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Gravitational waves (GW), as light, are gravitationally lensed by intervening matter, deflecting their
trajectories, delaying their arrival and occasionally producing multiple images. In theories beyond general
relativity, new gravitational degrees of freedom add an extra layer of complexity and richness to GW
lensing. We develop a formalism to compute GW propagation beyond general relativity over general space-
times, including kinetic interactions with new fields. Our framework relies on identifying the dynamical
propagation eigenstates (linear combinations of the metric and additional fields) at leading order in a short-
wave expansion. We determine these eigenstates and the conditions under which they acquire a different
propagation speed around a lens. Differences in speed between eigenstates cause birefringence
phenomena, including time delays between the metric polarizations (orthogonal superpositions of hþ,
h×) observable without an electromagnetic counterpart. In particular, GW echoes are produced when the
accumulated delay is larger than the signal’s duration, while shorter time delays produce a scrambling of
the waveform. We also describe the formation of GW shadows as nonpropagating metric components are
sourced by the background of the additional fields around the lens. As an example, we apply our
methodology to quartic Horndeski theories with Vainshtein screening and show that birefringence effects
probe a region of the parameter space complementary to the constraints from the multimessenger event
GW170817. In the future, identified strongly lensed GWs and binary black holes merging near dense
environments, such as active galactic nuclei, will fulfill the potential of these novel tests of gravity.

DOI: 10.1103/PhysRevD.102.124048

I. INTRODUCTION

The detection of gravitational wave (GW) signals from
black-hole and neutron-star mergers provides a direct probe
of Einstein’s general relativity (GR) and fundamental
properties of gravity. These tests have far reaching impli-
cations for cosmology, probing the accelerated expansion
of the universe and dark energy models in a manner
complementary to “traditional” observations based on
electromagnetic (EM) radiation [1]. Observations are sen-
sitive to how GWs are emitted and detected, as well as their

propagation through the universe. GW emission and
detection occurs in small scales by cosmological standards,
in dense regions and near massive objects. In contrast,
propagation can occur over vastly different regimes, and
allows small effects to compound over very large distances.
GW propagation beyond GR is fairly well understood

in the averaged cosmological space-time, described by the
Friedmann-Robertson-Walker (FRW) metric. GWs are well
described by linear perturbations due to the small amplitude
of GWs away from the source. The high degree of sym-
metry of FRW solutions ensures the decoupling of scalar,
vector and tensor perturbations, automatically isolating the
propagating degrees of freedom, with deviations from
GR represented by a handful of terms in the propagation
equation. These facts greatly simplify the study of GWs,
making it tractable even for highly complex theories
beyond GR.
Corrections to FRW GW propagation have been well

studied and have provided some of the most powerful tests
of gravitational theories. Such is the case of the anomalous
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GW speed, measured to a precision jcg − cj≲Oð10−15Þ [2]
with the binary neutron star merger GW170817. This
measurement poses a phenomenal challenge to a broad
class of dark energy theories [3–6], well beyond next-
generation cosmological observations [7]. Other tests such
as GW damping [8] are limited by precision in the
luminosity distance measurement and the population of
standard sirens, with the weak constraints from GW170817
[9] expected to improve in the future [10–14]. In addition,
FRWGW propagation can be used to constrain interactions
with additional cosmological fields [15] such as tensor [16]
or multiple vector fields [17], but only when the additional
fields have a tensor structure. Despite of these achieve-
ments and prospects, tests of the propagation of GWs over
FRWare intrinsically limited in probing gravity theories by
the same simplifications that made them tractable in the
first place.
Lensing of GWs offers important opportunities to test GR

in at least three distinct ways. (1) In minimally coupled
theories, lensingofelectromagnetic radiationonlyprobes the
solution of the metric. In contrast, lensing of GWs tests the
gravitational sector directly, including the fundamental
degrees of freedom, their properties and interactions.
(2) New propagating degrees of freedom are in most cases
isolated by the FRW symmetries: even the simplest gravi-
tational lenses break these symmetries and introduce new
interactions with new gravitational fields (e.g., scalars).
(3) Finally, beyond FRW effects can introduce new scales
and affect the gravitational polarizations (þ;×) differently,
providing signatures that do not require an electromagnetic
(EM) counterpart. This enables tests from black hole (BH)
binaries, applicable to more events and at higher redshift.
Specific examples of these features are explored in thiswork.

The well studied and rich phenomenology of gravita-
tional lensing highlights the importance of understanding
GW propagation beyond FRW in testing GR. Phenomena
ranging from galaxy shape distortions, to multiple imaged
sources, to the integrated Sachs-Wolfe effect are nowadays
routinely used to probe dark energy and gravity. As
detections of lensed GWs will become increasingly likely
[18–20], modeling GW propagation beyond the FRW
approximation will become critical to fully use rapidly
growing catalogs of GW events to explore the intervening
matter and its gravitational effects. As we will discuss here,
theories beyond GR extend the range of gravitational
lensing phenomena even further.

A. Summary for the busy reader

In this work we study the lensing of GWs beyond GR.
We develop a general framework to study the GW
propagation over general space-times, identify novel effects
and forecast constraints on specific gravity theories. Our
main results can be summarized as follows:
(1) Core concept: over general space-times different

gravitational degrees of freedom mix while they
propagate. Each propagation eigenstate is a linear
superposition of different polarizations that evolves
independently. Eigenstates with different speeds
cause GW birefringence. Nonpropagating modes
can also be sourced inducing GW shadows. We
present our formalism in Secs. II and III.

(2) Novel phenomena: at leading order, the main ob-
servables are time delays between propagation
eigenstates and with respect to light. Delays larger
than the GW signal produce echoes. Time delays
shorter than the signal cause interference patterns,

FIG. 1. Schematic diagram of the gravitational wave lensing beyond general relativity. A GWemitted by a binary black hole splits into
its propagation eigenstates (waveforms in color) when it enters the region enclosed by r⋆ where modify gravity backgrounds are relevant
(note that in general this scale can be different from the scale of strong lensing, i.e., the Einstein radius rE). Depending of the time delays
between the propagation eigenstates the signal detected could be scrambled or echoed. If the GW travels closer than the Einstein radius,
multiple images could be formed as indicated by the gray solid trajectories.
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scrambling the waveform. We investigate these
phenomena in Sec. IV, where we also discuss the ob-
servational prospects. Particularly interesting events
for these tests correspond to identified strongly
lensed multiple images and binary black holes
merging close to a supermassive black hole.

(3) An example, screening in Horndeski: a natural arena
for these lensing modifications are gravity theories
with screened environments. We obtain the propa-
gation eigenstates of Horndeski gravity over general
space-times in Sec. V.We then study the lensing time
delays induced by Vainshtein screening in Sec. VI.

(4) Detection prospects: these novel lensing effects
could be critical to test gravity theories beyond
GR. For our simple quartic Horndeski example
theory we already find large sectors of the parameter
that could be constrained beyond GW170817. Dedi-
cated analyses could be applied to past and future
LIGO-Virgo data. These birefringence tests do not
require electromagnetic counterparts.

A schematic diagram of the effects of lensing beyond GR
is presented in Fig. 1. A GW traveling near the lens splits
in the different propagation eigenstates. If the modified
gravity theory and background configuration around the
lens is such that the eigenstates have different speeds, the
overall GW signal could split into subpackets after crossing
the lens potential leading to echoes in the detector. If the
time delay between the eigenstates is shorter than the
duration of the signal, there will be interference effects
producing a scrambling of the detected signal.

II. THE PROBLEM: A GENERAL THEORY FOR
GRAVITATIONAL RADIATION

For any given gravity theory, the propagation of GWs
can be determined from the equations of motion (EOM) for
the linearized perturbations, which are obtained expanding
around the background metric

gtotμν ¼ gμν þ hμν: ð1Þ

For concreteness, we will focus our discussion to metric
theories of gravity with an additional scalar field, although
our arguments could be easily extended to other types and
number of fields. Expanding similarly the scalar field
around the background solution

ϕtot ¼ ϕþ φ; ð2Þ

the evolution of GWs hμν and the additional gravitational
degree of freedom φ will follow a set of coupled equations

ðDhhÞμναβhαβ þ ðDhφÞμνφ ¼ 0; ð3Þ

ðDφφÞφþ ðDφhÞαβhαβ ¼ 0; ð4Þ

where each of the differential operators depend on back-
ground quantities and in order to distinguish among them
we have introduced a subindex to indicate which pertur-
bations the operator is acting on in the action. Therefore,
the propagation could be modified with respect to GR by (i)
new interaction terms leading to Dhh ≠ DGR, (ii) the
mixing with φ and (iii) the modification of the effective
background in which GWs propagate.
Any of these modifications makes solving the propaga-

tion of GWs significantly more complicated than in GR.
The essence of the problem will be identifying the
propagation eigenstates which diagonalize the EOM.
In general, we will encounter two main obstacles with
respect to the standard approach: fixing the gauge
(Sec. II A) and identifying the radiative degrees of freedom
(DOF) (Sec. II B). We will also introduce the short-wave
expansion (Sec. II C).

A. Gauge fixing

The richer structure of the propagation equations beyond
GR affects the gauge fixing procedure. In synthesis, one
can always fix the transverse gauge

∇μhμν ¼ 0; ð5Þ
but not simultaneously set the traceless condition

h ¼ gμνhμν ¼ 0: ð6Þ
Imposing the traceless condition throughout relies on h
obeying the same equation as the residual gauge, which is
not true in general beyond GR.
A gauge transformation is a diffeomorphism xμ→xμþξμ

that preserves the form of the background metric gμν. It acts
on the metric perturbation as

hμν → hμν þ 2∇ðμξνÞ; ð7Þ
where derivatives and contractions involve the background
metric gμν. We will start with the transverse condition (5),
defined relative to gμν.

1 The transverse condition transforms as

δð∇μhμνÞ ¼ □ξν þ Rν
μξμ; ð8Þ

where the Ricci tensor of the background metric stems from a
rearrangement of covariant derivatives. The transverse con-
dition is imposed by ξμðxÞ satisfying

□ξν þ Rν
μξμ ¼ −∇μhμν: ð9Þ

The above choice does not completely fix the gauge, as any
additional transformation xμ → xμ þ ζμðxÞ will preserve the
transverse condition if

1We will discuss the generalization to a transverse condition
with respect to a different metric in Appendix A.
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□ζν þ Rν
μζμ ¼ 0: ð10Þ

This equation fixes the time evolution of the residual gauge.
Let us now investigate whether we can eliminate the

trace of the metric h using the residual gauge. Using the
trace of Eq. (7), eliminating the trace requires

∇μζ
μ ¼ 1

2
h: ð11Þ

Although at some initial time we can always fix the
amplitude of ζμ to satisfy this condition, Eq. (11) will
only be preserved if the trace has the same causal structure
that ζμ. This problem occurs in GR in the presence of
sources (Rμν ≠ 0) and the trace cannot be eliminated
globally. However, the difference beyond GR is that one
cannot even fix the trace locally, because h will be subject
to a different differential operator. A similar conclusion was
obtained in [21] in the context of fðRÞ gravity.

B. Identifying the radiative degrees of freedom

The presence of additional fields complicates the iden-
tification of the propagating degrees of freedom (d.o.f.). On
the one hand, the background field mixes the metric
perturbations in new ways. In the case of a scalar field
this is achieved with their derivatives, for example
∇μϕ∇νϕ · hμν or ∇μ∇νϕ · hμν. On the other hand, the extra
perturbations have their evolution coupled with hμν. This
means that the decomposition in radiative and nonradiative
d.o.f. will be background dependent and in general not
possible in a covariant language. Moreover, the new
interaction terms could source the nonradiative modes even
in vacuum. Thus, we have to keep track of all the con-
straints and propagation equations.
In a local region of space-time, we are in the limit of

linearized gravity and can decompose the 10 metric
perturbations around flat space as2

ds2 ¼ −ð1þ 2ΦÞdt2 þ wiðdtdxi þ dxidtÞ
þ ðð1 − 2ΨÞδij þ 2sijÞdxidxj; ð12Þ

where Φ is a scalar (1d.o.f.), wi is a vector (3 d.o.f.), sij is a
traceless tensor (5 d.o.f.) and Ψ is a scalar (1 d.o.f.). As
discussed before, some of these perturbations are non-
physical and can be removed fixing the gauge. Under a
gauge transformation, the above perturbations change as

Φ → Φþ ∂0ξ
0; ð13Þ

wi → wi þ ∂0ξi − ∂iξ
0; ð14Þ

Ψ → Ψ −
1

3
∂iξ

i; ð15Þ

sij → sij þ ∂ðiξjÞ −
1

3
∂kξ

kδij: ð16Þ

We can always set the spatial transverse gauge ∂isij ¼ 0 as

∇2ξj þ
1

3
∂j∂iξ

i ¼ −2∂isij: ð17Þ

We can also use ξ0 to set Φ ¼ 0 or the vector components
to be transverse ∂iwi ¼ 0. These choices do not exploit
the residual gauge freedom, but will be enough for our
purposes.
In the spatial transverse gauge sij contains the two

transverse-traceless polarizations hþ and h×. In this lan-
guage, the fact that the background scalar mixes the tensor
modes translates into Φ, Ψ and wi not being set to zero by
the constraint equations. In general, the nonradiative d.o.f.
will be sourced by both sij and φ, which themselves mix
during the propagation.

C. Short-wave approximation

As a working hypothesis we will consider that the
wavelength of the GWs is small compared to the typical
spatial variation of the background fields. That is, we will
make a short-wave orWKB approximation [22], expanding
the metric perturbation as

hμν ¼ ðAð0Þ
μν þ ϵAð1Þ

μν þOðϵ2ÞÞeiθϵ; ð18Þ

and the scalar wave

φ ¼ ðAð0Þ
s þ ϵAð1Þ

s þOðϵ2ÞÞeiθϵ; ð19Þ

where we have introduced a set of amplitudesAðnÞ, a phase
θ and a small dimensionless parameter ϵ.3

The short-wave expansion leads naturally to the wave
vector definition

kμ ¼
∂θ
∂xμ ; ð20Þ

from the gradient of the phase. The leading order observ-
ables will be the phase evolution and propagation eigen-
states, which are determined by the second derivative
operators. In other words, we will be solving the mixing
in the kinetic terms. Next to leading order contributions will
introduce corrections to the amplitude and further mixings.
We leave their analysis for future work.

2This procedure can also be applied around a curved back-
ground provided that g0i ≪ g00, gij.

3ϵ is used for book keeping only and can be set to one when the
different orders in the calculation have been collected.
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At leading order in derivatives, solving the propagation
entails diagonalizing an 11 × 11 matrix

DabVb ¼ 0; ð21Þ

whereDab is a matrix of second order differential operators
and Vb is a vector containing the 10 metric components hμν
plus the scalar degrees of freedom φ. Fortunately, as we
discussed in Sec. II B, locally we can reduce this to a 3 × 3
problem. We will generically refer to the propagation
eigenstates as HJ with J ¼ 1, 2, 3. Moreover, we define
M̂, the mixing matrix changing from the basis of inter-
action eigenstates ðh×; hþ;φÞ to the basis of propagation
eigenstates ðH1; H2; H3Þ:

0
B@

H1

H2

H3

1
CA ¼ M̂

0
B@

hþ
h×
φ

1
CA: ð22Þ

In addition, we will focus in the regime where the
stationary phase approximation holds, that is, when
the time delay between the lensed images is larger than
the duration of the signal. A hard limit on the stationary
phase approximation is the onset of diffraction and wave
effects [23], which occurs when the multiple images
interfere or the wavelength of the GW λgw is of the order
of the Schwarzschild radius of the lens rs ¼ 2GML=c2. For
a compact binary this can be translated into

ML

M⊙
≲ 105

�
fgw
Hz

�
−1
; ð23Þ

where fgw is the frequency of the GW. In the band of
ground-based detectors, wave optics is only relevant
for lenses ML ≲ 100–1000 M⊙. At lower frequencies
(e.g., LISA and other space-borne GW detectors) diffrac-
tion effects are produced by heavier lenses.

III. GW LENSING BEYOND GENERAL
RELATIVITY

From the previous section we learned that over general
backgrounds GW degrees of freedom mix during the
propagation. Therefore, the first step to study lensing
beyond GR is to identify the propagation eigenstates. In
Sec. III A we will use an example theory to identify
propagation eigenstates as a combination of different
polarizations, travelling at different speeds. This speed
difference leads to birefringence (polarization-dependent
deflection and time delays), which are discussed in
Sec. III B. The observational consequences will be dis-
cussed later, in Sec. IV.

A. Propagation eigenstates

In order to build intuition about kinetic mixing, let us
consider a particular example. We will keep the discussion
general for the moment and later show how this example
materializes in a concrete class of scalar-tensor theories (see
Sec. V). Let us further assume that we have already solved
the constraint equations and we are left with hþ, h× and φ.
At leading order, the equations for the propagating modes
can then be written schematically as4

0
B@

Ghh 0 Gþs

0 Ghh G×s

Gþs G×s Gss

1
CA
0
B@

hþ
h×
φ

1
CA≡ D̂

0
B@

hþ
h×
φ

1
CA ¼ 0; ð24Þ

where the coefficients of the kinetic matrix D̂ can be read
off by, in general, comparing with the covariant equations.
In Fourier space and normalizing the fields canonically, we
have

Ghh ¼ ω2 − c2ijk
ikj; Gss ¼ ω2 − cs2ij k

ikj; ð25Þ

Gþs ¼ k2Mϕ cosð2ϕÞ; G×s ¼ k2Mϕ sinð2ϕÞ; ð26Þ

where k2 ¼ ω2 − c2mk⃗
2 (the factor k2 indicates the mixing

vanishes, on shell, for modes propagating at the speed of
light) and Mϕ controls the mixing between the tensor and
scalar modes. For solutions to exist the determinant of the
kinetic matrix detðD̂Þ ¼ GhhðGhhGss −M2

φk2Þ needs to be
nonzero.
The propagation eigenfrequencies of the system are

given by the characteristic equation detðD̂ − λi1Þ ¼ 0
and choosing ω so that λiðωiÞ ¼ 0, or equivalently

GhhðGhhGss −M2
ϕk

4Þ ¼ 0: ð27Þ

In the absence of mixing (Mϕ ¼ 0), the propagation of each
mode is determined by the standard dispersion relations
(25), which allows a nonluminal speed for scalars and
tensors.
The propagation eigenmodes can be obtained by solving

ðD̂ − λ1Þv⃗i ¼ D̂ðωiÞv⃗i ¼ 0 ð28Þ

(the second equality enforces the on-shell relation
λiðωiÞ ¼ 0). In other words, the propagation eigenstates
can be defined through the mixing matrix M̂ that relates
them to the interaction eigenstates,

4This is not the most general situation since there could also be
an induced mixing between hþ and h× (we will discuss some
examples in Sec. V B). However this example contains the
relevant phenomenology while allowing for analytic diagonal-
ization.
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0
B@

H1

H2

H3

1
CA ¼

0
B@

v1þ v1× v1φ
v2þ v2× v2φ
v3þ v3× v3φ

1
CA
0
B@

hþ
h×
φ

1
CA; ð29Þ

where the rows are precisely the eigenvectors v⃗i. Note that
because the equations of motion (24) define a symmetric
matrix, the matrix of eigenvectors is orthogonal and we can
simply invert this mapping by h⃗ ¼ M̂TH⃗. It is useful to
define the phase speeds as

c2h ¼
1

k⃗2
c2ijk

ikk; c2s ¼
1

k⃗2
cs2ij k

ikk; ð30Þ

where the directional dependence on k̂ has been omitted.
We will study the case in which the GW speed is not
modified before presenting the general calculation.

