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1 Introduction

Particle-in-cell simulations are widely used in the plasma community to solve the Vlasov–
Maxwell system due to their ease of implementation and their favorable scaling properties in
higher dimensions. Recently, a systematic derivation of geometric particle-in-cell methods
has been proposed by Kraus, Kormann, Morrison, & Sonnendrücker [1]. A similar model has
also been obtained by He, Sun, Qin, & Liu [2]. The derivation is based on compatible finite
elements for the fields and a standard particle-in-cell ansatz for the distribution function.
The derived semi-discrete system conserves Casimir invariants of the system such as discrete
versions of ∇ · B = 0 and ∇ · E = ρ. For the time discretization, a Hamiltonian splitting
method was proposed following [3], which preserves the Poisson structure and yields an
explicit scheme for Cartesian coordinates. In particular, Gauss’ law is conserved over time,
but only a modified energy. While one step of this method is very efficient, the time step
is restricted by stability constraints. In particular, the explicit solution of the vacuum
Maxwell equations yields a stability limit depending on the speed of light (cf. A.2). Moreover,
the plasma frequency needs to be resolved (cf. A.1). This motivates our investigations on
alternative time-stepping schemes for the geometric electromagnetic particle-in-cell method
that allow for larger time steps, while still preserving structure as much as possible.

In the geometric integration community, two categories of numerical schemes have been
developed: symplectic or Poisson integrators and energy-conserving methods. While the
Hamiltonian splitting falls into the first category, this paper explores the possibilities of
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energy-conserving schemes. Note that energy-conserving numerical methods cannot be sym-
plectic for general Hamiltonians (see [4]). This work devises a temporal discretizations
based on discrete gradients. The discrete gradient method is a general framework to design
energy-conserving time discretizations for conservative partial differential equations in skew-
symmetric form and was first introduced by McLachlan, Quispel, & Robidoux [5]. Several
special cases have been devised, in particular the average-vector-field method introduced by
Celledoni et al. [6]. Applying discrete gradients to the full Vlasov–Maxwell system results
in a heavily nonlinear scheme. On the other hand, the method of discrete gradients can be
applied after a splitting of the equations that respects the skew-symmetry without loss of
energy conservation. As a first scheme, we propose a semi-implicit method that applies the
discrete gradient method to the subsystems that cannot be solved analytically. The scheme
is only implicit in the field solver, whence the computational overhead is relatively small
compared to the explicit method. On the other hand, this method does not conserve Gauss’
law. We therefore devise a second scheme where we reduce the splitting and derive an ap-
proximation of the time-dependent Poisson matrix that conserves Gauss’ law in addition to
the energy. The resulting system nonlinearly couples the particle and field equations and
therefore needs to be solved in a nonlinear iteration. In a simulation with fast electrons and
slower ions, substepping for the trajectories of the faster species can be crucial to reflect the
multiscale nature of the system. Such a substepping technique can be incorporated in our
implicit scheme.

In the plasma physics community, energy-conserving particle-in-cell methods have also
been developed, mostly with a finite difference description of the fields. Markidis & Lapenta
[7] have devised the so-called EC-PIC method for the Vlasov–Maxwell system that is fully
nonlinear: The method uses a finite difference description of the fields on a Yee grid and
employs differencing by the implicit midpoints rule both in space and time. With some
rearrangements of the equations they yield an implicit formulation for the update of the fields
and an average velocity. The method conserves energy but Gauss’ law is not preserved over
time. Later Lapenta derived a semi-implicit version, the so-called energy-conserving semi-
implicit particle-in-cell method (ECSIM) [8], that only requires an implicit field solver. When
transferring the ECSIM method to a finite element formulation of the fields, the resulting
method is very close to our energy-conserving semi-implicit scheme derived from the discrete
gradient method. This has been investigated in [9]. Compared to the ECSIM method, we
follow a more systematic derivation that ensures second-order accuracy which is lost in one
part of the ECSIM method as pointed out in [9]. Similar to the semi-implicit method derived
in this work, the ECSIM method is energy-conserving but does not satisfy Gauss’ law. On
the other hand, Gauss’ law can be reinforced by different Lagrange multiplier techniques as
proposed by Marder [10], Langdon [11] and by Munz, Omnes, Schneider, Sonnendrücker,
& Voss [12]. However, these techniques are not compatible with the energy conservation in
our scheme. Recently, Chen & Tóth [13] have therefore proposed a different procedure for
the ECSIM algorithm that uses a correction of the particle positions instead and respects
the energy conservation. However, this method is built on linearized shape functions and is
therefore only a first order correction.

Chen, Chacón, & Barnes have developed fully implicit particle-in-cell methods that con-
serve both energy and Gauss’ law for the electrostatic Vlasov–Ampère model [14] as well as
the reduced electromagnetic Vlasov–Darwin model [15]. Chen & Chacón [16] have also pro-
posed an energy- and charge-conserving scheme for the relativistic Vlasov–Maxwell system.
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The scheme has similarities with our implicit scheme but is different in two aspects: Most
importantly it is semi-implicit in the sense that it treats the curl-part of Maxwell’s equation
explicitly. For this reason, the time step is restricted by the same stability condition that is
derived for the explicit Hamiltonian splitting in A.2. Moreover, the charge-conserving cur-
rent deposition is given in a special form for linear shape functions. There are also specific
issues related to the relativistic Vlasov–Maxwell model and the correct propagation of light
waves addressed in this paper that are not relevant for us as our target application is a fully
kinetic (at least for ions) simulation of Tokamak plasmas in regimes where the gyrokinetic
approximation typically used is not valid any more.

The outline of the paper is as follows: In the next section, we introduce the Vlasov–
Maxwell model and the geometric electromagnetic particle-in-cell (GEMPIC) framework for
its spatial semi-discretization. Section 3 introduces the discrete gradient method and a
splitting of the Poisson matrix of the semi-discrete Vlasov–Maxwell system and Section 4
devises an energy-conserving semi-implicit discrete gradient method for the split equations.
In the subsequent section 5, we explain how the scheme can be modified to conserve as well
Gauss’ law. Numerical experiments on simple test problems presented in Section 6 confirm
the conservation properties of the new methods.

2 Geometric electromagnetic particle in cell

In the GEMPIC framework [1], the Vlasov–Maxwell equations are discretized by a standard
particle-in-cell ansatz for the distribution function and compatible finite elements for the
fields. The spatial semi-discretization is derived from a semi-discretization of the Hamilto-
nian and the Poisson bracket. In the following, we summarize this semi-discretization as a
starting point for the time-discretizations proposed in this paper.

2.1 The Vlasov–Maxwell system

A kinetic description of a collisionless plasma models a species s of particles with charge
qs and mass ms by a distribution function fs in phase-space that evolves according to the
Vlasov equation

∂fs
∂t

+ v · ∇xfs +
qs
ms

(E + v ×B) · ∇vfs = 0,

where E and B denote the external and self-consistent electric and magnetic fields. The
advection equation is coupled to Maxwell’s equations for the self-consistent fields

∂E

∂t
−∇×B = −J, (1a)

∂B

∂t
+∇× E = 0, (1b)

∇ · E = ρ, (1c)

∇ ·B = 0, (1d)
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where the charge density ρ and the current density J are defined as velocity moments of the
distribution functions

ρ =
∑
s

qs

∫
fs dv, and J =

∑
s

qs

∫
vfs dv.

As for any hyperbolic conservation law, the solution of the Vlasov equation stays constant
along the characteristic equations, which are defined as the following system of ordinary
differential equations,

dx

dt
= v,

dv

dt
=

qs
ms

(E(x, t) + v ×B(x, t)) . (2)

The following Hamiltonian defines the total energy of the system

H =
∑
s

ms

2

∫
|v|2 fs(t,x,v) dx dv +

1

2

∫ (
|E(t,x)|2 + |B(t,x)|2

)
dx. (3)

2.2 Compatible finite element discretization of the field equations

The Maxwell equations themselves posses a rich structure of conservation properties. In
particular, the fields E and B and potentials φ and A involved in Maxwell’s equations
naturally fit into a de Rham complex (the continuous structure is represented on the first
line in Figure 1). We have φ ∈ H1(Ω), A,E ∈ H(curl,Ω), B,J ∈ H(div,Ω), and ρ ∈ L2(Ω).
The theory of finite element exterior calculus [17, 18] explains how these properties can be
preserved in a finite element discretization: The discrete spaces are chosen in such a way
that the finite element approximation spaces of each of the quantities also form a de Rham
complex (second line in Figure 1) and that the projections Πi from the continuous to the
discrete spaces are such that the diagram shown in Figure 1 is commuting. We use Eh ∈ V1

and Bh ∈ V2. Let 3N1 be the dimension of V1 and denote by Λ1,k
i , i = 1, . . . , N1, k = 1, 2, 3,

the vector-valued basis functions that are only non-zero in component k. Analogously, we
denote the 3N2 basis functions of V2 by Λ2,k

i , i = 1, . . . , N2, k = 1, 2, 3. Then, we get the
following discrete representation of the fields

Eh(x) =

N1∑
i=1

3∑
k=1

ei,k(t)Λ
1,k
i (x), Bh(x) =

N2∑
i=1

3∑
k=1

bi,k(t)Λ
2,k
i (x), (4)

where e = (ei,k) and b = (bi,k) are the degrees of freedom in the semi-discretization. A
compatible finite element discretization of Maxwell’s equation can be obtained based on the
ansatz (4) treating (1a) and (1c) in weak and (1b) and (1d) in strong form,

M1
de

dt
− C>M2b = −j,

db

dt
+ Ce = 0,

G>M1e = %,

Db = 0,
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H1(Ω) H(curl,Ω) H(div,Ω) L2(Ω)

V0 V1 V2 V3

Π0

grad

Π1

grad

Π2 Π3

curl

curl

div

div

Figure 1: Discrete de Rham complex for the spaces of electromagnetics.

where M1/2 are the finite element mass matrices for the basis functions Λ1/2, respectively,

with elements (M1/2)(i1,k1),(i2,k2) =
∫

Λ
1/2,k1

i1
(x)>Λ

1/2,k2

i2
(x) dx, and D, G, and C represent the

discrete divergence, gradient, and curl operators which satisfy ImG ⊂ KerC and ImC ⊂
KerD as their continuous counterparts. There are various types of compatible finite element
discretizations. In our work, we use spline finite elements of various order as proposed by
Buffa, Rivas, Sangalli, & Vásquez [19]. The charge and current density are tested with the
corresponding basis functions to obtain the vectors % and j for the right-hand side.

