
Foraging-based Optimization of Menu Systems

Niraj Ramesh Dayama, Morteza Shiripour, Antti Oulasvirta

Aalto University, Finland

Evgeny Ivanko

Institute of Mathematics and Mechanics, Ural Branch, RAS & Ural Federal Univ., Russia

Andreas Karrenbauer

Max Planck Institute for Informatics, Germany

Abstract

The problem of computational design for menu systems has been addressed in some
specific cases such as the linear menu (list). The classical approach has been to model
this problem as an assignment task, where commands are assigned to menu positions while
optimizing for users’ selection performance and grouping of associated items. However,
we show that this approach fails with larger, hierarchically organized menus because it
does not take into account the ways in which users navigate hierarchical structures. This
paper addresses the computational menu design problem by presenting a novel integer
programming formulation that yields usable, well-ordered command hierarchies from a
single model. First, it introduces a novel objective function based on information foraging
theory, which minimizes navigation time in a hierarchical structure. Second, it models
the hierarchical menu design problem as a combination of the exact set covering problem
and the assignment problem, organizing commands into ordered groups of ordered groups.
The approach is efficient for large, representative instances of the problem. In a controlled
usability evaluation, the performance of computationally designed menus was ∼ 25%
faster to use than existing commercial designs. We discuss applications of this approach
for personalization and adaptation.

Keywords: Combinatorial optimization, Integer programming, Computational design,
User interfaces, Menu systems, Information foraging, Human-computer interaction

1. Introduction

Menu systems are among the most prevalent user interfaces, offering a compact, ex-
tensible, and familiar means to access functionality. Some popular menu techniques are
known as linear, tabbed, hierarchical, cascading, context, drop-down, ribbon, and tool-
bar menus. Designers frequently design menus, but their design remain challenging [1].
Multiple objectives must be addressed, including speed and accuracy of selection, learn-
ability, satisfaction, efficacy, suitability for different devices, and accessibility [1]. Also
the involved design spaces can be large. Professional software, such as for photo-editing
or 3D modeling, involve menus comprising of in excess of fifty commands. It is not sur-
prising that professional designers report menu design being ”very difficult” and having
to resort to trial and error [2].

Preprint submitted to IJHCS October 21, 2020

ar
X

iv
:2

00
5.

01
29

2v
2 

 [
cs

.H
C

] 
 2

0 
O

ct
 2

02
0



This paper contributes to algorithmic methods for generating and refining menu sys-
tems. Our goals are (1) to improve the quality of generated menus and (2) support a
larger number of commands (over 20 and up to 100) than previous research. Generally,
larger menu systems need to utilize some type of hierarchical organization, achieved by
techniques such as tabbing, groups, folding, cascades, or sub-menus. Some promising ad-
vances notwithstanding, computational design of such hierarchical menu systems is still
an unsolved problem. While there has been sustained research interest since the 1980s
[3, 4, 5, 6, 7, 8, 9, 10, 11], no method has been offered that can automatically gener-
ate demonstrably usable and well-structured menus with a larger number of commands.
Professional designers would appreciate computational support on the matter [2].

Any algorithm for menu design will need to represent essential aspects of human be-
havior to be successful. Two challenges stand out: (1) the size of the search space and
(2) lack of valid but computationally efficient evaluative (objective) functions. Firstly,
the search spaces involved in menu design are exceedingly large: n commands can be
organized into a linear menu in n! unique ways and into a hierarchical menu in an expo-
nentially larger number of unique ways. If we consider multiple different tabs and also
potential sub-groups within tabs, the space explodes further. Standard software applica-
tions commonly comprise dozens of commands; professional applications may extend to
hundreds of commands. The second issue, evaluative functions (objective functions), is
even more challenging: the relevant literature has not yet identified any effective evalua-
tive function that captures essential human factors mathematically. A well-known design
objective – given by Fitts’ law – characterizes the efficiency of selecting a command with
a pointing device. Using Fitts’ law leads to placing frequently accessed commands closer
to the top of the menu [2]. Another objective investigated is related to grouping of items:
placing associated commands near each other can make it easier to find them [2]. The as-
sociation here can be based on distributional semantics (e.g., pairwise word associations)
or on statistical co-occurrence in other menu designs. Another factor in good menu design
is the perceived balance between depth (tree) and breadth [9]. User expectations are a
fourth consideration: Users may have preconceived notions, formed through exposure to
prior designs, of where in the menu certain commands should be found. For instance,
About and Help may be expected in the last tab. To effectively apply computational
methods for hierarchical menu design, a robust mathematical model and problem defini-
tion are needed that encompasses such considerations and yet allows efficient algorithmic
solutions.

This paper presents a novel combinatorial optimization approach to the design of
menu systems. It describes a mixed-integer programming (MIP) formulation to handle
realistic-sized task instances. It contributes a mathematical formulation of the menu
design problem that (1) captures essential human aspects of menu navigation and (2) the
decision problem in an efficient manner. It produces well-structured and usable menu
designs when input data is provided for: (a) frequency of usage of individual commands
and (b) mutual (semantic) association metrics for any pair of commands. While previous
research has mostly resorted to meta-heuristic techniques – which are often based on
randomization – our MIP approach guarantees optimality and provides mathematical
estimates for bounds indicating the quality of a solution. For any candidate solution, it
is possible to compute bounds that indicate how far the current design is from the global
optimum.

Two technical contributions are made. The first lies in a new representative model
of hierarchical menus. Previous approaches used an assignment-based formulation [2].

2



Over several studies of objective functions, we discovered that assignment alone does not
sufficiently represent the organization of individual elements in larger entities such as
groups or tabs. In particular, it leads to frequency-ordered groupings, at times ignoring
how well the command placed at the top represents the rest of the menu. Hence, the
topmost items are not necessarily semantically indicative of what the menu contains. In
contrast, our formulation assigns each command to a group and then to a tab while also
organizing (ordering) these for faster access. In other words, both position (assignment)
and grouping are naturally addressed in this new formulation, unlike in previous work that
only considered assignment. Moreover, both assignment and grouping can be handled
with a single objective (foraging), which eliminates the need to set calibration weights.
To capture this critical aspect of how users navigate menus, we posit the design problem
as a variant of the exact set covering problem. Formally, the set covering problem is
defined as follows: Given a finite set S and a list of some (not necessarily all) subsets of
S, the intent is to find the minimal sub-collection of disjoint sets such that all elements
of S are covered exactly once. This covering problem precisely captures our intention
of organizing the given menu commands into disjoint groups. The new objective yields
organized groups of groups with clear inter-group boundaries. This avoids the need to
compute group boundaries post hoc heuristically as in previous work using the assignment-
based approach [2].

The second contribution is a new evaluative function based on information foraging
theory (IFT) [12, 13]. Previous literature focused on minimization of selection time [1, 3,
14] and maximization of associativity among commands [2]. For example, MenuOptimizer
used Fitts’ law and a statistical consistency metric measuring structural similarity of
assignments to other menus [2]. Neither component specifies how the grouping of elements
affects user behavior. Our contribution is a mathematically efficient formulation of IFT,
which is made feasible for existing mixed integer programming solvers. The new IFT-
based objective enables assessing search performance in the case of groups of groups,
which in our case are command groups (with separators between them) organized into
tabs. Earlier work with IFT used it for modeling how users choose link panels [15].

In the case of hierarchically organized menus, it offers a quantitative model of a
rational but time-limited agent navigating a hierarchy composed of patches. The agent
decides whether to continue exploring the current set of commands (patch) or instead
abandon/skip this set in favor of the next. Intuitively, when used in an optimizer, it
evaluates and minimizes also the time wasted by the user in the irrelevant parts of the
menu. This results in positioning of semantically indicative items toward the top of the
menu. In practice, this is achieved by three means: (1) The optimizer forms groups
that enable users to quickly guess whether the intended command is present or not. (2)
Secondly, it inherently avoids too high a number of groups/tabs. (3) Finally, it avoids
placing unrelated commands (loners) in groups with poor association.

The convergence of these two ideas – the exact set covering formulation with the
IFT-based evaluative function – yields balanced and well-structured menus. Since the
decision to include a command in a group and tab is modeled explicitly in the problem,
no post hoc steps are needed to segment the outputs. The menus thus produced consist
of a few tabs that, in turn, are made up of relatively large and well-organized groups.
They also appear better for comprehension in terms of their structure than were results
of previous work, also because the lead elements are semantically more indicative. It
is easier to recognize the idea of a tab or group and act accordingly – that is, dismiss
it or, if it is relevant for the goal at hand, zoom in. Also, the MIP implementation

3



does not require extensive computational effort. The resulting formulation can deal with
problem instances of 50 commands within a few hours of computational effort. While
larger instances of, say, 100 commands, take about two weeks’ computational effort on a
regular computer, in the context of a large design project. Presently it does not produce
labels for the higher-level groups it has created, such as for tabs in a tabbed menu.

A designer can use the outputs to explore the design space or fine-tune an existing
design [16]. To use the optimizer, a design task (instance) must be defined. The inputs
are (1) a list of command frequencies and (2) a matrix of pair-wise association scores
(0–100). These can be given by the designer or obtained in a data-driven fashion. Access
frequencies can be learned for example from click data, or estimated using click models.
Word embeddings can be used to estimate pairwise association scores. Alternatively,
when available, word association norms (e.g., based on WordNet) could be used. Also,
co-occurrence of commands can be learned from existing menu designs as done in previous
work [2]. Association scores are relatively easy to provide manually too. Because the
association matrix is sparse (only a few cliques of commands have meaningful relationships
and the rest can be skipped), filling in the matrix does not take too much time even for
larger problem sizes. In our evaluation cases, a student could define an association matrix
(for about 50 commands) within an hour.

To critically assess the approach, we report on a controlled comparison between opti-
mized and commercial designs (Adobe Reader, Microsoft Notepad, and Mozilla Firefox).
The results of our new approach demonstrates that users could work 25% faster with our
optimized menus compared to the existing designs. The new approach is able to produce
high-quality designs. We selected Adobe Reader, Microsoft Notepad, and Mozilla Firefox
because these three applications represent a cross section of well-established commercial
software systems; the commands and context of these systems should be comprehensible
to an average user without separate training or explanations. We point out the fact that
this comparison baseline does not inherently include multi-level sub-menus; this matches
our approach because we also do not address multi-level menus in the current paper. Fur-
ther, the remainder of this paper intentionally does not discuss the naming of the tabs.
Assignment of names involves natural language processing problems which is outside the
scope of this work.