1. Equal speed case ch = cm
In the case in which the GW speed ch equals the mixing

speed cm the eigenvalue equation simplifies considerably:

ðω2 − c2mk⃗
2Þ2ðð1 −M2

ϕÞω2 − k⃗2ðc2s − c2mM2
ϕÞÞ ¼ 0; ð31Þ

One can then check that the eigenmodes propagating with
speed c correspond to the two metric polarizations.
The third eigenmode is a combination of the scalar and

metric perturbation

v⃗3 ¼ ð−Mϕ cosð2ϕÞ;−Mϕ sinð2ϕÞ; 1Þ → ð0; 0; 1Þ; ð32Þ

propagating with speed

c23 ¼
c2s − c2mM2

ϕ

1 −M2
ϕ

→ c2s ; ð33Þ

where the arrow represents the limit of small mixing
M2

ϕ=ðc2h − c2sÞ ≪ 1. Note that the mixing can turn the
scalar speed imaginary, triggering a gradient instability.
Similarly when cs ¼ cm the diagonalization simplifies.

In this case, we obtain c1 ¼ ch, c3 ¼ cm and

c2 ¼
c2mM2

ϕ − c2h
M2

ϕ − 1
: ð34Þ

The second eigenmode is then

v⃗2 ¼ ðcosð2ϕÞ; sinð2ϕÞ;−MϕÞ: ð35Þ

Thus, Mϕ controls the amplitude of the induced scalar
perturbation.

2. General case ch ≠ cm
The situation is more involved in the general case when

the tensor and mixing speed are not the same. The
characteristic equation is

ðω2 − c2hk⃗
2Þððω2 − c2hk⃗

2Þðω2 − c2s k⃗
2Þ

−M2
ϕðω2 − c2mk⃗

2Þ2Þ ¼ 0 ð36Þ

(if either cs, ch are equal to cm then one of the terms
factorizes and we are back to the previous case). The first
parenthesis indicates that one eigenstate will propagate with
speed c1 ¼ ch. The two remaining modes are mixed, and
their speeds, c2, c3 are determined by equating the second
parenthesis to zero. It is useful to define the sum and
difference of the square of the mixed modes velocities

Σ≡ c22 þ c23 ¼
c2h þ c2s − 2c2mM2

ϕ

1 −M2
ϕ

; ð37Þ

Δ≡ c22 − c23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔc2hsÞ2 þ 4M2

ϕΔc2hmΔc2sm
q

1 −M2
ϕ

; ð38Þ

where we define the difference in the speeds Δc2ij ¼ c2i −
c2j and one should recall that ci ¼ ωi=jk⃗j. Then the
eigenstates and their velocities are given by
(1) Pure metric polarization:

v⃗1 ¼

0
B@

− sinð2ϕÞ
cosð2ϕÞ

0

1
CA; c21 ¼ c2h: ð39Þ

v⃗1 is the combination of hþ, h× orthogonal to the
scalar field shear and its propagation speed corre-
sponds to the tensor speed without mixing.

(2) Mostly metric polarization:

v⃗2 ¼

0
B@

cosð2ϕÞ
sinð2ϕÞ

Mϕ
2c2h−Δ−Σ

ΣþM2
ϕΔ−c

2
h−c

2
s

1
CA; c22 ¼

1

2
ðΣþ ΔÞ:

ð40Þ

v⃗2 is thus a combination of tensorial and scalar
polarizations with a propagation speed different
from c2h. In the limit of small mixing M2

ϕ ≪ 1 one
obtains

v⃗2 →

0
B@

cosð2ϕÞ
sinð2ϕÞ
Mϕ

c2−c2h
c2h−c

2
s

1
CAþ � � � ; ð41Þ
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c22 → c2h þM2
ϕ

ðΔc2hmÞ2
Δc2hs

þ � � � ; ð42Þ

where it is then clear that v⃗2 reduces to the
combination of hþ, h× orthogonal to v⃗1 when
Mϕ=Δc2hs → 0.

(3) Mostly scalar polarization:

v⃗3 ¼

0
BB@

Mϕ cosð2ϕÞ
Mϕ sinð2ϕÞ

−M2
ϕ

2c2hþΔ−Σ
c2hþc2sþM2

ϕΔ−Σ

1
CCA; c23 ¼

1

2
ðΣ − ΔÞ:

ð43Þ

v⃗3 is also a combination of tensorial and scalar
polarizations with a propagation speed different
from c2s . When the mixing is small one finds

v⃗3 →

0
B@

0

0
c2s−c2h
c2−c2s

1
CAþ � � � ; ð44Þ

c23 → c2s −M2
ϕ

ðΔc2smÞ2
Δc2hs

þ � � � : ð45Þ

v⃗3 it reduces to the scalar polarization when
Mϕ=Δc2hs → 0. One should note that in this defi-
nition it has been assumed c2h > c2s , otherwise v⃗2, v⃗3
are swapped.

Two quantities will be specially relevant in the following
discussion: Δc210 ≡ c21 − c2, the speed difference between
the pure-metric eigenstates and electromagnetic signals,
and Δc221 ≡ c22 − c21, the difference between the mostly
metric and pure-metric eigenstates. In the limit of small
mixing the second one can be expressed as

Δc221 ¼ M2
ϕ

ðΔc2hmÞ2
Δc2hs

þOðM3
ϕÞ: ð46Þ

A difference in the propagation speed between the first two
propagation eigenstates leads to a polarization dependent
propagation in the interaction basis. In other words,
there could be birefringence in the detected GW signals.
Therefore, we will generically refer to differences in the
propagation with respect to light as multimessenger, while
the differences among propagation eigenstates will be
referred as birefringent.

B. Birefringence, GW deflection and time delays

There are four signals whose propagation can be studied
at leading order in GW lensing beyond GR: electromag-
netic radiation (or standard model particles) traveling at

speed c0 ≡ c and three propagation eigenstates traveling at
speeds c1, c2, c3, which depend on the interaction basis
speeds ch, cs, cm and the mixing Mϕ. A gravitational lens
will imprint a deflection and time delay, which might differ
between each signal. In addition lensing will (de)magnify
the images and introduce a characteristic phase shift for
images that cross caustics [24,25]. Here we will discuss
deflection angles briefly, before focusing on the implica-
tions of time delays. In the following we will assume
sources and lenses in the geometric optics limit, where the
wavelength of the GW is much smaller than the
Schwarzschild radius of the source λgw ≪ rs ¼ 2GML=c2.
One should note that in general there will be two types of

effects in modified gravity: an anomalous speed effect due
to the modified effective metrics in which each eigenstate
propagates and a universal effect due to the modified
Newtonian potentials stemming fromΦ,Ψ, whose relation-
ship with the matter distribution might differ via modified
Poisson equations. The anomalous speed effect will affect
the deflection angle and time delays of each propagation
eigenstate differently (e.g., birefringence). The universal
effect is the same for all polarizations and ultrarelativistic
matter signal due to the equivalence principle. Traditional
lensing analyses in modified gravity have focused on the
universal effect, searching for deviations in the gravita-
tional potentials Φ ≠ Ψ (see e.g., [26]). Here we focus on
the novel effects due to the anomalous speed of the
propagation eigenstates.

1. Deflection angle

Let us consider the deflection of a ray/signal propagating
in the u direction. The eikonal equation for the phase of the
propagation eigenmode I, cf. Ref. [24][Eq. 3.15], reads

_kα ¼ −
1

2
ð∂αg

μν
I Þkμkν ¼ −

1

2

∂c2I ðx⃗; k̂Þ
∂xα jk⃗j2; ð47Þ

where _kα is a derivative with respect to the affine para-
meter and the second equality assumes a static metric
and canonical normalization [i.e., gμνI kμkν ¼ −ω2 þ
c2I ðx⃗; k̂Þjk⃗j2 and using the fact that k, x are independent
variables].
Expanding on small deviations around the unperturbed

trajectory kα ¼ kð0Þα þ kð1Þα þ � � � the (small) deflection
angle is

⃗α̂I ≈
k⃗ð1Þ

jk⃗ð0Þj
≈ −

1

2

Z
du∇⃗⊥c2I ðx⃗; k̂ÞjrðuÞ;û; ð48Þ

where the integral is obtained in the Born approximation
by evaluating Eq. (47) on the unperturbed trajectory
xα ≈ xαð0Þ and specializing to a spherical lens. We have

defined the propagation direction k̂ ∝ û, the radial distance
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r2ðuÞ ¼ u2 þ b2 and the gradient perpendicular to the

propagation direction ∇⃗⊥ (note that we can always define
k⃗ð0Þ · k⃗ð1Þ ¼ 0). The geometry of the problem is summa-
rized in Fig. 2.
Equation (48) can be used to compute the deflection

angle for light and ultrarelativistic particles with minimal
coupling to the metric. In that case, the effective velocity
induced by the perturbed potential Φ and Ψ (using the
previously mention canonical normalization)

c20;effðxÞ
c2

¼ 1 − 2ΨðxÞ
1þ 2ΦðxÞ ; ð49Þ

leads to the standard expression in terms of the metric
potential

⃗α̂0 ≈
Z

∇⃗⊥ðΦþΨÞdu: ð50Þ

In the case of GR sourced by nonrelativistic matter Φ ¼ Ψ
and one recovers the standard result ⃗α̂GR ≈ 2

R ∇⃗⊥Φdu. In
theories without GW birefringence all eigenstates are
deflected by α0.
Birefringence will cause the deflection angle between

two eigenstates I, J to differ by

Δα̂IJ ≈ −
1

2

Z
du∇⊥Δc2IJðx⃗; k̂ÞjrðuÞ;û; ð51Þ

and vanishes in the limit of equal speed as expected.
Typical GR deflection angles are small, on the scale of
θE ∼ arcsec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=1012 M⊙

p
for strongly lensed cosmologi-

cal sources. These deflections are hard to resolve even for
the most precise optical telescopes. GW detectors have
rather low angular resolution that is many orders of
magnitude lower than what it would be required to detect
a different incoming direction for different polarizations
(although there are ambitious projects for high resolution

GW astronomy in the next decades [27]). On the other
hand, GW detectors have excellent time resolution, making
time delays between gravitational polarizations a much
more robust observable.

2. Time delays

There are three independent time delays that a given lens
can imprint on the observables, Δt01, Δt12, Δt23. Each time
delay will be the sum of a Shapiro term (difference in
speeds locally) and a geometric contribution (difference in
travel distance):

ΔtIJ ≡
Z

du

�
1

cI
−

1

cJ

�
þ ΔtgeoIJ ; ð52Þ

where we used the Born approximation discussed above
(recall that the propagation speed will in general depend on
the position as well as the propagation direction of the
signal). Let us now discuss how the deflection angle (51)
leads to the geometric time delay.
Assuming a single lens and spherical symmetry, each

propagation eigenstate obeys its own lens equation

β ¼ θI − αI; ð53Þ

where β is the angular position of the source (equal for all
polarizations) and θI are the apparent position of the source
for each polarization I (source and lens plane, respectively),
cf. Fig. 3. We have defined also αI ¼ α̂IDLS=DS. Here DL,
DS, DLS are, respectively, the angular diameter distances to
the lens, source and between the lens and the source. In the
case of multiple lenses one should substitute the source
with the previous lens. The geometric time delay due to the
different angles (assuming cI ≈ c over the trajectory)
between two propagation eigenstates can be computed
following the standard approach and a bit of trigonometry
(see e.g., Ref. [24][Sec. IV 3]). We obtain

FIG. 2. Schematic view of the gravitational wave propagation. The undeflected GW trajectory corresponds to the solid black line for
an impact parameter b, as plotted on the left. The transverse view is presented on the right together with a representation of the effect of a
tensor mode crossing a circle of test particles. At any given point the GW is located at a radius r and angular positions θ and ϕ.
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ΔtgeoIJ ¼ ð1þ zLÞ
2c

DLDLS

DS
ðj ⃗α̂Ij2 − j ⃗α̂Jj2Þ; ð54Þ

where zL is the redshift of the lens. The order of magni-
tude of the delay will be determined by the dilated
Schwarzschild diameter crossing time

tM ¼ 4GMLð1þ zLÞ=c3: ð55Þ
As a rule of thumb, one can use that tM≃10ðMLz=1M⊙Þμs,
i.e., the delay is ∼months, days and minutes for lenses with
MLz ¼ 1012 M⊙, 1010 M⊙, 107 M⊙, respectively. In these
units the geometrical time delay can be written as

ΔtgeoIJ ¼ tM
2
ðj ⃗α̃Ij2 − j ⃗α̃Jj2Þ; ð56Þ

where the angles ⃗α̃I ¼ α⃗I=θE are now normalized in units
of the Einstein ring of a point lens

θE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GM
c2

DLS

DLDS

s
: ð57Þ

Assuming that the difference between the deflection
angles of the different eigenstates ΔαIJ is small compared
to the light deflection angle α0, Eq. (50), ΔαIJ ≪ α0, we
find

ΔtgeoIJ ≈ 2Δtgeo0

Δα̂IJ
α0

; ð58Þ

where Δtgeo0 is the geometrical time delay induced by the
gravitational potential on a wave propagating at the speed
of light. This quantity depends on the distance to the
source, to the lens and the mass of the lens. For a point lens
it is given by

Δtgeo0 ¼ tM

�
DLDLS

b ·DS

��
rs
b

�
: ð59Þ

From this expression it is explicit that the time delay is
subject to the geometry of the lens source. The time delay
will be maximal when the lens is at intermediate distances
between the source and observer.
The multimessenger and polarization time delays,

Eqs. (52), (54) constitute the most promising observables
of birefringence. Their exact values depend on the effective
background metric for the GWs, through the theory
parameters, lens properties and the configuration of addi-
tional fields around the lens. We will now turn to the
general phenomenological consequences of birefringence
and its observability (Sec. IV). In Sec. VI we will study a
specific example of a theory with Vainshtein screening,
with a detailed modelling of gravitational lenses.

IV. PHENOMENOLOGY AND
OBSERVATIONAL PROSPECTS

Let us now analyze the broad phenomenological con-
sequences of birefringence. We will start in Sec. IVA by
describing the observational regimes for different values
of the time delay, with a discussion of the single and
multilens case. In Sec. IV B we will then discuss special
lensing configurations, focusing on a source near a super-
massive black hole. We will address the interplay between
birefringence and multiple images due to strong lensing in
Sec. IV C. Finally, Sec. IV D addresses the probability of
detecting GW birefringence, along with current and fore-
casted constraints.

A. Observational regimes: scrambling and echoes

There are three important scales when discussing tests of
GW lensing birefringence for a given event and detector
network: the time resolution, the duration of the GW signal
and the timescale of the observing run. Three distinct
observational regimes can be established, depending of
how the time delay between the propagation eigenstates
ΔtIJ relates to these scales.
The sensitivity to ΔtIJ will be determined by modelling

as well as experimental uncertainties. For the delay
between EM and gravitational signals, the error Δt0I is
likely dominated by assumptions about the EM counter-
part. For example, when the gamma ray is emitted after a
binary neutron star merger. In contrast, the GW emission
can be modeled accurately, e.g., using a post-Newtonian
expansion or numerical relativity. Thus, delays between
gravitational polarizations are mostly limited by the time
resolution of the instrument, which will be of order5

FIG. 3. Diagram of the source-lens geometry under consid-
eration. The trajectory of the GW (solid black line) is curved due
to the lens with a deflection angle α̂. The true angular position of
the source is β, while the observer sees the lensed image at αþ β.
DL, DS, DLS are, respectively, the angular diameter distances to
the lens, source and between the lens and the source DS. b is the
closest distance of the GW to the lens.

5One can sharpen this estimate easily using a noise curve with
hi → hiefΔt12 applied to each polarization, see below.
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σtg ∼ f−1peak; ð60Þ

or ∼ms for current ground detectors (LIGO/Virgo). Finally,
we note that the emission of scalar polarizations is sup-
pressed in many theories (due to screening mechanisms),
which might make the scalar (or mostly scalar) polarization
very hard to detect, precluding a measurement of Δt3I . In
the following we will focus mostly on the time delay
between the pure metric and mostly metric polarizations
Δt12.
The duration of the signal Tg reflects how long a detector

is sensitive to a given event. Depending on the mass,
compact binary coalescence observed by ground detectors
can last from less than a second (black hole binaries) to over
a minute (neutron star binaries). Continuous signals such as
rotating neutron stars (ground detectors) or mHz compact
binaries (LISA) can in principle be detected as well. In those
cases Tg is limited by the duration of the observational
campaignTobs. Herewewill assume continuous observation
up to Tobs: a more realistic analysis should account for the
detector’s duty cycle (the fact that detection are regularly
interrupted for several reasons) when Δtij ∈ ðTg; TobsÞ.
The following situations are possible:
(1) Signal scrambling: if σtg ≲ jΔt12j≲ Tg the signal is

observed as a single event and time delay(s) between
different eigenstates distort the waveform.

(2) Signal splitting/GW echoes: if Tg ≲ jΔt12j≲ Tobs
the signal is split and each eigenstate will be
observed as a separate event. The orbital parameters
of different events will be related (e.g., orbital
inclination/orientation), and it may be possible to
associate different echoes from the same under-
lying event.

(3) Single polarized signals: if jΔt12j ≳ Tobs, only one
instance of each event can be observed. This leads to
an excess of edge-on signals, relative to the expect-
ation of random orientations.6

One should note that the first two effects are analogous to
strong lensing where multiple images can be produced and
might interfere if their time delay is of the order of the
signal duration (sometimes called microlensing regime).
However, we stress that these are completely different
effects in origin and are also governed by different physical
quantities (we will comment more on those differences
below). The scrambling and echoes are thus independent of
strong lensing and would apply to each multiple image if
present. Moreover, with a large network of detectors one
could distinguish the different polarizations further distin-
guishing the two effects.

