the theorem, with hL replaced by ĥL,
is already known for any X ′ with dim(X ′) < dim(X). Without loss of generality, we can
additionally assume that X is irreducible and that X(s) 6= X . Applying Proposition 22 to X ,

we obtain a non-empty Zariski open subset U ⊆ X and a real number ε > 0 such that ĥL
is bounded on U(Q) ∩ C(G[s](Q), ĥL, ε). Now, X ′ = X \ U has dimension strictly less than

dim(X) so that we may apply our inductive hypothesis to X ′. We obtain that ĥL is bounded

on (X ′ \ (X ′)(s))(Q) ∩ C(G[s](Q), ĥL, ε
′) for some ε′ > 0. In conclusion, we know that ĥL is

bounded on

(X \ (X ′)(s))(Q) ∩ C(G[s](Q), ĥL,min{ε, ε′})

As (X ′)(s) ⊆ X(s) by (1), this yields the assertion of Theorem 2 for X . �

7.2. Approximating homomorphisms. The following lemma is useful for reducing the
proof of the main theorem to a manageable situation.

Lemma 23. There exist finitely many abelian varieties A′
1, . . . , A

′
j0 (depending on s) such

that each x ∈ G[s](Q) is contained in the kernel of some surjective homomorphism ϕ : G→ G′,
dim(G′) ≥ s, that is represented (as in Lemma 1) by a diagram

0 // Gtm
//

ϕtor

��

G //

ϕ

��

A //

ϕab

��

0

0 // Gt
′

m
// G′ // A′

j
// 0.

As ϕtor is surjective, we clearly have t′ ≤ t.
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Proof. Evidently, if x ∈ H(Q) with codimG(H) ≥ s then x is in the kernel of the quotient

π : G → G/H . The toric part of G/H can be identified with Gt
′

m. The abelian component
πab : A → B of π is surjective. By Poincaré’s complete reducibility theorem ([47, Theorem 1
on p. 173]), there exist only finitely many quotients A → A′

j , 1 ≤ j ≤ j0, up to isogeny. In

particular, there exists an isogeny ψ : B → A′
j for some j′ ∈ {1, . . . , j0}. By Lemma 2, there

exists a semiabelian variety G′ and a unique homomorphism ψ′ : G/H → G′ with toric part
idGt′m and abelian part ψ. We can take ϕ = ψ′ ◦ π. �

If G is an abelian variety, Poincaré’s complete reducibility theorem yields immediately the
existence of finitely many quotients ϕi : G → Gi, dim(Gi) ≥ s, such that each x ∈ G[s](Q)
is contained in the kernel of some ϕi. In addition, if G is a torus a similar statement is true
for more trivial reasons. Nevertheless, the analogous statement is false for general semiabelian
varieties as simple examples show.8 Our lemma is optimal in the general case.

By Lemma 1, we may associate with each ϕ ∈ Hom(G,G′) as in Lemma 23 a pair

(ϕtor, ϕab) ∈ Hom(Gtm,G
t′

m)×Hom(A,A′
j), t

′ ∈ {0, . . . , t}, j ∈ {1, . . . , j0}.

This allows us to concentrate on a finite number of fixed finite rank Z-modules

(46) V (t′,j) = Hom(Gtm,G
t′

m)×Hom(A,A′
j), t

′ ∈ {0, . . . , t}, j ∈ {1, . . . , j0}.

instead of infinitely many different Hom(G,G′). We study now one of these modules separately

and drop the superscripts, writing V instead of V (t′,j). As V is a free Z-module, it embeds
into VQ = V ⊗Z Q and VR = V ⊗Z R. Furthermore, a quasi-homomorphism φ ∈ HomQ(G,G

′)
determines a pair (φtor, φab) ∈ VQ. However, the relation between elements (φtor, φab) ∈ VQ
and actual quasi-homomorphisms φ : G→Q G

′ of semiabelian varieties is quite intricate. The
reader is referred to Section 8 for details. As witnessed by the results of Section 6, we have a
special interest in pairs that are contained in

V ◦
R = Hom◦

R(G
t
m,G

t′

m)×Hom◦
R(A,A

′
j) ⊂ VR.

For this reason, we also define V ◦
Q = VQ ∩ V ◦

R . It is easy to see that a quasi-homomorphism

φtor ∈ HomQ(G
t
m,G

t′

m) (resp. φab ∈ HomQ(A,A
′
j)) is contained in Hom◦

R(G
t
m,G

t′

m) (resp.

Hom◦
R(A,A

′
j)) if and only if it is surjective in the sense of Section 1.2.

With these preparations, we can state our first approximation result. The proof is a simple
reduction to the abelian and toric cases treated in [23, 24].

Lemma 24. There exists a compact subset K = Ktor × Kab ⊂ V ◦
R such that the following

assertion is true: Let x ∈ G(Q) be contained in the kernel of a surjective homomorphism
ϕ : G → G′ of semiabelian varieties that is represented by some (ϕtor, ϕab) ∈ V . Then, there
exists a semiabelian variety G′′ and a surjective quasi-homomorphism φ : G →Q G

′′ such that
x ∈ ker(φ) + Tors(G) and φ is represented by some (φtor, φab) ∈ VQ ∩ K.

The reader may be reminded that dim(G′) = dim(G′′) as well as the fact that Gt
′

m (resp.
A′
j) is the toric part (resp. the abelian quotient) of both G′ and G′′ is automatic.

8In fact, consider the semiabelian variety G that is the G2
m-extension of a non-CM elliptic curve E represented

by (η1, η2) ∈ E∨(Q)2. Assume also that Zη1+Zη2 is a free Z-module of rank 2. For each integer n, we consider

the Gm-extension G(n) of E given by nη1 + η2 ∈ E∨(Q) and the homomorphism ϕ(n) : G → G(n) described by

(ϕ
(n)
tor )

∗(Y1) = Xn
1 X2 and ϕ

(n)
ab = idE . There exists a point x ∈ ker(ϕ(n))(Q) ⊂ G[2](Q) that is not contained

in any other algebraic subgroup of codimension 2. Therefore any surjective homomorphism ϕ : G → G′,
dim(G′) = 2, with p ∈ ker(ϕ)(Q) factors through ϕ(n). However, Lemma 1 implies that G(n) and G(m) are not

isogeneous if n 6= m. Indeed, all Gm-extensions isogeneous to G(n) are represented by “rational multiples” of
nη1 + η2 ∈ E∨(Q).
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Proof. Using again Lemma 1, we obtain a commutative diagram

0 // Gtm
//

ϕtor

��

G //

ϕ

��

A //

ϕab

��

0

0 // Gt
′

m
// G′ // A′

j
// 0.

By [23, Lemma 2], there exists some compact subset Kab ⊂ Hom◦
R(A,A

′
j) such that for every

surjective ψ ∈ HomQ(A,A
′
j) there exists a surjective ψ′ ∈ HomQ(A

′
j , A

′
j) with ψ′ ◦ ψ ∈ Kab.

As ϕ is surjective, the same is true for its abelian component ϕab. Hence, we may apply
the lemma with ψ = ϕab and obtain a quasi-homomorphism ψ′

ab : A′
j →Q A′

j such that
ψ′
ab ◦ ϕab ∈ Kab. Similarly, we can extract from the proof of [24, Lemma 4.2] that there

exists a compact set Ktor ⊂ Hom◦
R(G

t
m,G

t′

m) such that there always exists a surjective quasi-

homomorphism ψ′
tor : G

t′

m →Q Gt
′

m with ψ′
tor ◦ϕtor ∈ Ktor. We claim that K = Ktor×Kab ⊂ V ◦

R

satisfies the assertion of the lemma.
Let n be a positive integer such that n · ψ′

ab ∈ Hom(A′
j , A

′
j) and n · ψ′

tor ∈ Hom(Gt
′

m,G
t′

m).

By Lemma 2, there exists a semiabelian variety G′′ and a homomorphism ϕ′ : G′ → G′′ such
that

0 // Gt
′

m
//

n·ψ′
tor

��

G′ //

ϕ′

��

A′
j

//

n·ψ′
ab

��

0

0 // Gt
′

m
// G′′ // A′

j
// 0

is a commutative diagram with exact rows. The homomorphism ϕ′ ◦ϕ : G→ G′′ is represented
by

n · (ψ′
tor ◦ ϕtor, ψ

′
ab ◦ ϕab) ∈ V ∩ n · K.