The rest the paper is organized as follows: We first present a succinct review of the
literature related to algorithmic menu design and related areas in operations research.
After this, we define the design problem rigorously and use the definition to inform
a “classical” MIP formulation that replicates the objective function used in previous
work using Fitts’ law and associativity as objectives. We then extend this formulation
to utilize the IFT-based approach within the MIP formulation, after which we discuss
applications also in personalization and adaptation of menus. We finally present a user
study comparing our algorithms’ results with commercial baseline designs. Finally, data
from the controlled user evaluation is presented.

2. Problem Definition

This paper addresses the problem of finding an optimal layout of commands in a
hierarchical menu structure. The instance of a hierarchical menu examined here is the
popular tabbed menu system in which commands are organized into groups, which are
arranged into tabs. The most common menu types (linear menus, ribbon menus, etc.)
are special cases of this general formulation that can be modeled by changing costs in

4



the evaluative function. Our underlying objective with this paper – as reflected in the
evaluative functions we explore – is to minimize the overall time consumed by the user
in selecting commands.

Figure 1: Illustration of key terms utilized in this paper. The design task we examine is how to assign
commands into groups and tabs accessible from a menu bar.

The key terms utilized in our definition are illustrated in Figure 1. We call a menu
item a Command. A clearly demarcated set of commands (separated from other groups
by a physical boundary) is termed a Group. Multiple groups arranged in vertically aligned
structures constitute a Menu Tab (or tab). Individual tabs have their specific identifier
text or titles; all of these titles collectively constitute the horizontally aligned structure
denoted as a menu bar. For clear disambiguation, we note that this paper addresses
single-level hierarchy within menus; this means that one Menu Tab in the menu bar will
involve one vertically aligned structure of commands that must all be visible or hidden
as an indivisible set. This paper does not support any further internal roll-over within
the Menu Tab. While multiple groups are permitted within any Menu Tab, they must all
be visible or hidden together.

Given n commands, the problem first requires these commands to be organized as
ordered sets, each representing one group. Then, these groups are themselves organized
into ordered sets that form individual tabs. Lastly, the tabs, in turn, are ordered in
terms of the labels to be shown in the menu bar. This means that the overall layout is a
problem of reorganizing the unordered set N into an ordered set of all n commands.

The n commands are characterized by frequency of use F, associations A, and (op-
tionally) location preferences L. We will denote the set of tabs as T , with individual tabs
identified by index τ . All groups (irrespective of their tabs) are assumed to constitute an
unordered set of groups C. Individual groups will be identified by indices c, c̄. We note
that any tab τ is itself an ordered set of some groups. Further, any group c ∈ C is also an
ordered set of some commands. Finally, we use indices i, j to denote commands. Hence,
the frequency of usage of command i is Fi. The association between commands i and j is
denoted as Aij. So, the menu design problem requires computation of an ordered set T
of ordered sets of groups of ordered commands, such that the objective function (defined
via values of F, A, and optionally L) is optimized.

2.1. Objective function: Costs to minimize

The problem definition discussed above did not explicitly provide the objective func-
tion. Traditionally, menu design has involved an objective function that is a weighted

5



combination of two factors: (1) Time required to access individual commands (2) Mutual
association of commands placed within any group (see, e.g., [9, 17, 18, 19, 4, 20, 1, 21]).
This objective function helps in two ways. First, the time required by any user – who
knows the location of a required command – is exactly captured using Fitts’ law. So, the
efficacy of an expert user (well conversant with the concerned application) is explicitly
captured by the objective term. This ensures that the resulting menu system is indeed
fast for usage by a well-experienced user. Secondly, the mutual association term helps
a novice user in searching for any command quickly. Consider that a user is looking for
the Save-As command. While exploring the menu, the user had encountered the Save
command in the first (leftmost) tab. The user remembers this location and also associates
the required Save-As command with the known Save command. So, the user is highly
likely to search for the Save-As command in vicinity of the known Save command. The
second objective term – representing the mutual association of commands – ensures that
logically interrelated commands are collocated in close vicinity to each other.

In this paper, we do provide a classical formulation using this traditional objective
function in Section 4. But then, we also propose a novel objective function based on
the Information foraging theory in Section 5. For either formulation, our concept of cost
encapsulates the efficiency of a broad set of users: While addressing the speed-up for
expert users who know the application well, we also wish to assist the exploratory efforts
of novice users who are often searching for required commands with only a vague idea of
requisite command names.

2.2. Scope

There exists a wide variety of interaction techniques for menus and menu-like paradigms
for command selection [1]. This paper specifically focuses on non-adaptive menus with
hierarchical structures. The positions of commands are not assumed to change during
interaction. We target designs wherein commands are organized by groups and tabs.
The objective function does not consider all aspects of menu design: selection of labels
or shortcuts, item length, etc. For the purposes of this paper, navigation occurs by selec-
tion of a tab and then a command within the tab. In this instance of hierarchical menu
systems, only a limited subset of a menu tree can be visible at a time. While it is possible
to extend the techniques in this paper to cover some other types of hierarchical menus,
that discussion is beyond the scope of the paper.

3. Related Work

Our work builds on results in four areas of related work: (i) modeling of search per-
formance for menus, (ii) meta-heuristic techniques, (iii) integer program (IP) approaches
based on the assignment problem, and (iv) facility layout and next release problems in
operations research and software engineering.

3.1. Search performance and predictive models

Human factors in selection performance have been studied extensively. There is evi-
dence of the following empirical effects:

1. Shorter menus are faster to use [22, 6, 23];

2. Targets that are closer to the top are faster to select [6, 17];

3. Linear menus with grouping (“semantic” or “systematic” menus) are much faster
than random or alphabetical ones [19, 7, 24, 8];

6



4. It is faster to select a target that is present in the menu compared to determining
that the desired target is not present in the menu [4];

5. Users get faster with practice, and this positive effect influences other (non-target)
items in the sub-menu also [17]; and

6. Users often fixate on one of the first three items [25].

Prior mathematical models [4, 26], typically using non-linear regression, capture some of
these effects. Cognitive simulations such as EPIC [24], ACT-R [25], and computational
rationality [20] capture more effects but are very computationally expensive.

It has been found that users utilize various search strategies in menu navigation:

1. Directed search uses memory of element locations learned through practice for guess-
ing where to search [4];

2. Serial search progresses downward from the first or topmost command, after which
items are sequentially examined one at a time [6];

3. Random search selects an arbitrary position within the menu for fixation [6, 24];
and

4. Visually guided search is based on sampling of visual landmarks such as the end of
the menu or labels sharing visual features with the target [4, 20].

No previous mathematical model has precisely predicted the search behavior in a
hierarchical menu. Sears and Shneiderman [11] presented a model for split menus, where
frequently used items are placed at the top of a linear menu, in their own group. Their
model assumes that search time for frequently selected items is a logarithmic function of
distance from the top and for low-frequency items is a linear one. Lee and MacGregor
[27] proposed that selection time follows the number of pages needed to access retrieval
of a given item, number of items per page, time needed to assess one item, keystroking
time, and system response time. These models do not account for the effects of any other
design factor than the number of items on a page or in a group. Bailly and colleagues
[4] introduced a free parameter to their model, indicating which of two search strategies
is used. A gaze pattern was found wherein experienced users fixate on the first items in
sub-groups and then either drill down or not. However, the pattern was not captured
well by the model, and the authors identified this as a target for further improvement.
A recently presented model [20] suggests that the optimal search strategy adapts to the
semantic organization of a linear menu, allowing users to gaze more directly at relevant
sub-groups. This model relies on reinforcement learning, and it has been tested for
predicting the effect of menu organisation and menu length. on task completion time and
eye movements.

With this paper, we investigate IFT’s suitability for a computationally efficient model
capturing a key aspect of hierarchy-related decision-making: the decision to keep reading
a sub-menu (tab or group) versus jump to the next candidate.

3.2. Menu optimization using meta-heuristic techniques

Most prior work [28, 29] on menu optimization has used a meta-heuristic technique.
Meta-heuristic techniques do not make explicit assumptions about the objective func-
tion; rather, they consider it as an oracle that tells them the objective value of a given
candidate. As a result, they can work with any objective function, including non-linear
functions and even simulator models. In contrast to exact methods such as integer pro-
gramming, meta-heuristic techniques cannot offer guarantees that the best design found

7



is optimal. Moreover, meta-heuristic techniques, such as simulated annealing and genetic
algorithms, include many hyperparameters, the tuning of these hyperparameters may
affect their performance.

Troiano et al. [30] used an index of accessibility and a user preference indicator to
define objectives in a genetic algorithm (GA) solver that operates from the number of
children of the item and depth of the menu hierarchy. Matsui and Yamada [31] explored
objective functions to address selection time that consist of search and pointing, a penalty
term for functional dissimilarity with other designs, and a menu granularity regularizer.
As the authors noted, the approach is brittle, because results can change dramatically
with small adjustments to objective weights. The state-of-the-art approach at the moment
is MenuOptimizer [2]. It uses a weighted sum from a selection time model (SDP [26]) and,
as in Troiano et al.’s work, a structural metric. A weakness due to the use of the latter
is that it produces results that are driven to be similar with previous designs. Further,
the quality of the resulting solution changes with every execution. However, reasonable
results can be produced quickly, within 5–15 minutes even on commodity hardware. The
design of hierarchical menu systems has been restricted to the realm of meta-heuristic
techniques, in areas such as simulated annealing [31], genetic algorithms [32, 30], and ant
colony optimization [2].

Heuristic constructive approaches to optimization generate candidate designs using
some heuristic that has been found to work in the domain. In menu optimization, this
approach has been explored as a combination of exhaustive search and “drill-down” [19,
18, 33]. That is, it initially explores the most relevant solution directions, applying a
breadth-first paradigm, then chooses a few suitable candidates for in-depth inspection.
The methods presented thus far assume, however, that potential groupings of commands
are stated a priori. This is a limitation, because the grouping predetermines the optimal
solution. In this, the task becomes harder for the designer and relatively easier for the
optimizer, which need only solve the ordering problem. Often, the grouping is a defining
part of the problem at hand.

The method described in this paper requires only associations among frequent ele-
ments, without any pre-grouping of elements. However, if the a priori grouping were to
be already available, the methods in this paper can make efficient use of this knowledge:
Association values can be expressed using a binary mapping (value 1 when concerned
commands are in same group and 0 otherwise).