In addition, multiple lenses along the line of sight will
contribute a separate time delay. Misalignment between
lenses causes a difference in propagation eigenstates for
each subsequent lens (e.g., different angle ϕ). In this
situation, each lens causes a separate scrambling or splitting
of the signal. Let us first discuss the single lens case and
then comment on the effect of multiple lenses.

1. Single lens

To better understand the effects of birefringence, let us
consider the effect of a single lens on a head-on GW event,
i.e., L̂ · n̂≡ cos ι ¼ 1 (this will be generalized later). In this
case the ×;þ polarization are emitted with equal ampli-
tude, and one can define the basis so that they are
proportional to metric components of the 1,2 propagation
eigenstates (i.e., rotating the coordinates so the azimuthal
angle is ϕ ¼ 0). In this case the signal after crossing the
region where modify gravity effects are relevant is approx-
imately given by

hij ≈ h×ðtÞe×ij þ hþðt − Δt12Þeþij þ � � � ; ð61Þ

where the ellipsis represent GW shadows, including those
of additional polarizations. This relationship assumes that
the amplitudes are approximately equal in the interaction
and propagation basis, and that the mixing with the scalar
mode is subdominant. While the exact relationship requires
solving the GW propagation at subleading order, ω−1, one
can assume that the corrections are small, given the large
frequency of GWs. This implies that the relative amplitude
is unchanged in the propagation so that hþ ∼ h2 and
h× ∼ h1. We are also not taking into account standard
lensing effects (e.g., magnifications and phase shifts). All
these assumptions could be generalized, but for pedagogi-
cal purposes we restrict the derivation to the simplest
example. One should note too that these assumptions hold
for GWs on FRW, where effects on the amplitude (αM) are
much harder to detect than effects on the phase (αT , m2

g).
The strain on a given detector is then

h ≈A×h× þAþhþ þ � � � ; ð62Þ

whereAI is the detector’s response for a given polarization,
given the source’s position in the sky. Figure 4 shows the
effect of the time delay for a binary black hole signal, both
on each polarization and as seen in one detector. The
scrambling regime jΔt12j < Tg is characterized by a time
modulation of the amplitude, caused by the interference
between the signals, as well as two distinct imprints from
the merger, separated by Δt12. In the splitting regime two
copies of the signal are detected with a delay Δt12 and
amplitudes given by the detector’s response to each
polarization. Multiple detectors provides further means
to characterize the signal via different response functions,
time delays, etc.

6Due to duty cycle/interruptions of the detector, a fraction of
echoes are missed even if Tg ≲ jΔt12j ≲ Tobs, leading to an excess
of edge-on events. Given that source binaries are randomly
inclined, knowing the antenna patter of the detector and having
a large statistical sample may allow us to discriminate this effect.
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For this example we have considered an unlensed,
nonspinning, equal-mass binary. However, some of these
effects could be degenerate with binary parameters in more
general systems. For example spinning, asymmetric bina-
ries are known to introduce modulations in the waveform.
Similarly, strongly lensed multiple GWs produce multiple
images that might have short time delays for certain lenses.
Nonetheless, with a network of detectors one could use the
polarization information to break this degeneracies. For
instance, if one expects the amplitude difference between
the echoes be produced by the projection on the detector’s
antenna pattern of each eigenstate, one could use the
information on the sky localization to constrain this
possibility. If both polarizations can be detected independ-
ently, the degeneracy can be completely broken.

2. Multiple lenses

Multiple lenses can cause further scrambling and split-
ting of a GW source. Considering spherical lenses and
treating their effects as independent, the relationship
between the signal at the source and the detector can be
approximated as

h⃗d ≈
Y
L

½eiωt1M̂−1 expðT̂ ÞM̂�Lh⃗s: ð63Þ

Here h⃗d;s is the vector of amplitudes in Fourier space
in the interaction eigenstates at the detector/source. M̂
is the mixing matrix introduced in (29), which relates
the interaction hI, I ∈ ð×;þ;φÞ and propagation HJ;
J ∈ ð1; 2; 3Þ eigenstates. Here we have also introduced
the delay matrix which encompasses the phase evolution of
the propagation eigenstates

expðT̂ Þ ¼

0
B@

1 0 0

0 e−iωΔt12 0

0 0 e−iωΔt13

1
CA; ð64Þ

(note that an overall factor eiωt1 has been factored out to
express the results in terms of time delays). The subscript L
denotes that the quantities depend on the lens properties
(mass, mass distribution) and its configuration relative to
the line of sight (impact parameter b, azimuthal angle ϕ).
Schematically, Eq. (63) is telling us that if a GW crosses

a region near a lens, the GW propagation will be deter-
mined by the propagation eigenstates, possibly leading to
time delays among them. Therefore, after crossing the first
lens the initial GW wave packet could be split in separate
packets for each HI. Then, if another lens is on the line of
sight, each GW packet will subdivide again since the
eignestates of the second lens will be in general different
from the first one. In principle this process can be iterated
for as many lenses are in the GW trajectory. A possible
observational signature of these multiple splittings would
be a significant reduction in the GW amplitude since for
random orientations of the lenses the projection into the
eigenstates at each lens will reduce the overall amplitude of
the detected signals. Of course, the key question is how
probable is to have this multiple encounters. We touch on
the lens probabilities in Sec. IV D.
Before moving on, we remind the reader that Eq. (63) is

only valid at leading order and does not take into account
the modifications of the amplitudes of the propagation
eigenstates. In general both the mixing matrix and eigen-
frequencies depend on the spatial coordinates. This means
that there would be spatially dependent corrections to the
amplitudes of H⃗. This next to leading order corrections can
be computed solving at higher order in the short-wave

FIG. 4. Signatures of birefringence in the scrambling (jΔt12j < Tg, left) and the splitting (jΔt12j > Tg, right) regimes. The upper
panels show the amplitude of the two gravitational polarizations with Δt12 ¼ −0.05, 0.7s, respectively. The lower panel show the strain
observed on a LIGO-H1 detector withAþ ¼ −0.38,A× ¼ 0.71 (additional detectors in the network will have different responses). The
signal corresponds to two 30 M⊙ black holes, head-on (cos ι ¼ 1) at 500 Mpc.
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expansion. As previously alluded, we leave this analysis for
future work.

B. Source near the lens

A particular interesting source-lens configuration hap-
pens when the GW source is very close to the lens. In that
case, the GW will inevitably travel in a region where the
background fields are relevant and more likely to enhance
birefringence effects. Due to this particular geometry, the
total time delay will be dominated by the Shapiro part,
since the geometrical time delay scales with the source-lens
distance DLS.
A realization of this setup will occur if a binary black

hole (BBH) merge near the disk of an active galactic
nucleus (AGN) (see e.g., [28]). There, compact objects are
expected to accumulate in specific regions of the accretion
disk, the so-called migration traps, at around 20 − 300rs
[29]. A schematic representation of this type of systems is
given in Fig. 5, where the impact parameter of the binary b
is smaller than the typical scale r⋆ where modified gravity
backgrounds become relevant. We remind the reader that
this scale does not have to be related with the scale of strong
lensing.
Recently, a possible EM counterpart to the heaviest BBH

detected so far, GW190521 [30], was announced in [31].
The interpretation of this coincident EM-GWevent was that
the BBH mergered within the disk of an AGN: the large
kick after the merger would have produced the flare. The
mass of the SMBH was estimated to be ∼1–10 × 108 M⊙,

meaning that the binary might have merger at only 0.0002–
0.03 pc of the SMBH. Such short distance to the lens would
make this event a great candidate to test modifications of
gravity. It is to be noted, however, that GW190521 is also
the furthest event so far with the largest localization
volume, making the clear association of a counterpart
more difficult. In any case, if this BBH formation channel
constitutes a significant fraction of the observed events, one
could use this population to very efficiently constrain the
GW lensing effects beyond GR discussed here. Moreover,
LISA could also see the inspiral of ∼5–10 events of this
class during a four-year mission (see e.g., Fig. 2 of [32]), in
which case the dopler modulation and repeated lensing
could confirm the origin [33,34]. A multiband observation
together with an identification of the flare after merger
would make this type of BBH system a truly unique
laboratory of the theory of gravity.
The opposite scenario of a lens near the observer is also

promising to probe birefringence. One possibility is to
correlate the maps of nearby gravitational lenses with sky
localizations of GW events: for instance, events located
behind galactic plane could be used to test theories
predicting a sizeable time delay by Milky Way galaxies.
These are examples of unusual lensing setups leading to
observable consequences in theories with GW birefrin-
gence. In contrast, for standard lensing configurations
observable effects are predominantly caused by intervening
lenses. In the remainder of the section we will focus on
intervening lenses.
An examples of a test of gravity using lensing maps of

known galaxies was used after GW170817 [35]. Alter-
natively, one could also look at the statistical effect of large-
scale inhomogeneities [36].

C. Strong vs weak lensing and multiple images

Lensing effects depend on the source-lens geometry and
can be classified into strong and weak lensing depending
on whether multiple images form or not. These standard
multiple images are in addition to possible echoes/splitting
caused by birefringence. In particular, a point lens is
characterized by an Einstein ring radius

rE ≈ θE ·DL; ð65Þ

where the Einstein angle θE was given in (57). Whenever
the impact parameter of the source is of the order or smaller
than the Einstein radius, b≲ rE, we are in the regime of
strong lensing and multiple images of the same GW could
be produced by the lens. In the case of having different
propagation eigenstates, multiple images of eachHI will be
produced. In the opposite limit b≳ rE we are in the regime
of weak lensing where only one image can be detected.
Weak lensing modify gravity effects could be constrained
cross-correlating with galaxy surveys [37]. Note that the
modify gravity lensing effects are a priori independent of

FIG. 5. Diagram of a binary black hole coalescence near a
supermassive black hole (SMBH). In this situation the Shapiro
time delay is the dominant effect. The binary and the lens are
separated by an impact parameter b and the GW propagates in the
û direction.
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the “standard” lensing regimes. Depending of the theory
there could be large modifications even in weak lensing.
This was schematically depicted in Fig. 1, where the scale
of modify gravity r⋆ does not correspond to rE.
For example, a GW travelling near a point mass lens will

form two images with positive (+) and negative (−) parity
for each propagation eigenstate. For angular positions
β ≲ 1, we can quantify the dimensionless time delay
T� ¼ t�=tM between the two images analytically [38]

T− − Tþ ¼ 1

2
y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

q
þ ln

�
xþ
x−

�
; ð66Þ

where we have defined the source angle in units of the
Einstein radius y ¼ β=θE and the images positions

x� ¼ 1

2

����y�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

q ����: ð67Þ

This tells us that for source angles of the order of the
Einstein radius, y ∼ 1, the delay between the images will be
of the order of the characteristic lensing time scale tM,
which for lenses of ∼1010 M⊙ corresponds to a delay ∼1
day. If the impact parameter is much smaller than rE,
y ≪ 1, the delay simplifies to T− − Tþ ∼ y, which implies
that it will be parametrically smaller than tM. This means
that for certain theories and lens-source geometry it is
possible that there is a degeneracy between the delay of
multiple images and the delay between the echoes of
different eigenstates.
The interplay between strong lensing and the anomalous

speed lensing effects beyond GR will depend on the
relation between the Einstein radius and the typical scale
where modify gravity effect are relevant. For example, for
modified gravity theories with an screening mechanism that
we will study in Sec. VI, the relevant scale to compare
will be the Vainsthein radius rV . In the regime of weak
lensing, when b ≫ θE, only one image is detectable
with a negligible magnification jμIj1=2 ≃ 1. This was our
assumption for Fig. 4, where we computed the echoes and
scrambling assuming only one image.
Strong lensing probabilities have been discussed in the

context of advanced LIGO-Virgo extensively [18–20] with
rates ranging between 1 every 100 or 1000 events depend-
ing on the source population and lens assumptions. For
LISA, it has been shown that a few strongly lensed GW
from SMBH binaries could be observed [39], although
the result is highly dependent on the modeling of the
population of SMBHs.

D. Lensing probabilities

Let us now estimate the probabilities of observing GW
birefringence by randomly distributed lenses. We will
consider two generic dependences with the lens mass,
proportional to (1) the Einstein radius and (2) a physical

radius with a power-law dependence on the lens mass.
We will use these simple models to compare with current
GW data (assuming nondetection) and estimate the sensi-
tivity of future observations.
The probability of observing an event with a given

property X (e.g., a time delay) is [40]

PX ¼ 1 − e−τX ; ð68Þ

where the optical depth is

τX ¼ 1

δΩ

Z
zs

0

dVcnðz0ÞσX: ð69Þ

Here δΩ is an element of solid angle, dV ¼ δΩD2
L

dz0
ð1þz0ÞHðz0Þ

is the physical volume element given a solid angle δΩ,
nðz0Þ is the physical density of lenses and σX is the angular
cross section. We will assume all lenses have equal mass
and dilute as matter, with physical number density

nðz0Þ ¼ ΩL
3H2

0

8πGML
ð1þ z0Þ3: ð70Þ

The lens mass distribution and other properties can be
included straightforwardly in Eq. (69). Note that the

prefactor can be written as 3H2
0

8πGML
¼ ð4π

3
r̄3Þ−1 in terms of

a characteristic scale

r̄≡
�
2GML

H2
0

�
1=3

≈ 1.2 Mpc

�
ML

1012 M⊙

�
1=3

: ð71Þ

Here r̄ is the mean separation between lenses if the
Universe’s critical density was distributed in objects of
mass ML. Incidentally, r̄ coincides with the Vainshtein
radius for the theory studied in Sec. VI for parameters
Λ4 ¼ H0, p4ϕ ¼ 1.
The angular cross section σX represents the area around a

lens for which a propagation effect X is observable, where
we take that

σX ¼ πθ2X; ð72Þ

i.e., effects are detectable for angular deviations ≤ σX away
from a lens. This form assumes spherical symmetry and
that the effects are easier to detect closer to the lens, as it is
expected for example from modify gravity screening
backgrounds. If the effect X becomes undetectable for a
smaller angle θ0 (e.g., transitioning from the scrambling
to the echoes regime) then the cross section would be
σX ¼ πðθ2X − θ20Þ instead. We will analyze two simple cases
for θX.
As a first case, let us assume detectability at a fraction of

the Einstein radius
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θEX ¼ αXθE; ð73Þ

where αX depends on the theory, but not on redshift or lens
mass. The optical depth then reads

τEX ¼ 3

2
ΩLα

2
X

Z
zs

0

dz0
ð1þ z0Þ2
Hðz0Þ=H0

H0DLDLS

DS
; ð74Þ

and is independent of mass, which is a known property of
lensing probabilities for pointlike lenses and sources. Mass
dependence often arises from more detailed modeling, e.g.,
finite source size [41] or extended lenses producing
multiple detectable images [40].
For comparison, let us also consider detectability below a

given impact parameter around the lens

θphX ¼ RX

DL

�
M

1012 M⊙

�
n
; ð75Þ

where n characterizes the mass dependence and RX is
detectable radius for typical galactic lenses, which depends
only on the parameters of the theory. The optical depth is
then

τphX ¼ ΩLh
�

RX

22 kpc

�
2
�
M=M⊙

1012

�
2n−1 Z zs

0

dz0
ð1þ z0Þ2
Hðz0Þ=H0

:

ð76Þ

This dependence is general enough to include scalings like
the Einstein radius [n ¼ 1=2, but without the redshift
dependence, cf. Eq. (74)], the Schwarzschild radius
(n ¼ 1, as in theories with scalar hair) or the Vainshtein
radius (n ¼ 1=3, as in massive gravity or Horndeski

theories cf. Sec. VI). In the rest of this section we will
assume that all the mass is effectively in lenses of 1012 M⊙.
However, note that for n < 1=2 the contribution of lighter
lenses can be significantly enhanced, cf. Vainshtein radius
scaling in Sec. VI, Eq. (152).
The dependence in the source redshift differs between

both cases, as shown in the right panel of Fig. 6 for a
ΛCDM expansion history. The dimensionless integral in
the Einstein scaling case (74) is an order of magnitude
smaller than in the physical scaling (76) for z≳ 1. For a
source at zs ¼ 1, the integral in τEX is ∼0.14, while the
integral in τphX is ∼1.68. The difference at z≳ 1 can be
absorbed into the redefinition of the scale RX, but even in
that case τphX is much larger at low redshift due to the
projection effect, factor 1=DL. The physical scaling optical
depth is favoured also at high redshift z≳ 5, and it might
be probed by LISA massive BH binaries [42].
The cross section models (74), (76) can be used to derive

constraints from existing GW catalogs. The detection
probability distribution is governed by Poisson statistics

P ¼ ðτtotÞk
k!

e−τtot ; ð77Þ

where k is the number of birefringence detections and the
rate (i.e., the mean of the distribution) is given by the total
optical depth

τtot ¼
X
i

τðziÞ; ð78Þ

summed over the i ¼ 1;…; N events in a catalog. The
optical depth of each event is evaluated on the mean
redshift inferred from the luminosity distance for simplicity

FIG. 6. Lensing probabilities assuming detectability at a fraction of the Einstein radius (76) and at fixed physical impact parameter
(74). Left panel: optical depth for a single event as a function of the source redshift, with the (rescaled) event rate shown for comparison
(see text). Fiducial model assumes h ¼ 0.7, ΩL ¼ 0.3, Tobs ¼ 1 y and R0 ¼ 30 yr−1 Gpc−3. Right panel: constraints on birefringence
probabilities, assuming no detection. The stars show the bounds based on GWTC-1, Eq. (79). Diamonds and circles show the exclusion
capacity after one year for advanced LIGO design sensitivity (ALIGO) and Cosmic Explorer (CE), respectively, computed using (80) for
a fiducial binary black-hole population consistent with observations [43] (see details in the text). The horizontal axis indicates the year in
which this sensitivities and constraints are expected to be achieved.
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(uncertainty of the recovered redshift can be included).
Current constraints can be derived assuming nondetection
(k ¼ 0) in the GWTC-1 of LIGO/Virgo O1þ O2 sources
[44]. The total optical depth (78) evaluated on the models
(74), (76) can be translated via Poisson statistics into

αX < 8.5

RX < 53 kpc
ð95%C:L:Þ ð79Þ

forΩL ¼ 0.3, h ¼ 0.7. We note that this limit is subject to a
detailed analysis of the waveforms in GWTC-1, to con-
fidently exclude birefringence effects. As we will see,
future observing runs and next generation detectors can
increase these bounds significantly.
In order to estimate the potential of future GW obser-

vations we consider the predicted total optical depth

τtot ¼
Z

dzdλ⃗τðzÞ dN
dz

; ð80Þ

where the differential event rate is given by

dN
dz

¼ Rðz; λ⃗Þ Tobs

1þ z
dVc

dz
Pdetðz; λ⃗Þ: ð81Þ

Here λ⃗ collectively determines all additional source proper-
ties (besides redshift), Pdet is the detection probability,

Rðz; λ⃗Þ is the event rate (per comoving volume) and dVc
dz ¼

4πDAðzÞ2
ð1þzÞHðzÞ ð1þ zÞ3 is the comoving volume factor (physical

volume times density factor). Equation (78) is recovered
setting dN

dz ¼
P

i δðz − ziÞ.
The predicted total optical depth (80) can be used to

estimate how future surveys can improve existing bounds
(79). We take as a reference model of sources a population
of BBHs consistent with GWTC-1 [43]. Specifically we
take a power-law distribution of primary masses pðm1Þ ∼
m−1.6

1 between 5 and 45 M⊙ with a redshift evolution of the
merger rate following the star formation rate [45][Eq. 15]
normalized to R0 ¼ 30 yr−1 Gpc−3. We set the detection
threshold at a signal-to-noise ratio of 8 for a single detector.
These predictions applied to LIGO O2 sensitivity are in
good agreement with the results from GWTC-1, Eq. (79).
Figure 6 shows the expected bounds on αX, RX after a

year of observation with ALIGO design sensitivity and
Cosmic Explorer (CE) third-generation technology,
together with the current bounds (79). The horizontal axis
indicates the expected year when these projections could be
achieved. In particular, ALIGO design sensitivity is
expected to be achieved during the next observing run
O4. Current constraints can be expected to improve an
order of magnitude by O4, and two orders of magnitude
after one year of Cosmic Explorer and other third gen-
eration ground-based detectors. Note that bounds on the
total cross section are quadratic in αX, RX, so the actual

sensitivity increases by ∼2, 4 orders of magnitude,
respectively.
The framework introduced in this section applies exclu-

sively to a homogeneous and random distribution of lenses.
It is important to note that in certain situations the location
of the lens relative to the source might not be random and
thus these results may vastly underestimate the probabil-
ities. Examples include when the lens is near the observer
(GW events located behind the Galactic Center) or when
sources forms very close to the lens (stellar mass BH
binaries in the vicinity of a massive black hole) as discussed
in Sec. IV B.

