A Breezing Proof of the KMW Bound

CORINNA COUPETTE, MPI for Informatics and Saarbrücken Graduate School of Computer Science, Germany CHRISTOPH LENZEN, MPI for Informatics, Germany

In their seminal paper from 2004, Kuhn, Moscibroda, and Wattenhofer (KMW) proved a hardness result for several fundamental graph problems in the LOCAL model: For any (randomized) algorithm, there are input graphs with n nodes and maximum degree Δ on which $\Omega(\min \{\sqrt{\log n / \log \log n}, \log \Delta / \log \log \Delta\})$ (expected) communication rounds are required to obtain polylogarithmic approximations to a minimum vertex cover, minimum dominating set, or maximum matching. Via reduction, this hardness extends to symmetry breaking tasks like finding maximal independent sets or maximal matchings. Today, more than 15 years later, there is still no proof of this result that is easy on the reader. Setting out to change this, in this work, we provide a fully self-contained and simple proof of the KMW lower bound. The key argument is algorithmic, and it relies on an invariant that can be readily verified from the generation rules of the lower bound graphs.

CCS Concepts: \bullet Theory of computation \rightarrow Distributed algorithms; \bullet Computing methodologies \rightarrow Distributed algorithms; • Mathematics of computing \rightarrow Graph theory.

Additional Key Words and Phrases: LOCAL model, lower bounds, indistinguishability

1 INTRODUCTION AND RELATED WORK

A key property governing the complexity of distributed graph problems is their locality: the distance up to which the nodes running a distributed algorithm need to explore the graph to determine their local output. Under the assumption that nodes have unique identifiers, the locality of any task is at most D, the diameter of the graph. However, many problems of interest have locality $o(D)$, and understanding the locality of such problems has been a main objective of the distributed computing community since the inception of the field.

A milestone in these efforts is the 2004 article by Kuhn, Moscibroda, and Wattenhofer, which proves a lower bound of $\Omega(\min \{\sqrt{\log n / \log \log n}, \log \Delta / \log \log \Delta\})$ on the locality of several basic graph problems [19], where n is the number of nodes and Δ is the maximum degree of the input graph. The bound holds under both randomization and approximation, and it was the first result of this generality beyond the classic $\Omega\left(\log ^{*} n\right)$ bound on 3-coloring cycles [25]. Linial's bound has received much attention, with various extensions [10, 15, 16, 24, 26] and alternative proofs [23,30]. A recent wave of major results $[3,8,9]$, based on what has been termed round elimination, can be seen as generalizing Linial's technique further.

Despite its significance, apart from an early extension to maximum matching by the same authors [20], the KMW lower bound has not inspired follow-up results. One reason might be that the result is not as well-understood. History itself appears to drive this point home: In a 2010 arXiv article [21], an improvement to $\Omega(\min \{\sqrt{\log n}, \log \Delta\})$ was claimed, which was refuted in 2016 by Bar-Yehuda et al. [7]. 2016 was also the year when finally a journal article covering the lower bound was published [22]-over a decade after the initial construction! In the journal article, the technical core of the proof spans six pages and involves fairly convoluted notation. While there is no objective measure of simplicity, we believe that a more digestible proof is highly desirable.

Authors' addresses: Corinna Coupette, coupette@mpi-inf.mpg.de, MPI for Informatics, Saarland Informatics Campus, Saarbrücken, 66123, Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus, Saarbrücken, 66123, Germany; Christoph Lenzen, clenzen@mpi-inf.mpg.de, MPI for Informatics, Saarland Informatics Campus, Saarbrücken, 66123, Germany.

Our Contribution

In this work, we present a novel proof of the KMW bound. Our main contribution is to replace the heart of the argument, showing that certain nodes have indistinguishable k-hop neighborhoods, with a proof based on an algorithmic invariant. Our algorithm constructs the graph isomorphism between the nodes' neighborhoods, where the key observation is that a simple invariant is sufficient to overcome the main obstacle, referred to by Kuhn et al. as the "critical path." This results in a much shorter and more straightforward argument proving the intuition that the respective graph is crafted "just right" to ensure that the relevant nodes' views are indistinguishable up to distance k. Our second contribution is a fully self-contained and easily accessible presentation of the proof. Ideally, a single pass through the paper should suffice to understand the full reasoning, without reliance on statements shown elsewhere. We hope that this provides a solid foundation for future work that may extend the KMW result.

Further Related Work

The KMW bound applies to fundamental graph problems that are locally checkable in the sense of Naor and Stockmeyer [26]. Balliu et al. give an overview of the known time complexity classes for such problems [4, 5], extending a number of prior works [12-14], and Suomela surveys the state of the art attainable via constant-time algorithms [29]. Bar-Yehuda et al. provide algorithms that compute $(2+\varepsilon)$-approximations to minimum (weighted) vertex cover and maximum (weighted) matching in $O(\log \Delta / \varepsilon \log \log \Delta)$ and $O(\log \Delta / \log \log \Delta)$ deterministic rounds, respectively $[6,7]$, demonstrating that the KMW bound is tight when parametrized by Δ even for constant approximation ratios. For symmetry breaking tasks, the classic algorithm by Panconesi and Rizzi [27] to compute maximal matchings and maximal independent sets in $O\left(\log ^{*} n+\Delta\right)$ deterministic rounds has recently been shown to be optimal for a wide range of parameters [3].

Overview

After introducing basic graph theoretical concepts and notation in Section 2, we define the lower bound graphs in Section 3.1. We infer their order and maximum degree in Section 3.2, and prove the indistinguishability of certain nodes assuming high girth in Section 3.3. To ensure that lower bound graphs with high girth exist, we construct such graphs with low girth in Section 4.1 and lift them to high girth in Section 4.3 with the help of regular graphs introduced in Section 4.2. We derive the KMW bound for polylogarithmic approximations to a minimum vertex cover in Section 5. The appendix provides extensions to minimum dominating set, maximum matching, maximal matching, and maximal independent set.

2 PRELIMINARIES

The basic graph theoretic notation used in this work is summarized in Appendix A. 1 (p. 17); all our graphs are finite and simple. For completeness, Appendix A. 2 (p. 17) defines the LOCAL model and formalizes the notion of a k-round distributed algorithm.