3.3. Exact methods: Menu optimization as an assignment problem

Unlike meta-heuristic techniques, exact methods are guaranteed to find the optimal
solution in finite time. However, the time required may be an exponential function of
the problem size (most interesting problems are NP-hard). The simplest exact method is
explicit enumeration, wherein the objective value of each element in the solution space is
evaluated and the current best solution (the so-called incumbent) is updated. In contrast,
implicit enumeration makes use of relaxations that can be solved efficiently. One very
popular form of implicit enumeration, which we use here, is Branch & Bound. This is
one of the standard methods for solving Integer (Linear) Programs.

Keyboard layout design was defined in the 1970s as a quadratic assignment problem
wherein the goal is to minimize the average time for movement between letters assigned
to buttons. Relaxations to the quadratic assignment problem (QAP) formulation have
reduced solution times with integer programming (IP) solvers to a permissible range even
with realistic data [34].

8



The simplest application of this approach to menu design arrives at solutions for a
linear assignment task [21]; the formulation can be extended to full menu systems using
hierarchical structures. Yet, designs created using assignment alone display systemic
shortcomings. In particular, items are not assigned to groups, which precludes hierarchy.
In addition, the most important items in each group are placed in the center (because of
the associativity term). Moreover, though the design task has been formulated in integer
programming terms, the problem has to be finally solved by means of meta-heuristic
techniques due to the expensive nature of the evaluative functions required.

3.4. Selection problems in diet planning and service design

Menu planning (or diet planning) for the restaurant industry was defined as a linear
programming problem in 1964 [35] and has received sustained interest since [36]. The
task here is to select food combinations that meet dietary, gastronomic, and production
objectives. The diet problem is a variant of menu planning for an individual or group
[37].

While food-menu planning is not relevant for the design of menus in computing sys-
tems, the selection of functionality is. Functionality selected for an application or service
must be accessed via a menu system. What is known in software engineering as the next
release problem refers to selection of new software features [38] that accounts for user
preferences, dependencies among functions, and costs. In a recent paper [39], integer lin-
ear programming (ILP) was presented for the selection of functionality in interaction and
service design. Here, we do not discuss the problem of how to select the menu commands;
we assume the set N to be known.

3.5. Facility layout problem

Facility layout problem (FLP) is a class of combinatorial decision-support system
that deals with the location (placement) of facilities for factories [40]. Facility location
translates to the search for an optimal arrangement of non-overlapping indivisible entities
within a given structure. The objective measure to be minimized is defined in terms of
the weighted distance between the centroids of the entities being positioned. Within the
broad FLP field, closest to menu design is the multi-row facility layout problems, or [41], a
variant that allows for a layout with multiple rows (in a predetermined number) to which
the entities can be assigned. The entities all have the same size (with height equal to
the common row height), distances between adjacent rows are equal, and entities can be
assigned to any row in general. We note a parallel between FLPs and our problem. The
arrangement of commands into unique rows within tabs matches the multi-row facility
layout problem (MRFLP). The literature discusses mixed-integer programming and also
semi-definite optimization approaches for MRFLP (see Gen & Cheng [42]). Regrettably,
both approaches involve a highly non-linear objective function, which adversely affects
computational performance. We cannot expect these prior formulations to address prob-
lems with sizes beyond 15–20 menu commands and with additional complicating design
considerations. Moreover, their objectives are different and not directly to menu use,
which emphasizes comprehensibility and fast access.

4. Reformulating the Design Task: A Minimal Representative Formulation

The first part of our method is a flexible integer programming formulation for key
decisions in designing a hierarchical menu structure. Intuitively the problem is defined

9



as ordered sets at multiple levels. We pursue a formulation that is compact enough to
produce results with limited computational effort. It is flexible also in the sense that it
can support evaluative functions of numerous types. We designate the formulation as a
minimal representative formulation (MRF).

The primary intention behind the MRF is to represent the structure of the hierarchical
menu design problem, expanding from the assignment problem as dealt with by previous
work. This lets us plug-in various evaluative functions and thereby benchmark existing
approaches to menu optimization. The formulation relies on principles utilized in the
relevant technical literature but not previously explored for menu optimization. These
principles have made it possible to overcome some limitations of the assignment-based
approach in the hierarchical case. In particular, we can now express an evaluative function
that refers to a user’s navigation behavior both at the level of commands and at the
level of sets of commands. We exploit this to construct an information-foraging-based
evaluative function that is more natural for hierarchical menu systems than the Fitts’
law and associativity matrix approach (see the next section). The MRF is developed
here as a mixed-integer linear program. We try out two evaluative functions to compare
their results. The final outcome from the MRF is expected to represent the best possible
results that can be obtained via techniques and approaches from prior literature.

Technically, the MRF employs decision variables that map specific commands to
individual locations (row numbers within tabs). To address the set-cover-related consid-
eration of determining the intra-tab grouping of commands, we define decision variables
to represent the number of groups and also the constitution of any individual group.
Finally, to ensure the integrity of groups and row numbers (i.e., avoid “holes” between
row numbers), we use a general precedence variable that avoids non-linear terms while
ensuring the expected computational performance. This results in a compact model with
fewer variables and constraints.

Decision variables:

Xc
i =

{
1 . . . if command i is placed in group c
0 . . . otherwise

Y τ
i =

{
1 . . . if command i is placed on tab τ
0 . . . otherwise

Qcτ =

{
1 . . . if group c is placed on tab τ
0 . . . otherwise

Zij =

{
1 . . . if commands i, j are placed in the same group
0 . . . if commands i, j are placed in different groups

Wij =

{
1 . . . if commands i, j are placed on the same tab
0 . . . if commands i, j are placed on different tabs

Rr
i =

{
1 . . . if command i is placed on the rth row of some tab
0 . . . otherwise

ti = The time required to reach command i as indicated by Fitts’ law

10



Scc̄ =

{
1 . . . if group c immediately precedes group c̄ on some tab
0 . . . otherwise

Sc =

{
1 . . . if group c is the first (topmost) group on some tab
0 . . . otherwise

ξc =

{
1 . . . if group c is used (has a non-zero number of commands)
0 . . . otherwise (empty, with no commands)

βτ =

{
1 . . . if tab τ is used (has a non-zero number of groups)
0 . . . otherwise (empty, with no groups or commands)

Θcc̄ =

{
1 . . . if group c is placed anywhere before group c̄ on some tab
0 . . . otherwise

P c = Starting position (row number) of group c within its tab

Decision variables X, Y,Q define the unordered structure of the groups and tabs. Decision
variables S and Θ offer alternative ways to enforce the relative ordering of groups. The
absolute positioning of commands is provided by R. The variables W,Z, ξ, β ensure
the sanctity of the overall mathematical model. By ”sanctity”, we imply that these
variable are intended to ensure that the decisions enforced by the other variables are in
synchronization with each other. In the absence of W,Z, ξ, β, the results implied by the
other variables can be infeasible or non-unique.

The decision variable Θ requires more explanation. Classical mixed-integer program-
ming formulations handle sequencing of elements by using an immediate precedence vari-
able; this variable typically specifies that some element i immediately precedes some
element j. The immediate precedence variable inherently dictates the relative ordering
and also the collocation; there must not be any element k between i and j. In contrast,
Θ specifies the relative order alone and not the collocation. Hence, one or more elements
may be present between i and j. This general precedence variable provides several logical
distinctions from the immediate precedence approach, and it will be required for row
numbering. The full set of constraints applied to these decision variables is covered in
the Appendix (Subsection 9.2).

4.1. Example application: An evaluative function based on previous work

A key benefit of the MRF is that it can be used with a broad range of evaluative
functions. Here, we replicate the “two-fold-objective” function of Bailly et al. [2], which
balances (i) the time required to reach the commands (weighted by the frequency of use)
against (ii) the association of commands placed in a specific group or on a certain tab.

Maximize:
∑
i∈N

∑
j∈N

Aij (λcZij + λmWij)− λf
∑
i∈N

Fiti (1)

The parameters λf , λc, and λm are the relative weightages for access time (from Fitts’
law), intra-group associations, and inter-group (intra-tab) associations. We will discuss
values for these weightages in Subsection 5.3. We designate this as the two-fold objective
because we are capturing two different metrics here: the term in A implies the effort in
guessing the location of a command; the term in F captures the time required to reach a
particular command when the user already knows its location. The results obtained for
this objective function are presented, in Section 6, for comparison of the results to those
obtained from the evaluative function based on the information foraging theory.

11



5. The Information Foraging Approach

We develop a new evaluative function based on the information foraging theory (IFT)
[43]. IFT models search behavior as utility-maximization in a patch world. The theory
is an application of the optimal foraging theory in biology, which describes the hunting
and food search behavior of animals. An adaptive agent is assumed to change the patch
as soon as the gain decreases to a level that it would make more sense to move elsewhere.
Consider a wolf that has nearly exhausted the food in its current forest. Should it stay
there, go to a nearby forest with rabbits (representing few calories per day), or travel a
bit further to reach a different patch with deer (which are harder to catch but offer a
greater gain)? Application to menu interaction follows analogous reasoning. Just as in
food foraging, the (information) ecology of a menu is patchy ; that is, information about
the target is unevenly distributed to patches such as groups and tabs. Because some of
the patches are not fully visible and are accessed only via higher nodes in the tree, the
agent must decide what to attend under uncertainty. From what is locally visible (e.g.,
the first items in a group), the user must infer what the rest of the region may carry.
Hence, the key to menu design is not how close an item is to the top, or to related items,
but how economically the user can decide how well it represents the rest of the menu.

To model this kind of “information scent” [43], as is done in IFT applications in
general, we assume that an agent’s environment consists of patches indicative of a target
to varying degrees and connected with distances (or time costs). Each patch is associated
with a gain: a function describing how quickly information is extracted when the user
is in that patch. In IFT, a non-linear (logarithmic) function is used to model gain. It
is continuous and has the property of diminishing returns: as more time is spent in a
patch, less information becomes available, and a rational forager moves to another patch.
The theory further posits that the user must make a decision for every set of commands
attended. In the case of a menu, the user looks at the leading (top) commands in the set
(e.g., under “File”) and then makes a guess as to whether or not this set of commands
may contain the desired command (e.g., “Zoom In”). If the user guesses that the current
set should contain the required command, then the user will investigate further by reading
(exploring) within this particular set. Otherwise, he or she discards the current set and
moves on to the next without really analyzing the content of the current set.