V. PROPAGATION EIGENSTATES IN
HORNDESKI THEORIES

As a particular set up, we will concentrate in gravity
theories adding just one extra propagating degree of free-
dom with respect to GR. We will restrict to those scalar-
tensor theories with covariant second order EOM. Viable
extensions are known [46–48] but more complex to analyze
because of higher derivatives, and some classes induce a
rapid decay of GWs into fluctuations of the scalar field
[49,50]. This naturally leads us to Horndeski’s gravity [51],
whose action reads [52]

S½gμν;ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X5
i¼2

Li þ Lm

�
; ð82Þ

with

L2 ¼ G2ðϕ; XÞ; L3 ¼ −G3ðϕ; XÞ□ϕ; ð83Þ

L4 ¼ G4ðϕ; XÞRþ G4;Xðϕ; XÞ½ð□ϕÞ2 − ϕμνϕ
μν�; ð84Þ

L5 ¼ G5Gμνϕ
μν −

1

6
G5;Xðϕ; XÞ½ð□ϕÞ3

− 3ϕμνϕ
μν
□ϕþ 2ϕμ

νϕν
αϕα

μ�: ð85Þ

This theory has four free function Gi of the filed ϕ and
its first derivatives −2X ¼ ϕμϕ

μ. Here and for the rest
of the paper we adopt the following notation for the
covariant derivatives of the scalar field: ϕμ ≡∇μϕ and
ϕμν ≡∇μ∇νϕ.
We will divide the analysis of this large class of theories

in two. First, we will consider the subclass of theories in
which the causal structure of the propagating tensor modes
is determined by the background metric. Thus, in these
luminal theories the phase evolution of GWs is equal to that
of light (Sec. VA). Then, we will consider nonluminal
theories in which the tensor modes have a different causal
structure (Sec. V B).
The causal structure of GWs in Horndeski gravity over

general space-times in the absence of scalar waves has been
studied in [53]. For the subset of luminal theories, the
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propagation without scalar waves was investigated in [54],
while a geometric optics framework including φ was
developed in [55]. The study of GWs, considered as a
background space-time, revealed that scalar perturbations
can become unstable in Horndeski theories [56], a difficulty
that affects even luminal theories such as kinetic gravity
braiding, Eq. (99). In addition, there has been large efforts
to study the GW propagation over cosmological and BH
space-times. We refer the interested reader to the recent
review [1].
Since the GW and scalar wave evolution will in general

depend on the propagation direction for an anisotropic
background, it is useful to decompose the spatial compo-
nents of the background tensors in terms of the directions
parallel and perpendicular to the propagation trajectory of
the GW, defined by the wave vector ki. Specifically, we
decompose the spatial gradient of the scalar background as

ϕi ¼ ϕk
i þ ϕ⊥

i ; ð86Þ

so that in the transverse gauge

ϕi∇i ¼ ϕi
k∇i and ϕihij ¼ ϕi⊥hij: ð87Þ

These identities will be handy in what comes next.

A. Luminal theories

Since the evolution equations are coupled in general
(even at leading order in derivatives), the first step is to
diagonalize them. Depending of the complexity of the
theory, the diagonalization can be done covariantly. Indeed,
we will see in this section that this is the case for those
Horndeski theories with a luminal GW propagation speed.
Before that, it is useful to recall the case of GR, where

one also needs to diagonalize the propagation in order to
obtain a wave equation for each polarization. Although in
GR there is no additional scalar field, we can effectively
treat the trace as an additional degree of freedom. Starting
from Einstein’s equations, one can see that the tensor EOM
of the linear perturbations,

δGμν ¼ δRμν −
1

2
hμνR −

1

2
gμνδR;

¼ −
1

2
□hμν þ∇ðμ∇αhνÞα −

1

2
gμν∇α∇βhαβ

−
1

2
∇μ∇νhþ 1

2
gμν□hþOð∇hÞ ¼ 0; ð88Þ

include a mixing with the trace at leading order in
derivative, where Oð∇hÞ captures terms linear or lower
order in derivatives. The way to diagonalize these equations
is to redefine the tensor perturbation to

h̄μν ≡ hμν −
1

2
gμνh ð89Þ

(which are well known as trace-reversed metric perturba-
tions [22]). In this way, after fixing the transverse gauge on
the new perturbations∇νh̄μν ¼ 0, one recovers the standard
wave equation

δGμν ¼ −
1

2
□h̄μν þ Rμανβh̄αβ ¼ 0: ð90Þ

Note that, at face value, this equation is telling us that the
propagation eigenstates of GR are a combination of the
tensor perturbations and its trace. In vacuum we can always
fix the trace to zero (so that hμν ¼ h̄μν), but in the presence
of matter its value has to be computed.
The fact that in GR only the TT perturbations are

nonzero in vacuum can also be easily derived solving
the constraint equations. In particular, the 00 Einstein
equation tell us that Ψ ¼ 0, the 0j that wi ¼ 0 and the
spatial trace that Φ ¼ 0. We are left then with the ij
equations which lead to only two independent equations for
hþ and h×.
Horndeski theories with a luminal GW speed will share

with GR the structure of the second order differential
operator acting on the tensor perturbations. Such operator
corresponds to

D̄αβ
μν ≡ −

1

2
□δμαδνβ þ∇ðα∇μδνβÞ −

1

2
gαβ∇μ∇ν: ð91Þ

The fact that this operator contains the wave operator plus
longitudinal terms makes the GW-cone and light-cone
equal, and thus cg ¼ c in the absence of φ [53].
In the following we will generalize this procedure to

gravitational theories with luminal GW propagation: gen-
eralized Brans-Dicke, kinetic gravity braiding [57] and the
union of both.

1. Generalized Brans-Dicke

A pedagogical exercise is to consider a generalized
Brans-Dicke type scalar-tensor theory described by an
action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðG4ðϕÞRþ G2ðXÞÞ; ð92Þ

which introduces a direct coupling between the scalar field
and the second derivatives of the metric through G4ðϕÞ. At
leading order in derivatives, the metric EOM for the linear
perturbations are given by

D̄μν
αβh̄αβ þG4ϕðgμν□φ −∇μ∇νφÞ þOð∇h̄;∇φÞ ¼ 0;

ð93Þ

where for convenience we have already introduced the
trace-reversed metric and the differential operator (91), and
we encapsulate all lower/nonderivative terms which are not
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relevant for this calculation in Oð∇h̄;∇φÞ. Thus, there is a
mixing of the perturbations, which also occurs in the scalar
EOM (see Appendix B for more details). We can decouple
both equations by introducing a new tensor perturbation

h̃μν ≡ h̄μν −
G4;ϕ

G4

gμνφ ð94Þ

combining both the trace-reversed and scalar perturbations,
which is a well-known result in the literature (see e.g.,
[58]). After applying the transverse gauge condition on the
new field ∇μh̃μν ¼ 0, the EOM simplify to

−
1

2
G4□h̃μν þOð∇h̃;∇φÞ ¼ 0; ð95Þ

Gαβ
s ∇α∇βφþOð∇h̃;∇φÞ ¼ 0; ð96Þ

where Gαβ
s is the effective metric for the scalar perturbations

Gαβ
s ¼

�
6
G2

4;ϕ

G4

þ 2G2X

�
gαβ − 2G2XXϕ

αϕβ: ð97Þ

Therefore, the propagating eigenstates are a combination of
the original metric and the scalar perturbations. At this
order in derivatives and in the absence of sources, the scalar
waves will only be present if they are initially emitted.
Moreover, because φ multiplies gμν, the scalar perturbation
will generically contribute to the trace of the tensor
perturbations. We can see this explicitly when solving
the constraint equations for the nonradiative d.o.f.,
obtaining

Ψ ¼ −Φ ¼ G4ϕ

2G4

φ; wi ¼ 0: ð98Þ

Thus, in Brans-Dicke-type theories, the scalar perturbation
excites the scalar polarizations of the metric leaving an
additional pattern in the GW detector [59,60].7 Noticeably,
in this theory there is no mixing of the radiative tensorial
DoF hþ;× with the scalar φ (Gþ;×s ¼ 0), so hþ;× become
directly the propagation eigenstates traveling at the speed
of light.

2. Kinetic gravity braiding

Similarly, we can also diagonalize the propagation
equations of kinetic gravity braiding (KGB),

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðG4R − G3ðXÞ□ϕÞ ð99Þ

a cubic Horndeski theory with a direct coupling between
the derivatives of the metric and the scalar field through
G3ðXÞ. Note that for simplicity we have fixed G4 ¼ const,
although one could easily add a scalar field dependence like
in the previous section. Because of this cubic coupling, the
metric EOM display a mixing of the scalar and tensor
perturbations,

D̄μν
αβh̄αβ þG3;Xðϕμϕν□φ − 2ϕαϕðμ∇νÞ∇αφ

þ gμνϕαϕβ∇α∇βφÞ þOð∇h̄;∇φÞ ¼ 0: ð100Þ

At this order of derivatives, we can diagonalize the
equations by changing variables to8

h̃μν ≡ h̄μν −
G3;X

G4

ϕμϕνφ: ð101Þ

As in the case of Brans-Dicke theory, once we apply the
transverse condition to the new tensor perturbation h̃μν, the
EOM reduce schematically to Eqs. (95)–(96) (see details on
the form of the effective metric for the scalar field
perturbations in Appendix B). Accordingly, the main
difference between KGB and Brans-Dicke theories is that
the propagation eigentensor involves the scalar perturbation
via the gradients of its background field. In other words,
depending on the background, the scalar mode could
contribute to other polarizations different from the trace.
We can see this excitation of non-TT d.o.f. directly by

solving the constraint equations. For example, if the scalar
background has only temporal components, ϕμ ¼ ϕ0δ

0
μ, the

nonradiative d.o.f. read

Ψ ¼ Φ ¼ G3Xϕ
2
0

4G4

φ; wi ¼ 0; ð102Þ

and hþ;× propagate independently of φ. On the opposite
regime, if ϕμ ¼ ð0;ϕiÞ, we obtain that

Ψ ¼ G3Xjϕkj2
4G4

φ; ð103Þ

wi⊥ ¼ −i
G3Xϕk
G4

ϕi⊥
k

∇0φ; ð104Þ

Φ ¼ G3Xðjϕj2□þ 3jϕ⊥j2∇0∇0Þ
4G4k2

φ: ð105Þ

Moreover, for the radiative d.o.f., we find that the mixing
with the scalar has the same causal structure that the tensor
modes,

7It is to be noted an analogous sourcing of the gravitational
(nonradiative) potentials occurs over cosmological backgrounds,
see e.g., Ref. [61] [Eqs. 3.17–3.21] in the limit k ≫ H.

8To the best of our knowledge, this metric perturbation
diagionalizing KGB equations is novel in the literature.
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Ghh ¼ □; Gþ;×s ¼ −
G3Xϵ

þ;×
μν ϕμϕν

4G4

□: ð106Þ

We are then in the ch ¼ cm case discussed in Sec. III A 1,
meaning that both hþ;× will be propagating eigenstates
moving at the speed of light. On the other hand, the scalar
eigenstate will be a combination of the original scalar φ and
the tensor modes hþ;×

3. Luminal Horndeski gravity

Altogether, the most general luminal Horndeski theory
would be a combination of the previous cases

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðG4ðϕÞR − G3ðϕ; XÞ□ϕþ G2ðϕ; XÞÞ:

ð107Þ

The dependence in ϕ in G2 and G3 does not affect the
diagonalization of the leading derivative terms in the EOM.
Because we are solving for the linear perturbations, the
EOM can be diagonalized by a linear combination of the
previous field redefinitions, i.e.,

h̃μν ≡ h̄μν −
G4;ϕ

G4

gμνφ −
G3;X

G4

ϕμϕνφ: ð108Þ

This field redefinition is reminiscent of a disformal trans-
formation [46,62–64], e.g., the linearized version of the
manipulations presented in Ref. [65]. We note that this
result agrees with Eq. (40) of [66].

B. Nonluminal theories

As we increase the order of derivatives of the couplings
between the metric and the scalar, we enter on the realm of
nonluminal Horndeski theories: theories in which the
second order differential operator acting on h̄μν no longer
corresponds to the one of GR, D̄μν

αβ, Eq. (91). This induces
a different causal structure in the effective GW metric
compared to the one that EMwaves are sensitive to, leading
to cg ≠ c [53], even in the absence of scalar perturbations
φ. These theories involve higher order Horndeski functions
with derivative dependence G4ðXÞ and G5ðϕ; XÞ.
Moreover, in this class of theories, the same couplings

that produce an anomalous propagation speed induce a
background dependent polarization mixing. Specifically,
this mixing can be seen in the EOM from the contraction of
perturbed Riemann tensors with first ϕμ or second deriv-
atives ϕμν of the scalar field. Therefore, depending on the
scalar field profile the polarizations of the metric may
change as they propagate. In practice, this makes the
analysis of the propagating d.o.f. difficult in a covariant
approach.

1. Quartic theories

A good example representing this phenomenology is a
shift-symmetric quartic Horndeski theory

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðG4ðXÞRþG4;Xðð□ϕÞ2

− ϕμνϕ
μνÞ þ G2ðXÞÞ; ð109Þ

where we have added a generalized kinetic term for the
scalar. The leading derivative EOM for the tensor and scalar
perturbations are then

G4D̄μν
αβh̄αβ þG4;XδRμανβϕ

αϕβ

þ ðG4;XCμναβ þG4;XXEμν
αβÞ∇α∇βφ

þOð∇h̄;∇φÞ ¼ 0; ð110Þ

and

Gαβ
s ∇α∇βφþ 2G4;Xϕ

μνD̄μν
αβh̄αβ

− 2G4;XXϕ
μνδRμανβϕ

αϕβ þOð∇h̄;∇φÞ ¼ 0; ð111Þ

where δRμανβ is a second order differential operator
constructed by a linear combination of the perturbations
of the Riemann tensor, Cμναβ and Eμν

αβ are background
tensors made of second derivatives of the scalar profile and
Gαβ
s is the effective metric for the scalar perturbations which

depends on KX and G4;X (see full definitions in
Appendix B). It is precisely the presence of δRμανβ which
induces the nonluminal propagation. Note also that either
G4;X ≠ 0 or G4;XX ≠ 0 triggers the mixing of the perturba-
tions in both equations.
In the following we will concentrate in the simplest

theory producing this effect, a quartic theory linear in X.9 It
is clear from the Eqs. (110)–(111) that the dimensionless
coupling controlling the mixing is

ϒ ∼
ðlnG4Þ;X̃

Gs
∇∇ðϕ=MPlÞ; ð112Þ

where X̃ ¼ X=M2
Pl and we have introduced Gs, which

quantifies the value of jGαβ
s j, to ensure canonical normali-

zation of the scalar field. In other words, if Gs is large, the
scalar perturbations decouple from the GW evolution.
We now identify the propagation eigenstates of the

quartic theory using two methods: (1) perturbative solution
for small mixing and (2) diagonalization based on a local
3þ 1 splitting.
Perturbative solutions for ϒ ≪ 1.—In order to gain

some intuition, we will consider first situations in which

9Theories with G4 ¼ fðϕÞX are equivalent to quintic theories
with G5ðϕÞ up to a total derivative [67].
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the GW-scalar mixing is small, ϒ ≪ 1, so we can make a
perturbative expansion of the propagation equations. Thus
we expand the full solution as

h̄μν ¼ h̄ð0Þμν þ h̄ð1Þμν þ h̄ð2Þμν þ � � � ; ð113Þ

φ ¼ φð0Þ þ φð1Þ þ φð2Þ þ � � � ; ð114Þ

solving order by order iteratively.
Accordingly, at leading order (LO), we have to solve

simply

G4□h̄ð0Þμν ¼ 0; ð115Þ

Gαβ
s ∇α∇βφ

ð0Þ ¼ 0; ð116Þ

where we have already applied the transverse condition

∇μh̄ð0Þμν ¼ 0. Therefore, at LO, the equations decouple and
we can fix the TT gauge, h̄ð0Þ ¼ 0. As a consequence, if
there is no initial scalar wave φð0ÞðteÞ, it will remain zero

along the propagation. One can also see that while h̄ð0Þμν

propagate at the speed of light, φð0Þ can have a nonluminal
velocity.
At next-to-leading order (NLO), the mixing terms arise

in the equations

G4□h̄ð1Þμν þ G4;Xϕ
αϕβ∇α∇βh̄

ð0Þ
μν − 2G4;XCμναβφ

ð0Þ
αβ ¼ 0;