2.3 Coupling to the particles

A particle discretization represents the distribution function fs by a number Nps of particles
which in turn are represented by the dynamic variables (xa,va), its coordinates in phase-
space, as well as a weight wa which is fixed over time in our formulation. The particle
distribution is reconstructed by the Klimontovich distribution

fs,h(x,v, t) =

Nps∑
a=1

wa δ
(
x− xa(t)

)
δ
(
v − va(t)

)
. (6)

This representation is suitable in a finite-element discretization where the velocity moments
are only needed in the weak form. In the resulting semi-discretized system, the dynamic
variables u> =

(
X>, V>, e>, b>

)
are given by the phase space positions of the particles

(for all species), (X>, V>), and the degrees of freedom of the fields, e = (ei) and b = (bi).
The integrals over the test functions times the charge and current density, that are needed
for the right-hand side of the Ampère law and the electric Gauss law, can be computed as
follows

ρ(i,k) =

∫
Λ1,k
i (x)ρ(x) dx =

∑
s

qs

∫
Λ1,k
i (x)fs,h(x,v, t) dx dv =

∑
s

qs
∑
Nps

waΛ
1,k
i (xa)

and analogously

j(i,k) =

∫
Λ2,k
i (x)J(x) dx =

∑
s

qs
∑
Nps

vawaΛ
2,k
i (xa).

The phase-space coordinates evolve in time according to the characteristic equations (2)
which are semi-discretized as

dxa
dt

= va,
dva
dt

=
qa
ma

(
Eh(xa) + B̂h(xa, t)va

)
,
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where the matrix B̂h(xa, t) represents the cross product of a vector with Bh(xa, t) such that

B̂h(xa)va = va ×Bh(xa) and can be computed as

B̂h(xa, t) =

N2∑
i=1

 0 bi,3(t) Λ2,3
i (xa) −bi,2(t) Λ2,2

i (xa)

−bi,3(t) Λ2,3
i (xa) 0 bi,1(t) Λ2,1

i (xa)

bi,2(t) Λ2,2
i (xa) −bi,1(t) Λ2,1

i (xa) 0

 .

In order to write the full semi-discrete system in matrix-vector form, we define the following
matrices: The diagonal matrices Mq ∈ R3Np×3Np and Mm ∈ R3Np×3Np collect the particle
charges qswa or particles masses mswa on the diagonal and �1/2(X) ∈ R3Np×3N1/2 denotes
the matrix containing the value of all basis functions at each particle position. Further, we
denote by B(X,b) ∈ R(3Np)×(3Np) the matrix that consists of one 3 × 3 block B̂h(xa, t) for
each particle. This yields the following set of semi-discrete equations of motion

Ẋ = V, (7a)

V̇ = M−1
p Mq

(
�1(X)e + B(X,b)V

)
, (7b)

ė = M−1
1

(
C>M2b− �1(X)>MqV

)
, (7c)

ḃ = −Ce. (7d)

Moreover, the semi-discretization of the Hamiltonian reads

Ĥ(u) = 1
2
V>MpV + 1

2
e>M1e + 1

2
b>M2b.

In Section 4 of [1], these semi-discrete equations are derived from a semi-discretization of
the Poisson bracket for the Vlasov–Maxwell system. This derivation leads to a representation
of the equations of motion as a Hamiltonian system of the form

u̇ = J (u)DuĤ(u), (8)

where the skew-symmetric so-called Poisson matrix J (u) is given as

J (u) =


0 M−1

p 0 0
−M−1

p M−1
p MqB(X,b)M−1

p M−1
p Mq�1(X)M−1

1 0
0 −M−1

1 �1(X)>MqM−1
p 0 M−1

1 C>

0 0 −CM−1
2 0

 . (9)

The total derivative of the Hamiltonian can be computed to be

DuĤ(u) =
(

0, (MpV)> , (M1e)> , (M2b)>
)>

.

In section 3, we will construct energy-conserving time discretizations based on this special
form of the semi-discretization.

2.4 The explicit Hamiltonian splitting

Finally the system of equations (7) has to be discretized in time. In [1], the temporal
discretization is based on the form (8) of the evolution equation combined with a splitting
of the equations by splitting the Hamiltonian as

Ĥpk = 1
2
ms

Np∑
a=1

wpv
2
k,a, k = 1, 2, 3, Ĥe = 1

2
e>M1e, Ĥb = 1

2
b>M2b.
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This yields five sets of explicit equations (cf. [1, Sec. 5.1]). The splitting has originally been
proposed in [3, 20] as a Hamiltonian splitting and later been constructed from a fully discrete
action principle in [21]. The discrete system then still conserves Gauss’ law, however, only a
modified energy. Xiao and coworkers [22] have also shown a local energy conservation law in
the context of a Whitney form discretization of the fields. On the other hand, the equations
become only explicit because the directions are decoupled by splitting the kinetic energy
into the three subsystems of different directions. This separation is, however, limited to
orthogonal grids. Otherwise, the kinetic energy can be kept together which yields a scheme
that is implicit in the coordinates of the individual particles (cf. [23]). In this paper, we
study an alternative approach for the time discretization based on the form (8) and the
discrete gradient method.

3 Implicit time stepping based on the discrete gradient

method

3.1 Discrete gradient time stepping

The discrete gradient method was proposed by McLachlan et al. [5] as a general method to
construct energy conserving time stepping for conservative ordinary differential equations in
skew-symmetric form, i.e. for a semi-discretization of the form

u̇ = J (u) · DuĤ(u) with J (u)> = −J (u).

The discrete gradient ∇̄H (um,um+1) for time step [tm, tm+1] shall then satisfy(
um+1 − um

)> ∇̄Ĥ(um,um+1) = Ĥ(um+1)− Ĥ(um).

For any skew-symmetric approximation J̄ (um,um+1) of J (u), the following implicit scheme
is then energy conserving,

um+1 − um

∆t
= J̄

(
um,um+1

)
∇̄Ĥ(um,um+1). (10)

Energy conservation can be easily seen by the following calculation,

Ĥ(um+1)− Ĥ(um) =
(
um+1 − um

)> ∇̄Ĥ(um, um+1)

= ∆t∇̄Ĥ(um,um+1)>J̄ >
(
um,um+1

)
∇̄Ĥ(um,um+1)

= −∆t∇̄Ĥ(um,um+1)>J̄
(
um,um+1

)
∇̄Ĥ(um,um+1) = 0.

There is some freedom in the choice of the discrete gradient method. Since our energy is
quadratic—and, hence, DuĤ(u), is linear—, the midpoint rule is a second order discrete
gradient

∇̄H
(
um,um+1

)
= DuĤ(u)|

u=um+um+1

2

. (11)

Note that the standard schemes for constructing discrete gradients like the average vector
field method [6] or the Gonzalez discrete gradient [24] all boil down to the midpoint rule
for quadratic energies. Hence, it remains to define a suitable discretization of the Poisson
matrix.
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3.2 Discrete gradients and antisymmetric splitting of the Poisson
matrix

The discrete gradient method applied to the full Vlasov–Maxwell system yields a heavily
non-linear system for the time discretization. In order to simplify the system, we may split
the Poisson matrix into several antisymmetric submatrices. Then, we can apply the discrete
gradient method separately to each subsystem and combine the solutions of the subsystems
in a splitting method, e.g., a Lie splitting for first order, Strang splitting for second order,
or composition methods for higher order (see [25] for splitting methods of various orders).
Note that discrete gradient methods are typically of order two, whence a Strang splitting is
the natural choice.

The Poisson matrix (9) can for instance be split into the following four antisymmetric
matrices:

J1 :=


0 M−1

p 0 0
−M−1

p 0 0
0 0 0 0
0 0 0 0

 . (12a)

J2 :=


0 0 0 0
0 M−1

p MqB(X,b)M−1
p 0 0

0 0 0 0
0 0 0 0

 . (12b)

J3 :=


0 0 0 0
0 0 0 0
0 0 0 M−1

1 C>

0 0 −CM−1
1 0

 . (12c)

J4 :=


0 0 0 0
0 0 M−1

p Mq�1(X)M−1
1 0

0 −M−1
1 �1(X)>MqM−1

p 0 0
0 0 0 0

 . (12d)

This yields the following four subsystems,

1. System 1: Ẋ = V.

2. System 2: V̇ = M−1
p MqB(X,b)V.

3. System 3: ė = M−1
1 C>M2b, ḃ = −Ce.

4. System 4: V̇ = M−1
p Mq�1(X)e, ė = −M−1

1 �1(X)>MqV.

We note that J1 and J3 are independent of u. Moreover, J2 only depends on X and b which
remain unchanged in system 2. In the same way, J4 is only dependent on X which is again
unchanged in this step. Hence, the Poisson matrix is constant in each of the substeps and
there is one unique definition of J̄i, i = 1, 2, 3, 4. On the other hand, we have the option to
solve subsystems 1 and 2 analytically instead of by a discrete gradient.
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4 A semi-implicit discrete gradient discretization

In this section, we construct a time-stepping scheme based on the splitting introduced in
(12). We will use the discrete gradient method to solve the subsystems 3 and 4 and solve
subsystems 1 and 2 analytically. In the following, we will give the explicit formulas for each
subsystem and discuss how to efficiently solve them.