Multiplying with n−1, we get a quasi-homomorphism φ : G→Q G
′′ that is represented by

(ψ′
tor ◦ ϕtor, ψ

′
ab ◦ ϕab) ∈ VQ ∩ K.

This is evidently the quasi-homomorphism we are searching for. �

For the next lemma, we endow HomR(G
t
m,G

t′

m) and HomR(A,A
′
j) with linear norms. As all

norms on a finite-dimensional R-vector space are equivalent, the precise choice is irrelevant for
our purposes. Therefore, we just fix an arbitrary norm |·| on HomR(G

t
m,G

t′

m) and HomR(A,A
′
j)

for the sequel. We slightly abuse notation in denoting both norms by | · |. For each real
r > 0, we denote by Br(φtor) (resp. Br1/2(φab)) the open ball with radius r (resp. r1/2) around

φtor ∈ HomR(G
t
m,G

t′

m) (resp. φab ∈ HomR(A,A
′
j)). In addition, we set

Br(φtor, φab) = Br(φtor)×Br1/2(φab), (φtor, φab) ∈ VR.

Lemma 25. Let δ > 0 be arbitrary. Then, there exists an integer nδ ≥ 1 and a finite set

{(φ1,tor, φ1,ab), . . . , (φkδ,tor, φkδ,ab)} ⊂ n−1
δ V

such that for each (φtor, φab) ∈ K we have (φtor, φab) ∈ Bδ(φk,tor, φk,ab) for some 1 ≤ k ≤ kδ.

Proof. For sufficiently large nδ, the open sets

Bδ(φtor, φab) = Bδ(φtor)×Bδ1/2(φab), (φtor, φab) ∈ n−1
δ V,

cover all of VR. By compactness, finitely many of these open sets suffice to cover all of K. �

In both [23] and [24], a step analogous to Lemma 25 is performed quite explicitly with
a quantitatively much better result, using diophantine approximation. The above weaker
estimate is however sufficient for our proof.
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7.3. Height bounds. In this section, we derive two competing height bounds. The first one

(Lemma 26) is valid for any x ∈ C(G[s], ĥL, ε), whereas the second one (61) is valid for almost
all x ∈ (X \X(s))(Q). In combination, they imply the desired Proposition 22.

Throughout this section, we keep fixed some sufficiently small δ; the precise conditions on
δ can be found in (48) and (62). For the constants to be introduced in the sequel, we have to
distinguish between those depending only on G and X and those that depend additionally on δ.
For this purpose, the former are written plainly ci whereas the latter are written ci(δ). None
of these constants depends on the point x ∈ G(Q) under consideration.

We now consider a point x ∈ (X \ X(s))(Q) ∩ C(G[s](Q), ĥL, ε). Write x = y + z with

y ∈ G[s](Q) and ĥL(z) ≤ εmax{1, ĥL(y)}. Assuming ε < 1/4, we obtain

ĥL(y) = ĥL(x− z) ≤ 2ĥL(x) + 2ĥL(z) ≤ 2ĥL(x) +
ĥL(y)

2
+

1

2

by using Lemma 8 (b) and Lemma 12 for the first inequality. Hence, we have that

(47) ĥL(y) ≤ 4ĥL(x) + 1 and ĥL(z) ≤ ε(4ĥL(x) + 2).

Denote by A1, . . . , A
′
j0

the abelian varieties afforded by Lemma 23. We endow each A′
j with

an ample symmetric line bundle Nj , 1 ≤ j ≤ j0. There exists a semiabelian variety G′ with

abelian quotient A′
j (j ∈ {1, . . . , j0}) and toric part Gt

′

m (t′ ∈ {0, . . . , t}) such that there is a

surjective homomorphism ϕ : G→ G′ satisfying y ∈ ker(ϕ). We emphasize that it is essential
that there are only finitely many choices for j′ and t′ as x varies; otherwise, we would not be
able to choose all constants below independent of the point x.

Consider the Z-module V = V (t′,j) defined in (46) and choose linear norms on HomR(G
t
m,G

t′

m)
and HomR(A,A

′
j), which we simply denote both by | · |. Lemma 24 yields a compact set

K = Ktor ×Kab ⊂ V ◦
R = Hom◦

R(G
t
m,G

t′

m)×Hom◦
R(A,A

′
j) ⊂ VR

and a quasi-homomorphism φ0 : G →Q G0 represented by some (φ0,tor, φ0,ab) ∈ K such that

y ∈ ker(φ0) + Tors(G). We compactify G0 by G0 as in Construction 5 and endow G0 with the
ample line bundle (cf. Lemma 3)

L0 =MG0
⊗ (π0)

∗Nj

where π0 : G0 → A′
j denotes the usual projection.

Since Ktor (resp. Kab) is compact and contained in the open subset Hom◦
R(G

t
m,G

t′

m) (resp.
Hom◦

R(A,A
′
j)), the distance between Ktor (resp. Kab) and the complement

Ctor = HomR(G
t
m,G

t′

m) \Hom◦
R(G

t
m,G

t′

m) (resp. Cab = HomR(A,A
′
j) \Hom

◦
R(A,A

′
j))

is strictly positive. We assume that

(48) δ < min{dist(Ktor, Ctor), dist(Kab, Cab)
2}.

By the triangle inequality, this implies that the distance between Kδ = K+Bδ(0, 0) and VR\V ◦
R

is strictly positive. Consequently, Kδ is a relatively compact subset of V ◦
R . We choose pairs

(49) (φk,tor, φk,ab) ∈ n−1
δ V, 1 ≤ k ≤ kδ,

such that the conclusion of Lemma 25 is true. Discarding pairs if necessary, we may assume
that (φk,tor, φk,ab) ∈ Kδ and hence that (φk,tor, φk,ab) ∈ V ◦

Q . Our choice of the pairs (49)
allows us to pick a pair (φk,tor, φk,ab), k ∈ {1, . . . , kδ}, with (φ0,tor, φ0,ab) ∈ Bδ(φk,tor, φk,ab).
Renumbering if necessary, we can even impose that

(φ0,tor, φ0,ab) ∈ Bδ(φ1,tor, φ1,ab)

in order to simplify our notation. Again, let us emphasize that it is important that we only
have to choose among finitely many pairs (49) so that all constants in the sequel can be taken
independent of k and hence of the point x.
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Set Γ1 = Γ(nδ · φ1,tor) ⊂ (P1)t × (P1)t
′

. From Construction 6, we obtain a compactification
GΓ1

endowed with a line bundleMΓ1
. Denoting by πΓ1

: GΓ1
→ A the projection to the abelian

quotient, the line bundle

L1 =M⊗nδ
Γ1

⊗ (πΓ1
)∗(nδ · φ1,ab)

∗Nj

is nef by Lemma 3.
Let n be a denominator of φ0 (i.e., n is an integer such that ψ0 = n ·φ0 ∈ Hom(G,G0)). We

also write (ψ1,tor, ψ1,ab) for nδ · (φ1,tor, φ1,ab) ∈ V . As Kδ ⊂ V ◦
R is relatively compact, there

exists a constant c10 > 1 such that

c−1
10 ≤ min{|φtor|, |φab|} ≤ max{|φtor|, |φab|} ≤ c10

for any (φtor, φab) ∈ Kδ. Since n
−1
δ (ψ1,tor, ψ1,ab) = (φ1,tor, φ1,ab) ∈ Kδ, we infer

(50) c−1
10 nδ ≤ min{|ψ1,tor|, |ψ1,ab|} ≤ max{|ψ1,tor|, |ψ1,ab|} ≤ c10nδ.

We can now demonstrate the first of the two announced height bounds.

Lemma 26. There is some constant c11 > 0 such that

(51) ĥL1(x) ≤ c11n
2
δ(δ + ε)(ĥL(x) + 1).

Proof. From Lemma 12, we know the estimate

(52) ĥL1(x) ≤ 2ĥL1(y) + 2ĥL1(z).