ð117Þ

Gαβ
s ∇α∇βφ

ð1Þ −G4;Xϕ
μν□h̄ð0Þμν ¼ 0; ð118Þ

where we have set ∇μh̄ð1Þμν ¼ 0. Note that, since h̄ð0Þμν is TT,

G4;Xϕ
αϕβ∇α∇βh̄

ð0Þ
μν is the only nonzero term from

−2G4;XδR
ð0Þ
μανβϕ

αϕβ, where δRð0Þ
μανβ indicates that the per-

turbations of the Riemann tensors are with respect to the

zeroth order tensor perturbation h̄ð0Þμν . Consequently, the
NLO equations tell us that φð1Þ is only sourced if ϕμν

TT ≠ 0.
Moreover, one can also see that, when there is no initial
scalar wave, the second term of the tensor equation (117)
acts to modify the GW propagation speed. This can be

shown explicitly by solving h̄ð1Þμν with its Green function and

noting how the propagator of the total solution h̄NLOμν ¼
h̄ð0Þμν þ h̄ð1Þμν is modified. In the opposite situation, when
φð0ÞðteÞ ≠ 0, the different propagation speed of the scalar
wave introducing a dephasing in the mixing. Note however

that even in the absence of an initial scalar wave, h̄ð1Þμν is not
necessarily TT.
At next order, the equations contain all their possible

terms,

G4□h̄ðnÞμν − 2G4;XδR
ðn−1Þ
μανβ ϕαϕβ − 2G4;XCμναβφ

ðn−1Þ
αβ ¼ 0;

ð119Þ

Gαβ
s ∇α∇βφ

ðnÞ − G4;Xϕ
μν
□h̄ðn−1Þμν ¼ 0; ð120Þ

so they are valid for any n > 1 (again ∇μh̄ðnÞμν ¼ 0).
Local, general solution in the 3þ 1 splitting.—

Although the general solution when the mixing is domi-
nant, ϒ ∼ 1, is not analytically tractable, we can obtain
general solution in a local region of space-time where
linearized gravity applies. This is equivalent to going to
Riemann normal coordinates. We have to solve the
evolution and constraint equations for the 11 d.o.f.
of the problem, sij, φ, Ψ, wi and Φ [see Eq. (12)]. As
before, we will work in the spatially transverse gauge,
∂isij ¼ ∂iwi ¼ 0, which it is always possible to choose.
Moreover, for clarity in the equations, we will restrict
to a static, spatially dependent scalar field background,
ϕμ ¼ ð0;ϕiðxÞÞ. Additional details on the equations for this
derivation are given in Appendix C.
Let us focus for the moment on the case of a quartic

Horndeski theory in the absence of scalar perturbations. In
that case the leading derivative EOM are given by (110).
Thus, essentially, we need to compute the different com-
ponents of δGμν and δRμανβϕ

αϕβ. For reference, one
should remember that in GR there is only δGμν present.
As in GR, the 00 equation,

2G4∇2Ψþ G4Xðϕiϕ
i∇2Ψþ ϕiϕj∂i∂jΨÞ ¼ G4Xϕ

iϕj∇2sij;

ð121Þ

provides a constrain equation forΨ. The difference is thatΨ
is sourced by ϕiϕjsij, even in vacuum.
We can proceed similarly for the other equations. For the

0j equations, we obtain the constraint equation for wj as

∇2wj −
G4X

G4

ð2ϕkϕl∂k∂ ½jwl� − ϕjϕ
k∇2wkÞ

¼ 4∂0∂jΨþ 2
G4X

G4

ðϕjϕ
k∂0∂kΨþ ϕkϕ

k∂0∂jΨ

− 2ϕkϕl∂0∂ ½jsl�kÞ: ð122Þ

In the GR limit we recover the case that wi is sourced by Ψ
and consequently it vanishes in vacuum. Here, the new
features are the couplings to the backgrounds as well as the
dependence on sij.
Next we move to the trace of the ij equations which

yields an equation for the last nonpropagating perturbation
Φ, i.e.,
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2∇2Φþ G4X

G4

ðϕiϕ
i∇2Φþ ϕiϕj∂i∂jΦÞ ¼ 2∇2Ψ − 6∂2

0Ψ

−
G4X

G4

ðϕiϕjð∂0∂iwj − ∂2
0sijÞ þ ϕiϕ

ið4∂2
0Ψ − 2∇2ΨÞÞ:

ð123Þ

In the GR limit Φ is only sourced by Ψ. Therefore, for the
same reason as before, in vacuum both vanish. However,
for quartic Horndeski Φ is sourced by Ψ, wj and sij.
In conclusion, we have solved Ψ, Φ and wj in the

transverse gauge (∂isij ¼ 0 and ∂jwj ¼ 0) in terms of sij,
which are the two transverse-traceless components. We
denominate these nonradiative, nonzero perturbations GW
shadows. We can obtain the equations for sij plugging in
these solutions for the nonpropagating perturbations in the
spatial tensor equations, cf. (C13)–(C14).
In order to take into account the scalar perturbation φ we

have to both incorporate the new terms in the tensor
equations and include the scalar EOM. Because we are
expanding over flat space, the second derivatives of the
scalar background are purely spatial ϕ0μ ¼ 0. We also
make the further assumption that G4XX ¼ G4XXX ¼ 0.
Then, the new contribution to the tensor equations is

G4XAμνφ ¼ G4Xðð□ϕ□ − ϕαβ∇α∇βÞgμν −□ϕ∇μ∇ν

− ϕμν□þ 2ϕðμα∇α∇νÞÞφ: ð124Þ

For the 00 equation, we have

G4XA00φ ¼ −G4Xð□ϕ∇i∇i − ϕij∇i∇jÞφ: ð125Þ

Then, Ψ can be solved in terms of sij and φ. For the 0j
equations we add

G4XA0jφ ¼ G4Xð−□ϕ∇0∇j þ ϕjk∇k∇0Þφ: ð126Þ

Similarly, wj can be solved in terms of sij and φ once Ψ is
substituted. For the ij equations

G4XAijφ ¼ G4Xðð□ϕ□ − ϕkl∇k∇lÞδij −□ϕ∇i∇j

− ϕij□þ 2ϕðik∇k∇jÞÞφ: ð127Þ

This allow us to compute the spatial trace

G4XAijδ
ijφ ¼ G4Xð−2□ϕ∇0∇0 þ□ϕ∇i∇i − ϕkl∇k∇lÞφ:

ð128Þ

From this last equation we can solve Φ in terms of sij and
φ. Finally, we also have the scalar equation

Gαβ
s ∇α∇βφþ 2G4Xϕ

ijδGij ¼ 0: ð129Þ

Once we solve the constraints, we end up with two
independent equations from the ij equations plus the scalar
EOM for three DoF, hþ, h× and φ. Therefore, we have
solved the constraint equations.
For simplicity we present the equations at linear order in

G4X, where they follow the structure of Sec. III A with
coefficients

G4Ĝhh ¼ G4□þ G4Xjϕkj2∇i∇i; ð130Þ

2G4Ĝþs ¼ G4Xðϕijϵ
ij
þÞ□; ð131Þ

2G4Ĝ×s ¼ G4Xðϕijϵ
ij
×Þ□; ð132Þ

4G4Ĝss ¼ Gαβ
s ∇α∇β: ð133Þ

Nonlinear terms modify the mixing coefficients Ĝ×s and
Ĝþs but preserve Ĝhh. In this way we can solve the
propagation diagonalizing the EOM as described in
Sec. III A. In the absence of mixing, the propagation
speeds for the tensor modes is

c2h ¼ 1þG4Xjϕkj2
G4

; ð134Þ

which also coincides with the speed of the tensorial
propagation eigenstate c1 ¼ ch. On the other hand, the
scalar speed without mixing reads

c2s ¼ 1 −
G2XXjϕkj2

G2X
ð135Þ

in the limit where G4XX ¼ G4XXX ¼ 0 (a more general
expression can be derived from the full equations in [65]).
One should note that inhomogeneous GW speed (134)
generalizes the result of [53,68] where φ was set to 0 and a
TT gauge was assumed without solving the constraint
equations. This result agrees with the radial and angular
speed obtained from the calculation of the small-scale
perturbations around a BH in Horndeski gravity [69] and
generalizes that result to arbitrary propagation direction.
Finally, we have to remember that although nonpropa-

gating, Ψ, Φ and wj cannot be set to zero. At leading order
in G4X they read (assuming propagation in z direction)

2G4Ψ ¼ G4Xðϕiϕjsij þ ðϕ⊥ÞiiφÞ; ð136Þ

kG4wx ¼ 2iG4X∇0ðϕxϕzhþ þ ϕyϕzh× þ ϕxzφÞ; ð137Þ

kG4wy ¼ 2iG4X∇0ðϕxϕzh× þ ϕyϕzhþ þ ϕxzφÞ; ð138Þ

2k2G4Φ ¼ G4Xð∇0∇0ð2ϕiϕjsij þ δijðϕij − ϕ⊥
ij=3ÞφÞ

þ k2ϕiϕjsijÞ: ð139Þ
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This suggests that all the tensor polarizations will be
excited and that the fact that there are only 3 d.o.f. can
be seen from the correlations among the different
polarizations. GW detectors can in principle detect these
GW shadows.

2. Quintic theories

Quintic Horndeski theories also feature GW-scalar
mixing at leading order in derivatives that cannot be
diagonalized covariantly. In fact, the interactions have an
increased level of complexity. In addition to the operators
in (110)–(111), there will be, for example, contractions of
the perturbations of the Riemann tensor with second
derivatives of the scalar background ϕμν. Because the
scalar second derivative tensor could have different
projections into the GW polarizations eþμν and e×μν,
propagation effects are subject to polarization depend-
ence. In particular, even in the absence of scalar waves, it
is possible for the GW speed to depend on the polari-
zation in a generic quintic Horndeski model. For in-
stance, operators like

ϕiϕjϕ
kl
□hkl ¼ 2ϕiϕjðϕþ□hþ þ ϕ×□h×Þ ð140Þ

would introduce such a birefrengent effect.
An interesting exception is scalar Gauss-Bonnet gravity

(SGB) [70], where due to the symmetry of the theory the
tensor speed does not depend on the polarization [71]. This
theory is the described by the Lagrangian

L ¼ R
2
−
1

2
∇aϕ∇aϕ − VðϕÞ þ fðϕÞGB; ð141Þ

where GB ¼ R2 − 4RabRab þ RabcdRabcd is the Gauss-
Bonnet invariant. After a bit of calculus, one can show
that in the absence of scalar waves, the leading order
equations for SGB are the same that for a quartic theory if
one replaces

ϕμϕν=M2
Pl → fμν ≡ fϕϕϕμϕν þ fϕϕμν; ð142Þ

M2
Pl
G4X

G4

→ G̃≡ 16

M2
Pl − 16fαβgαβ

: ð143Þ

Then, locally and at leading order, one obtains the pro-
pagation velocity

c2h ¼ 1þ 16
fk
M2

Pl

¼ 1þ 16
ðfϕϕuu þ fϕϕjϕkj2Þ

M2
Pl

; ð144Þ

which is the same for both polarizations. It is to be noted that
here ϕuu corresponds to the projection of the second
derivatives of the scalar field background in the direction
of propagation. Therefore, the novelty in the propagation

speed of GWs in SGB compared to a quartic Horndeski
theory is precisely this dependence in the second derivatives.
We can go one step further and compute the mixing of

the GWs with scalar waves at leading order in derivative in
a vacuum solution (RB ¼ RB

μν ¼ 0). The EOM would look
like

δGμν þ G̃δRμανβfαβ þ 4fϕRB
μανβφ

αβ ¼ 0; ð145Þ

□φþ 2fϕR
μανβ
B δRμανβ ¼ 0; ð146Þ

where δG and δRμανβ are the perturbations of the Einstein
and Riemann tensor respectively defined in Appendix B.
From these equations we can see that the main difference of
the mixing in SGB and quartic Horndeski is that in the
former the mixing is through the curvature background
while in the latter this happens through the scalar field
background. We leave the analysis of the detectability of
the mixing of GWs and scalar waves in SGB for future
work.

VI. PROBING GW PROPAGATION
IN SCREENED REGIONS

In this section wewill present detailed GW lensing predic-
tions for a concrete Horndeski theory featuring Vainshtein
screening. We first introduce the theory Lagrangian and
parameters, as well as some quantities of interest. In
Sec. VI A we present the local solutions of the scalar field
around spherical lenses, including screening phenomena.
Section VI B briefly describes the cosmological behavior
and limits imposed by compatibility with the GW speed
on the cosmological background following GW170817. In
Sec. VI C we present detailed predictions for the multi-
messenger and birefringent time delays for pointlike lenses.
Section VI D explores the emergence of GW shadows for
signals propagating in a screened region. Finally, Sec. VI E
discusses the prospects to further probe Horndeski theories
using GW lensing and birefringence.
To exemplify this modified GW propagation due to

screening, let us come back to a quartic Horndeski theory
(see Sec. V B 1). We will consider a linear coupling to the
curvature of the form

L ¼ Lshift-sym þ p4ϕϕMPlR; ð147Þ

where the shift-symmetric quartic theory Lshift-sym is given
by (109) in which the free functions Gi depend only on
the derivatives of the scalar. This linear coupling can be
thought as the leading order term of an exponential
coupling ep4ϕϕ=MPl , which in the Einstein frame corresponds
to a linear coupling to the trace of the energy-momentum
tensor.
For concreteness, we will consider a polynomial expan-

sion in the Horndeski parameters
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G2 ¼ M2
Pl

�
2p2XX̃ þ p2XX

X̃2

Λ2
2

�
; ð148Þ

G4 ¼
M2

Pl

2

�
1þ 2p4ϕϕ̃þ 2

XN
n¼1

p4Xn

�
−X̃
Λ2
4

�n�
: ð149Þ

Note that we are measuring the field in Planck units
ϕ̃ ¼ ϕ=MPl so that X̃ ¼ X=M2

Pl. Each of these terms have
an associated energy scale Λn which determines the length
scale at which nonlinearities become relevant. We can
define the nonlinear length scale

ðr4Þ3 ¼
rs
2Λ2

4

; ð150Þ

associated to the quartic theory, and

ðr2Þ2 ¼
rs
Λ2

; ð151Þ

associated to the scalar kinetic interaction. Here rs ¼ 2GM
is the Schwarzschild radius.

A. Local background

Screening mechanisms suppress fifth forces around
massive objects, so that GR holds in their vicinity. This
is achieved in different ways depending on the underlying
theory [72], but typically it is caused by a particular
background configuration preventing the propagation of
scalar modes (fifth forces). These backgrounds can be
induced by the local matter density or curvature profile,
depending on the screening mechanism. Screened envi-
ronments are natural setups for GW lensing beyond
GR, since they introduce nontrivial background profiles
around massive objects that could modify the GW
propagation. GW lensing effects beyond GR are thus
expected to be different for different types of screening
mechanisms.
For the quartic theory under consideration, screening is

caused by nonlinear derivative self-interactions of the scalar
field. Screening becomes effective within a scale known as
the Vainshtein radius:

rV ≡ p1=3
4ϕ r4 ¼

�
p4ϕGM

Λ2
4

�
1=3

ð152Þ

(assuming p4Xn ¼ 1 in the last equality). Whenever the
coupling to matter p4ϕ is of order one, the nonlinear scale
(150) corresponds to the Vainshein radius. The linearized
field equation is valid for r ≫ rV : in that unscreened region
the scalar field mediates a force ∼p2

4ϕ times that of gravity.
It will be convenient to measure distances in units of

the nonlinear scale of the quartic theory: r̃ ¼ r=r4. In
this units, following [73], we can obtain the screening

background from the dimensionless quantity xðr̃Þ, whose
algebraic equation for this theory is given by10

ðp2X þ 3p2
4ϕÞx − 6p4Xp4ϕx2 þ ðp4XX þ 2p2

4XÞx3
¼ −p4ϕM̃ðr̃Þ=r̃3; ð153Þ

where M̃ðrÞ accounts for the mass enclosed in a sphere of
radius r, i.e., M̃ðrÞ≡ 4πM−1

R
r
0 ð−Tt

tÞr2dr. To isolate the
dependence on the source mass distribution, we make the
definition

∂ϕ̃
∂r̃ ¼ 1

2
r̃r̃sxðr̃Þ≡ r̃s

∂ϕ̄
∂r̃ : ð154Þ

This is a convenient rewriting of the local scalar field
background because all the dependence in the lens mass
is isolated in the prefactor r̃s, while ∂ϕ̄=∂r̃ is a profile
depending only on the parameters of the theory. For
example, outside of the source but well within the screening
radius, r ≪ rV , the profile becomes constant

∂ϕ̄
∂r̃

����
r≪rV

→ −
1

2

�
p4ϕ

p4XX þ 2p2
4X

�
1=3

ð155Þ

and far from the source we recover the decay with the
inverse square distance

∂ϕ̄
∂r̃

����
r≫rV

→ −
1

2

p4ϕ

p2X þ 3p2
4ϕ

1

r̃2
: ð156Þ

As it is evident from the above equation, p4ϕ indeed
weights the coupling to matter. One should note that by
differentiating (153) along the radial direction one can also
obtain an algebraic equation for ∂2ϕ̄=∂r̃2 as a function of
the theory parameters and ∂ϕ̄=∂r̃. This is useful for
instance to compute the second derivative background
limit within the screening region.
We have seen previously that the coupling of the scalar

perturbation to the tensorial radiative modes is supported
by the second derivatives of the scalar background [recall
Eq. (111)]. For a radial scalar configuration the second
order partial derivatives read

ϕ;ij ¼ ϕ00 xixj
r2

þ ϕ0

r

�
δij −

xixj
r2

�
; ð157Þ

using r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. The projection to spherical

coordinates [x ¼ r sinðθÞ cosðϕÞ, y ¼ r sinðθÞ sinðϕÞ,
z ¼ r cosðθÞ] yields the following projections (see Fig. 2)

10To link with the notation of [73] one can set μ ¼ β ¼ 0,
ξ ¼ p4ϕ, η ¼ 2c̃2, α ¼ −p4X and ν ¼ p4XX, as well as
AðrÞ ¼ M̃ðrÞ=r̃3.
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ϕþ ¼ ϕxx − ϕyy ¼
�
ϕ00 −

ϕ0

r

�
cosð2ϕÞ sinðθÞ2; ð158Þ

ϕ× ¼ 2ϕxy ¼
�
ϕ00 −

ϕ0

r

�
sinð2ϕÞ sinðθÞ2: ð159Þ

Applying this general projection to the quartic theory, we
can then read from the entries of the mixing matrix in
Eqs. (130)–(133) to obtain the scalar-tensor mixing coef-
ficients11

ϒþ ¼ jϒj cosð2ϕÞ sinðθÞ2; ð160Þ

ϒ× ¼ jϒj sinð2ϕÞ sinðθÞ2; ð161Þ

where the modulus reads

jϒj ¼
4
P

N
n¼1 np4Xnðrsr4Þn−1ð

∂ϕ̄
∂r̃Þ

2ðn−1Þð∂2ϕ̄∂r̃2 −
1
r̃
∂ϕ̄
∂r̃Þ

1þ 4p2Xð∂ϕ̄∂r̃Þ
2ðr2r4Þ4

: ð162Þ

This will be the quantity determining how much mixing
between polarizations there is when crossing a screened
region, which is controlled mostly by the ratio rs=r4. Note
that whenever the kinetic screening dominates over the
Vainshtein mechanism, r2 ≫ r4, the tensor-scalar mixingϒ
will be suppressed.
The spatial dependence of the mixing modulus is shown

in the left panel of Fig. 7 for a quartic theory with a standard
scalar kinetic term (p2X ¼ 1 and p2XX ¼ 0). One should
note that the linear theory (p4Xn ¼ 0 for n ≠ 1) represented
in solid lines is independent of the nonlinear scale r4
represented in the color bar. This can be seen directly fixing

N ¼ 1 in the general formula for jϒj given in (162). On the
contrary, for a quadratic in X quartic theory (like covariant
Galileons), the mixing is sensitive to the nonlinear scale
and highly suppressed because if screening is efficient we
are always in the regime rs ≪ r4. Taking into account the
polarization information, in the right panel of Fig. 7 we
present the spatial dependence of theþ polarization mixing
for a GW propagating in the ẑ direction. The mixing is
larger perpendicular to the propagation direction.
Interestingly, the quartic theory linear in X can be

mapped (see e.g., [67]) to an Einstein-Hilbert action plus
a modified gravity term LMG ∼Gμνϕ

μϕν. A theory which
has been studied in [74]. While theories with n > 1
suppress jϒj they produce larger screening regions once
other constraints are imposed, which may overcome the
reduced mixing jϒj. However, including n > 1 requires
additional terms in the equations for GW propagation
[for details see Eq. (B21)], difficulting the analysis. We
will focus on the n ¼ 1 theory for this first study, leaving
the general case for future work.