4.1 Solution of system 1

In the first subsystem, only the position is updated and the right-hand side is independent
of X. The solution advancing the equation from time t0 to t is hence given as

X(t) = X(t0) + (t− t0)V.

Note that this yields the same discrete scheme in time as the midpoint-rule discrete gradient
would yield.

4.2 Solution of system 2

The second system only updates the velocity and it decomposes into one equation for each
particle, namely

d

dt
va =

qs
ms

B̂h(xa)va =
qs
ms

va ×Bh(xa), a = 1, . . . , Np.

This is a rotation round the magnetic axis b̃ = Bh(xa)
‖Bh(xa)‖2 (that is fixed over time in this

subsystem) with an angle α = ∆t qs
ms
‖B(xa)‖2 depending on the time step ∆t = t− t0. The

solution is given by
va(t) = R(Bh(xa))va(t0),

where R(Bh(xa)) is the rotation matrix

R(Bh(xa)) =


b̃1

2
+
(
b̃22 + b̃23

)
cos(α) b̃3 sin(α) + b̃2b̃1(1− cos(α)) −b̃2 sin(α) + b̃3b̃1(1− cos(α))

−b̃3 sin(α) + b̃2b̃1(1− cos(α)) b̃2
2
+
(
b̃21 + b̃23

)
cos(α) b̃1 sin(α) + b̃3b̃2(1− cos(α))

b̃2 sin(α) + b̃3b̃1(1− cos(α)) −b̃1 sin(α) + b̃3b̃2(1− cos(α)) b̃3
2
+
(
b̃22 + b̃21

)
cos(α)

 . (13)

This system could also be discretized based on a discrete gradient. Again this yields a
separate linear system of size 3 × 3 for each particle. Since the computational effort would
hence be comparable, we prefer an exact solution of this substep.

4.3 Solution of system 3

For system 3, we apply the midpoint discrete gradient with the constant Poisson matrix. This
results in the following system of linear equations for the unknown coefficients em+1,bm+1 ,(

M1 −∆t
2
C>M2

∆t
2
M2C M2

)(
em+1

bm+1

)
=

(
M1

∆t
2
C>M2

−∆t
2
M2C M2

)(
em

bm

)
.
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Note that this corresponds to the implicit midpoint rule applied to the vacuum Maxwell
equation. The system can, of course, be solved in this form. For this, an iterative GMRES
solver can for instance be used. For increasing degree of the spline basis, the system, however,
gets rather ill-conditioned and we need a good preconditioner to solve the system. A simple
preconditioner would be to split the equations into two explicit equations, i.e., to first solve
for bm+1 for given em and then to solve for em+1 (or vice versa).

On the other hand, the equations for em+1 and bm+1 can be decoupled using the Schur
complement S3 = M1 + ∆t2

4
C>M2C:(

M1 −∆t
2
C>M2

∆t
2
M2C M2

)−1

=

(
I 0
−∆t

2
C I

)(
S−1

3 0
0 M−1

2

)(
I ∆t

2
C>

0 I

)
.

With this expression for the matrix inverse, we get the following two equations:

em+1 = S−1
3

((
M1 −

∆t2

4
C>M2C

)
em + ∆tC>M2b

m

)
, (14a)

bm+1 = bm − ∆t

2
C
(
em + em+1

)
. (14b)

Hence, we only need to solve the system S3e
m+1 = f for em+1 with given right-hand side f

and the magnetic field can then be updated by an explicit equation.
Let us now consider the implicit equation a bit more in detail. For this, we split the

equation into three parts for each of the components of the field. The discrete mass matrix
has block-diagonal form

M2 =

M21 0 0
0 M22 0
0 0 M23


and the discrete curl matrix has the following block structure 0 −D3 D2

D3 0 −D1

−D2 D1 0

 ,

where Dk, k = 1, 2, 3, denotes the derivative matrix along direction k. With this notation,
we have the following expression for C>M2C:

C>M2C =

D>3 M22D3 +D>2 M23D2 −D>2 M23D1 −D>3 M22D1

−D>1 M23D2 D>3 M21D3 +D>1 M23D1 −D>3 M21D2

−D>1 M22D3 −D>2 M21D3 D>2 M21D2 +D>1 M22D1

 .

Componentwise the equation therefore reads(
M11 + ∆t2

2

(
D>3 M22D3 +D>2 M23D2

))
e1 − ∆t2

2
D>2 M23D1e2 − ∆t2

2
DT

3 M22D1e3 = f1,

−∆t2

2
D>1 M23D2e1 +

(
M12 + ∆t2

2

(
D>3 M21D3 +D>1 M23D1

))
e2 − ∆t2

2
D>3 M21D2e3 = f2,

−∆t2

2
D>1 M22D3e1 − ∆t2

2
D>2 M21D3e2 +

(
M13 + ∆t2

2

(
D>2 M21D2 +D>1 M22D1

))
e3 = f3.
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4.3.1 Direct inversion in Fourier space for periodic boundary conditions

In this paper, we consider the special case of a periodic box. Then, all the one-dimensional
matrices are circulant and can thus be diagonalized by Fourier transformation. The deriva-
tive matrix is given by the circulant matrix

D =
1

∆x


1 −1
−1 1

. . . . . .

−1 1

 .

The eigenvalues of the one dimensional building blocks of the matrix C>M2C of size n × n
can therefore computed to be

� D: λ+
` = 1

∆x

(
1− exp

(
−2πi`

n

))
, ` = 0, . . . , n− 1.

� D>: λ−` = 1
∆x

(
1− exp

(
2πi`
n

))
, ` = 0, . . . , n− 1.

� M with row cp, . . . , c0, . . . , cp (p order of the spline): λ
(p)
` = c0 +

∑p
j=1 cj2 cos

(
2π`j
n

)
.

After Fourier transformation, we end up with a 3 × 3 system for each Fourier mode which
can be solved analytically.

The direct solution based on Fourier transforms is very efficient, since it only requires a
Fourier transform but no iterative solver. A similar construction is possible for other basis
functions on periodic Cartesian grids. For more complex domains, an iterative solution of
the system is necessary. For spline finite elements of higher order, already the mass matrices
are ill-conditioned and a good preconditioner is necessary. In [26], the Fourier solver for the
Cartesian case has been used successfully as a preconditioner for the linear systems for the
curvilinear case.

4.4 Solution of system 4

Again, we apply the midpoint rule discrete gradient and use that the Poisson matrix is
constant in this substep. Then, the discrete gradient discretization yields the following
linear system for the coefficients (Vm+1, em+1)(

I −∆t
2
M−1
p Mq�1(X)

∆t
2
�1(X)>Mq M1

)(
Vm+1

em+1

)
=(

I ∆t
2
M−1
p Mq�1(X)

−∆t
2
�1(X)>Mq M1

)(
Vm

em

)
.

Defining the Schur complement S4 = M1 + ∆t2

4
M−1
p Mq�1(X)>Mq�1(X), we get the following

expression for the inverse of the left-hand-side matrix(
I −∆t

2
M−1
p Mq�1(X)

∆t
2
�1(X)>Mq M1

)−1

=

(
I ∆t

2
M−1
p Mq�1(X)

0 I

)(
I 0
0 S−1

4

)(
I 0

−∆t
2
�1(X)>Mq I

)
.

Hence, the system can be solved in three steps:
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1. V∗ = Vm + ∆t
2
M−1
p Mq�1(X)em,

e∗ =
(
M1 − ∆t2

4
M−1
p Mq�1(X)>Mp�1(X)

)
em −∆t�1(X)>MqVm.

2. em+1 = S−1
4 e∗.

3. Vm+1 = V∗ + ∆t
2
M−1
p Mq�1(X)em+1.

Note that the implicit part (step 2) is reduced to the field equations and the particle equations
can be solved explicitly. Moreover, we note that all appearing matrices are block-diagonal in
the three pairs (Vk, ek), k = 1, 2, 3, where Vk collects the kth component of the velocity of all
particles and ek the degrees of freedom of the electric field that belong to the basis functions
Λ1,k
i , i = 1, . . . , N1. This block-diagonal structure is due to the fact that all basis functions

have only one non-zero component. As a consequence, the implicit equation em+1 = S−1
4 e∗

decomposes to three systems of size N1 ×N1.

4.4.1 Preconditioning the linear solver

Since the matrix S4 is a symmetric matrix, we can solve the system in step 2 using the
conjugate gradient method. However, also S4 is increasingly ill-conditioned for higher degree
of the splines so that we need a good preconditioner. Let us consider the matrix N :=
�1(X)>Mq�1(X) with elements

N(i,k1),(j,k2) = q
∑
a

wa�
1,k1

i (xa)
>�1,k2

j (xa).

We note that this is a Monte Carlo approximation of the integral
∫

Ω
ρ(x)Λ1,k1

i (x)>Λ1,k2

j (x) dx
in a multispecies simulation. In a simulation of electrons with a neutralizing ion background,
N only contains the electron distribution function, and hence the elements of N approximate
the integral

∫
Ω

(1−ρ(x))Λ1,k1

i (x)>Λ1,k2

j (x) dx. In case ρ(x) = 1, this would be a Monte Carlo
approximation of the mass matrix in the one-species case. We therefore refer to N as particle
sampled mass matrix.

Oftentimes ρ(x) � 1 holds true so that N is very small in a multispecies simulation or
close to M1 in an electron simulation. Therefore, M1 is a good preconditioner for S4 in a
multispecies simulation and (1 + ∆t2

4
q2

m
)M1 in an electron simulation. For the periodic box,

the mass matrix is circulant and can be inverted in Fourier space (cf. Sec. 4.3). Clearly, this
preconditioner works the better the smaller ∆t, the smaller ρ, and the more particles per
cell are used (since the latter improves the Monte-Carlo approximation).