To make IFT amenable to mixed-integer programming, we have formulated a sample–
discard–explore paradigm that allows avoiding non-linearities (e.g., logarithmic gain func-
tions) but retains the essence of this foraging behavior. Intuitively, the sample–discard–
explore function captures four logical outcomes possible during search:

1. True positive: The user guesses that the set contains the target command, and it
indeed contains that command. In this case, the cost during search within the set
is the time consumed (by Fitts’ law) to scan the list and move the pointer over the
required command in the set.

2. True negative: The user guesses that the current set does not contain the required
command, and the set indeed does not contain it. No further cost is incurred.

3. False positive: The user guesses that the set contains the required command, but
it actually does not. The additional cost incurred for this set is the time consumed
(under Fitts’ law) to navigate all commands in the set. This cost is proportional to
the size of the set.

4. False negative: The user guesses that the set does not contain the required com-
mand, but in reality it does. Now the user must (fruitlessly) analyze all succeeding

12



sets, such as subsequent groups on the tab.

We assume that the user begins the search by sequentially analyzing (sampling) the lead
elements of every set encountered. On the basis of the decision made to discard or explore
any specific set, the user invests the corresponding effort for that set. This process repeats
until a true positive (target) is reached. This logic can be applied recursively at any level
of a hierarchy where multiple options (sets) are available. In our application we assume
two levels: Tab and Group. The insight is that the total time expended in locating a
specific command is the summation of time spent in the four possible scenarios, weighted
by the probability of the user making the corresponding decision for the relevant set. To
obtain an estimate for the entire menu structure generated by an optimizer, the estimated
times are further weighted by the frequency of use of individual commands.

In addition to the search-related time components, motor selection efforts must be
considered. Consider the case where the user already knows or remembers that some
command i is in group c on tab τ at row number r. There is no search effort at all, yet
the user still takes some time to traverse to row r on tab τ . As in previous work, this
time is as computed from Fitts’ law, and it depends on r and τ only. We address this
time via the decision variable ti.

We also need to quantify the user’s expectation of a specific group or tab featuring
command i. This expectation depends solely on the user’s current knowledge of the
presence/absence of other commands (such as j) in the group or on the tab. We quantify
this expectation as follows:

1. If the desired command (i) is the leading (topmost) element of any group, the
expectation is 100% for that group.

2. If leading element j of any group has a very high score (above 80%) for associa-
tion with command i, then the expectation is 100% for that group. Conversely, a
very low score (below 20%) for association between i and j leads to a negligible
expectation.

3. For intermediate, unexceptional association score values, the expectation is scaled in
proportion to the relative value of the association score with respect to the median
one.

Given a group c and an element i, we can judge the expectation of the presence of i in c
by looking at lead element j of group c. Hence, the expectation of i’s presence depends
solely on the association between i and j. We denote this expectation as Eij. We note
that Eij can be computed in advance through a pre-processing step, so it can be treated
as a known parameter in the mixed-integer programming formulation. We use Eij to
scale the efforts in every group for every command.

5.1. Mathematical formulation

To develop an integer programming formulation based on IFT, we require decision
variables that can uniquely specify the solution (the resulting layout) while enabling com-
putation of the various efforts mentioned above. The specific decision variables (including
computation of specific efforts) are explained below. We note here that the decision vari-
ables described in the previous section are required too, along with their constraints.

13



U j
c =

{
1 . . . if command j is the topmost (lead) element of group c
0 . . . otherwise

Φc
i = Total time / cost for command i computed for group c

αci = True-positive time / cost for command i computed for group c

σci = False-positive time / cost for command i computed for group c

δci = False-negative time / cost for command i computed for group c

Ωτ
i = Penalty incurred for command i if it is placed on (non-standard) tab τ

The decision variable U j
c assists in locating the lead element in any group. Our IFT

approach is based on this lead element, so its knowledge is critical. The variable Φc
i

encapsulates the expected total time, cost or effort required to reach the command i if it
were to be placed in group c. The value of Φc

i will be a function involving the location
of group c, its lead element and overall composition. This value of Φc

i is expressed in
terms of the three possible navigations – true-positive, false-positive and false-negative
as covered by αci , σ

c
i , δ

c
i respectively.

The objective is to minimize weighted cost Φ (weighting is by frequency of use) for
the time taken to reach any command placed within any set.

Minimize
∑
i∈N

Fi

( ∑
c∈C

Φc
i +
∑
τ∈T

Ωτ
i

)

such that:

Φc
i ≥ λ0ti + λ1α

c
i + λ2σ

c
i + λ3δ

c
i . . . ∀ i ∈ N, c ∈ C (2)

This constraint is the key to the IFT approach and requires more explanation. Here, Φc
i

does not intend to capture the exact time spent by a specific user in finding a specific
command during a specific single session of usage. Rather, it intends to encapsulate
the weighted estimate of sum of searching effort and accessing effort for that command.
The first term of this constraint represents the time (computed via Fitts’ law) needed to
navigate to command i if its location is known in advance. But the wasted efforts from
false positive or false negative – and even the searching effort from true positive – must
also be counted while optimizing the location of c. The remaining terms indicate the
relevant costs incurred in searching for command i with respect to group c. Hence, Φc

i is
the summation of all concerned costs. The λ values are weight factors to be specified by
the designer.

Xc
i ≥ U c

i . . . ∀i ∈ N, ∀c (3)∑
i∈N

U c
i = ξc . . . ∀c (4)

14



These constraints ensure that exactly one command is marked as the lead element of
every group. In addition, we augment Equation (27) to ensure that command i marked
as the lead element of any group c has its row number equal to P c. Next, we look at
constraining the values of individual cost components. To calculate an individual cost
component, we take the scalar product of the expectation value (probability of exploring
the set) and the time expended in exploration of this set. For example, the expected
expense of a false positive for command i in group c is as follows:

σci ≥ Eij
∑
k∈N

Xc
k −∇(1 +Xc

i − U c
j ) . . . ∀i, j ∈ N,∀c (5)

Here, ∇ is a suitably chosen sufficiently large constant. If the ∇ related term is neglected,
then the false-positive cost is computed in terms of the size of the group that was need-
lessly explored. The ∇ related term voids the constraint if j is not the lead element or if
i actually is present. Thus, the constraint addresses the case of a false positive occurring
when group c is led by element j and the user is exploring c to search for i when i is not,
in fact, present in c. Next, let us consider the case of a false negative for command i in
group c:

δci ≥ (1− Eij)(|C|)−∇(2− U c
j −Xc

i ) . . . ∀i, j ∈ N, ∀c (6)

If the ∇ related term is neglected, then the false-negative cost is computed in terms of the
number of sets that will be needlessly explored. The ∇ related term voids the constraint
if j is not the lead element or if element i is not really present. Thus, the constraint
addresses the false-negative case when group c is led by element j and the user discards c
to search for i because of a low value for Eij. This means a high value for (1−Eij). Next,
we examine handling of the penalty related to the tab locations where certain commands
are normally expected.

Ωτ
i ≥ λ4(1− Y τ∗

i ) . . . ∀ . . . ∀i ∈ N,∀c (7)

Here, τ∗ refers to the preferred tab as specified by Li. If the command is not on its
preferred tab, a penalty of λ4 is incurred.

5.2. Handling of loners

“Loner” commands have poor association with other commands but may have a high
frequency of usage. To avoid disturbing the cohesion of other (well-associated) groups,
we strive to put all such loners in a separate group of their own. However, the loner group
itself becomes contentious when the association for a specific command is not at either
extreme – that is, when the command is not associated strongly with other commands
but does not actually have an average association low enough to denote it as a loner.
Putting such commands in the loner group makes this loner group too large.

We introduce a new hypothetical (invisible) command κ to the set N . This command
will not be placed in the actual menu; it is only introduced temporarily to serve as a focal
point for association of all loner commands. The new command has the lowest non-zero
usage frequency and no location preference, but it will still be constrained to be the lead
element for its group, specifying

∑
c U

c
κ = 1. The association of this command with all

other commands is computed as follows:

15



1. For any command i ∈ N , compute the sum of the association scores for i with all
other commands j ∈ N , and designate this sum as Σi

2. Find the largest value of Σi among all i ∈ N , and designate this maximum as ∇
3. For any command i ∈ N , compute the value ∇ − Σi, to be designated as loner

factor Wi

4. The association of command i with κ is calculated as Wi / the square root of N

5. If any command i has greater than average association with any one command in
N , the association of command i with κ is marked as zero

After this, the optimization problem is solved for the augmented set N + {κ}. Naturally,
the association score for strongly loner elements with κ is quite high. This ensures that
κ serves as a “loner magnet,” attracting all loner elements to a single group. Further,
the weight used to compute the association score from the loner factor in step 4 can be
modified to control the size of the loner group. No other constraints are required for the
loners. The loner factor automatically handles the balance of populating the relevant
group with commands while avoiding the problems of very large or very small groups.

5.3. Parameter values

The results from IFT (and even from the minimal representative formulation) are
sensitive to the values set for λ, as direct weights in the objective function, any gross
modifications to these values result in different menu layouts. For the results reported
on in this paper, we have aimed for rough equivalence in settings among the objectives:
no single term dominates in the overall objective function. To achieve this equivalence,
we still need some rough information about the expected resultant layout of menus. So,
we used the following as initial indicative intentions regarding layouts:

1. We prefer the menu layouts such that the number of commands (rows) in every tab
is not varying too much. As an example, we note that the baseline or commercial
menu structure in Notepad application has a very strong variation. While the Edit
tab has 11 commands, the View tab has just one command. We would not prefer
such a huge variation in our menus.

2. The maximum number of permitted tabs scales up as a logarithmic function of the
number of commands to be placed.

3. We prefer not to use single-element sets. If some command is so unrelated to all
other commands, it is a suitable candidate for being in the loner set. A single
element group – as used in the View tab of the baseline version of Notepad appli-
cation – will create several problems. Primarily, it hampers the access time of all
subsequent commands. Secondly it also increases the total cost of all false negatives
for previous commands.

The intentions listed above are not enforced as hard constraints and are not included in
the objective functions. Rather, they are used as indicative guidelines while designing
the values of parameters λ.

Consider the values of λf and λc as presented above in Equation (1) for the minimal
representative formulation. For a data instance involving n elements, we first expect
that roughly log(n) tabs are allowed and every tab has n

log(n)
commands on average.