We may hence bound ĥL1(y) and ĥL1(z) separately. Recall that

ĥL(y) = ĥMG
(y) + ĥπ∗N (y)

and note that

ĥL1(y) = nδĥM1(y) + ĥπ∗
1ψ

∗
1,ab

Nj(y)

by Lemma 8 (b, c). Let c1 and c2 be the constants of Lemma 11 if applied to G = G, N0 = N ,

t = t′, A1 = A′
j , N1 = Nj and our fixed linear norms | · | on HomR(G

t
m,G

t′

m) and HomR(A,A
′
j).

Comparing Constructions 6 and 7, we infer ψ∗
0MG0

≈MΓ(ψ0,tor)
. From Construction 6, we also

know the homogeneities

M⊗n
1 =M⊗n

Γ(ψ1,tor)
≈ ϑ∗ψ1,tor,nMΓ(n·ψ1,tor)

and ψ∗
0M

⊗nδ
G0

≈M⊗nδ
Γ(ψ0,tor)

≈ ϑ∗ψ0,tor,nδMΓ(nδ·ψ0,tor)
,

implying

nĥM1(y) = ĥM
Γ(n·ψ1,tor)

(y) and nδĥψ∗
0MG0

(y) = ĥM
Γ(nδ ·ψ0,tor)

(y).

Invoking Lemma 11 for n · (ψ1,tor, ψ1,ab) and nδ · (ψ0,tor, ψ0,ab) yields

(53) |nĥM1(y)− nδĥψ∗
0MG0

(y)| < c1|n · ψ1,tor − nδ · ψ0,tor|ĥMG
(y)

and

(54) |n2ĥπ∗ψ∗
1,ab

Nj (y)− n2
δĥψ∗

0 (π0)∗Nj (y)| < c2|n · ψ1,ab − nδ · ψ0,ab|
2ĥπ∗N (y).

As y ∈ ker(ψ0) + Tor(G), we have ψ0(y) ∈ Tor(G0) and consequently

(55) ĥL0(ψ0(y)) = ĥMG0
(ψ0(y)) + ĥ(π0)∗Nj (ψ0(y)) = 0.

With Lemma 10, we obtain ĥψ∗
0MG0

(y) = ĥMG0
(ψ0(y)) = 0 and ĥψ∗

0 (π0)∗Nj(y) = ĥ(π0)∗Nj (ψ0(y)) =

0 from (55). Since

(56) n · (ψ1,tor, ψ1,ab)− nδ · (ψ0,tor, ψ0,ab) = nnδ · ((φ1,tor, φ1,ab)− (φ0,tor, φ0,ab)) ,

we may cancel n (resp. n2) in (53) (resp. (54)) and obtain

(57) ĥL1(y) < c12δn
2
δĥL(y) ≤ c12δn

2
δ(4ĥL(x) + 1)
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for some constant c12 > 0. Applying Lemma 11 to (ψ1,tor, ψ1,ab) and (0, 0) ∈ V , we obtain
similarly

ĥL1(z) < c13(nδ|ψ1,tor|+ |ψ1,ab|
2)ĥL(z)

for some constant c13 > 0. Using (50), we deduce from this the estimate

(58) ĥL1(z) < 2c13c
2
10n

2
δĥL(z) ≤ 4εc13c

2
10n

2
δ(2ĥL(x) + 1).

Finally, (51) follows from combining (52), (57) and (58). �

Our second height bound is a consequence of Siu’s numerical bigness criterion ([58, Corollary
1.2]). Recall from (13) the maps ι = ιΓ1

: G → GΓ1
and q = qΓ1

: GΓ1
→ G. The idea

is to compare the line bundles L1 and q∗L on the Zariski closure X of ι(X) ⊂ GΓ1
. Set

r = dim(X) ≥ 1 and

(59) α =
deg(c1(L1)

r ∩
[
X
]
)

max{1, 2r deg(c1(L1)r−1c1(q∗L) ∩
[
X
]
)}
.

We note that both L1 and q∗L are nef.

Lemma 27. There exists a non-empty Zariski open subset Uδ ⊆ X and a constant c14(δ), both
depending on δ, such that

(60) αĥL(x) − c14(δ) ≤ ĥL1(x)

if x ∈ Uδ(Q).

Proof. If deg(c1(L1)
r ∩ [X]) = 0, then α = 0 and there is nothing left to prove because ĥL1(x)

is non-negative by Lemma 10. Hence, we may and do assume deg(c1(L1)
r ∩ [X]) 6= 0. As L1

is nef, this actually means deg(c1(L1)
r ∩ [X]) > 0. Set

u = deg(c1(L1)
r ∩ [X ]) and v = max{1, 2r deg(c1(L1)

r−1c1(q
∗L) ∩ [X])}.

This is arranged so that

deg(c1(L
⊗v
1 )r ∩ [X ]) = vr deg(c1(L1)

r ∩ [X]) ≥ 2rvr−1u deg(c1(L1)
r−1c1(q

∗L) ∩ [X])

= 2r deg(c1(L
⊗v
1 )r−1c1(q

∗L⊗u) ∩ [X]).

Thus, Siu’s criterion as stated in [40, Theorem 2.2.15] implies that L2 = (L⊗v
1 ⊗ q∗L⊗(−u))|X

is big. In particular, some power of L2 is effective. By [27, Theorem B.3.6], there exists a
non-empty Zariski-open set Uδ ⊆ X and a constant c15(L2) > 0 such that

−c15(L2) ≤ hL⊗v
1 ⊗q∗L⊗(−u)(x)

for all x ∈ Uδ(Q). For a fixed δ > 0, we wind up here with finitely many choices for X ⊂ GΓ1

and the line bundles L1 and q
∗L on GΓ1

. As L2 can be determined from this data, we can hence

replace c15(L
⊗w
2 ) by some constant depending only on δ. Combining this fact with Lemma 8

(a), we conclude the existence of some constant c16(δ) > 0 such that

−c16(δ) ≤ ĥL⊗v
1 ⊗q∗L⊗(−u)(x)

whenever x ∈ Uδ(Q). Inequality (60) follows immediately by using Lemma 8 (c), Lemma 9,
and α = u/v. �

It remains to bound the quantity α from below.

Lemma 28. There exists a constant c17 > 0 such that α ≥ c17n
2
δ.
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Proof. We first define auxiliary functions βi, 0 ≤ i ≤ r, and γi, 0 ≤ i ≤ r − 1, on VQ. Once

again, we use that Construction 6 gives for each ϕtor ∈ Hom(Gtm,G
t′

m) a compactification
GΓ(ϕtor)

of G with abelian quotient πΓ(ϕtor)
: GΓ(ϕtor)

→ A and a line bundle MΓ(ϕtor)
on

G
Γ(ϕtor)

. We use the notations introduced in (13). In addition, we let X
Γ(ϕtor)

be the Zariski

closure of ιΓ(ϕtor)
(X) in GΓ(ϕtor)

. For any (ϕtor, ϕab) ∈ V , we can now define

βi(ϕtor, ϕab) = (|ϕtor|+ |ϕab|)
i deg

(
c1(MΓ(ϕtor)

)ic1((ϕab ◦ πΓ(ϕtor)
)∗Nj)

r−i ∩ [XΓ(ϕtor)
]
)

and

γi(ϕtor, ϕab) = (|ϕtor|+|ϕab|)
i deg

(
c1(MΓ(ϕtor)

)ic1((ϕab ◦ πΓ(ϕtor)
)∗Nj)

r−1−ic1(q
∗
Γ(ϕtor)

L) ∩ [XΓ(ϕtor)
]
)
.

This defines a Z-homogeneous function βi (resp. γi) of degree 2r (resp. 2r− 2) on V . To prove
this, we recall that Construction 6 provides a finite birational morphism ϑn,ϕtor : GΓ(ϕtor)

→

GΓ(n·ϕtor)
such that ϑ∗ϕtor,nMΓ(n·ϕtor)

≈ M⊗n

Γ(ϕtor)
. The homogeneity relation follows from

the projection formula (cf. [17, Proposition 2.5 (c)]) by using the straightforward relations

(ϑϕtor,n)∗[XΓ(ϕtor)
] = [XΓ(n·ϕtor)

], ϑ∗ϕtor,n((n ·ϕab) ◦ πΓ(n·ϕtor)
)∗Nj = (ϕab ◦ πΓ(ϕtor)

)∗N⊗n2

j and

ϑ∗ϕtor,n(q
∗
Γ(n·ϕtor)

L) = q∗
Γ(ϕtor)

L. Therefore, we may and do extend both βi and γi to unique Q-

homogeneous functions on VQ. We denote these extensions also by βi and γi. By [31, Theorem
III.2.1], the nefness of MΓ(ϕtor)

, Nj and L implies that all βi and γi are non-negative.