Remark 1. Instead of using M1 or (1 + ∆t2

4
q2

m
)M1, respectively, as a preconditioner, we could

also replace the Schur complement by M1 or (1 + ∆t2

4
q2

m
)M1. Since assembling N is the step

of highest computational complexity in this propagator, this yields a considerable saving in
compute time. On the other hand, this approximation is not energy-conserving so that we
would loose the desirable property of our algorithm.

4.5 Summary of the semi-implicit discrete gradient time stepping

The proposed semi-implicit and energy-conserving scheme, called semi-implicit or energy-
conserving discrete gradient scheme in the following, is composed of the four operators
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resulting from the splitting of the Poisson matrix (12). For the time-stepping, the following
four operators are combined:

1. Operator 1: X(t) = X(t0) + (t− t0)V.

2. Operator 2: va(t) = R(Bh(xa))va(t0) with the rotation matrix defined by eqn. (13).

3. Operator 3:

e(t) = S−1
3

((
M1 −

∆t2

4
C>M2C

)
e(t0) + ∆tC>M2b(t0)

)
, (15)

b(t) = b(t0)− ∆t

2
C (e(t0) + e(t)) . (16)

4. Operator 4:

(a) V∗ = V(t0) + ∆t
2
M−1
p Mq�1(X)e(t0),

e∗ =
(
M1 − ∆t2

4
M−1
p Mq�1(X)>Mp�1(X)

)
e(t0)−∆t�1(X)>MqV(t0).

(b) e(t) = S−1
4 e∗, S4 = M1 + ∆t2

4
M−1
p Mq�1(X)>Mq�1(X).

(c) V(t) = V∗ + ∆t
2
M−1
p Mq�1(X)e(t).

The four operators can now be combined in various ways to build the full time step. The
first order Lie splitting is build upon full time steps of each of the operators one after the
other. Second order can be obtained when combining two Lie splitting steps with opposite
ordering of the operators of half a time step each. In this case, the last operator of the first
Lie step and the first operator of the second Lie step are the same so that we can instead
place a full time step of one operator in the middle. Clearly, for a large number of particles
per cell, the fourth operator is the most expensive one. Therefore, the complexity of the
algorithm is reduced when placing this operator in the middle and calling it only once.

A Strang splitting of the following form yields the shortest run time: half time step of
operator 3, half time step of operator 1, half time step of operator 2, full time step with
operator 4, half time step with operator 2, half time step with operator 1, half time step
with operator 3. With this ordering we only have to apply the most expensive operator 4
once and we can merge the updates of operator 1 and 2 (that do not touch the fields) into
the particle loops of operator 4. The number of loops over all particles is minimized in order
to maximize the arithmetic intensity of the algorithm. The computational complexity is
then dominated by the assembling of the particle sampled mass matrix. This results in the
algorithm outlined in Algorithm 1. We note that the ordering of operator 1 and 2 could also
be exchanged without changing the structure of the loops.

On the other hand, we can also ask which ordering gives best accuracy. In our examples,
we found that better accuracy is sometimes achieved when placing operator 3 after the
operators 1 and 2. However, in this case we need to traverse all particles two times more per
time step (or one time if we fuse this step between two time steps in a “first same as last”
procedure).

The computational overhead compared to the explicit Hamiltonian splitting is rather
limited, namely we need to solve the curl-part of Maxwell’s equation implicitly (which is,
however, a small problem compared to the particle loops) and we need the particle sampled
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mass matrix. On the other hand, no integrals need to be computed for the deposition of the
current.

The method (with any ordering of the operators) is energy-conserving, since the single
operators are solved either exactly or based on an energy-conserving discrete-gradient dis-
cretization. On the other hand, the Casimir invariants can be destroyed by the splitting
of the Poisson matrix. In particular, Gauss’ law is not conserved over time with this time
stepping method as will be discussed in the next section.

Compared to the explicit Hamiltonian splitting method, this method allows for larger
time steps. In particular, the time step is not restricted by either light waves in the Maxwell’s
equation or Langmuir waves as the stability analysis in the Appendix shows.

for m = 1, . . . do

e∗ = S−1
3

((
M1 − ∆t2

16
C>M2C

)
em + ∆tC>M2b

m
)

;

b∗ = bm − ∆t
4
C (em + e∗);

j = 0;
N = 0;
for a = 1, . . . , Np do

x∗a = xma + ∆t
2

vma ;
v∗a = R(b∗)vma ;

v∗∗a = v∗ + ∆t
2

qs
ms

�1(x∗a)e
∗;

j = j + ∆tqswa�1(x∗a)va;

N = N + ∆t2

4
qswa�1(x∗a)

>�1(x∗a) ;

end
e∗∗ = (M1 −N) e∗ − j;
for a = 1, . . . , Np do

v∗∗∗a = v∗∗ + ∆t
2

qs
ms

�1(x∗a)e
∗∗;

vm+1
a = R(b∗)v∗∗∗a ;

xm+1
a = x∗a + ∆t

2
vm+1
a ;

end

em+1 = S−1
3

((
M1 − ∆t2

16
C>M2C

)
e∗∗ + ∆tC>M2b

∗
)

;

bm+1 = b∗ − ∆t
4
C (e∗∗ + em+1);

end
Algorithm 1: Second order semi-implicit discrete gradient scheme.

5 Conservative implicit discrete gradient method

In the previous section, we have derived an energy-conserving semi-implicit time propagator.
However, it was shown in [1, Sec. 4.6] that the semi-discrete equations of motion of the
GEMPIC framework (cf. (7)) satisfy Gauss’ law which the semi-implicit discrete gradient
scheme does not as we will show in the following. In this section, we derive an alternative
discrete gradient method that—in addition to energy—also conserves Gauss’ law.
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5.1 Conservation of Gauss’ law

In order to satisfy Gauss’ law, it is important how the current is accumulated in Ampère’s
law,

M1e
m+1 = M1e

m −
∫ tm+1

tm

�1(X(τ))>MqV(τ) dτ. (17)

Applying G> to (17) yields,

G>M1e
m+1 = G>M1e

m −
∫ tm+1

tm

G>�1(X(τ))>MqV(τ) dτ.

If dX(τ)
dτ

= V(τ) holds true, we can use the chain rule to identify the integrand as a time
derivative, namely

G>�1(X(τ))>MqV(τ) =
d

dτ
�0(X(τ))>Mq1Np .

Hence, the integral over t can be evaluated as

G>M1e
m+1 = G>M1e

m −
∫ tm+1

tm

G>�1(X(τ))>MqV(τ) dτ

= G>M1e
m − �0(X(tm+1))>Mq1Np + �0(X(tm))>Mq1Np .

This means that, if the discrete version of Gauss’ law G>M1e
m = −�0(X(tm))>Mq1Np holds at

time tm, it also holds at time tm+1. In the semi-implicit method, the current is accumulated
in subsystem 4, while the particle trajectory is updated in subsystem 1. Hence, the time
derivative of the particle trajectories is zero in subsystem 4 and we would need to combine
these two subsystems in order to achieve conservation of Gauss’ law.

We note that the curl-part of Ampère’s law does not change the divergence of the electric
field, since the discrete gradient and curl operators respect the relation CG = 0: Multiplying
the curl-part of Ampère’s law by G>, we get

G>M1ė−
∆t

2
G>C>M2b = 0,

with the second term being zero, since G>C> = (CG)> = 0. Hence the divergence of the
electric field does not change with time. In particular, the divergence is not changed in the
solution of System 3, where the electric field is updated by equation (14a). Multiplying the
equation by G> yields

G>
(
M1 +

∆t2

4
C>M2C

)
em+1 = G>

(
M1 −

∆t2

4
C>M2C

>
)

em + ∆tG>C>M2b
m.

Again exploiting G>C> = (CG)> = 0 yields

G>M1e
m+1 = G>M1e

m.
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5.2 Alternative discrete gradient that conserves Gauss’ law

In this section, we construct a discrete gradient solution of the combined subsystem

u̇ = (J1 + J4)DuĤ(u), (18)

that defines the approximation J1 + J4 such that Gauss’ law is satisfied.
The mid-point discrete gradient defines

Xm+1 −Xm

∆t
=

Vm + Vm+1

2
.

Then, we can construct the time-continuous trajectory

X(τ) = ((tm+1 − τ)Xm + (τ − tm)Xm+1)/∆t, τ ∈ [tm, tm+1]

with constant time derivative

dX

dτ
=

Xm+1 −Xm

∆t
=

Vm + Vm+1

2
.

With this definition, we can construct the following discrete gradient scheme

Xm+1 −Xm

∆t
=

Vm + Vm+1

2
, (19a)

Vm+1 −Vm

∆t
= M−1

p Mq
1

∆t

∫ tm+1

tm

�1(X(τ)) dτ

(
em + em+1

2

)
, (19b)

em+1 − em

∆t
= −M−1

1

1

∆t

∫ tm+1

tm

�1(X(τ))> dτMq

(
Vm + Vm+1

2

)
, (19c)

which corresponds to the mid-point gradient and a Poisson matrix

J1 + J4 :=


0 M−1

p 0 0

−M−1
p 0 M−1

p Mq
∫ tm+1

tm
�1(X(τ))M−1

1 dτ 0

0 −M−1
1

∫ tm+1

tm
�1(X(τ)>MqM−1

p dτ 0 0

0 0 0 0

 .

(20)
Since J1 + J4 is antisymmetric, energy is conserved. Moreover, the scheme conserves Gauss’
law by the calculations in the previous section, since the term Vm+Vm+1

2
on the right-hand

side of (19c) corresponds to the time derivative of X(τ).