Assuming that the overall User-Interface is of width w and height h, the term
∑

i∈N Fiti
in Equation (1) will have a value of the order of magnitude of roughly wnh

2 log(n)
. The term∑

i∈N
∑

j∈N AijZij will be in the general vicinity of n2/2. For a sufficiently large canvas

16



and for lower value of n, value of wnh
2log(n)

is substantially larger than n2/2. To ensure that
the two terms have comparable impact in the overall objective function, the value of λc
should be around 2wh

nlog(n)
times that of λf . A similar approach is used to initially set the

lambda values for IFT.
However, we expect that the designer will fine-tune the results further. It is expected

that the final relative values will be ascertained through trial-and-error over a large num-
ber of results.

6. Results

In this section, we assess the quality of the optimized designs and report on perfor-
mance quantitatively.

6.1. Task instances

The approach was tested with three realistic design scenarios, selected for their repre-
sentativeness, size, and diversity as cases. Our goal was to use a wide range of often-used
applications, where the names and meanings of most commands are clear to typical users.
Users who are already conversant with the commands will also have some ideas and ex-
pectations as to mutual associations, preferred placements, etc. With these objectives,
we chose the following applications as test cases:

1. The classic Windows Notepad™ application is a widely used compact, elementary
text editor. The existing design involves 23 commands, distributed across five tabs.

2. The Adobe Acrobat Reader™ application is a commonly used reader for files in
PDFformat. Version 11 of this application has a menu system with 46 commands,
distributed over five tabs.

3. Mozilla Firefox™3.6 is a well-known browser application. Its menu system has 51
commands, spread across seven tabs.

These instances are represented by means of the following parameters: (i) names (text
strings) and relative frequency values F for all commands, (ii) association score A for every
pair of commands, and (iii) (optional) location preference L for any of the commands.

To ensure the practicality of the instances, the authors implemented a short exercise
in which two external designers (students enrolled in an human-computer interaction
program) were asked to rate two parameters independently: (i) how many times in the
course of a typical usage session is a specific command required and (ii) how closely are
the two given commands related to each other. The answers were quantified to yield
the frequency and the association score, respectively. We found the disagreement to be
below one percent, so the values from the two raters were accepted as the data instance
specification.

In the discussion below, the incumbent menu is the menu that exists in the commercial
applications as of the time of writing. This is referred to as the “baseline design.” The
baseline designs for all data instances are provided in Appendix 9.3. The layouts produced
via the optimization method proposed in the paper are denoted as the “optimized design.”
Optimized designs are covered in Section 6.

6.2. Implementation and Numerical Performance

The mixed-integer programming (MIP) formulations were coded in the Java™ SE
(build 1.8) plarform. These formulations were solved using IBM™ Cplex™ 12.6.2 solver

17



on an eight-core 64-bit Intel™ i7™ processor running at 2.8 GHz with 16 GB of RAM. The
MIP solver was used with Concert™ technology in conjunction with several customized
callbacks.

Computation times for the three cases are given in Table 1. These times are reported
as averages over multiple computational executions, with different values for weight func-
tions λ and Φ (for values as computed in Subsection 5.3).

We note that for extreme values of λ and Φ, much shorter computation times were
observed. For example, if λf >> λc and λf >> λm are set, then the minimal representa-
tive formulation objective does not really consider the association between commands at
all. For such an extreme setting, the corresponding problem can be solved within a small
fraction of the computational time listed. So, the computational performance strongly
depends on the chosen parameters.

The listed performance is for the default versions of the MIP formulations (where the
raw model is passed to the solver without making any attempts to improve performance).
In practice, there exist several MIP techniques to improve computational performance.
Further, the performance improves substantially when we start with a known (existing)
solution instead of starting from scratch. In our case, one feasible solution (the existing
layout) is always known, so this technique can be easily utilized. However, the discus-
sion of such MIP techniques is beyond the scope of the current paper; our focus is to
demonstrate the efficacy of the menu design approach and not the numerical method.

Table 1: Computation times for optimal solutions from the optimizer, for two distinct evaluative functions

Application Number of elements
Average time to find the optimal solution, in minutes

Two-fold-objective Approach Information Foraging Approach

Windows Notepad 23 17 22
Adode Acrobat Reader 46 960 1201
Mozilla Firefox 51 1145 1633

Although the computational effort excludes the use of these solvers in interactive de-
sign tools, they appear satisfactory with regard to the problem considered here, especially
for one-shot optimization. Developers of professional software should be ready to invest
a few hours or even two weeks of computational effort to ensure the quality of their menu
design. This can be further speeded up by using dedicated hardware: our computations
were done using a commodity laptop. Secondly, the data shows that using IFT does
not significantly impair performance relative to that with the earlier, two-fold-objective
approach.

6.3. The two-fold-objective approach

We now present designs generated via the algorithms discussed earlier for the data
instances specified in Subsection 6.1. The results for the three data instances with the
two-fold-objective approach are provided in figures 2, 3, and 4.

18



Figure 2: A menu optimized for the Windows Notepad™ text editor with the two-fold-objective minimal
representative formulation approach.

Figure 3: A menu optimized for the Mozilla Firefox™ browser with the two-fold-objective minimal
representative formulation approach.

Figure 4: A menu optimized for the Adobe Acrobat™ PDF viewer with the two-fold-objective minimal
representative formulation approach.

It should be noted that the optimized menu for Notepad has fewer tabs than the
baseline (commercial) design. This is because the Notepad data instance involved high
scores for association between commands. The association values for pairs of commands
for Acrobat and Firefox were comparatively low. The sparse association led to a wider
layout with more tabs and smaller groups. The argument extends to the Acrobat menu
also: two large groups can be seen in the Acrobat design, in the first and the second tab.
The constituent commands of these groups have the strongest mutual associations. In
addition, the association scores of these commands represent the only case of associations
being relatively large for that data instance. Hence, the two-fold-objective formulation is
strongly driven by the relative association values. If we had set the λ values in Subsection
4.1 differently, that formulation would not have valued the associations scores so highly.
The two-fold-objective formulation is quite sensitive to the λ values. Further trials with
the optimizer showed that multiple, quite different feasible solutions could be found within

19



a narrow range of objective values. However, the specific relative weightage of the two
primary terms in the objective function led to a situation in which an odd/unexpected
placement was linked with a slightly higher objective value. We conclude that the two-
fold-objective nature of the minimal representative formulation approach (with weighted
performance from Fitts’ law and mutual association of commands) led to a more opaque
objective function.

Subjectively, it is difficult to justify the placement of a specific command in the
location suggested by the optimal solution. Some observations can be made nonetheless.
For example, the lead elements of most groups in the Adobe Acrobat menu are quite
esoteric and unrepresentative. We note also that the two-fold-objective approach did not,
without further information, address preferential placement of commands on desirable
tabs. For example, the last/rightmost tab in the Firefox menu contains the Cut, Copy,
and Paste commands and not the Help and About commands commonly expected here.

6.4. The IFT-based approach to optimized menu designs

Next, we consider the results obtained with the information foraging approach. The
layouts generated are depicted below, in figures 5, 6, and 7.

Figure 5: The IFT-based approach for a menu optimized for the Windows Notepad™ text editor.

Figure 6: A menu optimized for the Mozilla Firefox™ browser via the IFT-based approach.

Figure 7: A menu optimized for the Adobe Acrobat™ PDF viewer by means of the IFT-based approach.

20



A few subjective observations can be made about the results. Firstly, the results
for Notepad and also for Adobe Acrobat show a larger number of tabs. However, the
tabs appear more balanced than with the previous method. In particular, there is less
deviation among the tabs in the number of commands. An exception is the first tab
in the Firefox menu, which is large relative to the others, but the remainder of the
menu is well-balanced. Also, the groups appear reasonable in light of usage frequency
(e.g., Undo, Cut, and Copy), associations between commands (e.g., Undo and Redo),
and expectations for command position (e.g., About). In addition, groups’ first items
(lead items) are generally more indicative of the rest of the group here than with the
two-fold approach (e.g., “Full-screen-Mode” in Figure 4). Finally, there is good control
of loners and also of preferential placement of elements on tabs, thanks to these being
explicitly addressed in the formulation. With the next section, we explore whether these
observations correlate with empirical results for user performance.

We should note that the IFT-based approach also turned out to be less sensitive than
the two-fold one. There are relatively few different feasible solutions in close proximity
to the optimal one. The IFT approach is affected less by minor variations in the relative
weights of the terms in the objective function. This should be advantageous in cases
wherein the weights cannot be deduced a priori.

7. Empirical Evaluation

A controlled laboratory study was carried out in line with established practices in
research on menu interaction [4]. We compare average selection times between optimized
and non-optimized designs when everything else is kept equal. In the conditions used,
the name of a command (the target) is shown on the display and the user is to find and
select it as swiftly as possible. Three optimized designs (the task instances described
above) were compared with commercially deployed designs (baselines). A non-uniform
Zipfian distribution of command selection frequency was used, as in earlier research [44].
We applied the same distributions used in the task instances, which were obtained via
data from the external designers (see above). To avoid interference effects, each user
experienced either the optimized or the non-optimized version of a menu, not both.

7.1. Method

Participants: Twenty-four participants were recruited by means of email advertise-
ments and personal networks. Their average age was 29.71 (SD: 3.14). Eight of the
participants were female. One subject was left-handed. All were non-native English-
speakers and familiar with computers’ mouse and menu systems. At the end of the
experimental study, we asked each participant whether he or she had seen these menus
before or not, whereupon about 80% claimed to be familiar with these menus but not
to have any idea of whether the locations of the commands had been changed. All were
compensated with a movie ticket.

Experiment design: Three applications were studied, as explained in the description
of task instances above: Notepad, Adobe Reader, and Mozilla Firefox. Each user used
an application either in the optimized or in the baseline condition (again, not in both).
This yielded eight unique combinations (baseline or optimized for Notepad multiplied by
baseline or optimized for Adobe Reader multiplied by baseline or optimized for Mozilla
Firefox: 2 ∗ 2 ∗ 2 = 8). Participants were assigned to conditions by rotation.

Task and procedure: The study started with a brief introduction to the purpose
of the study and the tasks to be performed. Demographic data was collected with regard

21



to gender, age, native language, and level of familiarity with menus, via a questionnaire.
After this came the main part of the experiment: The label of every target command (to
be searched for) was displayed at the outset, after which the menu was shown once the
participant had pressed a Start button. The task now was to find and click the target
command as quickly as possible. Selection time was measured as the duration between
pressing the Start button and clicking the command within the menu.