B. Cosmological background

Before moving towards the GW lensing observables and
their detectability, it is important to consider which region
of the parameter space is still viable given present data. In
particular, the almost simultaneous arrival of GW and EM
radiation from the binary neutron-star merger GW170817
sets the most stringent constraints on the cosmological
solutions of the quartic theory under consideration.
In the theory under consideration (147), the cosmologi-

cal evolution of the scalar field velocity is given approx-
imately by

_ϕþ 2
p2

Λ2
2

_ϕ3 ∼ p4ϕHðaÞ: ð163Þ

FIG. 7. GW mixing amplitude jϒj (left) and plus polarization contribution ϒþ (right) for a GW propagating in û direction in a quartic
Horndeski theory with a standard scalar kinetic term (p2X ¼ 1 and p2XX ¼ 0) and p4ϕ ¼ 10−8 (so that a theory with Λ4 ¼ H0 is
consistent with GW170817, cf. Sec. VI B). For the polarization plot we further fix rs=r4 ¼ 0.1 and p4X ¼ 1. The distances are
normalized with respect to the scale of the quartic theory r4 and the Vainshtein radius rV .

11Note that these mixing coefficients directly connect with the
simplified notation of Eq. (26) if one defines Mϕ ¼ jϒj sin2 θ.
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This relation is exact for an exponential coupling G4 ¼
expðp4ϕϕÞ in a matter-dominated universe (cf. Ref. [75]
[Eq. (42)]), but reduces to the theory at hand when p4ϕ ≪ 1

and the contributions ofG4;X are negligible compared to the
G2 terms. It also provides a good order-of-magnitude
description for the late Universe in the presence of a
cosmological constant. If the canonical kinetic term domi-
nates, the scalar is cosmologically unscreened and its
velocity reads

_ϕ ∼ p4ϕH if ð _ϕ ≪ Λ2=
ffiffiffiffiffi
p2

p Þ; ð164Þ

whereas _ϕ ∼ ðp4ϕHΛ2
2=2p2Þ1=3 if the noncanonical term

dominates ( _ϕ ≫ Λ2=
ffiffiffiffiffi
p2

p
), corresponding to the cosmo-

logically screened regime. In what follows we will assume
the unscreened solution (164).
For a quartic theory (149) the cosmological change in

GW speed at z ∼ 0 reads

αT ¼ 4G4;XX ¼
X
n

4np4Xn

�−p2
4ϕH

2
0

2Λ2
4

�n

; ð165Þ

where the last equality assumes the unscreened cosmo-
logical solution (164). Assuming that only one among the
p4Xn coefficients is nonzero

αT ∼
�
p4ϕH0

Λ4

�
2n
; ð166Þ

where we have set c4Xn ¼ 1, as it is redundant with Λ4 in
this case. Then the GW170817 constraint jαT j≲ 10−15

gives a relation between the two theory parameters. For a
quartic theory linear in X (n ¼ 1), this bound can be
satisfied for sufficiently small matter couplings compared
to the scale of the theory, i.e.,

p4ϕ ≲ 10−8Λ4=H0: ð167Þ

The suppression of modified gravity effects ensures that the
approximations used to estimate the cosmological evolu-
tion (164) remain valid if Λ4 ≳H0. If Λ4 ≲H0, quartic
Horndeski gravity breaks down as an effective field theory
at energy scales comparable to GWs with typical LIGO/
Virgo frequencies [76].
As we will see below, GW lensing and birefringence

effects can extend constraints based on the GW speed over
the cosmological background, Eq. (167). The reason
behind it is that the scalar field gradient sourced by a
massive lens is significantly larger than the cosmological
time variation ϕ0= _ϕ ≫ 1 in a region much larger than the
Vainshtein radius. We will use this fact to approximate
_ϕ ∼ 0 to compute GW propagation, i.e., considering static
lenses hereafter.

C. Time delays

One of the main GW propagation observables is the time
delay between different propagation eigenstates and with
respect to a possible EM counterpart. For that, we need to
compute first the propagation speeds. Assuming that the
GW propagates in the û direction, using Eq. (134), we
obtain the propagation speed of the tensor modes in the
absence of scalar waves

c2h ¼ 1 − 2 cos2 θ
M2

Pl

G4

X
n

np4Xn

�
rs
r4

�
n
�∂ϕ̄
∂r̃

�
2n

; ð168Þ

which tends to the speed of light when rs ≪ r4 and/or
θ → π=2. This velocity also corresponds to the one of the
purely tensorial propagation eigenstates, c1 ¼ ch, when
there is mixing. In the absence of mixing, the scalar speed is
given by Eq. (135) to arrive at

c2s ¼ 1þ 2 cos2 θ
M2

Pl

G2

p2XX

�
r2
r4

��∂ϕ̄
∂r̃

�
2

; ð169Þ

which tends to the speed of light when r2 ≪ r4 or
p2XX → 0.
When there is mixing but ϒ is small, the speeds of the

propagation eigenstates are

c21 ¼ c2h; ð170Þ

c22 ¼ c2h þ jϒj2 sin4 θ ðΔc
2
hÞ2

Δc2hs
þ � � � ; ð171Þ

c23 ¼ c2s − jϒj2 sin4 θ ðΔc
2
sÞ2

Δc2hs
þ � � � ; ð172Þ

where we have defined the difference in the speed with
respect to the speed of light Δc2i ¼ c2i − c2 and among
different eigenstates Δc2IJ ¼ c2I − c2J. The dots refer to
higher order terms in the expansion in jϒj.
We can now compute the associated time delays between

different signals. As discussed in Sec. III B, there will be
two contributions: the Shapiro and the geometrical time
delay. We discuss them separately before commenting on
time delays between multiple images in strong lensing.

1. Shapiro time delay

The Shapiro time delay between the tensorial eigenstate
and an EM counterpart, in the limit of small velocity
difference Δc2h=c2 ≪ 1, is

Δt10 ¼
Z

du

�
1

ch
−
1

c

�
¼

Z
du

�
−
Δc2h
2c3

þ � � �
�
; ð173Þ

where, again, u is the GW propagation direction. On the
other hand, the difference between the two mostly tensorial
polarizations, in the limit of Δc221=c2h ≪ 1, is
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Δt21 ¼
Z

du

�
1

c2
−

1

c1

�
¼

Z
du

�
−
Δc221
2c3h

þ � � �
�
;

¼
Z

du

�
−
jϒj2sin4θðΔc2hÞ2

2Δc2hsc3h
þ � � �

�
: ð174Þ

We see then that for a small mixing jϒj ≪ 1 the time delay
between the mostly tensorial eigenstates will be suppressed
compared to the time delay of the fastest mode and the
speed of light. We can observe this directly in Fig. 8, where
we present the difference in the speed and associated time
delays. Now, because the multimessenger time delay Δt10
scales with the scalar background ∂ϕ̄=∂r̃, which becomes
constant in the inner screened region, the delay saturates at
impact parameters smaller than the Vainshtein radius. We
find this precisely in the blue line of Fig. 9. On the hand, for
the tensorial polarization delays, because the delay is also

proportional to jϒj2 sin4 θ, the delay increases as a function
of the impact parameter. This is shown in the red line. We
then conclude that for impact parameters much smaller than
the screening radius the delay between the tensorial
eigenstates Δt21 becomes more constraining that the multi-
messenger delay Δt10. Nonetheless, such close encounters
are less probable (cf. Sec. IV D).
Going to the particular quartic theory studied in this

section, we can see that the multimessenger time delay
scales as

dth
dz

∼ 2 cos2 θ
X
n

np4Xn

�
rs
r4

�
n
�∂ϕ̄
∂r̃

�
2n

: ð175Þ

Since the scalar field profile decays rapidly outside of the
screened region, determined by rV ∼ p1=3

4ϕ r4, the order of
magnitude of the delay will be given essentially by rV times
the ratios ðrs=r4Þnð∂ϕ̄=∂r̃Þ2n, where we can find the scaling
of the scalar background in (155). For a theory withG4 linear
inX we can compute the order of magnitude of the maximum
time delay

Δthjmax ≲ p4ϕ

p1=3
4X

2GML

c3
;

∼ 1 s

�
1

p4X

�
1=3

�
p4ϕ

10−4

��
ML

1010 M⊙

�
: ð176Þ

The time delay thus increases with the coupling to matter p4ϕ

and the lens mass. We could also integrate analytically for u,
b ≪ rV , since we know the solution of ∂ϕ̄=∂r̃, to obtain

Δthju;b≪rV ≃
�
rs
r4

��
p2
4ϕ

4p4X

�1=3�
u − b · atan

�
u
b

��
; ð177Þ

where the integration is performed from −u to u.
This order of magnitude calculation can be compared

with the explicit calculation that we present in the left panel
of Fig. 10 as a function of the parameter space p4ϕ and Λ4

for a supermassive black hole (modeled as a point lens) of
mass 1010 M⊙. We emphasize that our results can be easily
adjusted to other masses. It is important to note though that
for larger masses (galactic order of magnitude) one would
expect the mass to be distributed in a halo, so that the point
lens approximation is broken. Introducing a realistic mass
distribution would reduce the mass contained in the inner
screened region, reducing the induced time delay. We will
elaborate more on this later in Sec. VI E. Finally, let us
mention that for the multimessenger time-delay Δt10 there
would be an astrophysical uncertainty of order 1–10 sec-
onds. This means that in practice one can only rule out
modify gravity theories with larger delays.
We can also compute explicitly the time delay between

the polarization eigenstates. Starting from (174) and noting
that for our fiducial theory cs ¼ c (so that Δc2hs ¼ Δc2h),
we find

FIG. 9. Shapiro crossing time delay induced by a point mass of
M ¼ 1010 M⊙ in a theory with p2X ¼ −p4X ¼ 1, p2XX ¼ p4XX

and p4ϕ ¼ 10−8Λ=H0 as a function of the impact parameter b in
units of the nonlinear scale of the quartic Horndeski theory r4.

FIG. 8. Difference in the speed between the metric eigenstate
and light (blue) and the two mostly metric eigenstates (red) as a
function of the impact parameter b in units of the scale of the
quartic Horndeski theory r4. The solid and dashed-dotted lines
evaluate the speed at different points of the trajectory u. For this
example we have chosen p4ϕ ¼ 10−8, Λ4 ¼ H0, p4X ¼ −1 and
p2X ¼ 1.
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dt21
dz

∼ jϒj2 sin4 θ dth
dz

: ð178Þ

This means that Δt21 will be suppressed with respect to
Δth. From Fig. 9 we see that Δt21 increases inversely
proportional to the impact parameter b. We can also
compute the time delay analytically close to the lens

Δt21ju;b≪rV ≃
1

4
p3
4X

�
p4ϕ

p4XX þ 2p2
4X

�
4=3 rs

r4
·
atanðz=bÞ
b=ðr4Þ2

;

ð179Þ
which in this case will dominate the overall integral since
the major part of the delay is accumulated close to the lens.
Nonetheless, one should remember that smaller values of b
are less probable to occur. For that reason we fix b ¼ rV to
compute the time delays in the right panel of Fig. 10.
Thanks to the Δt21 ∼ 1=b scaling, this plot can easily be
adapted to other choices of the impact parameter. One
should remember that the detectability of the birefringence
time delay is only limited by the time resolution of GW
detectors that can be considered to be ∼ms.

2. Geometrical time delay

In order to compute the geometrical time delay (54), we
first need to obtain the deflection angle associated to each
propagation eigenstate, which can be obtained from their
propagation speed (48). In particular, the deflection angle
between the tensor propagation eigenmode and the speed of
light is given by

Δα̂10 ¼ −
1

2

Z
du
r4

sin θ
∂Δc210
∂r̃ ;

¼ 4p4X

�
rs
r4

�Z
du
r4

sin θcos2θ
∂ϕ̄
∂r̃

∂2ϕ̄

∂r̃2 ; ð180Þ

where in the second line we have specialized for a quartic
theory linear in X. This corresponds to the blue line in
Fig. 11, where one can see that inside the screened region
the deflection angle difference decreases with the impact
parameter.
We can similarly compute the deflection angle between

the two mostly tensorial propagation eigenstates

Δα̂21 ¼ −
1

2

Z
du
r4

sin θ
∂Δc221
∂r̃ ;

¼ −
1

2

Z
du
r4

sin5θ

�
2jϒj ∂jϒj

∂r̃ Δc210 þ jϒj2 ∂Δc
2
10

∂r̃
�
:

ð181Þ

This corresponds to the red line in Fig. 11. In this case, the
deflection angle is dominated by the behavior close to
the lens. This can be approximated analytical solving the

FIG. 10. Shapiro time delays between the purely tensor eigenstate with speed c1 ¼ ch with respect to the speed of light c, Δt10 (left),
and among the two mostly tensor polarizations Δt21 (right), as a function of the parameter space of the coupling to matter p4ϕ and the
energy scale of the theory Λ4. We plot the time delay accumulated after crossing the screened region of a point lens of 1010 M⊙ with an
impact parameter b ¼ rV. The gray shaded region is the part of the parameter space already ruled out by the cosmological time delay in
confrontation with GW170817.

FIG. 11. Deflection angle induced by a point mass of M ¼
1010 M⊙ in a theory with p2X ¼ −p4X ¼ 1, p2XX ¼ p4XX and
p4ϕ ¼ 10−8Λ4=H0 as a function of the impact parameter b in
units of the scale r4 of the theory.
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integral in the limit u, b ≪ rV . For our fiducial theory we
obtain

Δα̂21 ¼
16 · 22=3

105
p2=3
4ϕ p1=3

4X

�
rs
r4

��
rV
b

�
2

: ð182Þ

From this expression the most important feature is that it
scales with the inverse of the square of the impact
parameter. This growth is faster than the typical 1=b
induced by a gravitational potential, as can be seen
comparing with the black solid line in Fig. 11. One can
see though that for impact parameters of the order of the
Vainshtein radius the difference in the deflection angle is
small compared to the effect of the point mass potential.
Using (54) we can translate the difference in the

deflection angles into the geometrical time delay. As we
have seen in Fig. 11, the difference in the deflection angle
will be much smaller than the deflection angle induced by
the gravitational potential (except very close to the lens
where the difference reduces). Therefore we can use the
approximate expression for the geometrical time delay
given in Eq. (58) that makes use of this hierarchy in the
order of magnitude of the deflection angles.
The mass of the lens and its relative location in the line of

sight determine the relative importance of the Shapiro and
geometric contributions to the total time delay. In Fig. 12
we present the ratio of both time delays as a function of the
lens redshift. The geometrical time delay dominates for
lenses halfway to the source, while Shapiro dominates
when zL → 0, zS. With fixed b ∼ rV , this is driven by the
proportionality with the universal deflection angle α0 ∝
r2E=b in Eq. (58), as r2E ∝ DLDLS is reduced when the lens
is near the source or the observer.
The Shapiro-to-geometric contribution depends differ-

ently on lens mass in multimessenger and birefringent
delays (different line styles, left panel of Fig. 12). The
Shapiro contribution to Δt21 is reduced with increasing

mass, while the opposite is true for Δt10, independently of
the lens redshift. The mass dependence can be understood
from the right panel of Fig. 12, where we present how the
Vainshtein radius compares to the Einstein radius as a
function of the scale of the theory for fixed αT ¼ 10−16. For
Λ4 ¼ H0, as chosen in the left panel, a lens with 1010 M⊙
will have the Vainshtein radius well within the strong
lensing region, while a 105 M⊙ lens will have rV > rE.
Whenever the impact parameter is smaller than rE, the
geometrical time delay will be large. On the other hand, the
multimessenger Shapiro delay scales with the Vainshtein
radius and decreases faster than the geometrical one when
the lens mass is reduced. Finally, the birefringent Shapiro
delay is mostly accumulated near the lens and thus is less
affected by the reduction of the lens mass than the
analogous geometrical delay.