Recall that X is the Zariski closure of ι(X) in GΓ1
. The reason for introducing the functions

βi and γi are the relations

deg(c1(L1)
r ∩ [X]) =

r∑

i=0

(
r

i

)
niδ

(|ψ1,tor|+ |ψ1,ab|)i
βi(ψ1,tor, ψ1,ab)

and

deg(c1(L1)
r−1c1(q

∗L) ∩ [X ]) =

r−1∑

i=0

(
r − 1

i

)
niδ

(|ψ1,tor|+ |ψ1,ab|)i
γi(ψ1,tor, ψ1,ab).

Each niδ/(|ψ1,tor|+ |ψ1,ab|)
i, 0 ≤ i ≤ r, is bounded both from above and below by virtue of (50).

Therefore, the assertion of the lemma follows by homogeneity from the existence of constants
c18, c19 > 0 such that

max
0≤i≤r

{βi(φtor, φab)} ≥ c18

and
max

0≤i≤r−1
{γi(φtor, φab)} ≤ c19

for every (φtor, φab) ∈ Kδ ∩ VQ. The former bound is stated as Lemma 29 and the latter as
Lemma 30 below. �

Lemma 28 allows us to make (60) precise: There exists a non-empty Zariski open Uδ ⊂ X
such that

(61) c17n
2
δĥL(x) − c14(δ) ≤ ĥL1(x)

whenever x ∈ Uδ(Q). Combining this with (51), we obtain

c17n
2
δ ĥL(x) − c14(δ) ≤ c11n

2
δ(δ + ε)(ĥL(x) + 1).

Canceling n2
δ, this can be rewritten as

(c17 − c11(δ + ε))ĥL(x) ≤ n−2
δ c14(δ) + c11(δ + ε).

This inequality gives the desired upper bound on ĥL(x) if

(62) max{δ, ε} <
1

2
c−1
11 c17.



BHC FOR SEMIABELIAN VARIETIES 35

Consequently, Proposition 22 is proven up to Lemmas 29 and 30, whose proofs are provided
next in Section 7.4.

7.4. Bounds on intersection numbers. The reader may profitably compare our derivation
of Lemma 29 with the lengthy one of [24, Proposition 4] to appreciate the technical advantage
provided by using Chern forms. In fact, our argument is particularly simple if G is an abelian
variety because most of Section 5 is not needed in this case and only the functions β0 and γ0
are non-zero.

Lemma 29. Assume X(s) 6= X. There exists a constant c18 > 0 such that

max
0≤i≤r

{βi(φtor, φab)} ≥ c18

for all (φtor, φab) ∈ Kδ ∩ VQ.

Before starting the proof, let us recall a compatibility between algebraic Chern classes
and analytic Chern forms on proper complex algebraic varieties. Let Z be a proper complex
algebraic variety and let L1, . . . , Ln be line bundles on Z. If ‖ · ‖i (1 ≤ i ≤ n) are smooth
Hermitian metrics on Li, then

c1(L1)c1(L2) . . . c1(Ln) ∩ [Z] =

∫

Z(C)

c1(L1, ‖ · ‖1)c1(L2, ‖ · ‖2) . . . c1(Ln, ‖ · ‖n).

In case Z is smooth, this follows from the fact that the topological Chern class of a line bundle
is given by its Chern form (see e.g. [20, Proposition on p. 141]) and the compatibility between
algebraic Chern classes and their topological counterparts acting on singular homology [17,
Proposition 19.1.2]. For general Z, one can reduce to this case via Hironaka’s desingularization
theorem [28] (see also [34]).

Proof. Since Kδ is a relatively compact subset of V ◦
R , it suffices to prove the following claim:

For each (φ′tor, φ
′
ab) ∈ V ◦

R , there exists a euclidean neighborhood U ⊂ V ◦
R of (φ′tor, φ

′
ab) and a

constant c20(φ
′
tor, φ

′
ab) > 0 such that

(63) max
0≤i≤r

{βi(φtor, φab)} ≥ c20(φ
′
tor, φ

′
ab)

for all (φtor, φab) ∈ U ∩ VQ.
In order to prove this claim, let (φtor, φab) ∈ VQ and let n denote a denominator for

(φtor, φab). In Section 5, the line bundle MΓ(n·φtor)
is endowed with a hermitian metric such

that c1(MΓ(n·φtor)
) = ω(n · φtor). Similarly, the line bundle Nj is endowed with a hermitian

metric such that c1(N j) = ω(Nj ;n ·φab). These hermitian line bundles can be used to express
βl(φtor, φab) analytically; to wit, βl(φtor, φab) = n−2rβl(n · φtor, n · φab) and

βl(n · φtor, n · φab) = (|n · φtor|+ |n · φab|)
l

∫

X
Γ(n·φtor)

(C)

ω(n · φtor)
∧l ∧ (πΓ(n·φtor))

∗ω(Nj ;n · φab)
∧r−l.

Since each βl is a non-negative function, it suffices to prove that there exists a positive constant
c21(φ

′
tor, φ

′
ab) and a neighborhood U of (φ′tor, φ

′
ab) such that

(64) n2r
r∑

l=0

(
r

l

)
βl(φtor, φab)

=

∫

X
Γ(n·φtor)

(C)

(
(|n · φtor|+ |n · φab|)ω(n · φtor) + (πΓ(n·φtor))

∗ω(Mj;n · φab)
)∧r

exceeds n2rc21(φ
′
tor, φ

′
ab) for any (φtor, φab) ∈ U ∩ VQ with denominator n. As the boundary

XΓ(n·φtor)
(C) \ ιΓ(n·φtor)

(X)(C) has measure zero, the integral in (64) equals
∫

X(C)

(
(|n · φtor|+ |n · φab|)ω(n · φtor) + (πΓ(n·φtor))

∗ω(Nj;n · φab)
)∧r

,
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which by Lemma 17 and (39) simplifies to

n2r

∫

X(C)

(
(|φtor|+ |φab|)ω(φtor) + (πΓ(φtor))

∗ω(Nj ;φab)
)∧r

.

It remains to show that the integral

(65)

∫

X(C)

((|φtor|+ |φab|)ω(φtor) + π∗ω(Nj ;φab))
∧r

is bounded from below by a positive constant c21(φ
′
tor, φ

′
ab) for all (φtor, φab) ∈ VQ in a neigh-

borhood U of (φ′tor, φ
′
ab). In the sequel, we write

(66) ω(φtor, φab) = (|φtor|+ |φab|)ω(φtor) + π∗ω(Nj ;φab)

for any (φtor, φab) ∈ VR. From Section 5, we know that each ω(φtor, φab) is a semipositive (1, 1)-
form of real type. Furthermore, our assumption X 6= X(s) implies (ω(φ′tor, φ

′
ab)|X)∧ dim(X) 6= 0

by Lemma 21 (with c = |φ′tor|+|φ′ab|). We infer from this the existence of a non-empty relatively

compact open subset K such that (ω(φ′tor, φ
′
ab)|X,y)

∧ dim(X) is a positive volume form for each
y ∈ K. By continuity of ω(φtor, φab) with respect to (φtor, φab) and compactness, there exists
an open neighborhood U ⊂ VR such that

ω(φtor, φab)
∧ dim(X) −

1

2
ω(φ′tor, φ

′
ab)

∧ dim(X)

restricts to a positive volume form on each TR,yX
sm(C), y ∈ K. Using the semipositivity of

ω(φtor, φab), we obtain that (65) is bounded from below by
∫

K

ω(φtor, φab)
∧ dim(X) ≥

1

2

∫

K

ω(φ′tor, φ
′
ab)

∧ dim(X) = c21(φ
′
tor, φ

′
ab) > 0.