5.2.1 Summary of the conservative discrete gradient time stepping

Scheme (19) can be combined with the analytic solution of System 2 and the discrete gradient
solution of System 3 (as discussed in Section 4.3) to an implicit propagator that conserves
both energy and Gauss’ law.

System (19) is now not only linearly implicit (as it was the case when the X propagation
was separated from V and e) so that we need to use an iterative algorithm to solve this non-
linear equation. In our implementation, we use the semi-implicit scheme to produce a good
starting point for the nonlinear iteration and then continue to improve the approximation
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with Picard iterations until a predefined tolerance is met. Note that this scheme also comes
with a memory overhead, since we need to store a second particle position and velocity for all
particles during the nonlinear iteration. Algorithm 2 summarizes the proposed conservative
discrete gradient scheme in a second order Strang splitting with minimal number of particle
loops. However, we note that we need one particle loop per Picard iteration in this case.
Reordering operator 2 and 3 and spending one (or two) extra particle loops per time step
will only marginally increase the computing time for each time step and can therefore easily
pay-off if accuracy is increased.

In the same way as for the semi-implicit scheme, a von Neumann analysis shows that
this scheme has no stability restrictions by light waves or Langmuir waves.

5.2.2 Exact numerical evaluation of the integrals

Note that we have to evaluate the integrals of the form
∫ 1

0
Λ1,k
j (X(τ)) dτ , where Λ1,k

j is a
tensor product of splines of a certain degree in each of the three variables. As a function of
τ the integrand is then a polynomial of degree p1p2p3 (where pk denotes the degree of the
spline in each direction k = 1, 2, 3) locally in each cell of the three dimensional domain. In
order to solve the integral exactly (which is necessary to conserve Gauss’ law), we can use
Gauss–Legendre quadrature with dp1p2p3+1

2
e points separately in each cell crossed by the line

integral. Note that, while the degree of the quadrature is generally quite high, we only need
to perform one-dimensional quadratures. As an example, if we use splines of degree 3 for
the 0-form, i.e., we have two times degree 3 and once degree 2 in the 1-form, we need to use
a 10-point-quadrature. For splines of degree 2, on the other hand, we only need 3 points, so
the complexity rapidly increases with the degree of the splines.

5.3 Substepping

For the accurate simulation of low frequency phenomena, where the fields are slowly varying
in time but on the grid scale in space, particle substepping is another useful feature that can
allow for larger global time steps. In this subsection, we therefore adapt the method proposed
by Chen, Chacón, & Barnes [14] to our context. It is our goal to combine a few small time
steps in the particle push with a larger global time step for the update of the electric field in
the conservative discretization of the combined subsystem 1 and 4. The algorithm proposed
below preserves both energy and Gauss’ law, however, it cannot be classified as a discrete
gradient method as defined in (10).

Let us split the time step into Nsub subintervals [tν , τν+1], ν = 0, . . . , Nsub, of not neces-
sarily identical length ∆τν = τν+1 − τν with τ0 = tm and τNν = tm+1: ∆t = tm+1 − tm =∑

ν=0,Nsub−1(τν+1 − τν). Then, keeping the electric field constant over all the substeps, we

push the particles according to X0
m = Xm, V0

m = Vm and for ν = 0 to Nν − 1

Xν+1
m −Xν

m

∆τν
=

Vν
m + Vν+1

m

2
, (21a)

Vν+1
m −Vν

m

∆τν
= M−1

p Mq
1

∆τν

∫ τν+1

τν

�1(Xm(τ)) dτ

(
em + em+1

2

)
, (21b)

with Xm(τ) = ((τν+1−τ)Xν
m+(τ−τν)Xν+1

m )/∆τν . The current for the update of the electric
field then also needs to be updated as a sum over the contributions of each substep following
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for m = 1, . . . do

e∗ = S−1
3

((
M1 − ∆t2

16
C>M2C

)
em + ∆tC>M2b

m
)

;

b∗ = bm − ∆t
4
C (em + e∗);

j = 0;
N = 0;
for a = 1, . . . , Np do

v∗a = R(b∗)vma ;

xiter
a = xma + ∆t

2
v∗a;

v∗∗a = v∗ + ∆t
2

qs
ms

�1(xiter
a )e∗;

j = j + ∆tqswa�1(xiter
a )va;

N = N + ∆t2

4
qswa�1(xiter

a )>�1(xiter
a ) ;

end
eiter = (M1 −N) e∗ − j;
for a = 1, . . . , Np do

viter
a = v∗∗a + ∆t

2
qs
ms

�1(xiter
a )eiter;

xiter
a = xiter

a + ∆t
2

viter
a ;

end
residual = tolerance+ 1;
while residual < tolerance do

j = 0;
for a = 1, . . . , Np do

v̄a = 1
2

(
v∗a + viter

)
;

xiter
a = x∗a + ∆tv̄a;

j = j + ∆tqswa
∫ 1

0
�1(x∗a + τ v̄a) dτva;

viter
a = v∗ + ∆t

2

∫ 1

0
qs
ms

�1(x∗a + τ v̄a) dτe∗∗;

end
eold = eiter;
eiter = e∗ −M−1j;
residual = ‖eiter − eold‖2;

end
for a = 1, . . . , Np do

vm+1
a = R(b∗)viter

a ;

xm+1
a = xiter

a + ∆t
2

vm+1
a ;

end

em+1 = S−1
3

((
M1 − ∆t2

16
C>M2C

)
eiter + ∆tC>M2b

∗
)

;

bm+1 = b∗ − ∆t
4
C
(
eiter + em+1

)
;

end
Algorithm 2: Second order conservative discrete gradient scheme.
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the discrete gradient formulation in (19c) by

em+1 − em

∆t
= −M−1

1

1

∆t

Nsub−1∑
ν=0

(∫ τν+1

τν

�1(Xm(τ))> dτ

)
Mq

(
Vν
m + Vν+1

m

2

)
. (22)

For this version with substepping, we have two nested nonlinear systems. The sub-iteration
(21) is a nonlinear system in (Xν+1

m ,Vν+1
m ) which decomposes into separate systems for each

particle which can be included into the overall iteration that is similar to the algorithm
without substepping. In our implementation, we use Picard iterations for both nonlinear
systems. A Strang splitting version with substepping is shown in Algorithm 3.

5.3.1 Conservation properties

Despite of not being a discrete gradient scheme, the scheme with substepping is energy
conserving as can be seen from the following calculation: Setting Vm+1 = VNν

m , we get

(
Vm+1

)>
MpV

m+1 − (Vm)>MpV
m =

Nsub−1∑
ν=0

((
Vν+1
m

)>
MpV

ν+1
m − (Vν)>MpV

ν
)

(21b)
=

Nsub−1∑
ν=0

(
(Vν+1

m + Vν
m)>Mq

∫ τν+1

τν

�1
i (Xm(τ)) dτ

)(
em + em+1

2

)
(22)
= −

((
em+1

)>
M1e

m+1 − (em)>M1e
m
)
.

Hence, the difference in the kinetic energy equals the negative difference in the potential
energy (since the magnetic field is not changed in this system) and thus the total energy is
conserved.

Moreover, Gauss’ law is respected over time, since we have in each subinterval τ ∈
[τν , τν+1] that

Xm(τ) = ((τν+1 − τ)Xν
m + (τ − τν)Xν+1

m )/∆τν = Xν
m +

Vν
m + Vν+1

m

2
(τ − τν) ,

and hence
dXm(τ)

dτ
=

Vν
m + Vν+1

m

2
,

which corresponds to the form of V(τ) in (22).

6 Numerical experiments

In this section, we verify the conservation properties of our new time discretization methods
for a number of test problems. We first study the reduced model in 1d2v phase-space with
a perturbation along x1, a magnetic field along x3, and an electric field along the x1 and
x2 directions. Moreover, we assume that the distribution function is independent of v3. For
this example, we report results on a Weibel instability, the two-stream instability, and a two-
species simulation of an ion-acoustic wave. Also, we demonstrate the absence of grid heating.
Finally, we show also results for the Weibel instability simulated in full 3d3v phase-space.
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for m = 1, . . . do

e∗ = S−1
3

((
M1 − ∆t2

16
C>M2C

)
em + ∆tC>M2b

m
)

;

b∗ = bm − ∆t
4
C
(
em + e∗

)
;

j = 0;
N = 0;
for a = 1, . . . , Np do

v∗a = R(b∗)vma ;

xiter
a = xma + ∆t

2
v∗a;

v∗∗a = v∗ + ∆t
2

qs
ms

�1(xiter
a )e∗;

j = j + ∆tqswa�
1(xiter

a )va;

N = N + ∆t2

4
qswa�

1(xiter
a )>�1(xiter

a ) ;

end

eiter = (M1 −N) e∗ − j;
for a = 1, . . . , Np do

viter
a = v∗∗a + ∆t

2
qs
ms

�1(xiter
a )eiter;

xiter
a = xiter

a + ∆t
2

viter
a ;

end
residual = tolerance + 1;
while residual < tolerance do

j = 0;

ē = e∗+eiter

2
;

for a = 1, . . . , Np do

xbefore
a = x∗a;

vbefore
a = v∗a;

for ν = 1, . . . , Nν do
subresidual = subtolerance + 1;

xold
a = xbefore

a ;

vold
a = vbefore

a ;
while subresidual < subtolerance do

v̄ = 1
2

(
vbefore
a + viter

)
;

xiter
a = xbefore

a + ∆tv̄;

viter
a = vbefore

a + ∆t
2

∫ 1
0
qs
ms

�1(xbefore
a + τ v̄) dτ ē;

subresidual = max
(
‖xiter
a − xold

a ‖∞, ‖v
iter
a − vold

a ‖∞
)
;

xold
a = xiter

a ;

vold
a = viter

a ;

end

j = j + ∆tqswa
∫ 1
0 �1(xold

a + τ v̄) dτ v̄;

xbefore
a = xiter

a ;

vbefore
a = viter

a ;

end

end

eold = eiter;

eiter = e∗ −M−1j;

residual = ‖eiter − eold‖2;

end
for a = 1, . . . , Np do

vm+1
a = R(b∗)viter

a ;

xm+1
a = xiter

a + ∆t
2

vm+1
a ;

end

em+1 = S−1
3

((
M1 − ∆t2

16
C>M2C

)
eiter + ∆tC>M2b

∗
)

;

bm+1 = b∗ − ∆t
4
C
(
eiter + em+1

)
;

end

Algorithm 3: Second order conservative discrete gradient scheme with substepping.
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In all experiments reported, we have used a second order Strang splitting method and
third order splines for the 0-forms. For the iterative linear solvers, the tolerance is set to
10−15 and for the nonlinear iteration in the discrete gradient method we use a tolerance of
10−12 and a tolerance of 10−10 for the subiterations when they exist. Note that the tolerance
of the linear solver is applied to the residual while the tolerance in the nonlinear iteration
is directly applied to the fields. In order to balance the errors, we therefore use a more
restrictive tolerance for the linear solvers. In the subiterations, only particle positions are
involved which is why the tolerance can be chosen less restrictive. The implementation is
based on the Fortran libraries SeLaLib1 and PLAF2.