For Notepad, Mozilla Firefox, and Adobe Reader, this sequence of steps was completed
40, 80, and 80 times, respectively. The participants explored one layout at a time before
proceeding to the next application. They had to find several commands within the given
candidate layout, and then the next candidate layout was used. The complete procedure
took approximately 30 minutes per user.

Materials: For the 40, 80, and 80 commands (again, presented for Notepad, Mozilla
Firefox, and Adobe Reader, respectively), the baseline designs were obtained from the
latest Microsoft Windows version of the application at the time of the experiment (in
January 2018). We used the Roulette wheel method [45] to sample from the frequency
distribution of commands in the menu (see the description of the task instances). Because
the optimizer does not choose tab labels, we used the first command on each tab as the
label for that tab. For fair comparison, this was done in both conditions.

7.2. The apparatus and setup

The experimental software was implemented in Python with the Tkinter module for
the menu system. Tkinter was used for presenting the menus and for recording selection
times, mouse trajectories, and background data. The experiment was carried out on a
computer running Windows 7, with 8 GB of RAM and a 20-inch LCD display. A mouse
was used as the pointing device. The transfer function and other settings of the input
device were specified by the experimenter and kept constant across all participants.

7.3. Results

Twenty-seven out of the 960 trials with Notepad, 27 out of the 1,920 with Mozilla
Firefox, and 42 out of the 1,920 with Acrobat Reader were removed from the final dataset,
for two main reasons: (i) selection of the wrong command (slip) and (ii) taking excessively
long to find the target. We found that selection times (STs) were not normally distributed,
as is common in reaction and choice reaction studies, and we used Mann–Whitney U
testing [46] for the statistical tests. Average ST was 1.99 s (SD: 1.12) for the optimized
Notepad and 2.38 s (SD: 1.58) for the baseline Notepad design, 3.01 s (SD: 2.64) for
the optimized and 3.36 s (SD: 2.74) for the baseline Firefox design, and 3.37 s (SD:
2.63) for the optimized and 4.59 s (SD: 4.14) for the baseline Acrobat Reader design.
Moreover, the p-value for all three applications was less than 0.05, showing that there
is a statistically significant difference between the optimized and baseline STs. In other
words, our method was able to decrease STs for these menus.

We also examined the number of tabs selected before finding of each command. The
average was 1.43 tabs (SD: 1.15) for optimized Notepad and 1.64 (SD: 1.29) for baseline
Notepad. The corresponding figures for Firefox were 1.84 (SD: 2.18) for the optimized
and 2.07 (SD: 2.25) for the commercial design, and those for Adobe Reader were 2.22 (SD:
2.10) for the optimized and 2.68 (SD: 2.72) for the baseline design. Statistical testing
yielded a significant difference in favor of the optimized design in the case of Notepad and
of Firefox. The effect was not significant for Adobe Reader. Nevertheless, the average
ST for the optimized Adobe Reader was 1.22 s less than the baseline value.

22



Table 2: Statistical results for Notepad, Mozilla Firefox, and Adobe Reader

Application
Dependent
Variable

Type
Statistical Values

Average SD Median U p-Value
Effect
Size

Notepad

Selection
time

Optimized 1.99 1.12 1.63
88984 < .001 -0.16

Baseline 2.38 1.58 1.93
Number of

tabs selected
Optimized 1.43 1.15 1

59448 < .001 -0.40
Baseline 1.64 1.29 1

Mozilla
Firefox

Selection
time

Optimized 3.01 2.64 2.11
360192.5 < .001 -0.17

Baseline 3.36 2.74 2.52
Number of

tabs selected
Optimized 1.84 2.18 1

417387.5 < .001 -0.08
Baseline 2.07 2.25 1

Adobe
Reader

Selection
time

Optimized 3.37 2.63 2.42
341381.5 < .001 -0.20

Baseline 4.59 4.14 3.14
Number of

tabs selected
Optimized 2.22 2.10 1

421775.5 .080 -0.04
Baseline 2.68 2.72 1

The change in selection performance over time is depicted in Figures 8. All trend-lines
in these Figures are default second order polynomial functions. They consistently show
a decrease in average selection time for both the baseline and the optimized menu. The
optimized one showed better performance at the end of the experiment and in some cases
also initially.

To understand learning effect more closely, we report average selection time per com-
mand in Figure 9. With increasing repetitions per command, the optimized and baseline
menus exhibit similar drop in performance, however the optimized menu shows a more
stable trend and an overall lower ST.

8. Personalization and Adaptation

The approach is not limited to one-shot computational design. In this section, we
discuss two further applications in personalization and adaptation of a menu system.

8.1. Personalization

In personalization, a menu layout is custom-designed for an individual or a group
of users with shared characteristics. Some software allows manually customizing menus.
For example, the Eclipse software system arranges its commands and menus in one way
(Perspective) for a ”developer” and in a very different way for ”tester”. Our approach
makes it possible to do personalization automatically when user data is available.

We illustrate this point using the Notepad application. A novice and casual user of
Notepad would presumably use the common elementary features such as ’Open, Save,
Cut, Copy, Paste’ and may also need ’Help’ often. On the contrary, an expert would pos-
sibly know keyboard shortcuts for most common commands (due to extensive experience
and familiarity).

So, we expect that experts would rather only need to use the Menubar to pick rarely
used advanced commands such as ’Word-wrap’ and ’Font’. This observation leads to
two entirely different usage patterns for the two sets of users – this manifests as two
different sets of frequency values for usage of commands. Figure 10 shows the menu
layouts recommended for a novice and an expert.

23



(a)
N

otep
ad

(b
)

M
ozilla

(c)
A

d
ob

e

Figure 8: Average selection times

24



1 2 3 4 5 6 7
Repetition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
ve

ra
ge

 se
le

ct
io

n 
tim

e 
(s

)

Optimized
Baseline

(a) Notepad

1 2 3 4 5 6 7 8 9 10
Repetition

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

A
ve

ra
ge

 se
le

ct
io

n 
tim

e 
(s

)

Optimized
Baseline

(b) Mozilla

1 2 3 4 5 6 7 8 9 10
Repetition

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

A
ve

ra
ge

 se
le

ct
io

n 
tim

e 
(s

)

Optimized
Baseline

(c) Adobe

Figure 9: Average selection time per command as a function of number of repetitions

(a) Classic (default) Menu layout for Notepad™ application

(b) Menu adapted for a ”Novice” user profile.

(c) Menu adapted for a ”Expert” user profile. Note the substantial rearrangement where
association is sacrificed for performance

Figure 10: Menu transition from Novice to Expert for Notepad™ application.

25



8.2. Adaptation

We can also support gradual adaptation of menus. Given a menu and user data,
we propose local changes to it in order to improve usability and simultaneously make it
learnable. Consider that a specific user is very well acquainted with the menu layout of an
application. If we propose a new layout that is drastically different from the existing one,
the user will require substantial effort in ’unlearning’ the previous layout and learning a
new one.

To minimize this retraining effort and still provide a better layout, we propose an
adaptation method building on the IFT-based optimizer. Consider that we quantify the
logical difference between two different menu layouts (that involve the same commands).
We propose this logical difference as the weighted sum of the tab position change and
the row number change of every command. Further, we constrain our computational
menu design procedure to search within a specified vicinity of the previous layout. The
resulting formulation is based on the following decision variables:

Πi = Change in tab position for command i from original layout to new layout

Ξi = Change in row position for command i from original layout to new layout

In conjunction with Π and Ξ, we also use decision variables from Sections 4 and 5. Then
we compute the changes in the menu layout by using constraints such as:

Ξi >=
∑
r

rRr
i − R̄i ∀i ∈ N (8)

Ξi >= −
∑
r

rRr
i + R̄i ∀i ∈ N (9)

Here R̄i is the row position of command i in the original layout. The objective function
includes as additional term to minimize the change from the original formulation, such
as:

w(
∑
i∈N

(Πi + Ξi)) + (1− w)(Performance objective from MRF or IFT)

Here w is a preference term showing proximity to the original layout. This formulation
forces the optimizer to find better-performing layouts that are not too much different
from the existing layout. Figure 11 illustrates this point by showing the Notepad menu
gradually changed with increasing distance from the original layout.

To appreciate the impact of this gradual adaptation of menu layouts, consider Figure
12. This shows the gradual adaptation of the menu layout where we balance the proximity
to the original layout against the objective of getting better performance. In this Figure,
we intend to demonstrate that our approach supports controlling the amount of change
made for adaptation of a menu layout. We vary the proximity of an adapted layout to the
original layout (OX axis), and see what performance improvement we can achieve with
this proximity constraint (OY axis). The blue line shows the improvement in performance
value (Fitts’ law). The green line shows the loss of familiarity (change from original).
The results reported here are for the Notepad menu.

9. Discussion and Conclusions

This paper has contributed to the study of algorithmic methods for computational
design of menus. The design of menu systems strongly impacts the usability and learn-
ability of the computing application. However, currently menu design remains a manual

26



(a) Default menu layout for Notepad™ application

(b) Close-to-original layout. Performance does not improve significantly, but
changes are more modest

(c) A farther-from-original layout. Performance improves significantly

Figure 11: Gradual adaptation for Notepad™ application

27



0 20 40 60 80 100
Enforced proximity to original layout

0

20

40

60

80

100

Re
co

rd
ed

 c
ha

ng
e 

fro
m

 O
rig

in
al

2025

2050

2075

2100

2125

2150

2175

W
ei

gh
te

d 
pe

rfo
rm

an
ce

 (F
itt

s' 
la

w)

Figure 12: Comparing benefit gained (performance) versus Change from original (loss of familiarity)

activity almost exclusively; there is no well-established or commonly accepted computa-
tional technique to automatically generate or refine menus. The absence of an effective
mathematical model for a menu hierarchy – such as the minimal representative formu-
lation (MRF) proposed here – has made it difficult to test for reliable objectives and to
distinguish a good solution from a poor one. To the best of our knowledge, no earlier
approach provides guarantees regarding the solution quality, yields a hierarchically orga-
nized menu suitable for large command sets, is not over-determined by previous designs
(e.g., on account of a data-driven approach to the objective function), does not require
much input (relative to the frequency of each command and pair-wise association scores),
can be used for one-shot design as well as adaptation, and is computationally efficient for
large menus.