3. Multiple image time delays

As introduced in Sec. IV C, in the regime of strong
lensing there will be multiple images with an associated
delay between them. At the same time, each of this images
will be subject to the effects of Shapiro and geometrical
time delay for the propagation eigenstates. It is therefore
appropriate to ask how this multiple image time delays
compare to the delay between the propagation eigenstates.
For the example screening theory that we are considering

here, we have seen in the right hand plot of Fig. 12 that
indeed the Vainshtein radius falls inside the Einstein radius
for a sector of the parameter space. At small impact
parameters, the time delay between the images scales as
Δt� ∼ tM · b=rE while the Shapiro time delay between the
mostly tensor polarization scales as Δt21 ∼ tM · rV=b.
Therefore, depending on the value of b, the time delay
between the images could be larger than the one between
the eigenstates or vice versa. Note that in terms of statistics
Δt� > Δt21 is much more probable, as it corresponds to
larger impact parameters. Therefore, if a pair of GWs were

FIG. 12. On the left, comparison of the Shapiro and geometrical time delays (evaluated at the Vainshtein radius) as a function of the
lens redshift for a fixed source at zS ¼ 1. On the right, ratio of the Vainshtein and Einstein radius as a function of the scale of the quartic
Horndeski theory. In both panels we consider different point lens masses.
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identified as strongly lensed images of the same event, this
would be a perfect candidate to look for additional lensing
effects due to screening.

D. Polarization mixing and GW shadows

At leading order in the GW propagation, the other main
observable is the appearance of additional polarizations
beyond the transverse-traceless tensorial modes. We have
shown that there are two ways in which extra polarization
can arise: (i) by a direct mixing between the tensor-scalar
perturbations through ϒ and (ii) by background profiles
inducing non-radiative polarizations, what we have called
GW shadows.
For the propagating scalar polarizations, we can quantify

the coupling of the tensor-scalar mixing from the mostly
tensor eigenvector. In particular, the third entry v23 in the
mixing matrix (29) informs us of the amplitude of the scalar
mode that would be generated even if initially there is
no scalar mode. In the top panel of Fig. 13 we plot this
tensor-scalar mixing. For a linear quartic theory with a
standard scalar field kinetic term, the mixing simplifies to

v23 ¼ −jϒj sin2 θ: ð183Þ
We can observe that the amplitude of the scalar perturbation
can only be sizable near the lens.
With respect to the shadows polarizations, we can take

as an example the nonpropagating polarization Ψ. In
particular, we consider a þ polarized GW propagating in
the z direction. Then, the amplitude is given by

Ψ ∼
G4X̃

G4

�∂ϕ̄
∂r̃

�
2

sin2 θhþ; ð184Þ

where the approximate equality accounts for the fact that we
are neglecting the contribution from φ (that as we have just

seen is small if initially φ is not sourced). Because of the
sin2 θ proportionality, the amplitude of Ψ evolves similarly
to v23, as shown in the lower panel of Fig. 13, however the
amplitude is many orders of magnitude smaller. Therefore,
for this class of theories compatible with GW170817
detecting GW shadows seems out of reach.

E. Observational prospects

To conclude this section we will discuss the observa-
tional prospects of detecting these novel lensing effects
beyond GR. The first question would be in which systems
these effects would be relevant. In our calculations we have
done two important assumptions: we have worked at
leading order in geometric optics and modeled the lenses
as point masses. Both effects limit the lenses available to
test quartic Horndeski theories. We will comment on the
implications of these assumptions and then discuss the
potential of GW birefringence to probe our example theory.
Working in the geometric optics regime imposes a lower

limit on the frequency of GWs for which the short-wave
expansion (18), (19) applies. The exact limit depends on the
background solution around the lens and theory-specific
lower-order corrections to the propagation equations. Even
neglecting beyond GR corrections, the frequency range is
restricted by the diffraction limit inGR, belowwhich lensing
magnification becomes very inefficient. The GR diffraction
limit, Eq. (23), corresponding to GW wavelengths larger
than or comparable to the Schwarzschild radius of the lens
and is shown in Fig. 15 for f ∼ Hz and kHz.
The diffraction limit excludes stellar-mass lenses to test

birefringence using a short-wave expansion. This would be
excellent lens candidates, as most stellar objects can be
considered pointlike, i.e., their sizes are much smaller than
their Vainshtein radii, even for theories compatible with
GW170817, cf. Fig. 15. Note that the validity of geometric
optics is a limit on the framework, indicating the need of a
wave-optics description. In particular, it does not mean that
birefringence or time delays cease to exist. If a description
similar to the wave-optics integral is valid at low frequen-
cies (Eq. 3 of [38]), the birefringence time delay should
leave an imprint on the waveforms, even if gravitational
magnification is negligible.
The point-mass assumption is a good description for

impact parameters larger than the lens size. Because
birefringence is suppressed beyond rV , ideal lenses should
be smaller than their own Vainshtein radii. Effects on
general lenses can be computed given their mass distribu-
tion. By Gauss’s theorem, the scalar field profile around a
spherically symmetric lens is sourced by the enclosed mass
at a given radius, i.e., M̃ðrÞ in Eq. (153). We will model
extended sources as truncated singular isothermal spheres
(SIS)

ρSIS ∼ r−2ðr ≤ RSISÞ; ð185Þ

FIG. 13. On the top tensor-scalar mixing v23 as a function of the
propagation direction u normalized by the scale r4. On the bottom
shadow scalar polarization Ψ induced by an incoming hþ
polarized GW in the u direction.
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and ρSIS ¼ 0 for R > RSIS. The truncation at RSIS ensures a
finite total mass, but does not affect the results for low
impact parameter. The SIS profile is widely used as a model
for simple gravitational lenses. Note that the matter density
diverges at the center.12

The reduced enclosed mass at low radii flattens the
derivatives of the scalar field, lowering the time delays in
extended lenses. Figure 14 shows the Shapiro time delays
for two lenses with 1010 M⊙: one with a pointlike dis-
tribution and another one with a SIS profile truncated at
RSIS ≈ 250 kpc. The delay between gravitational polar-
izationsΔt12 is more affected than the multimessenger time
delay Δt01 due to the different dependence on the scalar
field derivatives, including the shear via ϒ. This reduces
both the slope and the amplitude of Δt12.
The maximum time delay in finite lenses occurs at a

parameter impact smaller than the nominal Vainshtein
radius. The reason is that only the total mass with a radius
r contributes to the scalar field profile. This motivates the
definition of an effective Vainshtein radius reffV satisfying

rVðMðreffV ÞÞ ¼ reffV ; ð186Þ

where thedependence on theory parameters has been omitted.
For the truncated SIS, the mass dependenceM ∝ r results in
reffV ¼ r3=2V =R1=2

SIS . For a point lens the effective and nominal
Vainshtein radius are equal since the enclosed mass M is
constant. Note that nonsingular lenses may have no solutions
to Eq. (186), indicating that no screening occurs.

The requirement of lenses being smaller than their
effective Vainshtein radii limits the type of objects (or
portions thereof) that can contribute significant time delays.
Figure 15 shows the sizes and masses of known astro-
nomical objects that could act as lenses. These are, in order
of increasing mass, the Sun, a large star η Car A, a dense
globular cluster M75, the massive black hole Sgr* in the
center of the milky way, the very dense dwarf galaxy M85-
HCC1, the supermassive black hole in M87, the MilkyWay
halo and the Galaxy Cluster “El Gordo.” The mass profiles
of extended objects have been extrapolated inward assum-
ing a SIS distribution (185) using the total mass and size (or
outward using the central density in the case of M75). This
extrapolation suggests that some portion of extended lenses
will be within its own effective Vainshtein radius, at least
for theories compatible with GW170817 with low Λ4.
Supermassive black-holes (SMBHs) appear as the opti-

mal lenses to further constrain quartic Horndeski theories.
But because black hole solutions have vanishing Ricci
curvature, SMBHs would not source the field via the
conformal coupling (147) in the specific theory under
consideration. SMBHs could still provide an effective lens
if they lead to the accumulation of dark matter around the
black hole with sufficient density. In such scenarios, a “dark
matter spike” could encompass a mass comparable to that
of the central black hole in a very small central region of
radius r ∼ 0.1ðMSMBH=106 M⊙Þ pc [77], sourcing the
scalar field profile at the level to render the lens efficient.
A coupling to the SMBHs may be induced by the
cosmological evolution of the field, as it has been shown
to occur for cubic Galileons (unconstrained by GW170817)
[78–80].

FIG. 14. Effect of extended lenses. Lines show the Shapiro time
delays as a function of the impact parameter for a point lens
(solid) and a singular isothermal profile (dashed) truncated at
RSIS ¼ 250 kpc (185), both with the same mass 1010 M⊙. The
birefringence time delay Δt12 (thick red) is more suppressed than
the multimessenger delay Δt01 (thin blue). Vertical lines denote
the nominal Vainshtein radius (solid), the SIS effective Vainshtein
radius (dashed) and the size of the lens (dotted), see text.

FIG. 15. Masses and sizes of prototypical lenses. The Vain-
shtein radius is shown for example theories compatible with
GW170817. The Einstein radius assumes that the lens and the
source are at cosmological distances rE ∼ 0.03 pc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=M⊙

p
.

Shaded regions correspond to the onset of wave effects (23)
for GWs frequencies ∼kHz, Hz, where geometric optics is not
applicable. Markers show the physical size of known objects (see
text). Gray lines show the enclosed mass of extended objects
assuming an isothermal profile (185).

12A regular value of the central density will suppress beyond-
GR effects near the center. In the case of a homogeneous density
ρðrÞ ∼ const, ϒ ∼ 0 and birefringence effects vanish entirely.
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We summarize the parameter space of the quartic
Horndeski theory that could be constrained with lensing
time delays in Fig. 16. As an order of magnitude estimate,
we consider testable multimessenger time delays Δt10 >
1 s and delays between the polarizations Δt21 > 1 ms. It is
clear from the plot that a large new sector of the parameter
space p4ϕ, Λ4 could be probed beyond current constraints
from GW170817. For reference we also highlight the
parameter space in which the scale of the effective field
theory cutoff is smaller than LIGO frequencies [76].
Moreover, one can also see that the birefringent Shapiro
time delay can constrain a larger portion of the theory than
the multimessenger delay, as can be seen comparing the
orange and blue shaded regions, respectively.
We also include the geometrical time delay induced by

the modified deflection angle with dashed and dashed-
dotted lines for the multimessenger and birefrengent
delays, respectively. We have chosen the redshift of the
lens to give the maximum delay and, in this case, it can be
more constraining than the Shapiro delay. One should note
that while the geometrical time delay is subject to the lens-
source-observer geometry, the Shapiro delay only cares
about how close to the lens the GW passes. This means that
for example if the lens is very close to the observer or
source, the Shapiro time delay will dominate over the
geometrical. This is interesting because from the sky
localization of the source we can then ask for instance
whether the GW has traveled close to the center of the
Milky Way or Andromeda and quantify what would be the
associated Shapiro delay.
The possibility of detecting Shapiro time delays via

birefringence allows novel tests of GR via GW lensing.

One such possibility is the case of a binary merging in
the environment of a SMBH, discussed in Sec. IV B. If it
turns out that there is non-negligible population of BBHs
merging near an AGN, these would be ideal sources to
constrain this type of modify gravity theories. For example,
if the EM flare associated to GW190521 [30] was
confirmed as an indication of this type of systems [31],
this would imply that the binary would have merge very
close to the SMBH, around 20 − 300rs [29]. In this
interpretation the mass of the SMBH near GW190521
would be ∼108 M⊙ so that the BBH would be located
at ∼0.2–3 × 10−3ðML=108 M⊙Þ pc. For reference, we
include in Fig. 16 with dotted lines where the Vainshtein
radius is placed in the ðp4ϕ;Λ4Þ parameter space for
rV=rs ¼ 103; 104; 105. Therefore, BBHs merging in the
accretion disk of an AGN would probe the whole birefrin-
gent Shapiro time delay parameter space region in orange.

VII. CONCLUSIONS AND PROSPECTS

Gravitational lensing of GWs is sensitive to the propa-
gation of GWs around massive objects and cosmic struc-
tures. Gravity theories beyond GR modify the GW
propagation by altering the background on which GW
propagate and introducing mixing among different polar-
izations. A theory for GW propagation should unify known
propagation effects on FRW backgrounds with new inter-
actions between different gravitational degrees of freedom
around gravitational lenses, incorporating and generalizing
the phenomenology of gravitational lensing. Formulating
such a theoretical framework poses a significant challenge.
Here we have analyzed the propagation of gravitational

radiation beyond GR in general space-times. We have first
developed a model-independent framework and then
applied it to Horndeski scalar-tensor theories, without
assuming that GWs propagate at the speed of light. We
addressed the mixing between different gravitational polar-
izations induced by lenses that locally break homogeneity
and isotropy, working at leading order in derivatives. This
approach allowed us to study the causal structure and thus
the arrival time of different signals. It also provides a
measure of the mixing between different radiative degrees
of freedom, but not the corrections to their amplitudes.
Our main conclusions can be summarized as follows:
(1) Simplifications that allow the study of GWs in GR

can not be generalized beyond. The traceless gauge
can only be set as an initial condition. Nonradiative
degrees of freedom, sourced by the GWs via con-
straint equations, become GW shadows.

(2) GW propagation is best described using propagation
eigenstates HA, which differs from the interaction
basis ðhμν;φÞ in a space-dependent manner. Break-
ing the symmetry of the background is necessary for
theHAs to mix the metric and scalar fields in Lorentz
invariant theories.

FIG. 16. Summary of the constraints on the parameter space of
the quartic theory p4ϕ and Λ4. Theories that predict a cosmo-
logical time delay αT ≳ 10−15 are ruled out by GW170817,
although part of this sector has a effective field theory (EFT)
scale Λ3

EFT ¼ MPlΛ2
4 smaller than LIGO frequencies: ΛEFT ≲

fligo ≲ 103 Hz. The inhomogeneous time delay induced by the
screening probes a new sector with the multimessenger time
delay Δt10 and the delay between the propagation eigenstates
Δt21. We take as a reference a point lens of 1010 M⊙.
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(3) Propagation eigenstates can travel at different speeds,
c1, c2, c3. These depend on the theory and back-
ground solutions through the speeds for the metric,
scalar and mixing term (ch, cs, cm), and the mixing
amplitude Mϕ.

(4) Gravitational lenses act like prisms, splitting the
propagation eigenstates HI according to their speed.
Differences in local speed and deflection angles
contribute to lensing-induced time delays between
H1, H2, H3 and possible EM counterparts.

(5) The most promising novel observable is the bire-
fringent time delay between the two mostly metric
polarizations H1 ¼ h×, H2 ∼ hþ (no EM counter-
part needed). A lensed GW signal can interfere with
itself, causing a scrambling of the waveform, or be
split into echoes from the same event.

(6) GW birefringence provides novel tests of theories
with screening mechanisms. We present detailed
predictions for a quartic Horndeski theory, showing
how GW lensing effects have the potential to probe
regions of the parameter space beyond the stringent
limits set by GW170817.

This work is a first step in developing a theory for GW
propagation beyond GR including additional polarizations,
and exploring the phenomenology of polarization mixing.
Future work needs to include the evolution of the amplitude
(perhaps at lower WKB orders) to derive complete pre-
dictions that can be tested against GW data.
The first obvious step at the theoretical level is extending

the computation to next-to-leading order in the short-wave
expansion and beyond. The full geometric optics frame-
work is needed to reliably compute the amplitude and
explore new effects that persist in the high-frequency limit.
Additional, postgeometric optics corrections are frequency
dependent and could be very constraining, even if they’re
suppressed by inverse powers of the frequency. As argued
in the text, birefringence may persist in the wave optics
limit (at least for f ≫ 1=rs, 1=rV): a complete treatment
will allow new lenses to be used to test beyond GR theories,
including stellar mass objects as lenses for LIGO/Virgo
sources.
Another future direction is to link the general framework

developed in Sec. III to other theories of gravity and place
constraints on them. The example quartic Horndeski theory
we have considered in Sec. VI is already very constrained by
GW170817, so further constraints require extreme lenses.
However, in theories with multiple fields or Lorentz viola-
tion the cosmological/homogeneous deviation in the GW
speed could be suppressed, allowing GW birefringence
effects to place stringent constraints. As we have discussed
in Sec. V B 2, constraints may be derived also for theories
with scalar hair, like scalar Gauss-Bonnet gravity.
Future analyses should also test these novel beyond GR

lensing effects against GW data. Under the assumptions
outlined in Sec. IV birefringence predicts a very simple

modification of the waveform, depending only on two
parameters per lens. In the scrambling regime, the pre-
dictions can be tested against available GW data, including
degeneracies with source parameters. Tests in the “echo”
regime, which splits the signal in two, are more subtle and
rely on either on pairing events with related properties
(similarly to searches for strongly lensed signals) or on an
excess of edge on sources (if signals are lost). A robust
statistical framework is needed to carry those tests, as well
as to use them to further constrain theories of gravity.
The nature of birefringence beyond GR allows new

opportunities with respect to “traditional” lensing studies.
For instance, lenses near either the source or the observer
(with very small Einstein radii) have a decent chance to
produce birefringence through the Shapiro time delay.
Correlating signals with maps of known nearby lenses
may allow to refine constraints substantially (e.g., signals
coming through the galaxy plane). Moreover, if a fraction
of the population of binary black holes merge in the disk of
active galactic nuclei, as it is suggested by the possible EM
counterpart of GW190521 [30] discussed in [31], these
systems would be ideal for these tests. Similarly, identified
strongly lensed GW pairs would be valuable probes since in
that case it is also guaranteed that the GW has traveled close
to the lens.
Altogether, gravitational lensing of GWs has the poten-

tial to become a fruitful laboratory in which to test gravity.
It benefits from the precision of tests of the GW propa-
gation, while avoids the necessity of identifying EM
counterparts which limits the reach of tests of the cosmo-
logical GW propagation. Future GW observing runs will
provide enough events for these and other novel lensing
effects to be probed. This works represents a first step
towards understanding the rich phenomenology of GW
lensing beyond GR.
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APPENDIX A: ALTERNATIVE
TRANSVERSE GAUGES

It is possible to define alternative transverse gauges
(ATGs), relative to a (generic) metric g̃μν

g̃μα∇̃αh̃μν ¼ 0: ðA1Þ
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Here the trace-reversed metric is defined using the same
tilde metric

h̃μν ¼ hμν −
1

2
g̃μνh̃; h̃ ¼ g̃αβhαβ; ðA2Þ

This choice allows to express the residual gauge condition
(preserving the ATG) as a wave equation at leading order in
derivatives:

□̃ξμ þ � � � ¼ 0; ðA3Þ

where □̃ ¼ g̃αβ∇̃α∇̃β and � � � include both curvature and
nonmetricity terms that appear from rearranging covariant
derivatives and are lower order in derivatives. Explicitly

δð∇̃αh̃ανÞ ¼ □̃ξν þ R̃ν
λξλ þ 2∇̃αðKλ

ανξλÞ − ∇̃νðKλξλÞ;
ðA4Þ

where indices are lowered/raised with g̃μν and
Kλ

αβ ≡ Γ̄λ
αβ − Γ̃λ

αβ, K
λ ≡ g̃αβΓ̃λ

αβ encompass the difference
between the connections (which are tensors, see Ref. [46]
for explicit expressions).13

The next step is trying to fix other components (e.g., a
trace) using the residual gauge. The residual ATG trans-
formations can be written schematically as

□̃ξν þ ðK∇ξÞν þ ðMξÞν ¼ 0; ðA6Þ

where terms are arranged by number of derivatives in ξ
(M ⊃ ∇K; R) and the contracted indices have been omit-
ted for conceptual simplicity. To get a sense of the effect of
this terms let us work on locally homogeneous space and
define an even simpler version of the residual ATG
equation

g̃μν∂μ∂νχ þ kμ∂νχ þm2χ ¼ 0: ðA7Þ

This equation can be solved in Fourier space in the limit of
high jk⃗j as

ω ≈ c̃jk⃗j þ i
2
Γþ m2

2c̃jk⃗j
; ðA8Þ

where c̃ is the speed of sound of g̃μν (which may depend on
k̂) and Γ≡ γ0 þ γ⃗ k̂ =c̃.
The residual gauge allows us to fix the initial conditions

of Eq. (A6) (real and imaginary parts of 4 ξν components),
which can be used to set four metric components to zero at
some initial time

hXðt0; x⃗Þ ¼ 0; ðA9Þ
where hX can be a combination of metric perturbations
(e.g., the trace h or another trace such as h̃). This condition
will hold at later times only if hX obeys the same equation
as the residual gauge. Let us assume that the solutions to

hX ∝
R
d3kh̃Xðk⃗ÞeiðωXt−k⃗ x⃗Þ follow a dispersion relation

similar to Eq. (A8)

ωX ≈ cXjk⃗j þ
i
2
ΓX þ m2

X

2c̃jk⃗j
: ðA10Þ

The difference between the residual gauge and the physical
mode solutions, Eqs. (A8), (A10) determine how far the
residual gauge (A9) can be extended beyond t ¼ t0:
(1) If c̃ ≠ cX the residual gauge can be fixed for

jΔxj ≪ Δc=jk⃗j, usually less than a wavelength! In
general, the freedom in choosing the ATG via g̃μν
ensures that c̃ ¼ cX can be imposed.