This proves our claim. �

Lemma 30. There exists a constant c22 > 0 such that

max
0≤i≤r−1

{γi(φtor, φab)} ≤ c22

for all (φtor, φab) ∈ Kδ ∩ VQ.

It is tempting to provide a proof resembling the one of Lemma 29. In fact, we can reduce
the statement of the lemma to bounds on certain integrals of volume forms on X(C) that
vary continuously with (φtor, φab). If X(C) were compact (e.g. because G = A is an abelian
variety), the above lemma could be immediately inferred from this continuity. However, non-
compactness of X(C) precludes such a direct argument in the general case. We circumvent
these problems by using algebraic intersection theory [17] instead. This resembles the proof
of [24, Lemma 3.3] by a multiprojective version of Bézout’s Theorem. We use the standard
notation from [17] freely.

Proof. Consider a fixed (φtor, φab) ∈ Kδ ∩ VQ with denominator n. By compactness, (|φtor| +
|φab|) is bounded on Kδ. It suffices to bound

deg(c1(MΓ(n·φtor)
)ic1(((n · φab) ◦ πΓ(n·φtor)

)∗Nj)
r−1−ic1(q

∗
Γ(n·φtor)

L) ∩ [XΓ(n·φtor)
])

by n2r−2c22 because γi(φtor, φab) is homogeneous of degree 2r − 2. As in the proof of Lemma
29, it is enough to demonstrate that

(67) deg(c1(MΓ(n·φtor)
⊗ ((n · φab) ◦ πΓ(n·φtor)

)∗Nj)
r−1c1(q

∗
Γ(n·φtor)

L) ∩ [XΓ(n·φtor)
])

is bounded by n2r−2c23.
Let G′ be the semiabelian variety described by ηG′ = (n · φtor)∗ηG ∈ Ext1

Q
(A,Gt

′

m). From

Construction 5, we recall the compactification G (resp. G
′
) of G (resp. G′) with its abelian
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quotient π : G → A (resp. π′ : G
′
→ A) and the line bundle MG (resp. MG

′) on G (resp. G
′
).

The Zariski closure of X in G is denoted X. Then, L =MG ⊗ π∗N and we also set

L′ =MG
′ ⊗ ((n · φab) ◦ π

′)∗Nj.

The homomorphism (idGtm , n · φtor) : Gtm → Gtm ×Gt
′

m extends to a (idGtm , n · φtor)-equivariant

map Γ(n · φtor) → (P1)t× (P1)t
′

, yielding a closed immersion ι : GΓ(n·φtor)
→ G×G

′
by means

of the constructions in Section 2. Furthermore, the line bundle q∗
Γ(n·φtor)

L (resp. MΓ(n·φtor)
) on

GΓ(n·φtor)
coincides with the pullback ι∗pr∗1L (resp. ι∗pr∗2MG

′). Using the projection formula

([17, Proposition 2.5.c]), we infer that (67) equals the degree of

(68) c1(pr
∗
1L)c1(pr

∗
2L

′)r−1 ∩ [ι(XΓ(n·φtor)
)] ∈ A0(G×G

′
).

To estimate this degree, we use suitable projective embeddings G →֒ Pr1 and G
′
→֒ Pr2 . By

Lemma 3, the line bundles L and L′
0 = L′ ⊗ (π′)∗N are ample. Consequently, there exists an

integer l1 such that L⊗l1 is very ample. Since L is independent of (φtor, φab), we can choose l1
less than some constant c24 that only depends on G and X . The line bundle (L′

0)
⊗l2 is very

ample if l2 is sufficiently large; in contrast to l1, there is an implicit dependence on (φtor, φab)
here. These very ample line bundles determine projective embeddings ι1 : G →֒ Pr1 and

ι2 : G
′
→֒ Pr2 such that ι∗1OPr1 (1) ≈ L⊗l1 and ι∗2OPr2 (1) ≈ (L′

0)
⊗l2 . Setting κ = (ι1 × ι2) ◦ ι,

we continue by estimating the degree of

(69) c1(pr
∗
1OPr1 (1))c1(pr

∗
2OPr2 (1))

r−1 ∩ [κ(XΓ(n·φtor)
)] ∈ A0(P

r1 × Pr2).

If it is shown that the degree of (69) is less than l1l
r−1
2 n2r−2c23, the desired degree bound on

(68) follows immediately. In fact, the degree of (69) equals the degree of

l1l
r−1
2 c1(pr

∗
1L)(c1(pr

∗
2L

′) + c1(pr
∗
2(π

′)∗N))r−1 ∩ [ι(XΓ(n·φtor)
)] ∈ A0(G×G

′
)

by the projection formula. By Lemma 3, the line bundles pr∗1L, pr
∗
2L

′ and pr∗2(π
′)∗N are nef

so that this can be expanded into a sum of r zero-cycle classes with non-negative degrees (see
[31, Theorem III.2.1]). Since one of the summands is a (l1l

r−1
2 )-multiple of (68), the reduction

is clear. (Note that both l1 and l2 cancel out in this way, and hence the dependence of l2 on
(ϕtor, ϕab) is not an issue. Of course, we have to make sure that c23 depends only on G and
X , as it should be by our convention.)

The variety κ(XΓ(n·φtor)
) is an irreducible component of κ(GΓ(n·φtor)

) ∩ (ι1(X) × Pr2) ⊂

Pr1 × Pr2 . In fact, both are subvarieties of ι1(G)× ι2(G
′
) whose restrictions to the open dense

subset ι1(G)× ι2(G′) coincide with κ(X). Choose hypersurfaces S1, S2, . . . , Sk ⊂ Pr1 such that
ι1(X) = S1∩S2∩· · ·∩Sk as varieties (i.e., set-theoretically). As X is irreducible, we can select
a subset {Sk1 , . . . , Skdim(G)−r

} of these hypersurfaces such that κ(X
Γ(n·φtor)

) is an irreducible

component of

κ(GΓ(n·φtor)
) ∩ (Sk1 × Pr2) ∩ · · · ∩ (Skdim(G)−r

× Pr2).

For reasons of dimension (cf. [17, Lemma 7.1 (a)] and [17, Example 8.2.1]), we have

(70) ι(κ(XΓ(n·φtor)
), κ(GΓ(n·φtor)

) · (Sk1 × Pr2) · · · (Skdim(G)−r
× Pr2);Pr1 × Pr2) ≥ 1.

It is well-known (compare [17, Section 12.3]) that the tangent vector bundle T (Pr1 × Pr2) =
pr∗1(TP

r1) ⊕ pr∗2(TP
r2) is ample and hence globally generated. By [17, Corollary 12.2 (a)],

every distinguished subvariety contributes a non-negative cycle to the intersection product in
(70). The degree of the 0-cycle class (69) is hence majorized by the degree of the 0-cycle class

(71) c1(pr
∗
1OPr1 (1))c1(pr

∗
2OPr2 (1))

r−1 ∩ κ(GΓ(n·φtor)
) · (Sk1 × Pr2) · · · (Skdim(G)−r

× Pr2)

on Pr1 × Pr2 . The Chow ring A∗(P
r1 × Pr2) is of the form

Z[H1]/([H1]
r1+1)⊗ Z[H2]/([H2]

r2+1)



38 LARS KÜHNE

for any two hyperplanes H1 ⊂ Pr1 and H2 ⊂ Pr2 (see [17, Example 8.3.7]). Thus, we may
write [Si × Pr2 ] = di[H1 × Pr2 ] and

[κ(G
Γ(n·φtor)

)] =
∑

i1+i2=r1+r2−dim(G)

ei1,i2 [H
i1
1 ×Hi2

2 ].

Furthermore, the definition of the first Chern class immediately implies that

c1(pr
∗
iOPri (1)) ∩ [Hi1

1 ×Hi2
2 ] =

{
[Hi1+1

1 ×Hi2
2 ] if i = 1

[Hi1
1 ×Hi2+1

2 ] if i = 2.

With these notations, the degree of (71) is

dk1 · · · dkdim(G)−r
er1+r−dim(G)−1,r2−r+1 ≤ max

K⊂{1,...,k}
|K|=dim(G)−r

{
∏

k∈K

dk

}
· er1+r−dim(G)−1,r2−r+1.