6.1 Weibel instability in 1d2v

As a first example, we consider the Weibel instability [27] in 1d2v. We use the same param-
eters that had already been considered with the Hamiltonian splitting time discretization in
[1]. The initial distribution and fields are of the form

f (x,v, t = 0) =
1

2πσ1σ2

exp

(
−1

2

(
v2

1

σ2
1

+
v2

2

σ2
2

))
(1 + α cos(kx)) , x ∈ [0, 2π/k),

B3(x, t = 0) = β cos(kx),

E2(x, t = 0) = 0,

and E1(x, t = 0) is computed from Poisson’s equation. In our simulations, we use the
following choice of parameters, σ1 = 0.02/

√
2, σ2 =

√
12σ1, k = 1.25, α = 0 and β = 10−4

and simulate for 500 time units. We use 100,000 particles and 32 grid points.
We run the simulation with the semi-implicit discrete gradient and the Gauss-conserving

discrete gradient method for various time steps and compare to the Hamiltonian splitting.
Table 1 shows the conservation properties of the various runs. The numerical experiments
verify energy conservation of the new semi-implicit methods and conservation of Gauss’ law
for the discrete gradient method and the Hamiltonian splitting. In particular, we note that
the error in Gauss’ law is satisfied up to round-off errors in the Hamiltonian splitting as
well as the conservative discrete gradient method. Moreover, the implicit methods conserve
energy to the accuracy of the iterative field solver. Hence, the level of accuracy in the
conservation properties only depends on the tolerance applied in the linear and nonlinear
iterations and not on the spatial or temporal resolution of the numerical approximation. We
can also see that the semi-implicit methods allow for larger time steps where the Hamiltonian

splitting becomes unstable due to the stability constraint ∆t ≤
√

17
42

∆x ≈ 0.099935 due to

the explicit scheme for Maxwell’s equations.
The number of nonlinear iterations in the discrete gradient scheme are about 4 (∆t =

0.025), 5 (∆t = 0.05), 6 (∆t = 0.1), and 8 (∆t = 0.2). Hence, we see only a moderate
increase in the number of iterations. Roughly speaking the cost of the implicit method is a
factor “number of iterations” more expensive than the explicit Hamiltonian splitting. This
shows that the computational costs of our implicit and semi-implicit schemes are comparable
to the costs that are required for the EC-PIC and EC-SIM algorithms (cf. [8]).

1http://selalib.gforge.inria.fr/
2http://jorek.gforge.inria.fr/documentation/plaf/html/index.html
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Table 1: Weibel instability in 1d2v phase space: Comparison of the conservation properties
for various integrators. For the two discrete gradient method, we show results for two
different orderings of the individual operators (the first set of experiments refers to the case
with the ordering shown in the Algorithms).

method ∆t Gauss energy error magn. energy

explicit
Hamiltonian splitting

0.025 2.39E-15 3.48E-07 5.12E-06
0.05 2.39E-15 1.39E-06 1.88E-05
0.1 — — —

semi-implicit
discrete gradient
(O3,O1,O2,O4)

0.025 1.25E-07 6.60E-15 1.45E-05
0.05 2.68E-07 3.08E-14 1.53E-05
0.1 1.10E-06 1.11E-14 4.15E-05
0.2 5.80E-06 8.76E-15 1.24E-04

semi-implicit
discrete gradient
(O1,O2,O3,O4)

0.025 8.77E-08 7.44E-15 5.06E-06
0.05 3.38E-07 1.97E-14 2.02E-05
0.1 1.93E-06 8.81E-15 4.06E-05
0.2 7.23E-06 1.03E-14 1.12E-04

implicit conservative
discrete gradient

(O3,O2,O4)

0.025 2.28E-15 1.56E-13 8.22E-06
0.05 2.32E-15 2.60E-14 1.50E-05
0.1 2.14E-15 1.66E-13 4.11E-05
0.2 2.09E-15 5.48E-14 1.20E-04

implicit conservative
discrete gradient

(O2,O3,O4)

0.025 2.72E-15 1.01E-13 5.68E-06
0.05 2.23E-15 5.92E-15 1.69E-05
0.1 2.24E-15 1.81E-13 3.99E-05
0.2 2.24E-15 2.15E-14 1.09E-04

In this example, the error of the various methods is comparable as we see for the maximum
error over time in the magnetic energy shown in the last column of Table 1. The error in
the magnetic energy is computed compared to a solution with a time step ∆t = 0.0125 and
the same method.

6.2 Two-stream instability

As a second example, we look at a classical electrostatic test case known as the two-stream
instability with the following initial value

f (x,v, t = 0) =
1

4π

(
e−0.5(v1−2.4)2

+ e−0.5(v1+2.4
)

e−0.5v2
2 , x ∈ [0, 10π),

B3(x, t = 0) = 0,

E2(x, t = 0) = 0,

and E1 computed from Poisson’s equation. We have simulated the problem over 200 time
units with 64 grid points and 64,000 particles with the various integrators for time steps of
0.025, 0.05, 0.1, 0.2, and 0.4. Again the time step for the explicit scheme is restricted due

to the Maxwell’s equations by ∆t ≤
√

17
42

∆x ≈ 0.19882. We note that larger time steps

would therefore be possible for this electrostatic example if we solve the Vlasov–Ampère
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Table 2: Two-stream instability 1d2v phase space: Comparison of the conservation properties
for various integrators.

method ∆t Gauss energy

explicit
Hamiltonian splitting

0.025 4.77E-15 7.37E-04
0.05 4.11E-15 2.79E-03
0.1 4.77E-15 9.37E-03
0.2 4.44E-15 4.81E-01
0.4 — —

semi-implicit
discrete gradient

0.025 1.26E-03 6.71E-12
0.05 5.17E-03 5.68E-12
0.1 2.56E-02 6.08E-12
0.2 2.07E-01 5.49E-12
0.4 1.30E-00 5.68E-12

implicit conservative
discrete gradient

0.025 4.55E-15 9.69E-12
0.05 3.89E-15 8.38E-11
0.1 3.55E-15 5.68E-12
0.2 4.33E-15 1.68E-11
0.4 4.72E-15 2.71E-11

equation instead. For the discrete gradient methods the operators are ordered as shown
in the algorithms. The simulations with the discrete gradient method took the following
number of iterations on average: 7 (∆t = 0.025), 7 (∆t = 0.05), 9 (∆t = 0.1), 11 (∆t = 0.1),
16 (∆t = 0.4).

The conservation properties of the various simulations are summarized in Table 2. All
simulations with time step smaller than 0.4 capture the linear growth rate quite accurately
and show only small variations in the nonlinear phase. For a time step of 0.4, the stability
condition of the Hamiltonian splitting is violated, the semi-implicit discrete gradient was
still able to capture the linear growth rate but showed large deviation in the nonlinear
phase while the results of the discrete gradient scheme remains very accurate. Moreover, the
initially random electric field deviates considerably for the semi-implicit discrete gradient
method with time steps of 0.2 and 0.4 which can be explained by the fact that Gauss’ law is
violated to a very large degree in these simulations. Figure 2 shows the electric energy as a
function of time for the discrete gradient method at a time step of 0.025 as a reference and
the simulations with ∆t = 0.2 and ∆t = 0.4.

Even though we have demonstrated that large time steps are possible with the implicit
methods for the examples of the two-stream and the Weibel instability, large time steps are
not particularly beneficial for these examples due to accuracy. As a next example we will
therefore study a multi-species problem where physical effects take place on the time-scale
of the ions so that large time steps are interesting for the electron dynamics.

6.3 Ion acoustic wave

As a third example, we consider the ion acoustic wave excited by an ion density perturba-
tion. The example is electrostatic and involves electrons and ions. We normalize mass and
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Figure 2: Two-stream instability: Time evolution of the first component of the electric
energy for various configurations.

temperature to their values of the electrons. The initial distributions are then given by

fe(x, v, t = 0) =
1√
2π

exp

(
−v

2

2

)
,

fi(x, v, t = 0) =
1√

2π Ti
mi

exp

− v2

2
√

Ti
mi

(1 + α cos

(
2π

L
x

))
.