The key concept used to show that a graph problem is difficult to solve (exactly or approximately) for a k-round distributed algorithm in the LOCAL model is the k-hop indistinguishability of nodes' neighborhoods. In the following, we formalize this notion.

Definition 2.1 (k-hop neighborhood $\Gamma_{G}^{k}(v)$). The k-hop neighborhood of a node v in G is the set of nodes at distance at most k from v, i.e., $\Gamma^{k}(v):=\{w \in V(G) \mid d(v, w) \leq k\}$.

A k-round algorithm needs to decide at node v based on the following topology.
Definition 2.2 (k-hop subgraph $G^{k}(v)$). The k-hop subgraph of a node v in G is the subgraph induced by v and its k-hop neighborhood, restricted to the edges at distance at most k from $v: G^{k}(v)=G\left[\Gamma^{k}(v)\right] \backslash\{\{w, u\} \in E(G) \mid$ $\min \{d(v, w), d(v, u)\} \geq k\}$.

Two nodes in a graph are indistinguishable to a k-round distributed algorithm if and only if these nodes see identical topologies within k hops (including identical inputs).

Definition 2.3 (k-hop indistinguishability in G). Two nodes v and w in G are indistinguishable to a k-round distributed algorithm (k-hop indistinguishable) if and only if there exists an isomorphism $\phi: V\left(G^{k}(v)\right) \rightarrow V\left(G^{k}(w)\right)$ with $\phi(v)=w$.

3 CLUSTER TREES

The Cluster Tree (CT) is the main gadget in the derivation of the KMW bound. For $k \in \mathbb{N}$, it consists of a Cluster Tree skeleton $C T_{k}$ and Cluster Tree graphs G_{k} :

Definition 3.1 (Cluster Tree skeleton). For $k \in \mathbb{N}$, a cluster tree skeleton ($C T$ skeleton) is a tree $C T_{k}=\left(C_{k}, \mathcal{A}_{k}\right)$, rooted at $C_{0} \in C_{k}$, that formulates connectivity requirements for graphs. A cluster $C \in C_{k}$ in $C T_{k}$ requires an independent set of nodes in the graph. An arc between clusters C_{i} and C_{j} has the form $\left\langle\left(C_{i}, x_{i}\right),\left(C_{j}, x_{j}\right)\right\rangle=\left\langle\left(C_{j}, x_{j}\right),\left(C_{i}, x_{i}\right)\right\rangle$ for $x_{i}, x_{j} \in \mathbb{N}$, indicating that the clusters C_{i} and C_{j} must be connected as a biregular bipartite graph, where nodes from cluster $C_{i}\left(C_{j}\right)$ have $x_{i}\left(x_{j}\right)$ neighbors in $C_{j}\left(C_{i}\right)$.

Definition 3.2 (Cluster Tree graph). For $k \in \mathbb{N}$, a graph is called a cluster tree graph (CT graph), denoted G_{k}, if it satisfies the connectivity requirements of the CT skeleton $C T_{k}$.

3.1 Construction of Cluster Tree Skeletons

Definitions 3.1 and 3.2 (p. 3) fix the relationship between CT skeletons and CT graphs without detailing the structure $C T_{k}$. To specify this structure, we use the following terminology:

Definition 3.3 (Cluster position). A cluster C in $C T_{k}$ has position internal if $\delta(C)>1$ (internal cluster) and position leaf if $\delta(C)=1$ (leaf cluster).

Definition 3.4 (Cluster level). The level of a cluster C in $C T_{k}$, denoted $l(C)$, is its distance to the cluster C_{0}, with $l\left(C_{0}\right)=0$. The smaller the distance to C_{0}, the lower the level.

Definition 3.5 (Parent cluster). For a cluster C in $C T_{k}$ with $l(C)>0$, its parent cluster is its unique neighboring cluster C^{\prime} with $l\left(C^{\prime}\right)<l(C)$ in $C T_{k}$.

Definition 3.6 (Outgoing label). Given $C T_{k}=\left(C_{k}, \mathcal{A}_{k}\right)$, we say that a cluster C_{i} is connected to a cluster C_{j} via outgoing label x_{i} if there exists an x_{j} such that $\left\langle\left(C_{i}, x_{i}\right),\left(C_{j}, x_{j}\right)\right\rangle \in \mathcal{A}_{k}$.

Given $\beta \geq 2(k+1),{ }^{1}$ the structure of $C T_{k}$ is now defined inductively. The base case of the construction is $C T_{1}$, which consists of four clusters and three arcs:

Definition 3.7 (Base case $\left.C T_{1}\right) . C T_{1}=\left(\mathcal{C}_{1}, \mathcal{A}_{1}\right)$, where $\mathcal{C}_{1}:=\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$ and $\mathcal{A}_{1}:=\left\{\left\langle\left(C_{0}, \beta^{0}\right),\left(C_{1}, \beta^{1}\right)\right\rangle,\left\langle\left(C_{0}, \beta^{1}\right),\left(C_{2}, \beta^{2}\right)\right\rangle,\left\langle\left(C_{1}, \beta^{0}\right),\left(C_{3}, \beta^{1}\right)\right\rangle\right\}$.

[^0]
(a) Hierarchical representation

(b) Flat representation

Fig. 1. Representations of $C T_{1}$ (shaded by cluster sizes; darker means smaller). Cluster shapes indicate cluster position (internal or leaf); core clusters depicted with bold frame. Arc labels are exponents of the parameter β, indicating how many neighbors nodes in one cluster have in another.

Our indistinguishability argument for CT graphs will focus on nodes in the internal clusters of $C T_{1}$, which we call the core clusters:

Definition 3.8 (Core clusters). The internal clusters of $C T_{1}, C_{0}$ and C_{1}, are core clusters.
Based on $C T_{k-1}$, for $k \geq 2, C T_{k}$ is grown as follows.
Definition 3.9 (Growth rules for $C T_{k}$ given $C T_{k-1}$).
(1) To each internal cluster C_{i} in $C T_{k-1}$, attach a new neighboring cluster C_{i}^{\prime} via an $\operatorname{arc}\left\langle\left(C_{i}, \beta^{k}\right),\left(C_{i}^{\prime}, \beta^{k+1}\right)\right\rangle$. We call such added leaf clusters branch instantiation clusters.
(2) To each leaf cluster C_{i} in $C T_{k-1}$ that is connected to its parent cluster via outgoing label β^{q}, add k neighboring clusters C_{i}^{\prime} with $\operatorname{arcs}\left\langle\left(C_{i}, \beta^{p}\right),\left(C_{i}^{\prime}, \beta^{p+1}\right)\right\rangle$ for all $p \in[k]_{0} \backslash\{q\}$. We call such added leaf clusters branch consolidation clusters.