Additionally, we have

er1+r−dim(G)−1,r2−r+1 = deg(c1(pr
∗
1OPr1 (1))

dim(G)+1−rc1(pr
∗
2OPr2 (1))

r−1 ∩ [κ(GΓ(n·φtor)
)]),

which is less than

(72) c
dim(G)+1−r
24 lr−1

2 deg(c1(pr
∗
1L)

dim(G)+1−rc1(pr
∗
2L

′
0)
r−1 ∩ [ι(GΓ(n·φtor)

)])

by the projection formula. To ease our exposition notationally, we write α1 = c1(pr
∗
1MG),

α2 = c1(pr
∗
2MG

′), β1 = c1(pr
∗
1π

∗N), β2 = c1(pr
∗
2((n · φab) ◦ π

′)∗Nj), β3 = c1(pr
∗
2(π

′)∗N) and
r′ = dim(G) + 1− r in the following computations. Then,

c1(pr
∗
1L)

r′c1(pr
∗
2L

′
0)
r−1 = (α1 + β1)

r′(α2 + β2 + β3)
r−1

=




r′∑

s1=0

(
r′

s1

)
αs11 β

r′−s1
1



(
r−1∑

s2=0

(
r − 1

s2

)
αs22 (β2 + β3)

r−1−s2

)
.

For each positive integer n, the isogeny [n]G : G → G of degree nt+2 dim(A) extends to
a proper map [n]G

Γ(n·φtor)
: G

Γ(n·φtor)
→ G

Γ(n·φtor)
such that ([n]G

Γ(n·φtor)
)∗[GΓ(n·φtor)

] =

nt+2dim(A)[GΓ(n·φtor)
]. Furthermore, pulling back the line bundles pr∗1MG and pr∗2MG

′ (resp.

pr∗1π
∗N , pr∗2((n · φab) ◦ π

′)∗Nj and pr∗2(π
′)∗N) along [n]G

Γ(n·φtor)
amounts to rising them to

the n-th (resp. n2-th) power. Therefore, the projection formula (applied to [n]G
Γ(n·φtor)

) yields

that

(73) n2 dim(G)−s1−s2 deg(ι∗(αs11 α
s2
2 β

r′−s1
1 (β2 + β3)

r−1−s2) ∩ [GΓ(n·φtor)
])

is the same as

deg(ι∗(αs11 α
s2
2 β

r′−s1
1 (β2 + β3)

r−1−s2) ∩ ([n]G
Γ(n·φtor)

)∗[GΓ(n·φtor)
])

= nt+2dim(A) deg(ι∗(αs11 α
s2
2 β

r′−s1
1 (β2 + β3)

r−1−s2) ∩ ([GΓ(n·φtor)
])

It follows that (73) is zero whenever s1 + s2 6= t. Hence, the quantity (72) can be rewritten as

c
dim(G)+1−r
24 lr−1

2

min{r′,t}∑

s=max{0,t−r+1}

(
r′

s

)(
r − 1

t− s

)
deg(αs1α

t−s
2 βr

′−s
1 (β2+β3)

dim(A)−(r′−s)∩[GΓ(n·φtor)
]).

(Note that (r′ − s)+ (r− 1− t+ s) = dim(G)− t = dim(A).) Taking into account our previous
reductions, it is sufficient to show that each

(74) deg(αs1α
t−s
2 βr

′−s
1 (β2 + β3)

dim(A)−(r′−s) ∩ [GΓ(n·φtor)
])

is bounded from above by c25n
2r−2 for some constant c25.
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As πΓ(φtor)
: GΓ(n·φtor)

→ A exhibits GΓ(n·φtor)
as a Γ(n · φtor)-bundle over A, it is flat of

relative dimension t. We can therefore pull back cycle classes on A to cycle classes on G
Γ(n·φtor)

.

In particular, we have π∗
Γ(n·φtor)

([A]) = [GΓ(n·φtor)
] and π∗

Γ(n·φtor)
([p]) = [π−1

Γ(n·φtor)
(p)] for any

point p ∈ A. Setting

σs = c1(N)r
′−s(c1((n · φab)

∗Nj) + c1(N))dim(A)−(r′−s) ∩ [A] ∈ A0(A),

we know from [17, Proposition 2.5 (d)] that there exist points p1, . . . , pdeg(σs)+m, q1, . . . , qm ∈ A
such that

βr
′−s

1 (β2 + β3)
dim(A)−(r′−s) ∩ [G

Γ(n·φtor)
] =

deg(σs)+m∑

l=1

[π−1

Γ(n·φtor)
(pl)]−

m∑

l=1

[π−1

Γ(n·φtor)
(ql)].

By construction, there exists a non-canonical isomorphism between each fiber π−1

Γ(n·φtor)
(x),

x ∈ A, and Γ(n · φtor) ⊂ (P1)t × (P1)t
′

such that the restrictions of pr∗1MG and pr∗2MG
′ to

ι(π−1

Γ(n·φtor)
(x)) correspond to the line bundles pr∗1Mt|Γ(n·φtor)

and pr∗2Mt′ |Γ(n·φtor)
. Once again,

we apply the projection formula to obtain

(75) deg(αs1α
t−s
2 ∩ [π−1

Γ(n·φtor)
(pl)]) = deg(c1(pr

∗
1Mt)

sc1(pr
∗
2Mt′)

t−s ∩ [Γ(n · φtor)]).

In particular, (74) is bounded by

deg(σs) deg(α
s
1α

t−s
2 ∩ [π−1

Γ(n·φtor)
(eA)]).

We first show that αs1α
t−s
2 ∩ [π−1

Γ(n·φtor)
(eA)] has degree less than c26n

t−s for some constant c26.

Using standard coordinates X1, . . . , Xt (resp. Y1, . . . , Yt′) on Gtm (resp. Gt
′

m), let us write

(n · φtor)
∗(Yv) = Xa1v

1 · · ·Xatv
t

with integers auv (1 ≤ u ≤ t, 1 ≤ v ≤ t′). By dimension, we have again

ι(Γ(n · φtor), (Y1 = Xa11
1 · · ·Xa1t

t ) · · · (Yt′ = X
a1t′
1 · · ·X

att′
t ); (P1)t × (P1)t

′

) ≥ 1.

We determine next the intersection product

(76) (Y1 = Xa11
1 · · ·Xa1t

t ) · · · (Yt′ = X
a1t′
1 · · ·X

att′
t ) ∈ At((P

1)t × (P1)t
′

).

From [17, Example 8.3.7], we deduce an identification

A∗((P
1)t × (P1)t

′

) = Z[ε1, . . . , εt, ε
′
1, . . . , ε

′
t′ ]/((ε1)

2, . . . , (εt)
2, (ε′1)

2, . . . , (ε′t′)
2)

such that εi (resp. ε
′
i) corresponds to the flat pullback of the cycle class associated with an

arbitrary point in the i-th factor of (P1)t (resp. (P1)t
′

). Considering appropriate intersections,
it is easy to verify

[Yv = Xa1v
1 · · ·Xatv

t ] = |a1v|ε1 + |a2v|ε2 + · · ·+ |atv|εt + ε′v.

Thus, (76) is simply the product
∏

1≤v≤t′

(|a1v|ε1 + |a2v|ε2 + · · ·+ |atv|εt + ε′v).

Inspecting the definition of Mt (resp. Mt′) in Construction 4, we note that intersecting a

cycle class on (P1)t × (P1)t
′

with c1(pr
∗
1Mt) (resp. c1(pr

∗
2Mt′)) amounts to multiplication with

2(ε1 + · · · + εt) (resp. 2(ε
′
1 + · · ·+ ε′t′)) in the Chow ring. We infer that the degree of (75) is

majorized by the degree of

2t(ε1 + · · ·+ εt)
s(ε′1 + · · ·+ ε′t′)

t−s
∏

1≤v≤t′

(|a1v|ε1 + · · ·+ |atv|εt + ε′v).
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Exploiting cancellations, this can be simplified to

2ts!(t− s)! ·
∑

1≤u1,...,ut−s≤t distinct
1≤v1<···<vt−s≤t

′

|au1v1au2v2 · · · aut−svt−s |(ε1 · · · εtε
′
1 · · · ε

′
t′)

Since (φtor, φab) ∈ Kδ, (75) can be consequently bounded from above by c26n
t−s as claimed.