We use the following parameters Ti = 10−4, mi = 200, α = 0.2, L = 10.
The ion acoustic wave problem is solved with 32 grid points and 128,000 particles per

species with the explicit Hamiltonian splitting, the semi-implicit discrete gradient method,
the conservative discrete gradient method, and the substepping method for various time
steps. In this case, we use the ordering that places operator 3 after operators 1 and 2, since
this gives more accurate results in the present example. Table 3 shows the conservation
properties of the various methods for different time steps. As expected Gauss’ law is satisfied
to machine precision for the Hamiltonian splitting as well as the discrete gradient method.
On the other hand, the error in Gauss’ law is considerable for the semi-implicit method and
increases with the time step. The discrete gradient methods conserve energy—in contrast
to the Hamiltonian splitting—up to the tolerance of the iterative solvers.

In order to judge the quality of the solution, we look at the evolution of the first com-
ponent of the electric energy over time. As a reference, we show the solution of the discrete
gradient method with a time step of ∆t = 0.025. Figure 3 shows the results for the Hamilto-
nian splitting, the semi-implicit, and the conservative discrete gradient solution with a time

24



0 250 500 750 1000 1250 1500 1750 2000
10−4

10−3

10−2

10−1

implicit DisGrad, 0.025 HS, 0.05 semi-implicit DisGrad, 0.05 implicit DisGrad, 0.05

Figure 3: Ion acoustic wave: Time evolution of the first component of the electric energy
with various time propagation schemes at ∆t = 0.05 compared to a reference simulation
with ∆t = 0.025.
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Figure 4: Ion acoustic wave: Time evolution of the first component of the electric energy
with various time propagation schemes at ∆t = 0.25 compared to a reference simulation
with ∆t = 0.025.

step of ∆t = 0.05. We can see that all three time stepping schemes give quite good results
for this relatively small time step. Next we increase the time step to ∆t = 0.25 in Figure 4
where the explicit method becomes unstable and the conservative discrete gradient method
gives clearly better results than the semi-implicit method. Finally, Figure 5 shows that the
solution of the discrete gradient method becomes clearly worse when increasing the time step
from ∆t = 0.25 to ∆t = 1.0. When introducing a substepping scheme with four substeps
for the electrons only, the quality of the solution at ∆t = 1 and ∆τ = 0.25 for the electrons
is comparable to the discrete gradient method with a total time step of ∆t = 0.25 for both
species.

The efficiency of the conservative discrete gradient method is hampered by the number of
iterations needed for the nonlinear solution to converge. In particular, for the smallest time
step considered (∆t = 0.025), we already need about 6 iterations on average which renders
the method uncompetitive compared to the explicit one. When increasing the time step, the
iteration count increases to about 7 iterations for ∆t = 0.05, 12 iterations for ∆t = 0.25 , 17
for ∆t = 0.5, and 32 for ∆t = 1.0. We can see that the increase of iterations needed between
∆t = 0.05 and ∆t = 0.25 is quite small compared to the increase in the time step. Then, the

25



0 250 500 750 1000 1250 1500 1750 2000
10−4

10−3

10−2

10−1

0.025 0.25 1.0 1.0 (4,1)

Figure 5: Ion acoustic wave: Time evolution of the first component of the electric energy
comparing the discrete gradient method without sub-stepping and a time step of ∆t = 0.025,
∆t = 0.25, and ∆t = 1.0 compared to the discrete gradient method with ∆t = 1.0 and four
substeps for the electrons.

iteration count starts increasing at a higher rate. However, the quality of the solution with
such large time steps is not very good either so that the high value of the iteration tolerance
is questionable in those simulations. The substepping method still produces good results for
∆t = 1.0 and four substeps for the electrons and no substeps for the ions. In this case, about
16 outer iterations are needed per time step and about 5 inner iterations for both electrons
(per substep) and ions.

Note that a linear dispersion analysis shows that the electric energy should oscillate with
no damping in this case. Our results, however, show a slight damping. This is not an effect
of the time stepping scheme but of the spatial discretization. Adding more particles or
smoothing the fields and the current improves the results.

6.4 Grid heating

For numerical schemes that lack energy conservation, artificial heating occurs if the Debye
length is not resolved on the spatial grid. Let us consider a Maxwellian initial condition of
the form

f(x, v1, v2) =
1

2πσ
exp

(
−0.5

(
v2

1 + v2
2

σ2

))
in a periodic box of length L = 50π. In our normalized units the plasma frequency is equal
to one and the Debye length then takes the value σ of the thermal velocity. We choose a
spatial resolution of 64 grid points, i.e., ∆x ≈ 2.4, and a thermal velocity of σ = 0.2. In this
case, the Debye length is a factor 10 larger than the spatial resolution and a standard explicit
method would suffer from grid heating. On the contrary, we do not see a grid heating for any
of our methods. Figure 6 shows the evolution of the absolute error in the total energy over
time for simulations with a very small time step of ∆t = 0.05. The value of the total energy
is around 12.6. In particular, the energy is conserved over time up to the solver tolerance
of 10−12 for the implicit method. For the explicit Hamiltonian splitting the energy is not
conserved but it shows an oscillatory behavior instead of the steady increase that is referred
to as grid heating. We note that the energy error of the Hamiltonian splitting is solely caused
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Table 3: Ion acoustic wave: Comparison of the conservation properties for various integra-
tors.

method ∆t Gauss energy

explicit
Hamiltonian splitting

0.025 9.10E-15 1.57E-05
0.05 9.96E-15 8.93E-05

semi-implicit
discrete gradient

0.025 3.07E-4 4.28E-13
0.05 1.78E-03 3.27E-13
0.25 7.78E-02 2.75E-13
0.5 2.31E-01 2.58E-13
1.0 3.93E-01 2.36E-13

implicit conservative
discrete gradient

0.025 1.11E-14 9.34E-12
0.05 1.22E-14 2.96E-12
0.25 1.28E-14 2.96E-12
0.5 1.49E-14 4.52E-12
1.0 1.53E-14 1.85E-11

substepping(4,1) 1.0 1.71E-14 5.45E-13

by the splitting in time and its error is a function of ∆t only. The spatial discretization is
energy-conserving which is why this explicit scheme does not suffer from grid heating.

6.5 Weibel instability in 3d3v

In order to demonstrate the potential of the algorithm also in full phase space, we consider
the Weibel test case in a simulation in the full six-dimensional phase space. The initial
distribution is of the form

f (x,v, t = 0) =
1

(2π)3/2σ1σ2
2

exp

(
−1

2

(
v2

1

σ2
1

+
v2

2 + v2
3

σ2
2

))
, x ∈ [0, 2π/k)3,

B(x, t = 0) = (0, 0, β cos(kx1))>,

and the electric field at time zero is computed from Poisson’s equation. In our simulation,
we choose the parameters σ1 = 0.02/

√
2, σ2 =

√
12σ1, k = 1.25, and β = 0.01 and simulate

for 250 time units. Note that the problem is mainly depending on the variable x1 which is
why we resolve the spatial grid more along this direction, namely we choose a resolution of
16× 8× 8 grid points. The simulation uses Np = 100, 000 particles.

Table 4 shows the conservation properties of the various integrators with different time
steps. The results here are shown for the standard ordering of the operators that maximizes
the arithmetic intensity. Again the conservation properties are verified. For this case, the
conservative discrete gradient method needs about 5 (∆t = 0.05), 6 (∆t = 0.1), 9 (∆t = 0.2),
or 14 (∆t = 0.4) iterations per time step on average. The error in the magnetic energy is
computed compared to a solution with the same method and a time step of ∆t = 0.0125.
The accuracy is comparable for all methods with a slight disadvantage for the Hamiltonian
splitting.
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Figure 6: Grid heating: Time evolution of the absolute error in total energy for simulation
with resolution > 10 times the Debye length.

Table 4: Weibel instability in 3d3v phase space: Comparison of the conservation properties
for various integrators.

method ∆t Gauss energy error magn. energy

explicit
Hamiltonian splitting

0.05 5.80E-16 6.70E-06 1.23E-03
0.1 5.70E-16 2.72E-05 5.03E-03
0.2 — — —

semi-implicit
discrete gradient

0.05 3.47E-07 2.59E-13 8.65E-04
0.1 1.60E-06 3.76E-14 3.63E-03
0.2 6.00E-06 2.85E-14 1.35E-02
0.4 2.27E-05 6.88E-14 2.91E-02

implicit conservative
discrete gradient

0.05 1.27E-15 3.53E-13 8.61E-04
0.1 1.20E-15 1.50E-14 3.63E-03
0.2 1.06E-15 2.22E-13 1.33E-02
0.4 1.03E-15 8.22E-15 2.92E-02
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7 Conclusions and outlook

We have described a general procedure to derive energy-conserving time-stepping methods
for the geometric electromagnetic particle-in-cell method based on discrete gradients and
an antisymmetric splitting of the Poisson matrix. In particular, we derived a semi-implicit
scheme, which yields good results with little computational overhead per time step compared
to the Hamiltonian splitting when conservation of Gauss’ law is not critical and, in the same
time, allows for larger time steps. Moreover, we have derived an implicit method that
conserves both energy and Gauss’ law. Due to the fact that a nonlinear iteration that
couples the particle and field degrees of freedom is necessary, the method comes with a
considerable computational overhead. On the other hand, combined with a substepping for
the fast species, it yields quite accurate results for large time steps and has therefore the
potential to be more efficient in multiscale simulations with realistic mass ratio between
electron and ion species. Finally, we have also shown the absence of grid heating for the
GEMPIC semi-discretization independent of the time stepping scheme.
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A Stability analysis

A comprehensive stability analysis of the geometric particle-in-cell method is quite hard
to achieve due to the fact that the scheme is highly nonlinear. A rather general stability
analysis for electromagnetic particle-in-cell schemes was provided by Godfrey [28], however,
it does not directly apply to our methods, since it is based on a staggered time step while
we use a more complex splitting of the equations. On the other hand, the stability limits
of explicit particle-in-cell schemes are mostly related to the way the curl-part in Maxwell’s
equations is solved and the propagation of electrostatic Langmuir waves. In this section, we
will therefore perform a stability analysis for the curl-part in Maxwell’s equation in 1d and
for Langmuir waves.