Figure 1 (p. 4) shows $C T_{1}$ in its hierarchical and flat representations, and flat representations of $C T_{2}$ and $C T_{3}$ are given in Figure 2 (p.5) to illustrate the growth process. ${ }^{2}$ In all figures, we write x for an arc label β^{x} (i.e., we represent arc labels by their base β logarithms) to reduce visual clutter, and in the flat representations, arc labels are depicted like port numbers on the undirected edges incident to the clusters that are connected by the arc.

3.2 Order and Maximum Degree of Cluster Tree Graphs

The CT skeleton $C T_{k}$ constrains the number of nodes in a CT graph G_{k} in several ways:
Observation 3.10 (Order constraints for G_{k} from $C T_{k}$).
(1) For $k>1$, the number of nodes in a cluster of $C T_{k}$ on level $k+1$ must be at least β^{k}, since there is always at least one branch instantiation cluster C^{\prime} on level $k+1$, and nodes in the parent cluster of C^{\prime} have β^{k} neighbors in C^{\prime}.

[^1]

Fig. 2. Representations of $C T_{2}$ and $C T_{3}$ (colored by cluster types; grey: internal, green: branch consolidation, black: branch instantiation). Cluster shapes correspond to cluster position (internal or leaf); core clusters depicted with bold frame. Arc labels are exponents of the parameter β, indicating how many neighbors nodes in one cluster have in another.
(2) To ensure that the arc labels $\left(\beta^{i}, \beta^{i+1}\right)$ define feasible biregular bipartite graphs for all $i \in[k]_{0}$, the number of nodes in a single cluster must fall by a factor of β per level.
(3) For $k>1$, in the smallest graph G_{k} satisfying $C T_{k}$, clusters on level l have $\beta^{2 k-l+1}$ nodes, e.g., a cluster on level $k+1$ has β^{k} nodes, and C_{0} has $\beta^{2 k+1}$ nodes.

Proof. Follows immediately from the connectivity structure prescribed by $C T_{k}$.
Further, we can determine the number of clusters on each level of $C T_{k}$:
Theorem 3.11 (Order of CT skeletons by level). For $k \in \mathbb{N}$, the number of clusters n_{C} on level $l \in \mathbb{N}_{0}$ in $C T_{k}$ is ${ }^{3}$

$$
n_{C}(k, l)= \begin{cases}1 & l=0 \\ \frac{k!}{(k-l+1)!} \cdot(k-l+2) & 1 \leq l \leq k+1 \\ 0 & l>k+1\end{cases}
$$

Proof. For $l=1, \frac{k!}{(k-l+1)!} \cdot(k-l+2)=k+1$. We proceed by induction on k. For $k=1$, we have one cluster on the zeroth level, two clusters on the first level, and one cluster on the second level, cf. Figure $1(\mathrm{p} .4)$. Since $n_{C}(1,0)=1$, $n_{C}(1,1)=\frac{1!}{1!} \cdot 2=2, n_{C}(1,2)=\frac{1!}{0!} \cdot 1=1$, and $n_{C}(1, l)=0$ for all $l>2$, the claim holds for the base case, i.e., for $k=1$ and all l.

Therefore, assume that the claim holds for some k, i.e., in $C T_{k}$, the number of clusters on level l is given by $n_{C}(k, l)$. Due to Definition 3.9 (p. 4), which enforces that all new leaf clusters lie on the level above their parent clusters, the

[^2]number of clusters on the zeroth level always remains one. This level-0 cluster is an internal cluster in $C T_{1}$ and hence also in $C T_{k}$. By growth rule 1, exactly one cluster is added on the level above the zeroth level when transitioning to $C T_{k+1}$. Therefore, if $C T_{k}$ has $k+1$ clusters on the first level, $C T_{k+1}$ has $k+2$ clusters on the first level. Furthermore, new clusters are added only on levels at most one above already existing clusters, so if $C T_{k}$ has no clusters on levels above $k+1, C T_{k+1}$ has no clusters on levels above $k+2$. With these observations, for $l=0, l=1$, and $l>k+1$, the number of clusters on level l in $C T_{k+1}$ is given by the formula stated in the theorem.

For the remaining levels, i.e., levels l with $1<l \leq k+1$, observe that by the growth rules of $C T_{k}$, all clusters present on level l in $C T_{k}$ are guaranteed to be internal clusters in $C T_{k+1}$, with $k+1$ children on level $l+1$, and these child clusters are the only clusters on level $l+1$. Thus, for $k, l \geq 1$, the number of clusters satisfies the recurrence relation

$$
n_{C}(k+1, l+1)=(k+1) \cdot n_{C}(k, l) .
$$

By the inductive hypothesis, we have that $n_{C}(k, l)=\frac{k!}{(k-l+1)!} \cdot(k-l+2)$ for $1 \leq l \leq k+1$, so

$$
n_{C}(k+1, l+1)=\frac{(k+1)!(k-l+2)}{(k-l+1)!}=\frac{(k+1)!}{((k+1)-(l+1)+1)!} \cdot((k+1)-(l+1)+2),
$$

as required. As this verifies the claimed expression for $n_{C}(k+1, l)$ for all $1<l \leq k+2$, this completes the inductive step, concluding the proof.