We finally demonstrate that deg(σs) is bounded from above by c27n
2(dim(A)−(r′−s)) for some

constant c27. For this, it suffices to note that Hom(A,A′
j) is a finitely generated Z-module and

that

Hom(A,A′
j) −→ Pic(A), ϕab 7−→ ϕ∗

abNj ,

is quadratic by the Theorem of the Cube ([47, Corollary II.6.2]) because Nj is symmetric (see
[23, p. 417] for details). Combining this with the previous estimate, we immediately obtain
the bound

c26c27n
t−s+2(dim(A)−(r′−s)) ≤ c26c27n

2(t−s+dim(A)−r′+s) = c26c27n
2r−2

on (74). Taking our previous reductions into account, this completes the proof of the lemma.
�

8. Quotients of Semiabelian Varieties

In this section, we elucidate the set of quotients belonging to a fixed semiabelian variety. Let
G be a semiabelian variety over Q with split toric part Gtm and abelian quotient π : G → A.

For a fixed torus Gt
′

m and a fixed abelian variety A′, we ask which elements (φtor, φab) of

VQ = HomQ(G
t
m,G

t′

m)×HomQ(A,A
′)

are such that there exists a quasi-homomorphism φ : G→ G′ represented by (φtor, φab) in the
sense of Section 1.2. Let Z(Q) ⊂ VQ denote the subset consisting of these elements. For a fixed

semiabelian variety G′ with toric part Gt
′

m and abelian quotient A′, we know from Lemma 1
that the surjective quasi-homomorphisms φ : G → G′ are parameterized by a linear subspace
of VQ. The set Z(Q) is the union of all these linear subspaces for varying G′. It is, however,
not a union of finitely many linear subspaces in general. Nevertheless, we can interpret VQ as
the Q-points of an additive algebraic group, which we abusively denote also by VQ, and ask
whether there is an algebraic subvariety Z ⊂ VQ with Z(Q) as its set of Q-points. This would
also motivate our notation Z(Q) retroactively. In the next theorem, a cone Z ⊂ VQ is a (not
necessarily closed) algebraic subvariety of VQ such that [n]VQ

(Z) ⊆ Z for any non-zero integer
n.

Theorem 3. There exists a cone Z ⊂ VQ such that its Q-points are precisely the pairs
(φtor, φab) ∈ VQ representing quasi-homomorphisms.

In the following, pairs (φtor, φab) ∈ VQ representing quasi-homomorphisms are called realiz-
able.

Proof. Write ηG = (η
(1)
G , . . . , η

(t)
G ) ∈ A∨(Q)t. By Lemma 1, a pair (φtor, φab) ∈ VQ is realizable

if and only if for one of its multiples n · (φtor, φab) ∈ V there exists some µ = (µ1, . . . , µt′) ∈

(A′)∨(Q)t
′

such that

(77) (n · φtor)∗(η
(1)
G , . . . , η

(t)
G ) = (n · φtor)∗ηG = (n · φab)

∗µ = ((n · φab)
∨µ1, . . . , (n · φab)

∨µt′)

in A∨(Q)t
′

. Write 

a11 · · · a1t′
...

...
at1 · · · att′


, auv ∈ n−1Z,
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for the matrix representing φtor ∈ HomQ(G
t
m,G

t′

m) and let φv,tor : Gtm →Q Gm, 1 ≤ v ≤ t′,
be the quasi-homomorphism described by the column vector (a1v, . . . , atv)

t. Then, (77) is
equivalent to the equations

(n · φv,tor)∗ηG = na1v · η
(1)
G + · · ·+ natv · η

(t)
G = (n · φab)

∨µv, 1 ≤ v ≤ t′,

having solutions µv ∈ A∨(Q). Hence, the pair (φtor, φab) is realizable if and only if each
(φv,tor, φab), 1 ≤ v ≤ t′, represents a quasi-homomorphism G → G′

v. Assume that there are
cones Zv ⊂ Hom(Gtm,Gm) × Hom(A,A′) = Vv,Q, 1 ≤ v ≤ t′, with Zv(Q) consisting of the
pairs in Vv,Q representing quasi-homomorphisms. Denoting by pv : VQ → Vv,Q the standard

projection, the cone Z =
⋂t′
v=1 p

−1
v (Zv) ⊂ VQ is as wanted. In conclusion, it suffices to show

the assertion for t′ = 1.
Choose pairwise non-isogeneous simple abelian varieties B1, . . . , Bk such that there exist

isogenies

χ : A −→ Br11 × · · · ×Brkk and χ′ : A′ −→ B
r′1
1 × · · ·B

r′k
k

and set

W = Hom(Gtm,Gm)×Hom(Br11 × · · · ×Brkk , B
r′1
1 × · · ·B

r′k
k ).

Let further ψ (resp. ψ′) be isogenies such that ψ ◦ χ = χ ◦ ψ = [m]A (resp. ψ′ ◦ χ′ = χ′ ◦ ψ′ =
[m]A′) for some integer m ≥ 1. We have Q-linear maps

f : VQ −→WQ, (φtor, φab) 7−→ (φtor, χ
′ ◦ φab ◦ ψ)

and

g :WQ −→ VQ, (φtor, φab) 7−→ (φtor, ψ
′ ◦ φab ◦ χ)

such that both g ◦f : VQ → VQ and f ◦g :WQ →WQ send (φtor, φab) to (φtor,m
2 ·φab). Hence,

f and g are bijections between VQ and WQ. Using Lemma 2, we additionally deduce that both
f and g preserve realizable pairs. Consequently, we may assume that A = Br11 × · · · ×Brkk and

A′ = B
r′1
1 × · · · ×B

r′k
k in proving the theorem. In this case, we can also identify

VQ = HomQ(G
t
m,Gm)×

k∏

i=1

HomQ(B
ri
i , B

r′i
i ).

By Lemma 1, an element (φtor, φ
(1)
ab , . . . , φ

(k)
ab ) ∈ VQ, φ

(i)
ab ∈ HomQ(B

ri
i , B

r′i
i ), is realized by a

quasi-homomorphism if and only if for one of its multiples n · (φtor, φ
(1)
ab , . . . , φ

(k)
ab ) ∈ V there

exists some tuple (η(1), . . . , η(k)) ∈ B∨
1 (Q)r

′
1 × · · · ×B∨

k (Q)r
′
k such that

(n · φtor)∗ηG = (n · φ
(1)
ab , . . . , n · φ

(k)
ab )∗(η(1), . . . , η(k)) = ((n · φ

(1)
ab )

∨(η(1)), . . . , (n · φ
(k)
ab )∨(η(k))).

Arguing as above, we deduce that it suffices to prove the theorem under the additional as-
sumption that k = 1 (i.e., A = Br and A′ = Br

′

with a simple abelian variety B).
Let us write ηG = (η

1
, . . . , η

t
) ∈ (Br)∨(Q)t = Ext1

Q
(Br,Gtm) and η

j
= (η1j , . . . , ηrj)

t ∈

(B∨)(Q)r = (Br)∨(Q). Again, (φtor, φab) ∈ VQ is realizable if and only if there exists some
multiple n · (φtor, φab) ∈ V such that

(78) (n · φtor)∗ηG = (n · φab)
∗µ

has a solution µ = (µ1, . . . , µr′) ∈ B∨(Q)r
′

= Ext1
Q
(A′,Gm). This condition can be translated

into linear algebra over the Q-division algebra D = End(B∨)Q (cf. [47, Corollary 2 on p. 174]).