A.1 Stability analysis for Langmuir waves

In this section, we perform a stability analysis for Langmuir waves as in [8] following the
theory developed in [29]. For the electrostatic case, both implicit schemes in a Strang
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splitting combination read as follows

Xm+1/2 = Xm−1/2 + ∆tVm, Vm+1 = Vm +
∆t

2

qs
ms

(
Em + Em+1

)
. (23)

For the von Neumann stability analysis, the time evolution is assumed to be harmonic, i.e.,

xmp = x̄pe
iωm∆t, vmp = v̄pe

iωm∆t, Em
p = Ēpe

iωm/∆t.

Inserting the time harmonic ansatz into the scheme (23), we find

2i sin

(
∆t

2
ω

)
x̄p = ∆tv̄p,

2i sin

(
∆t

2
ω

)
v̄p =

qs
ms

∆t cos

(
∆t

2
ω

)
Ēp.

In Fourier space the electric field for cold plasma Langmuir waves can be related to the
displacement by the electron plasma frequency ωpe as (cf. [8])

qs
ms

Ēp = −ω2
pex̄.

With this assumption, we obtain

2i sin

(
∆t

2
ω

)
x̄p −∆tv̄p = 0,

cos

(
∆t

2
ω

)
∆t ω2

pex̄p + 2i sin

(
∆t

2
ω

)
v̄p = 0.

This system of linear equations has a solution if the determinant of the matrix vanishes, i.e.,
if

−4 sin2

(
∆t

2
ω

)
+ ∆t2ω2

pe cos

(
∆t

2
ω

)
= 0.

For this case, we hence get the same stability condition as for the semi-implicit scheme
introduced by Lapenta in [8]. The equation has real solutions independent of ∆t and, hence,
the scheme is unconditionally stable.

The Hamiltonian splitting method with second order Strang splitting, on the other hand,
yields the standard explicit leap frog scheme for electrostatics

Xm+1/2 = Xm−1/2 + ∆tVm, Vm+1 = Vm + ∆t
qs
ms

Em+1/2.

In this case the determinant condition reads

−4 sin2

(
∆t

2
ω

)
+ ∆t2ω2

pe = 0.

For ωpe∆t > 2, there are only complex conjugate solutions, i.e., we have one growing solution
which leads to numerical instabilities.
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A.2 Curl-part of Maxwell’s equations (vacuum Maxwell’s equa-
tion)

Let us now consider the curl-part of Maxwell’s equations in 1d with a second order Strang
splitting propagator. Let us denote ẽ = M1e and b̃ = M2b. With this notation the explicit
version of the Maxwell equations with a finite element description reads for degree of freedom
j

ẽ
n+1/2
j = ẽnj +

α

2

(
b̃nj − b̃nj+1

)
,

bn+1
j = bnj − α

(
e
n+1/2
j − en+1/2

j−1

)
,

ẽn+1
j = ẽ

n+1/2
j +

α

2

(
b̃n+1
j − b̃n+1

j+1

)
.

where α = ∆t
∆x

.
For the kth Fourier mode, we use the ansatz

enj = ēξn exp

(
i
2πkxj
L

)
, bnj = b̄ξn exp

(
i
2πkxj
L

)
,

where L denotes the length of the domain. Then, we have the following relation after
multiplication with the mass matrices

ẽnj = λ
(p)
k enj , b̃nj = λ

(p−1)
k bnj ,

where λ
(q)
k denotes the kth eigenvalue of the mass matrix for qth order splines. The Fourier

transformed difference equations then have the following form (ξ − 1)λ
(p)
k −(ξ + 1)α

2

(
1− ei 2π∆xk

L

)
λ

(p−1)
k

α
(

1− e−i 2π∆xk
L

)
λ

(p)
k (ξ − 1)λ

(p)
k + α2λ

(p−1)
k

(
1− cos

(
2π∆xk
L

))


︸ ︷︷ ︸
:=D

(
ē
b̄

)
= 0.

To find a solution, we compute ξ such that the determinant is zero

det(D) = λ
(p)
k

(
λ

(p)
k (ξ − 1)2 + α22(1− cos

(
2π∆xk

L

)
)ξλ

(p−1)
k

)
= λ

(p)
k

(
ξ2 − 2qξ + 1

)
,

where q = 1 − λ
(p−1)
k

λ
(p)
k

α2
(
1− cos

(
2π∆xk
L

))
. The roots of the equation det(D) = 0 can be

expressed as
ξ+/− = q ±

√
q2 − 1.

For stability, we need to have |ξ| ≤ 1 and thus |q| ≤ 1 which yields the condition

0 ≤ λ
(p−1)
k

λ
(p)
k

α2

(
1− cos

(
2π∆xk

L

))
≤ 2,

for all values of k. For p = 1, 2, 3 this yields the following conditions on α:

� p = 1: α ≤
√

1
3
,
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� p = 2: α ≤
√

2
5
,

� p = 3: α ≤
√

17
42

.

We note that a Lie splitting would yield the same determinant (up to the multiplicative

factor λ
(p)
k ) and, hence, yields the same stability limit.

Next, we consider the implicit variant. Since we will show that the scheme is uncondi-
tionally stable, it suffices to consider the Lie splitting

bn+1
j = bnj −

α

2

(
enj + en+1

j − enj−1 − en+1
j−1

)
,

ẽn+1
j = ẽnj +

α

2

(
b̃nj + b̃n+1

j − b̃nj−1 − b̃n+1
j−1

)
.

With the same ansatz, we now get the following equation for mode k ξ − 1 α
2

(
1− e−i 2π∆xk

L

)
(ξ + 1)

−α
2

(
1− ei 2π∆xk

L

)
λ

(p−1)
k (ξ + 1) (ξ − 1)λ

(p)
k

(b̄
ē

)
= 0.

This yields the following expression for the determinant

det(D) =

(
λ

(p)
k +

α2

2

(
1− cos

(
2π∆xk

L

))
λ

(p−1)
k

)
ξ2 +

(
λ

(p)
k −

α2

2

(
1− cos

(
2π∆xk

L

))
λ

(p−1)
k

)
ξ+(

λ
(p)
k +

α2

2

(
1− cos

(
2π∆xk

L

))
λ

(p−1)
k

)
.

Solving the equation det(D) = 0 for ξ yields

ξ+/− = q ±
√
q2 − 1,

where q =
λ

(p)
k −

α2

2 (1−cos( 2π∆xk
L ))λ(p−1)

k

λ
(p)
k +α2

2 (1−cos( 2π∆xk
L ))λ(p−1)

k

. In this case, it holds that q2 − 1 ≤ 0 independent of k,

∆x, p and α, since both λ
(p)
k ≥ 0 and α2

2

(
1− cos

(
2π∆xk
L

))
λ

(p−1)
k ≥ 0. Hence, the scheme is

unconditionally stable.
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electromagnetic particle-in-cell methods, Journal of Plasma Physics 83 (4) (2017).
doi:10.1017/S002237781700040X.

[2] Y. He, Y. Sun, H. Qin, J. Liu, Hamiltonian particle-in-cell methods for Vlasov–Maxwell
equations, Physics of Plasmas 23 (9) (2016) 092108. doi:10.1063/1.4962573.

[3] Y. He, H. Qin, Y. Sun, J. Xiao, R. Zhang, J. Liu, Hamiltonian integration
methods for Vlasov–Maxwell equations, Physics of Plasmas 22 (2015) 124503.
doi:10.1063/1.4938034.

32



[4] G. Zhong, J. E. Marsden, Lie–Poisson Hamilton–Jacobi theory and Lie–Poisson inte-
grators, Physics Letters A 133 (3) (1988) 134–139.

[5] R. I. McLachlan, G. R. W. Quispel, N. Robidoux, Geometric integration us-
ing discrete gradients, Philosophical Transactions of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences 357 (1754) (1999) 1021–1045.
doi:https://doi.org/10.1098/rsta.1999.0363.

[6] E. Celledoni, V. Grimm, R. McLachlan, D. McLaren, D. O’Neale, B. Owren, G. Quis-
pel, Preserving energy resp. dissipation in numerical {PDEs} using the ”average vec-
tor field” method, Journal of Computational Physics 231 (20) (2012) 6770–6789.
doi:http://doi.org/10.1016/j.jcp.2012.06.022.
URL http://www.sciencedirect.com/science/article/pii/S0021999112003373

[7] S. Markidis, G. Lapenta, The energy conserving particle-in-cell
method, Journal of Computational Physics 230 (18) (2011) 7037–7052.
doi:https://doi.org/10.1016/j.jcp.2011.05.033.

[8] G. Lapenta, Exactly energy conserving semi-implicit particle in cell
formulation, Journal of Computational Physics 334 (2017) 349–366.
doi:http://dx.doi.org/10.1016/j.jcp.2017.01.002.
URL http://www.sciencedirect.com/science/article/pii/S0021999117300128

[9] B. Perse, Energy-conserving implicit time discretization for the GEMPIC framework,
Master’s thesis, Technical University of Munich, Garching (2017).

[10] B. Marder, A method for incorporating Gauss’ law into electromagnetic PIC codes, Jour-
nal of Computational Physics 68 (1) (1987) 48 – 55. doi:https://doi.org/10.1016/0021-
9991(87)90043-X.

[11] A. B. Langdon, On enforcing Gauss’ law in electromagnetic particle-in-cell codes, Com-
puter Physics Communications 70 (3) (1992) 447–450. doi:10.1016/0010-4655(92)90105-
8.

[12] C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, U. Voß, Divergence Correction
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