This allows us to express the order of G_{k} in terms of $n_{0}:=\left|C_{0}\right|, k$, and β :
Lemma 3.12 (n in terms of n_{0}). In $G_{k}, n<n_{0}\left(\frac{\beta}{\beta-(k+1)}\right)$ and $n-n_{0}<n_{0} \cdot \frac{2(k+1)}{\beta}$.
Proof. By Theorem 3.11 (p. 5) and Corollary 3.10 (p. 4), the number of nodes on level $l \in \mathbb{N}_{0}$ in G_{k} as a function of β, k, l, and n_{0} is $n\left(\beta, k, l, n_{0}\right)=n_{C}(k, l) \cdot n_{0} \cdot \beta^{-l}$. Because $n=\sum_{l=0}^{\infty} n\left(\beta, k, l, n_{0}\right)=\sum_{l=0}^{k+1} n\left(\beta, k, l, n_{0}\right)$, we get

$$
\begin{aligned}
& n=n_{0}+n_{0} \cdot \sum_{l=1}^{k+1} \frac{k!}{(k-l+1)!} \cdot(k-l+2) \cdot \beta^{-l} \leq n_{0}+n_{0} \cdot \sum_{l=1}^{k+1} \frac{k!(k+1)}{(k-l+1)!} \cdot \frac{1}{\beta^{l}} \\
& <n_{0}+n_{0} \cdot \sum_{l=1}^{k+1} \frac{(k+1)^{l}}{\beta^{l}}=n_{0} \sum_{l=0}^{k+1}\left(\frac{k+1}{\beta}\right)^{l}<n_{0} \sum_{l=0}^{\infty}\left(\frac{k+1}{\beta}\right)^{l}=n_{0} \cdot \frac{\beta}{\beta-(k+1)},
\end{aligned}
$$

where the last step uses that $\beta>k+1$. Using our requirement that $\beta \geq 2(k+1)$, we obtain

$$
n-n_{0}<n_{0} \cdot\left(\frac{\beta}{\beta-(k+1)}-1\right)=n_{0} \cdot \frac{k+1}{\beta-(k+1)} \leq n_{0} \cdot \frac{2(k+1)}{\beta} .
$$

Finally, the construction of $C T_{k}$ dictates the largest degree Δ of a node in G_{k} :
Lemma 3.13 (Largest degree Δ of G_{k}). The largest degree of a node in G_{k} is $\Delta=\beta^{k+1}$.
Proof. By construction, all nodes in internal clusters have degree $\sum_{i=0}^{k} \beta^{i}$, and the largest degree of nodes in leaf clusters is β^{k+1}. As $\beta \geq 2(k+1)>2, \max \left\{\sum_{i=0}^{k} \beta^{i}, \beta^{k+1}\right\}=\beta^{k+1}$.

3.3 Indistinguishability given High Girth

As observed by Kuhn et al. [19, 22], showing k-hop indistinguishability becomes easier when the nodes' k-hop subgraphs are trees, i.e., the girth is at least $2 k+1$. Notably, in a CT graph G_{k} with $g \geq 2 k+1$, the topology of a node's k-hop subgraph is determined entirely by the structure of the skeleton $C T_{k}$. Hence, without knowing the details of G_{k}, we can establish:

Theorem 3.14 (k-hop indistinguishability of nodes in C_{0} From nodes in C_{1}). Let G_{k} be a $C T$ graph. If G_{k} has girth $g \geq 2 k+1$, and there are no local inputs, then $v_{0} \in C_{0}$ and $v_{1} \in C_{1}$ are k-hop indistinguishable.

By Definition 2.3 (p.3), $v_{0} \in C_{0}$ and $v_{1} \in C_{1}$ are k-hop indistinguishable if and only if there exists an isomorphism $\phi: V\left(G_{k}^{k}\left(v_{0}\right)\right) \rightarrow V\left(G_{k}^{k}\left(v_{1}\right)\right)$ with $\phi\left(v_{0}\right)=v_{1}$. We prove the theorem constructively by showing the correctness of Algorithm 1 (p. 8), which purports to find such an isomorphism.

Algorithm 1 (p.8) implements a coupled depth-first search (coupled DFS) on the k-hop subgraphs of $v_{0} \in C_{0}$ and $v_{1} \in C_{1}$: The main function, FindIsomorphism $\left(G_{k}, k, v_{0}, v_{1}\right)$, receives a CT graph G_{k} with high girth, along with the parameter k (both of which we assume to be accessible by the functions we call internally, alongside the mapping from nodes to their clusters), and one node from each of C_{0} and C_{1} as input, and it outputs the ϕ we are looking for. To obtain ϕ, FindIsomorphism maps v_{0} to v_{1} and then calls the function $\operatorname{Walk}\left(v_{0}, v_{1}, \perp, k\right)$ before it returns ϕ. The Walk function modifies ϕ by mapping the newly discovered nodes in the neighborhoods of its first two input parameters (v and $w:=\phi(v)$, initially: v_{0} and v_{1}) to each other with the help of the function MAP. The third parameter of Walk (prev, initially: \perp) ensures that we only define ϕ for newly discovered nodes, while the fourth parameter (depth, initially: k) controls termination when WALK calls itself recursively on the newly discovered neighbors (and the newly discovered neighbors of these neighbors, and so on) until the entire k-hop subgraph of v_{0} has been visited.

The tricky part now is to ascertain that the interplay between the functions Walk and Mar makes ϕ a bijection from $V\left(G_{k}^{k}\left(v_{0}\right)\right)$ to $V\left(G_{k}^{k}\left(v_{1}\right)\right)$, i.e., nodes that are paired up always have the same degree. Here, the representation of node neighborhoods used by the Walk function is key, which is based on the insight that the set of nodes neighboring v (resp. w) can be partitioned by the outgoing labels in $C T_{k}$ through which neighboring nodes are discovered from v (w). Since these labels lie in $\left\{\beta^{i} \mid i \in[k+1]_{0}\right\}$, Walk represents the neighborhood of $v(w)$ as a list $N_{v}\left(N_{w}\right)$ of $k+2$ (possibly empty) lists (Algorithm 1, 1. 9-13, p. 8). The list at index i holds all previously undiscovered nodes (we require $v^{\prime} \neq$ prev and $w^{\prime} \neq \phi($ prev $)$) connected to $v(w)$ via v 's (w 's) outgoing label β^{i}, in any order.