Our contribution through the MRF is to enable a compact, flexible and purely linear
IP formulation for solving the assignment and set covering problems simultaneously and
within reasonable computation effort, thereby warranting application in regular menu
designs. The MRF approach provides enough flexibility in defining the objective function
to cover the wide variety of factors involved in menu design (the total number of tabs,
the length of individual tabs, the number of groups on a tab, the length of individual
groups, intra-group and intra-tab associativity, frequency of usage of the commands, etc.).
The MRF supports diverse evaluative functions; this is valuable for researchers because
various hypotheses can be tested with relative ease. Specifically, evaluation functions can
be expressed that refer not only to the position of any item (like in the assignment-based
approach) but also to its membership of a set such as a tab. We implemented a ’classical’
objective from the previous literature and showed that solutions for the resulting mixed-
integer programs can be found within reasonable computational effort. The results yielded
by the two-fold-objective approach – while not entirely unreasonable or impractical –
suffer from a few shortcomings, such as non-intuitive placement of commands.

Our novel information-foraging-based approach addresses these problems; it addresses
users’ decisions in zooming in versus skipping menus when searching for a target. The
layouts resulting from the IFT-based (information forage theory) approach appear to be
more balanced, better organized (especially lead items), and aligned more closely with

28



expectations regarding command placement. Although the original form of IFT involves
non-linear models of user behavior, we have demonstrated that a simpler, purely linear,
MIP-based (mixed-integer programming) approach yields good results within reason-
able computational effort. Empirical evaluations suggest that computationally produced
menus can be on par with commercial designs as long as the input data (here, frequencies
of selection) reflects actual usage. However, our empirical evaluation assumed that the
usage frequencies match those used to run the optimizer. Future work should explore how
sensitive the outcomes are to a mismatch between inputs and actual use. Moreover, the
problem of how to computationally produce labels for formed groups and tabs remains
an open problem.

We draw two conclusions from this paper: The immediate conclusion is that IFT can
be used as an evaluative function in computational menu design with good results. In
conjunction with the MRF, this offers a rigorous, coherent yet flexible new framework for
computational menu design. Our decision variables and the resulting constraints work
with standard commercial MIP solvers and do not require any specialized contributions;
for example, we do not require any specialized decompositions, relaxations, or column
generation techniques (which are often used to enhance MIP performance). This opens
possibilities for utilizing more complex evaluation functions with relatively lesser effort. In
future, to make the method available for interactive design tools, we will explore heuristic
variants and relaxations of the IFT-based approach, which may allow interactive-level
performance with large task instances. Another limitation to be overcome is related
to the nature of the task instances. Even if filling-in an association matrix constitutes
only about an hour’s work for a reasonably large menu system, it may not be practical
for some use cases (for instance, in agile or rapid development cycles). We will explore
word embeddings and other machine learning approaches that can automatically discover
command-pair associations from data. Moreover, the scope of design decisions covered
needs more attention. Further work should examine other decisions in menu design, such
as label selection and shortcut assignment, and expand from tabbed/grouped menus to
other types.

In our opinion, the general class of exact numerical optimization techniques holds
promise for hierarchically organized user interfaces more generally. More research is
needed to build on this finding. Many user interfaces are organized as trees or graphs
navigated by selecting from proximally available options [13]. The MRF offers a natural
representation for the key decisions, such as which item to assign to which display, in
which group. Deepening hierarchies can be addressed by recursively adding decisions.
We found also that the sample–discard–explore formulation of IFT captures an essential
aspect of a navigating user’s decision-making. This is an improvement over previous
work in user interface optimization, which has utilized mainly non-hierarchical evalua-
tion functions [21]. The linear reformulation proposed here is also sufficiently efficient and
avoids resorting to meta-heuristic techniques. However, more work is needed to address
the different modalities of menu access, such as short cuts and context menus, which
add redundancy to the optimization problem and require users to learn more complex
strategies of menu use. Moreover, the naming of tabs remains an open problem. While
word embeddings produce good results for pair-wise association scores, finding a descrip-
tive label for a tab may require considering other types of semantics, such as part–whole
relationships.

The code presented in this paper is made available via our project page.

29



References

[1] G. Bailly, E. Lecolinet, L. Nigay, Visual menu techniques, ACM Computing Surveys
(CSUR) 49 (2017) 60.

[2] G. Bailly, A. Oulasvirta, T. Kötzing, S. Hoppe, Menuoptimizer: Interactive opti-
mization of menu systems, in: Proceedings of the 26th annual ACM symposium on
User interface software and technology, ACM, 2013, pp. 331–342.

[3] D. Ahlström, Modeling and improving selection in cascading pull-down menus using
fitts’ law, the steering law and force fields, in: Proceedings of the SIGCHI conference
on Human factors in computing systems, ACM, 2005, pp. 61–70.

[4] G. Bailly, A. Oulasvirta, D. P. Brumby, A. Howes, Model of visual search and
selection time in linear menus, in: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM, 2014, pp. 3865–3874.

[5] D. P. Brumby, A. Howes, Good enough but i’ll just check: Web-page search as
attentional refocusing, in: ICCM, 2004, pp. 46–51.

[6] M. D. Byrne, J. R. Anderson, S. Douglass, M. Matessa, Eye tracking the visual
search of click-down menus, in: Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, ACM, 1999, pp. 402–409.

[7] J. E. McDonald, J. D. Stone, L. S. Liebelt, Searching for items in menus: The effects
of organization and type of target, in: Proceedings of the Human Factors Society
Annual Meeting, volume 27, SAGE Publications Sage CA: Los Angeles, CA, 1983,
pp. 834–837.

[8] B. Mehlenbacher, T. M. Duffy, J. Palmer, Finding information on a menu: linking
menu organization to the user’s goals, Human-Computer Interaction 4 (1989) 231–
251.

[9] K. L. Norman, The psychology of menu selection: Designing cognitive control at the
human/computer interface, Intellect Books, 1991.

[10] K. R. Paap, N. J. Cooke, Chapter 24 - design of menus, in: M. G. Helander, T. K.
Landauer, P. V. Prabhu (Eds.), Handbook of Human-Computer Interaction (Second
Edition), second edition ed., North-Holland, Amsterdam, 1997, pp. 533 – 572.

[11] A. Sears, B. Shneiderman, Split menus: effectively using selection frequency to
organize menus, ACM Transactions on Computer-Human Interaction (TOCHI) 1
(1994) 27–51.

[12] W.-T. Fu, P. Pirolli, Snif-act: A cognitive model of user navigation on the world
wide web, Human-Computer Interaction 22 (2007) 355–412.

[13] P. Pirolli, Information foraging theory: Adaptive interaction with information, Ox-
ford University Press, 2007.

[14] S. K. Card, T. P. Moran, A. Newell, The keystroke-level model for user performance
time with interactive systems, Communications of the ACM 23 (1980) 396–410.

30



[15] P. Pirolli, W.-T. Fu, Snif-act: A model of information foraging on the world wide
web, in: P. Brusilovsky, A. Corbett, F. de Rosis (Eds.), User Modeling 2003, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 45–54.

[16] A. Oulasvirta, N. R. Dayama, M. Shiripour, M. John, A. Karrenbauer, Combina-
torial optimization of graphical user interface designs, Proceedings of the IEEE 108
(2020) 434–464.

[17] A. Cockburn, C. Gutwin, S. Greenberg, A predictive model of menu performance,
in: Proceedings of the SIGCHI conference on Human factors in computing systems,
ACM, 2007, pp. 627–636.

[18] M. V. Goubko, A. I. Danilenko, An automated routine for menu structure opti-
mization, in: Proceedings of the 2nd ACM SIGCHI symposium on Engineering
interactive computing systems, ACM, 2010, pp. 67–76.

[19] A. Danilenko, M. Goubko, Semantic-aware optimization of user interface menus,
Automation and Remote Control 74 (2013) 1399–1411.

[20] X. Chen, G. Bailly, D. P. Brumby, A. Oulasvirta, A. Howes, The emergence of
interactive behavior: A model of rational menu search, in: Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, ACM, 2015,
pp. 4217–4226.

[21] A. Oulasvirta, A. Karrenbauer, Combinatorial optimization for user interface design,
Computational Interaction (2018) 97–121.

[22] J. R. Anderson, M. Matessa, C. Lebiere, Act-r: A theory of higher level cognition
and its relation to visual attention, Human-Computer Interaction 12 (1997) 439–462.

[23] E. L. Nilsen, Perceptual-motor control in human-computer interaction., Technical
Report, MICHIGAN UNIV ANN ARBOR DIV OF RESEARCH DEVELOPMENT
AND ADMINISTRATION, 1996.

[24] A. J. Hornof, D. E. Kieras, Cognitive modeling reveals menu search in both random
and systematic, in: Proceedings of the ACM SIGCHI Conference on Human factors
in computing systems, ACM, 1997, pp. 107–114.

[25] M. D. Byrne, Act-r/pm and menu selection: Applying a cognitive architecture to
hci, International Journal of Human-Computer Studies 55 (2001) 41–84.

[26] A. Cockburn, C. Gutwin, A predictive model of human performance with scrolling
and hierarchical lists, Human–Computer Interaction 24 (2009) 273–314.

[27] E. Lee, J. MacGregor, Minimizing user search time in menu retrieval systems, Human
Factors 27 (1985) 157–162.

[28] L. Troiano, C. Birtolo, R. Armenise, G. Cirillo, Optimization of menu layouts by
means of genetic algorithms, Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4972
LNCS (2008) 242–253. doi:10.1007/978-3-540-78604-7_21, conference of 8th Eu-
ropean Conference on Evolutionary Computation in Combinatorial Optimization,

31

http://dx.doi.org/10.1007/978-3-540-78604-7_21


EvoCOP 2008 ; Conference Date: 26 March 2008 Through 28 March 2008; Confer-
ence Code:72583.

[29] L. Troiano, C. Birtolo, Genetic algorithms supporting generative design of user in-
terfaces: Examples, Information Sciences 259 (2014) 433–451. URL: https://www.
scopus.com/inward/record.uri?eid=2-s2.0-84889645955&doi=10.1016%2fj.

ins.2012.01.006&partnerID=40&md5=b98a05d360090523513f5eb34b2e10b9.
doi:10.1016/j.ins.2012.01.006.

[30] L. Troiano, C. Birtolo, R. Armenise, Searching optimal menu layouts by linear
genetic programming, Journal of ambient intelligence and humanized computing 7
(2016) 239–256.