For this, we denote by Γ the left End(B∨)-submodule of B∨(Q) generated by

ηij , 1 ≤ i ≤ r, 1 ≤ j ≤ t.
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The tensor product ΓQ = Γ⊗Z Q is a left D-submodule of B∨(Q) ⊗Z Q. For any γ ∈ B∨(Q),

we let [γ] denote γ ⊗ 1 ∈ B∨(Q) ⊗Z Q. As D is a division ring, ΓQ is a free left D-module so

that we may choose End(B∨)-linearly independent elements γ1, . . . , γl ∈ B∨(Q) satisfying

(79) Γ = End(B∨) · γ1 ⊕ · · · ⊕ End(B∨) · γl ⊕ Tors(Γ);

here Tors(Γ) denotes the Z-torsion elements of Γ. If (78) has a solution µ = (µ1, . . . , µr′) ∈

B∨(Q)r
′

for some n, then it also has a solution µ ∈ Γr
′

⊂ B∨(Q)r
′

for a possibly larger n. In
fact, one may take any image under a D-linear projection from ΓQ +D · [µ1] + · · · +D · [µr′ ]
to ΓQ. Since we can always arrange for n to annihilate the finite group Tors(Γ), we infer that
(φtor, φab) is realizable if and only if, in the notation from Section 1.2,

(φtor)∗,Q(ηG) = (φab)
∗,Q(µ)

has a solution µ ∈ Γr
′

Q ⊂ (B∨(Q)⊗ZQ)r
′

. Both φtor ∈ HomQ(G
t
m,Gm) and φ

∨
ab ∈ HomQ((A

′)∨, A∨)
can be represented by matrices

(80) (a1, a2, · · · , at)
t, ai ∈ Q,

and

(81)



b11 · · · b1r′
...

...
br1 · · · brr′


 , bij ∈ D.

Using this notation, we are searching for (80) and (81) such that

(82) a1 ·



[η11]
...

[ηr1]


+ · · ·+ at ·



[η1t]
...

[ηrt]


 =



b11 · · · b1r′
...

...
br1 · · · brr′







[µ1]
...

[µr′ ]




has a solution ([µ1], . . . , [µr′ ]) ∈ ΓQ. Using the decomposition (79), we expand

[ηij ] = c
(1)
ij [γ1] + · · ·+ c

(l)
(ij)[γl], c

(·)
ij ∈ D.

Then, (82) has a solution ([µ1], . . . , [µr′ ]) if and only if each of the l linear equations

(83) a1 ·




c
(·)
11
...

c
(·)
r1


+ · · ·+ at ·




c
(·)
1t
...

c
(·)
rt


 =



b11 · · · b1r′
...

...
br1 · · · brr′







δ
(·)
1
...

δ
(·)
r′




has a solution (δ
(·)
1 , . . . , δ

(·)
r′ ) ∈ Dr. By Lemma 31 below, the corresponding condition on (83)

and (84) is described by a subcone of Qt × Dr×r′ . The intersection Z∨ of these l cones is
almost what we are searching for. In fact, a pair (φt, φa) ∈ VQ is realizable if and only if

(φt, φ
∨
a ) ∈ Qt ×Dr×r′ is in Z∨(Q). The theorem follows now from the Q-linearity (cf. [47, (ii)

on p. 75]) of

HomQ(A,A
′) −→ HomQ((A

∨)′, A∨), f 7−→ f∨.

�

The following lemma is certainly standard (for t = 1 and a1 = 1 at least) but I have found
no trace of it in the literature so that a complete proof is given.

Lemma 31. Let D be a finite-dimensional Q-algebra and y
1
, . . . , y

t
∈ Dr column vectors.

Then, the pairs (a,M) ∈ Qt ×Dr×r′ , a = (a1, . . . , at), such that

(84) a1y1 + · · ·+ atyt =M · x

has a solution x ∈ Dr′ , are the Q-points of a cone Z ⊂ Qt ×Dr×r′ .
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Here, Qt ×Dr×r′ is given its canonical structure as an affine linear space over Q. We also
remark that Z is generally not a closed subvariety.

Proof. Choosing a Q-linear isomorphism ϕ : D → Qn, we obtain a map l : D →֒ Qn×n such
that l(d1)ϕ(d2) = ϕ(d1d2). This realizes D as a n-dimensional subspace l(D) of Qn×n. With
these identifications, the equation (84) can be written as

a1y
′
1
+ · · ·+ aty

′
t
=M ′ · x′

with M ′ ∈ Qnr×nr
′

, x′ ∈ Qnr
′

and y′
1
, . . . , y′

t
∈ Qnr. We then search for M ′ ∈ Qnr×nr

′

such that a solution x′ exists under the additional restraint that M ′ comes from a matrix

M ∈ Dr×r′ by applying l to each entry. Since this restraint can be evidently expressed as M ′

being contained in a Q-subcone of Qnr×nr
′

, we can restrict to the case D = Q.
To deal with this special case, we make the following elementary observation: Write M =

(m1 . . .mr′) with column vectors mi ∈ Qr. For any y 6= 0, we have y ∈ im(M) if and only

if there exists a subset I ⊂ {1, . . . , r′} such that
∧
i∈I mi 6= 0 ∈

∧|I|
Qr and

∧
i∈I mi ∧ y =

0 ∈
∧|I|+1

Qr. From this, we straightforwardly obtain equations for the sought-after Q-cone

Z ⊂ Qt ×Qr×r
′

. �

The proof of Theorem 3 gives evidently a procedure to determine Z via linear algebra so
that one may hope that its rational points Z(Q) are equally easy to describe. However, Z(Q)
can be rather complicated if G is neither an abelian variety nor a torus. For example, Z is
not even rational in general, although it is in these two special cases. With respect to the
proof of Theorem 2, this means in particular that (Dirichlet) approximation arguments as in
[23, Section 4] and [24, Section 4] break down if one insists on the use of surjective quasi-
homomorphisms G → G′. This makes it necessary to work with explicit line bundles on G as
we do in this article.

Example 32. Let E be an elliptic curve without complex multiplication (i.e., End(E) = Z).

Furthermore, let γ1, γ2, γ3 ∈ E∨(Q) be such that Γ =
∑3

i=1 Z · γi is a free Z-module of rank 3.
For an arbitrary tuple (n1, n2, n3) ∈ Z3, we define

η
1
=



n1 · γ1
γ3
γ2


 , η

2
=



n2 · γ2
γ1
γ3


 , η

3
=



n3 · γ3
γ2
γ1


 ,

considering these column vectors as elements of (E3)∨(Q). Let G be the semiabelian variety
determined by

(η
1
, η

2
, η

3
) ∈ ((E3)∨)3 = Ext1(E3,Gm)

3 = Ext1(E3,G3
m).

From Theorem 3, we know that the realizable pairs in

VQ = Hom(G3
m,Gm)Q ×Hom(E3, E2)Q

are the Q-rational points of an algebraic subvariety Z ⊂ VQ. Consider the projection π : VQ →
Hom(G3

m,Gm)Q. An inspection of the three linear equations given by (83) tells us that the
image π(Z) is described by

det



n1a1 n2a2 n3a3
a2 a3 a1
a3 a1 a2


 = (n1 + n2 + n3)a1a2a3 − n1a

3
1 − n2a

3
2 − n3a

3
3.

It is easy to check (cf. [44, Chapter 10] or [15, Section 3.1]) that

n1X
3 + n2Y

3 + n3Z
3 − (n1 + n2 + n3)XY Z = 0

is the projective equation of an elliptic curve E′
n1,n2,n3

for generic tuples (n1, n2, n3) ∈ Z3.

In these cases, π(Z) is birationally equivalent to P1 × E′
n1,n2,n3

. The existence of a global
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non-zero one-form (i.e., the pull-back of the invariant differential form on E′
n1,n2,n3

) precludes

unirationality of P1 × E′
n1,n2,n3

(cf. [35, Theorem 1.52]). Therefore, Z itself cannot be a
rational variety. In addition, the set Z(Q) surjects onto the Mordell-Weil group of the Q-
elliptic curve E′

n1,n2,n3
. Given that no known algorithm produces the Mordell-Weil rank, this

should demonstrate that the “mixed structure” of a semiabelian variety can lead to an intricate
set of quotients and subgroups.
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(4), 36(2):191–212, 2003.

[54] Walter Rudin. Functional analysis. International Series in Pure and Applied Mathematics. McGraw-Hill,
Inc., New York, second edition, 1991.
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Mathématiques (Paris) [Mathematical Documents (Paris)], 1, pages viii+259. Société Mathématique de
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