The Walk function passes N_{v} and N_{w} to the function MAP (Algorithm 1, 1. 14, p. 8), which sets $\phi\left(N_{v}[i][j]\right):=$ $N_{w}[i][j]$ where possible (Algorithm 1, 1. 19-21, p. 8). It then treats the special case that some nodes in N_{v} and N_{w} remain unmatched (Algorithm 1, l. 22-25, p. 8). By construction, without this special case, the ϕ returned by FindIsomorphism is already an isomorphism between the subgraphs of $G_{k}^{k}\left(v_{0}\right)$ and $G_{k}^{k}\left(v_{1}\right)$ induced by the nodes of the domain for which ϕ is defined (and their images under ϕ). However, we still need to show that our special case suffices to extend this restricted isomorphism to a full isomorphism between $G_{k}^{k}\left(v_{0}\right)$ and $G_{k}^{k}\left(v_{1}\right)$. To facilitate our reasoning, we introduce cluster identities:

Definition 3.15 (Cluster identity $C(v)$). Given a node v in a CT graph G_{k}, we refer to its cluster in $C T_{k}$ as its cluster identity, denoted as $C(v)$. For example, for $v_{0} \in C_{0}$ and $v_{1} \in C_{1}$, we have $C\left(v_{0}\right)=C_{0}, C\left(v_{1}\right)=C_{1}$, and $C\left(v_{0}\right) \neq C\left(v_{1}\right)$.

We begin with a simple observation:
Lemma 3.16 (Variables determining node neighborhoods). For v in $G_{k}^{k}\left(v_{0}\right) \backslash\left\{v_{0}\right\}$, let $w:=\phi(v)$. When Map is called with parameters N_{v} and N_{w} (Algorithm 1l. 14, p. 8), the numbers of nodes in $N_{v}[i]$ and $N_{w}[i]$ for $i \in[k+1]_{0}$ are uniquely determined by two parameters:
(1) position: the position of the clusters $C(v)$ and $C(w)$ in the $C T$ skeleton (internal or leaf), and
(2) history: the outgoing labels of the arcs connecting $C(v)$ to $C($ prev $)$ and $C(w)$ to $C\left(\phi\left(\right.\right.$ prev)), i.e., β^{x} and β^{y} if the corresponding arcs are $\left\langle\left(C(v), \beta^{x}\right),\left(C(\right.\right.$ prev $\left.\left.), \beta^{x^{\prime}}\right)\right\rangle$ and $\left\langle\left(C(w), \beta^{y}\right),\left(C(\phi(\right.\right.$ prev $\left.\left.)), \beta^{y^{\prime}}\right)\right\rangle$ for some $x^{\prime}, y^{\prime} \in[k+1]_{0}$.

```
Algorithm 1: Find an isomorphism \(\phi: V\left(G_{k}^{k}\left(v_{0}\right)\right) \rightarrow V\left(G_{k}^{k}\left(v_{1}\right)\right)\)
    Function FindIsomorphism \(\left(G_{k}, k, v_{0}, v_{1}\right)\) :
        Input: \(G_{k}\) conforming to \(C T_{k}\) with \(g \geq 2 k+1, k \in \mathbb{N}, v_{0} \in C_{0}, v_{1} \in C_{1}\)
        Output: Isomorphism \(\phi: V\left(G_{k}^{k}\left(v_{0}\right)\right) \rightarrow V\left(G_{k}^{k}\left(v_{1}\right)\right)\)
        \(\phi \leftarrow\) empty map
        \(\phi\left(v_{0}\right) \leftarrow v_{1}\)
        \(\operatorname{WALK}\left(v_{0}, v_{1}, \perp, k\right)\)
        return \(\phi\)
    Function \(\operatorname{Walk}(v, w, p r e v\), depth):
        if depth \(=0\) then
            return
        \(N_{v} \leftarrow\) empty list of length \(k+2\)
        \(N_{w} \leftarrow\) empty list of length \(k+2\)
        for \(i \leftarrow 0\) to \(k+1\) do
            // if edge \(\beta^{i}\) does not exist, the \(N_{v}[i]\) (resp. \(N_{w}[i]\) ) is empty
            \(N_{v}[i] \leftarrow\) list of new nodes \(v^{\prime} \neq\) prev found using edge \(\beta^{i}\) from \(v\)
            \(N_{w}[i] \leftarrow\) list of new nodes \(w^{\prime} \neq \phi(p r e v)\) found using edge \(\beta^{i}\) from \(w\)
        \(\operatorname{MAP}\left(N_{v}, N_{w}\right)\)
        for \(i \leftarrow 0\) to \(k+1\) do
            for \(v^{\prime}\) in \(N_{v}[i]\) do
                \(\operatorname{Walk}\left(v^{\prime}, \phi\left(v^{\prime}\right), v\right.\), depth -1\()\)
    Function \(\operatorname{Map}\left(N_{v}, N_{w}\right)\) :
        for \(i \leftarrow 0\) to \(k+1\) do
            // zip( \(\cdot, \cdot)\) yields element tuples until the shorter list ends
            for \(v^{\prime}, w^{\prime}\) in \(z i p\left(N_{v}[i], N_{w}[i]\right)\) do
            \(\phi\left(v^{\prime}\right) \leftarrow w^{\prime}\)
        // len(•) returns the length of a list
        if \(\exists i \in[k+1]_{0}: \operatorname{len}\left(N_{v}[i]\right) \neq \operatorname{len}\left(N_{w}[i]\right)\) then
            \(i_{v} \leftarrow i \in[k+1]_{0}: \operatorname{len}\left(N_{v}[i]\right)=\operatorname{len}\left(N_{w}[i]\right)+1\)
            \(i_{w} \leftarrow i \in[k+1]_{0}: \operatorname{len}\left(N_{v}[i]\right)+1=\operatorname{len}\left(N_{w}[i]\right)\)
            // \(L[i][-1]\) retrieves the last element from list \(i\) in \(L\)
            \(\phi\left(N_{v}\left[i_{v}\right][-1]\right) \leftarrow N_{w}\left[i_{w}\right][-1]\)
```

Ifv and w agree on position and history, len $\left(N_{v}[i]\right)=\operatorname{len}\left(N_{w}[i]\right)$ for all $i \in[k+1]_{0}$. Ifv and w agree on position internal but disagree on history, we have len $\left(N_{v}[i]\right)=\operatorname{len}\left(N_{w}[i]\right)$ for all $i \in[k+1]_{0} \backslash\{x, y\}$, $\operatorname{len}\left(N_{v}[x]\right)=\operatorname{len}\left(N_{w}[y]\right)-1$, and $\operatorname{len}\left(N_{v}[y]\right)-1=\operatorname{len}\left(N_{w}[x]\right)$.