(2) If the friction differs Γ ≠ ΓX, fixing X is a good
approximation only in a region jΔxμj ≪ ΔΓ−1,
which is determined by the nonmetricity K, but
independent of the physical frequency.

(3) If the mass term differs m2 ≠ m2
X the fixing is good

in a region jΔxj · Δm2=jk⃗j ≪ 1, which becomes
arbitrarily large at higher frequencies.

Note that these conditions do not take into account the
failure of the constant background assumption, which is
independent of the GW frequency. Matter sources will also
make it impossible to set hX ¼ 0 (just as in GR).
While fixing c̃ ¼ cX can be done in general (this is

reason for defining an ATG), doing so introduces friction
and curvature terms that limit the validity of hX ≈ 0 (cases 2
and 3). While the mass condition (case 3) might be
unimportant for sufficiently large frequencies, the friction
condition (case 2) imposes a frequency-independent limit
to the condition hX ≈ 0. Depending on the difference
between ḡμν, g̃μν, this region may or not be large enough
for the residual ATG to afford a valuable simplification.

APPENDIX B: DETAILS ON THE
PROPAGATION EQUATIONS

In this appendix we provide further details on the
equations of motion that we have used in the main text
to compute the propagation eigenstates and mixing
between the different polarizations. We will make use of
the following perturbations of the Riemman tensor:

13The ATG (A1) can be defined with a different covariant
derivative. For instance, using g̃μα∇̄αh̃μν (compatible with the
background metric, as it emerges from the gauge transformation
of h̄μν) yields

δðg̃αβ∇̄βh̃ανÞ ¼ g̃αβ∇̄α∇̄βξν þ g̃αβR̄α
λ
βνξλ

þ g̃ναQ
βα
β ðg̃λσ∇̄λξσÞ −Qλσ

ν ð∇̄λξσÞ; ðA5Þ

where the nonmetricity is defined as Qαβ
μ ¼ ∇̄μg̃αβ.
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δRμανβ ¼ −
1

2
∇ν∇μhβα −

1

2
∇β∇αhνμ þ∇ν∇ðαhβÞμ

þ∇β∇½μhν�α þ Rλ
ανβhλμ; ðB1Þ

δRμν ¼ −
1

2
□hμν þ∇ðμ∇αhανÞ −

1

2
∇μ∇νh

þ RαðμhνÞα − Rμανβhαβ; ðB2Þ

δR ¼ −□hþ∇α∇βhαβ − Rαβhαβ: ðB3Þ

These identities can also be written in term of the trace-
reversed perturbation h̄μν

δR̄μανβ ¼ −
1

2
∇ν∇μh̄βα −

1

2
∇β∇αh̄νμ þ∇ν∇ðαh̄βÞμ

þ∇β∇½μh̄ν�α þ Rλ
ανβh̄λμ −

1

2
Rμανβh̄ ðB4Þ

þ 1

4
gβα∇ν∇μh̄þ 1

4
gνμ∇β∇αh̄ −

1

2
∇ν∇ðαgβÞμh̄

−
1

2
∇β∇½μgν�αh̄; ðB5Þ

δR̄μν ¼ −
1

2
□h̄μν þ∇ðμ∇αh̄ανÞ þ

1

4
gμν□h̄

þ Rαðμh̄νÞα − Rμανβh̄αβ; ðB6Þ

δR̄ ¼ ∇α∇βh̄αβ þ
1

2
□h̄ − Rαβh̄αβ þ

1

2
Rh̄: ðB7Þ

1. Generalized Brans-Dicke

We begin by considering the generalized Brans-Dicke
theory presented in Eq. (92). The metric EOM are given by

G4Gμν þ gμνðG4ϕ□ϕ − 2XG4ϕϕÞ − G4ϕϕμν

−G4ϕϕϕμϕν −
1

2
gμνG2 −

1

2
G2Xϕμϕν ¼ 0; ðB8Þ

while the scalar EOM reads

G4ϕRþ G2X□ϕ − G2XXhΦi ¼ 0: ðB9Þ

By computing the perturbation of these equations and
focusing in the leading derivative part, we can rewrite the
EOM as

2
664
0
BB@

G4D̄
μν
αβ 0 G4;ϕðgαβ□ −∇α∇βÞ

−G4∇ν∇μ −G4□=2 3G4;ϕ□

G4;ϕ∇ν∇μ G4;ϕ□=2 G2X□ −G2XXϕ
αϕβ∇α∇β

1
CCAþ � � �

3
775
0
BB@

h̄μν

h̄

φ

1
CCA ¼ 0; ðB10Þ

where we have introduced the trace-reversed perturbation (89) and the differential operator D̄ defined in Eq. (91). Here we
have introduced a matrix notation to highlight the diagonalization process. One should note that the second row is nothing
but the trace of the tensor equation. From this equation it is then direct to see that one can reabsorb the scalar perturbation
terms in the metric equation by introducing a new perturbation as given by (94). Then applying the transverse condition to
the new perturbation one completely diagonalizes the problem.

2. Kinetic gravity braiding

We can follow a similar approach for kinetic gravity braiding, the cubic Horndeski theory defined in Eq. (99). The metric
EOM of this theory are given by

G4Gμν þ
1

2
G3;X□ϕϕμϕν −G3;Xϕ

αϕαðμϕνÞ þ
1

2
gμνG3;XhΦi ¼ 0 ðB11Þ

and the scalar EOM follows

G3;Xϕ
μϕνRμν þG3;Xðð□ϕÞ2 − ½ϕ2�Þ þ G3;XXðhΦ2i − hΦi□ϕÞ ¼ 0: ðB12Þ

Again, the leading derivative part of the EOM for the perturbations can be written in matrix form as

2
664
0
BB@

2G4D̄αβ
μν 0 G3Xðϕαϕβ□− 2ϕμϕðα∇βÞ∇μ þ gαβϕμϕν∇μ∇νÞ

−2G4∇ν∇μ −G4□ G3Xð−2X□þ 2ϕμϕν∇μ∇νÞ
G3Xð−ϕμϕν

□þ 2ϕαϕβ∇ðα∇μδνβÞÞ −XG3X□ ðDφφÞ

1
CCAþ � � �

3
775
0
B@

h̄μν

h̄

φ

1
CA¼ 0;

ðB13Þ
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where we have introduced the scalar term

ðDφφÞ ¼ G3;Xð2□ϕ□ − 2ϕμν∇μ∇νÞ þG3;XXðð2ϕγϕ
γðαϕβÞ −□ϕϕαϕβÞ∇α∇β − hΦi□Þ: ðB14Þ

From here we se again that the scalar perturbation terms in
the metric equation can be reabsorbed in a field redefinition
as given by (101). Then applying the transverse condition
one fully diagonalizes the leading derivative interactions.

3. Shift-symmetric quartic Horndeski

Moving to a nonluminal theory, we consider now a shift-
symmetric quartic Horndeski theory with generalized
kinetic term for the scalar as given by Eq. (109). At leading
order in derivatives for the linear perturbations, the EOM
are given by

G4δGμν þG4XδRμανβϕ
αϕβ þ ðG4XCμναβ

þ G4XXEμν
αβÞ∇α∇βφ ¼ 0; ðB15Þ

Gαβ
s ∇α∇βφþ 2G4Xϕ

μνδGμν − 2G4XXϕ
μνδRμανβϕ

αϕβ ¼ 0;

ðB16Þ

where we have defined two tensors of the metric perturba-
tions hμν

δGμν ≡ δRμν −
1

2
gμνδR; ðB17Þ

δRμανβϕ
αϕβ ≡ 2ϕðμδRνÞλϕλ þ δRμανβϕ

αϕβ − δRαβϕ
αϕβgμν

−
1

2
δRϕμϕν; ðB18Þ

and two tensors contracted with the scalar perturbations φ

Cμναβφαβ ≡ ð□ϕ□φ − ϕαβφαβÞgμν − ðφμνϕ
αβ þ ϕμνφ

αβÞgαβ
þ 2ϕα

ðμφ
β
νÞgαβÞ; ðB19Þ

Eμν
αβφαβ ≡ ðϕαβφαβ −□ϕ□φÞϕμϕν þ ðφμνϕ

αβ þ ϕμνφ
αβÞϕαϕβ

þ 2ϕα
ðμφ

β
νÞð−ϕαϕβÞ − ð□φϕαβϕ

αϕβ þ□ϕφαβϕ
αϕβ − 2ϕαφαβϕ

βγϕγÞgμν
þ 2ϕγð□ϕφγðμϕνÞ þ□φϕγðμϕνÞ − φγσϕ

σ
ðμϕνÞ − ϕγσφ

σ
ðμϕνÞÞ; ðB20Þ

and the scalar effective metric

Gμν
s ¼ 2G4XGμν þ G4XXð−4ϕλRλðμϕνÞ þ ϕμϕνRþ 2ϕαϕβRαβgμν − 2ϕαϕβRμανβÞ

−G4XXð3ð□ϕ2 −∇∇ϕ2Þgμν − 6□ϕ · ϕμν þ 6ϕμ
λϕ

νλÞ
þG4XXXðð□ϕ2 −∇∇ϕ2Þϕμϕν þ 2ϕαϕβϕαβð□ϕgμν − ϕμνÞ
− 2ð2□ϕϕðμϕνÞλϕλ − ϕλϕ

λμϕνγϕγ − 2ϕðμϕνÞλϕλγϕ
γ þ ϕαϕαβϕ

βγϕγgμνÞÞ: ðB21Þ

If we restrict to a theory where G4XX ¼ G4XXX ¼ 0, then we do not have to consider Eμν
αβ and the effective scalar metric

simplifies to

Gαβ
s φαβ ¼ ðG2Xgαβ − G2XXϕ

αϕβ þ 2G4XGαβÞ∇α∇βφ: ðB22Þ

It is useful to rewrite the tensors of the metric perturbations in terms of the trace-reversed metric (89), so that we obtain

δGμν ¼ D̄αβ
μνhαβ ¼ − 1

2
□hμν þ∇ðμ∇αhανÞ − 1

2
∇α∇βhαβ; ðB23Þ
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δRμανβϕ
αϕβ ¼ 2ϕðμ

�
− 1

2
□hνÞλ þ∇ðνÞ∇αhαλÞ − 1

4
gνÞλ□h

�
ϕλ

þ
�
− 1

2
∇ν∇μhβα − 1

2
∇β∇αhνμ þ∇ν∇ðαhβÞμ þ∇β∇½μhν�α

þ 1

4
gαβ∇ν∇μhþ 1

4
gμν∇α∇βh − 1

2
∇ν∇ðαgβÞμh − 1

2
∇β∇½μgν�αh

�
ϕαϕβ

þ
�
1

2
□hαβ − ∇ðα∇ρhρβÞ − 1

4
gαβ□h

�
ϕαϕβgμν

− 1

4
ð□hþ∇α∇βhαβÞϕμϕν ðB24Þ

In the transverse gauge for the trace reversed perturbations, ∇μh̄μν ¼ 0, the EOM of the G4XX ¼ G4XXX ¼ 0 theory
simplify to

G4□hμν þG4X

�
ϕαϕβ∇β∇αhμν þ 2ϕðμ□hνÞλϕλ − ϕðμgνÞλ□hϕλ − 1

2
gμνϕαϕβ∇α∇βh

− gμνðϕαϕβ
□hαβ þ X□hÞ þ 1

2
ϕμϕν□h

�
− 2G4XCμναβφαβ ¼ 0; ðB25Þ

Gαβ
s φαβ −G4Xϕ

μν
□hμν ¼ 0: ðB26Þ

APPENDIX C: LOCAL DIAGONALIZATION OF
THE PROPAGATING DEGREES OF FREEDOM

As discussed in Sec. II B, in order to solve the local
propagation we have to diagonalize a system of 11 × 11
equations of motion forΦ,wi, sij,Ψ and φ. This calculation
will make use of the following perturbations of the
Riemann tensor

δR0j0l ¼ ∂j∂lΦþ ∂0∂ðjwlÞ −
1

2
∂0∂0hjl; ðC1Þ

δR0jkl ¼ ∂j∂ ½kwl� − ∂0∂ ½khl�j; ðC2Þ

δRijkl ¼ ∂j∂ ½khl�i − ∂i∂ ½khl�j; ðC3Þ

the Ricci tensor

δR00 ¼ ∇2Φþ ∂0∂kwk þ 3∂2
0Ψ; ðC4Þ

δR0j ¼ −
1

2
∇2wj þ

1

2
∂j∂kwk þ 2∂0∂jΨþ ∂0∂kskj ; ðC5Þ

δRij ¼ −∂i∂jðΦ − ΨÞ − ∂0∂ðiwjÞ þ□Ψδij
−□sij þ 2∂k∂ðiskjÞ; ðC6Þ

and of the Ricci scalar

δR ¼ −2∇2Φ − 2∂0∂kwk − 6∂2
0Ψþ 4∇2Ψþ 2∂k∂jskj:

ðC7Þ

We have denoted ∂2
0 ¼ ∂0∂0 and ∇2 ¼ ∂i∂i.

The first thing to notice is that the above equations do not
contain second order time derivatives of wi or Φ. This
means that for theories with EOM that are linear in the
perturbed Riemann tensor, these modes will not propagate.
They can be written in terms of the other propagating d.o.f.
Fortunately, this is the case of Horndeski theory and we do
not need to worry about these modes. The only caution to
take is that, although not propagating, they can be sourced
by the scalar background for instance. Thus, if we want to
keep the analysis fully general, we cannot set them to zero.
In the following we provide further details on the

diagonalization of a quartic Horndeski theory discussed
in Sec. V B 1. In particular, we will detail the equations
needed to solve the propagation in the absence of scalar
perturbations. The main operator that we need to compute
are δGμν and δRμανβϕ

αϕβ. Let us begin with the 00
equation. The relevant terms are

δG00 ¼ δR00 −
1

2
η00δR ¼ 2∇2Ψþ ∂k∂jskj ðC8Þ

and

δR0α0βϕ
αϕβ¼δR0i0jϕ

iϕj−η00δRijϕ
iϕj

¼ϕiϕ
i∇2Ψþϕiϕjð∂i∂jΨ−∇2sijþ2∂k∂iskjÞ:

ðC9Þ
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Therefore, as in GR, the 00 equation tell us that the spatial
trace Ψ follows a Poisson-like equation where the source
are the components sij modulated by the background. This
implies that for this theory only sij contains propagating
d.o.f. Note that in the case of having a scalar perturbation
present this conclusion would not change.
In the transverse gauge, for quartic Horndeski in vacuum

and φ ¼ 0, we can write the solution of the 00 equation,
presented in Eq. (121), as

Ψ ∼
G4Xϕ

iϕjsij
2G4 þ G4Xðϕ2⊥ þ 2ϕ2

kÞ
: ðC10Þ

We apply a similar strategy to the other equations. To
simplify let us fix ∂iwi ¼ 0. For the 0j equations, the
relevant terms are

δG0j ¼ δR0j −
1

2
η0jδR ¼ −

1

2
∇2wj þ 2∂0∂jΨ ðC11Þ

and

δR0αjβϕ
αϕβ ¼ ϕjδR0kϕ

k þ δR0kjlϕ
kϕl;

¼ ϕjϕ
k

�
∂0∂kΨ −

1

2
∇2wk

�
þ ϕkϕ

k∂0∂jΨ

þ ϕkϕlð∂k∂ ½jwl� − 2∂0∂ ½jsl�kÞ: ðC12Þ

Therefore we obtain the constraint equation for wj pre-
sented in Eq. (122).
Next we move to the ij equations. The two parts are

δGij ¼ δRij −
1

2
ηijδR ¼ −∂i∂jðΦ −ΨÞ − ∂0∂ðiwjÞ

þ□Ψδij −□sij þ ð∇2Φþ 3∂2
0Ψ − 2∇2ΨÞδij;

ðC13Þ

and

δRiαjβϕ
αϕβ ¼ 2ϕðiδRjÞkϕk þ δRikjlϕ

lϕk − δRklϕ
kϕlδij − 1

2
δRϕiϕj

¼ −2ϕði∂jÞ∂kΦϕk − ϕði∂0∂jÞwkϕ
k − ϕði∂0∂kwjÞϕk − 2ϕði□sjÞkϕk þ 2ϕlϕk

�
∂k∂ ½jsl�i

− ∂i∂ ½jsl�k þ
1

2
∂i∂jδlkΨ

�
− ϕkϕlð□Ψδkl −□skl − ∂k∂lΦ − ∂0∂ðkwlÞÞδij þ ϕiϕjð∇2Φþ ∂2

0ΨÞ: ðC14Þ

With all these calculations we can compute the trace of the ij equations which determine the evolution of Φ given
in Eq. (123).
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