[31] S. Matsui, S. Yamada, Optimizing hierarchical menus by genetic algorithm and
simulated annealing, in: Proceedings of the 10th annual conference on Genetic and
evolutionary computation, ACM, 2008, pp. 1587–1594.

[32] J.-C. Golovine, J. McCall, P. O. Holt, Evolving interface designs to minimize user
task times as simulated in a cognitive architecture, in: Evolutionary Computation
(CEC), 2010 IEEE Congress on, IEEE, 2010, pp. 1–7.

[33] M. Goubko, A. Danilenko, Mathematical model of hierarchical menu structure op-
timization, Automation and Remote Control 73 (2012) 1410–1423.

[34] A. Karrenbauer, A. Oulasvirta, Improvements to keyboard optimization with integer
programming, in: Proceedings of the 27th annual ACM symposium on User interface
software and technology, ACM, 2014, pp. 621–626.

[35] J. L. Balintfy, Menu planning by computer, Communications of the ACM 7 (1964)
255–259.

[36] L. M. Lancaster, The history of the application of mathematical programming to
menu planning, European Journal of Operational Research 57 (1992) 339–347.

[37] G. B. Dantzig, The diet problem, Interfaces 20 (1990) 43–47.

[38] A. J. Bagnall, V. J. Rayward-Smith, I. M. Whittley, The next release problem,
Information and software technology 43 (2001) 883–890.

[39] A. Oulasvirta, A. Feit, P. Lähteenlahti, A. Karrenbauer, Computational support
for functionality selection in interaction design, ACM Transactions on Computer-
Human Interaction (TOCHI) 24 (2017) 34.

[40] A. Drira, H. Pierreval, S. Hajri-Gabouj, Facility layout problems: A survey, Annual
Reviews in Control 31 (2007) 255 – 267.

[41] M. F. Anjos, M. V. Vieira, Mathematical optimization approaches for facility layout
problems: The state-of-the-art and future research directions, European Journal of
Operational Research 261 (2017) 1 – 16.

[42] M. Gen, R. Cheng, Facility Layout Design Problems, John Wiley & Sons, Inc., 2007,
pp. 292–329.

32

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84889645955&doi=10.1016%2fj.ins.2012.01.006&partnerID=40&md5=b98a05d360090523513f5eb34b2e10b9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84889645955&doi=10.1016%2fj.ins.2012.01.006&partnerID=40&md5=b98a05d360090523513f5eb34b2e10b9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84889645955&doi=10.1016%2fj.ins.2012.01.006&partnerID=40&md5=b98a05d360090523513f5eb34b2e10b9
http://dx.doi.org/10.1016/j.ins.2012.01.006


[43] P. Pirolli, S. Card, Information foraging., Psychological review 106 (1999) 643.

[44] W. Liu, G. Bailly, A. Howes, Effects of frequency distribution on linear menu perfor-
mance, in: Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, ACM, 2017, pp. 1307–1312.

[45] D. E. Goldberg, K. Deb, A comparative analysis of selection schemes used in genetic
algorithms, in: Foundations of genetic algorithms, volume 1, Elsevier, 1991, pp.
69–93.

[46] H. B. Mann, D. R. Whitney, On a test of whether one of two random variables is
stochastically larger than the other, The annals of mathematical statistics (1947)
50–60.

33



Appendices

9.1. Terminology

This section provides a glossary for the terminology used in the paper.

Term used Interpretation
a,b Fitts’ law constants
X Position of a command to a group
Y Position of a command to a tab
Q Position of a group on a tab
Z Commands in the same group
W Command on the same tab
R Row position of a command in a tab
t The time required to reach a command
S Proceeding groups
S First group on each tab
ξ Used groups
β Used tabs
Θ Position of groups before a specific group
P Starting position of a group within a tab
λ Weight of importance of each objective function
A Pairwise association of commands
U First command of a group
Φ Searching effort for finding a command
α True-positive time of finding a command
σ False-positive time of finding a command
δ False-negative time of finding a command
Ω Penalty for a command if it is placed on a non-standard tab
Π,Ξ Change in position for command i from original layout to new layout

Table 3: Glossary of terminology used in the paper

9.2. Details of the MRF constraints

The following constraints apply to the MRF:

ti = (a+ b log2(
∑
r

rRr
i + 1)) + (a+ b log2(

∑
τ

τY τ
i + 1)) . . . ∀ i ∈ N (10)

This constraint is used to calculate the selection time according to the Fitts’ law. The
first part on the right equation is the Fitts’ law for rows and the next part is for tabs.

|N | ξc ≥
∑
i∈N

Xc
i . . . ∀ c (11)∑

i∈N

Xc
i ≥ ξc . . . ∀ c (12)

|N | βτ ≥
∑
i∈N

Y τ
i . . . ∀ τ (13)∑

i∈N

Y τ
i ≥ βτ . . . ∀ τ (14)

34



The above constraints ensure that any group or tab will be marked for use if and only if
it actually includes at least one command.

Wij ≥ Zij . . . ∀i, j ∈ N (15)

This constraint ensures that if two commands are in the same group, they share the same
tab. ∑

τ

Qcτ = ξc . . . ∀c (16)∑
τ

Y τ
i = 1 . . . ∀i ∈ N (17)∑

c

Xc
i = 1 . . . ∀i ∈ N (18)

Every command must be placed on exactly one tab and should be present in exactly one
group. Similarly, every group (if marked for use) should be placed on exactly one tab.

βτ ≥ Qcτ . . . ∀c, τ (19)

If a group is to be placed on a specific tab, then that tab must be marked as non-empty.∑
r

Rr
i = 1 . . . ∀i ∈ N (20)

Every command must be placed on exactly one row.

Qc̄τ ≥ Qcτ + Scc̄ + S c̄c − 1 . . . ∀c, c̄, τ (21)

Two groups marked for immediate precedence must be placed on the same tab.∑
i

Rr
i ≤

∑
τ

βτ . . . ∀r (22)

The total number of commands on any row is less than or equal to the number of tabs
being used. ∑

i

Rr
i ≤

∑
i

Rr−1
i . . . ∀r : r ≥ 1 (23)

No intermediate rows should be left unoccupied (avoid holes).∑
τ

βτ =
∑
c

Sc . . . ∀c ∈ C (24)

The number of tabs for use is equal to the number of groups that can be the starting
(topmost) groups.

ξc =
∑
c̄∈C

S c̄c + Sc . . . ∀c ∈ C (25)

35



If a group is used, it must either be the topmost group on its tab or be preceded by
another group.

Rr
i +Rr

j +Wij ≤ 2 . . . ∀i, j ∈ N (26)

No two commands on a tab may share the same row number. We can enforce a similar
constraint for any pair of commands within a single group.∑

r

rRr
i ≤ P c +

∑
j

Xc
j + |N | (1−Xc

i ) . . . ∀i ∈ N,∀c ∈ C (27)∑
r

rRr
i ≥ P c − |N | (1−Xc

i ) . . . ∀i ∈ N,∀c ∈ C (28)

The above constraints keep the row number for any given command within the bounds
of its designated group.

P c̄ ≥ P c +
∑
i∈N

Xc
i − |N | (1−Θcc̄),∀c, c̄ ∈ C (29)

This constraint ensures that no two groups from any tab can overlap each other.

Xc
i ≥ Xc

j + Zij − 1 . . . ∀i, j ∈ N, ∀c ∈ C (30)

This constraint interconnects the X variable with the Z variable to ensure the logical
constitution of groups. A similar constraint is enforced for the Y and W variables.

9.3. The baseline designs for all data instances

This section presents the baseline (existing) menu designs as seen in the commercial
versions of Notepad, Acrobat, and Firefox applications.

Figure 13: Notepad baseline design.

Figure 14: Mozilla Firefox baseline design.

36



Figure 15: Adobe Reader baseline design.

9.4. Preferred locations for specific commands

Menu systems in software applications have traditionally followed some unwritten
norms regarding placement of certain key command groups in specific tabs. For example:

1. Commands to open/create a new session, file or activity are predominantly located
in the first (leftmost) tab of the menu.

2. Commands to save/close an ongoing session, file or activity are predominantly lo-
cated in the first (leftmost) tab of the menu.

3. Commands to manipulate the clipboard by Cut/Copy/Paste some parts of an ongo-
ing file or activity are never located in the first (leftmost) tab or the last (rightmost)
of the menu. Rather, these commands are typically in the tab that is second from
left.

4. Commands to access ’Help’ topics, to read information about the current software
application, find its version or to update that application are predominantly located
in the last (rightmost) tab of the menu.

While the four norms written above have not been formally documented in standard
design guidelines, the authors posit that it is rare to find common professional software
application which do not follow these norms. We postulate two reasons behind such
norms: (1) Designers of some seminal software applications may have logically chosen
the placement of these command groups. (2) The ingrained practice has continued un-
challenged and become an essential part of user expectation. Effectively, a practice was
started and no one saw any major reason to change it.

The norms written above are extremely generic and are not restricted to any specific
domain or topic. It is conceivable that specific domains, topics or business areas will have
more such norms specific to practitioners of that topic. We assume that such information
is available as input parameter for our menu design process. For a few (say around 5-10%
of total) commands, we assume that the preferred location specification L is provided in
terms of the tab number where the command be preferably expected.

37


	1 Introduction
	2 Problem Definition
	2.1 Objective function: Costs to minimize
	2.2 Scope

	3 Related Work
	3.1 Search performance and predictive models
	3.2 Menu optimization using meta-heuristic techniques
	3.3 Exact methods: Menu optimization as an assignment problem
	3.4 Selection problems in diet planning and service design
	3.5 Facility layout problem

	4 Reformulating the Design Task: A Minimal Representative Formulation
	4.1 Example application: An evaluative function based on previous work

	5 The Information Foraging Approach
	5.1 Mathematical formulation
	5.2 Handling of loners
	5.3 Parameter values

	6 Results
	6.1 Task instances
	6.2 Implementation and Numerical Performance
	6.3 The two-fold-objective approach
	6.4 The IFT-based approach to optimized menu designs

	7 Empirical Evaluation
	7.1 Method
	7.2 The apparatus and setup
	7.3 Results

	8 Personalization and Adaptation
	8.1 Personalization
	8.2 Adaptation

	9 Discussion and Conclusions
	9.1 Terminology
	9.2 Details of the MRF constraints
	9.3 The baseline designs for all data instances
	9.4 Preferred locations for specific commands