Proof. If $u \in\{v, w\}$ has position internal, we know that $C(u)$ has outgoing labels $\left\{\beta^{i} \mid i \in[k]_{0}\right\}$ by the construction of the CT skeleton. Denoting by $z \in\{x, y\}$ the exponent of u 's history, we have that there are β^{i} nodes in $N_{u}[i]$ for $i \in[k]_{0} \backslash\{z\}, \beta^{z}-1$ nodes in $N_{u}[z]$ (as prev or $\phi\left(\right.$ prev) are removed, respectively), and zero nodes in $N_{u}[k+1]$.

If u has position leaf, all nodes in N_{u} belong to the same cluster C^{\prime}, u has β^{z} neighbors in this cluster, and prev $($ resp. $\phi($ prev $))$ lies in this cluster as well. Hence, $\operatorname{len}\left(N_{u}[z]\right)=\beta^{z}-1$ and $\operatorname{len}\left(N_{u}[z]\right)=0$ for all $i \in[k+1]_{0} \backslash\{z\}$.

From these observations, the claims of the lemma follow immediately.

Corollary 3.17 (Sufficient condition for correctness of Algorithm 1). Given a CT graph G_{k} with girth at least $2 k+1$, if all pairs of nodes created by MAP on which WALK is called recursively (i) agree on position and history or (ii) agree on position internal, Algorithm $1(p .8)$ produces an isomorphism between $G_{k}^{k}\left(v_{0}\right)$ and $G_{k}^{k}\left(v_{1}\right)$.

Proof. Note that Algorithm 1 (p. 8) produces an isomorphism between $G_{k}^{k}\left(v_{0}\right)$ and $G_{k}^{k}\left(v_{1}\right)$ if $\left.\phi\right|_{N_{v}}$ (i.e., ϕ with its domain restricted to the neighborhood of v) is a bijection from N_{v} to $N_{\phi(v)}$ for all v in $G_{k}^{k}\left(v_{0}\right)$ with $d\left(v, v_{0}\right)<k$. For v_{0} and $\phi\left(v_{0}\right)=v_{1}$, this holds because they both have β^{i} neighbors in the clusters connected to them via outgoing edge label β^{i} for $i \in[k]_{0}$, i.e., len $\left(N_{v}[i]\right)=\operatorname{len}\left(N_{w}[i]\right)$ for $i \in[k]_{0}$ (and $\left.\operatorname{len}\left(N_{v}[k+1]\right)=\operatorname{len}\left(N_{w}\right)[k+1]=0\right)$. Hence, Map ensures that $\phi\left(N_{v}\right)=N_{w}$. For nodes $v \neq v_{0}$ and $w:=\phi(v)$ paired by MAP that agree on position and history, Lemma 3.16 (p.7) shows that $\operatorname{len}\left(N_{v}[i]\right)=\operatorname{len}\left(N_{w}[i]\right)$ for all $i \in[k+1]_{0}$, so again Map succeeds. The last case is that v and w agree on position internal. In this case, applying Lemma $3.16(\mathrm{p} .7)$ and noting that Map takes care of the resulting mismatch in list lengths in Lines $22-25$ proves that MAP succeeds here, too.

Recall that due to the inductive construction of $C T_{k}$, for all $i \in[k]$, we can view $C T_{i}$ as a subgraph of $C T_{k}$ by simply stripping away all clusters that were added after constructing $C T_{i}$. Recall also that $G_{k}^{k}\left(v_{0}\right)$ and $G_{k}^{k}\left(v_{1}\right)$ are trees, because the girth of G_{k} is at least $2 k+1$. Treating these trees as rooted at v_{0} and v_{1}, respectively, Algorithm 1 (p. 8) maps nodes at depth d in $G_{k}^{k}\left(v_{0}\right)$ to nodes at depth d in $G_{k}^{k}\left(v_{1}\right)$. The following notion will be useful:

Definition 3.18 (Node parent). For $v \in G_{k}^{k}\left(v_{i}\right), i \in\{0,1\}$, with $d\left(v_{i}, v\right)>0$, the parent of v in $G_{k}^{k}\left(v_{i}\right)$, denoted $p_{i}(v)$, is the node through which v is discovered from v_{i} in Algorithm 1 (p. 8).

To ensure that the preconditions of Corollary 3.17 (p. 9) hold, we prove the following invariant of Algorithm 1 (p. 8):
Definition 3.19 (Main Invariant of Algorithm 1). For $0<d<k$, suppose that v and $w:=\phi(v)$ lie at distance d from v_{0} and v_{1}, respectively. Then exactly one of the following holds:
(1) $C(v), C(w) \in C T_{d}$, and if v and w disagree on history, their histories are $\leq \beta^{d+1}$, or
(2) there is some i with $d<i \leq k$ such that $C(v), C(w) \in C T_{i} \backslash C T_{i-1}, v$ and w agree on history, and $C\left(p_{0}(v)\right), C\left(p_{1}(w)\right) \in$ $C T_{i-1}$.

Note that in the first case, v and w agree on position internal, and in the second case, v and w agree on position and history. Thus, Theorem 3.14 (p.7) readily follows from Corollary 3.17 (p.9) once the invariant is established. The intuition of the invariant and its interplay with Corollary 3.17 (p.9) are illustrated in Figure 3 (p. 10).

Lemma 3.20 (Main invariant holds). Algorithm 1 ($p .8$) satisfies the invariant stated in Definition 3.19 (p. 9).

Proof. We prove the claim for fixed k by induction on d. For v and $w:=\phi(v)$ at distance $d=1$ from $v_{0}=p_{0}(v)$ and $v_{1}=p_{1}(w)$, respectively, v and w are matched in the initial call to WALK with v_{0} and v_{1} as arguments. In this call, len $\left(N_{v_{0}}[i]\right)=\operatorname{len}\left(N_{v_{1}}[i]\right)$ for all $i \in[k+1]_{0}$, i.e., only nodes corresponding to the same outgoing arc labels get matched. Inspecting $C T_{1}$ and taking into account the $C T$ growth rules, we see that for $i \in\{0,1\}$, the matched nodes lie in clusters that are present already in $C T_{1}$ and have outgoing labels of at most β^{2} (i.e., the first case of the invariant holds), while for $i>1=d$, both nodes lie in clusters from $C T_{i} \backslash C T_{i-1}$ with outgoing labels of β^{i+1} (i.e., the second case of the invariant holds).

(a) $d=1$ from v_{0} and v_{1} : for the blue nodes, the first case of the invariant holds with agreement on history; for the orange nodes, the first case of the invariant holds without agreement on history; and for the green nodes, the second case of the invariant holds.

(b) $d=2$ from orange nodes at distance $d=1$: because the invariant holds for $d=1$, Corollary 3.17 (p. 9) ensures that Algorithm 1 (p. 8) produces an isomorphism between $G_{2}^{2}\left(v_{0}\right)$ and $G_{2}^{2}\left(v_{1}\right)$.

Fig. 3. Illustration of Definition 3.19 (p. 9) for $C T_{2}$. Cluster colors, shapes, and borders drawn as in Figure 2 (p.5). Nodes $v_{0} \in C_{0}$ and $v_{1} \in C_{1}$ indicated as medium-size circles; representatives of nodes seen via a certain outgoing edge depicted as small circles and connected to their parents by arrows. Node and arrow colors show outgoing edge labels (e.g., blue nodes are seen via the outgoing edge β^{0}); dashed arrows indicate that $\beta^{i}-1$, rather than β^{i}, nodes are discovered via the outgoing label indicated by the arrow color.

For the inductive step, assume that the invariant is established up to distance d for $1 \leq d<k-1$, and consider v, $w:=\phi(v)$ at distance $d+1$ from v_{0} and v_{1}, respectively. We apply the invariant to $v^{\prime}:=p_{0}(v)$ and $w^{\prime}:=p_{1}(w)$ and distinguish between its two cases.
(1) Suppose that $C\left(v^{\prime}\right), C\left(w^{\prime}\right) \in C T_{d}$ with histories that are identical or at most β^{d+1}. As $d<k, v^{\prime}$ and w^{\prime} agree on position internal. By Lemma 3.16 (p.7), the call to WALK on v^{\prime} and w^{\prime} thus satisfies that $\operatorname{len}\left(N_{v^{\prime}}[i]\right)=l e n\left(N_{w^{\prime}}[i]\right)$ for all $i \in[k+1]_{0} \backslash\left\{j, j^{\prime}\right\}$, where $\beta^{j}, \beta^{j^{\prime}}$ for $j, j^{\prime} \leq d+1$ are the histories of v^{\prime} and w^{\prime}, respectively. If $C(v) \in C T_{d+1}$, Lemma 3.16 (p.7) entails that $v \in N_{v^{\prime}}[i]$ for some $i \leq d+1$, and Walk chooses $w=\phi(v)$ from $N_{w^{\prime}}\left[i^{\prime}\right]$ for some $i^{\prime} \leq d+1$. Due to the CT growth rules, if $C\left(v^{\prime}\right), C\left(w^{\prime}\right) \in C T_{d}$, then the incident arcs of $C\left(v^{\prime}\right)$ and $C\left(w^{\prime}\right)$ with outgoing labels of at most β^{d+1} lead to clusters in $C T_{d+1}$, and the history of nodes discovered by traversing these arcs is at most β^{d+2}. Hence, $C(v) \in C T_{d+1}$ entails that the first case of the invariant holds for v and w. If $C(v) \notin C T_{d+1}$, we have that $C(v) \in C T_{i} \backslash C T_{i-1}$ for some $i>d+1$, yielding $\operatorname{len}\left(N_{v^{\prime}}[i]\right)=\operatorname{len}\left(N_{w^{\prime}}[i]\right)$, and thus, $w \in N_{w^{\prime}}[i]$. As $C\left(v^{\prime}\right)$ and $C\left(w^{\prime}\right)$ are internal clusters in $C T_{d+1}$, we can conclude that both $C(v)$ and $C(w)$ have been added to the cluster tree in the $i^{\text {th }}$ construction step using growth rule 1 . Hence, we get that $C(v), C(w) \in C T_{i} \backslash C T_{i-1}$ with v and w agreeing on history β^{i+1}, and since $C\left(v^{\prime}\right), C\left(w^{\prime}\right) \in C T_{d} \subseteq C T_{i-1}$, the second case of the invariant holds for v and w.
(2) Assume that there is some i with $d<i \leq k$ such that $C\left(v^{\prime}\right), C\left(w^{\prime}\right) \in C T_{i} \backslash C T_{i-1}, v^{\prime}$ and w^{\prime} agree on history, and $C\left(p_{0}\left(v^{\prime}\right)\right), C\left(p_{1}\left(w^{\prime}\right)\right) \in C T_{i-1}$. Then $C\left(v^{\prime}\right)$ and $C\left(w^{\prime}\right)$ must have been attached to clusters $C\left(p_{0}\left(v^{\prime}\right)\right)$ and $C\left(p_{1}\left(w^{\prime}\right)\right)$ from $C T_{i-1}$ with arc labels $\left(\beta^{j^{\prime}}, \beta^{j^{\prime}+1}\right)$ for the same $j^{\prime} \in[i]_{0}$, and $C\left(v^{\prime}\right)$ and $C\left(w^{\prime}\right)$ have no other neighboring clusters in $C T_{i}$. By the CT growth rules, v^{\prime} and w^{\prime} also agree on position, so $v \in N_{v^{\prime}}[j]$ and $w \in N_{w^{\prime}}[j]$ for the same $j \in[k+1]_{0}$

Fig. 4. Setup used to establish the existence of CT graphs with high girth.
by Lemma 3.16 (p. 7), and similarly, v and w agree on history. Hence, if $j \neq j^{\prime}+1$, then $C(v), C(w) \in C T_{i+1} \backslash C T_{i}$, and since $i+1>d+1$ and $C\left(v^{\prime}\right), C\left(w^{\prime}\right) \in C T_{i}$, the second case of the invariant holds for v and w. If $j=j^{\prime}+1$, by the above observations, $C(v)=C\left(p_{0}\left(v^{\prime}\right)\right)$ and $C(w)=C\left(p_{1}\left(w^{\prime}\right)\right)$. As Walk mapped v^{\prime} to $\phi\left(v^{\prime}\right)=: w^{\prime}$, we have that $p_{0}\left(v^{\prime}\right)$ was mapped to $\phi\left(p_{0}\left(v^{\prime}\right)\right)=p_{1}\left(w^{\prime}\right)$, where $p_{0}\left(v^{\prime}\right)$ and $p_{1}\left(w^{\prime}\right)$ lie at distance $d-1$ from v_{0} and v_{1}, respectively. Applying the invariant to these nodes, the first case and the second case with $i \leq d+1$ both imply that $C(v), C(w) \in C T_{d+1}$, establishing the first case of the invariant for v and w. And if the second case applies with $i>d+1$, then the second case of the invariant holds for v and w.

Proof of Theorem 3.14 (p. 7). Follows from the correctness of Algorithm 1 (p. 8) for CT graphs G_{k} with girth $\geq 2 k+1$, established via Lemma 3.20 (p. 9) and Corollary 3.17 (p. 9).

4 ENSURING HIGH GIRTH

To construct G_{k} with high girth, we rely on special graph homomorphisms called graph lifts:
Definition 4.1 (Graph homomorphism). Graph G_{1} is homomorphic to graph G_{2} if there is a function $\phi: V\left(G_{1}\right) \rightarrow$ $V\left(G_{2}\right)$ s.t. $\{v, w\} \in E\left(G_{1}\right) \Rightarrow\{\phi(v), \phi(w)\} \in E\left(G_{2}\right)$ (i.e., ϕ is adjacency-preserving); ϕ is called a homomorphism.

Definition 4.2 (Graph lift). Graph G_{1} is a lift of graph G_{2} if there is a surjective homomorphism $\phi: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ s.t. $\forall v \in V\left(G_{1}\right):\{v, w\} \in E\left(G_{1}\right) \Leftrightarrow\left\{\left.\phi\right|_{\Gamma(v)}(v),\left.\phi\right|_{\Gamma(v)}(w)\right\} \in E\left(G_{2}\right)$ (i.e., ϕ is locally bijective); ϕ is called a covering map.

As sketched by Kuhn et al. [22], we establish the existence of a CT graph G_{k} with girth $g \geq 2 k+1$ and $O\left(\beta^{2 k^{2}+4 k+1}\right)$ nodes using the setup illustrated in Figure 4 (p. 11). The intuition of this setup is that we obtain G_{k} as a subgraph of \tilde{H}_{k}, which is a common lift of a high-girth graph H_{k} and a graph H_{k}^{\prime} that is a supergraph of a low-girth CT graph G_{k}^{\prime}. Since taking lifts and subgraphs cannot decrease the girth, ${ }^{4} G_{k}$ then has large girth, and because G_{k} is a lift of G_{k}^{\prime}, it conforms to $C T_{k}$. Table 1 (p.12) gives an overview of the graphs involved in our setup, along with the properties we seek to establish.

4.1 Low-Girth Cluster Tree Graphs

We can easily design low-girth CT graphs by plugging together complete bipartite graphs.
Definition 4.3 (G_{k}^{\prime} from complete bipartite graphs). For $k \in \mathbb{N}$ and a parameter $\beta \in \mathbb{N}$, let $C T_{k}$ be the CT skeleton parametrized by β. We construct G_{k}^{\prime} conforming to $C T_{k}$ as follows:
(1) For cluster C on level $l \in[k+1]_{0}$ in $C T_{k}$, add $\beta^{2 k-l+1}$ nodes v with $C(v)=C$ to G_{k}.

[^3]| Graph | Properties | Existence Proof |
| :--- | :--- | :--- |
| G_{k}^{\prime} | CT graph, parametrized by $\beta, \beta^{O(k)}$ nodes, $\Delta=\beta^{k+1}$ | Definition 4.3, Lemma 4.4 |
| H_{k}^{\prime} | Δ-regular, supergraph of $G_{k}^{\prime}, \beta^{O(k)}$ nodes | Lemma 4.5, Corollary 4.7 |
| H_{k} | Δ-regular, girth $g=2 k+1, O\left(\Delta^{2 k}\right) \subseteq \beta^{O\left(k^{2}\right)}$ nodes | Lemma 4.6, Corollary 4.7 |
| \tilde{H}_{k} | Δ-regular, lift of H_{k}^{\prime} and H_{k}, girth $g \geq 2 k+1, \beta^{O\left(k^{2}\right)}$ nodes | Lemma 4.8, Corollary 4.9 |
| G_{k} | CT graph, subgraph of \tilde{H}_{k}, girth $g \geq 2 k+1, \beta^{O\left(k^{2}\right)}$ nodes | Theorem 4.10 |

Table 1. Proof overview for establishing the existence of CT graphs with high girth.
(2) For clusters C and C^{\prime} with $\left\langle\left(C, \beta^{x}\right),\left(C^{\prime}, \beta^{x+1}\right)\right\rangle \in E\left(C T_{k}\right)$, connect the nodes representing these clusters in G_{k} using $\frac{|C|}{\beta^{x+1}}$ copies of $K_{\beta^{x}, \beta^{x+1}}$, the complete bipartite graph on $A \dot{\cup} B$ with $|A|=\beta^{x}$ and $|B|=\beta^{x+1}$.

Lemma 4.4 (CT graph structure). Graphs following Definition 4.3 (p.11) are CT graphs.
Proof. As can be easily verified from the definition of $C T_{1}$ and the growth rules, in $C T_{k}$, all arcs are of the form $\left\langle\left(C, \beta^{x}\right),\left(C^{\prime}, \beta^{x+1}\right)\right\rangle$ for some $x \in[k+1]_{0}$, where C is on level $\ell \in[k]_{0}$ and C^{\prime} on level $\ell+1$. By Definition 4.3 (p. 11), we thus have that $\left|C^{\prime}\right|=\frac{|C|}{\beta}$. Now, $\frac{|C|}{\beta^{x+1}}$ copies of $K_{\beta^{x}, \beta^{x+1}}$ contain $\frac{|C|}{\beta^{x+1}} \cdot \beta^{x+1}=|C|$ nodes with degree β^{x} and $\frac{|C|}{\beta^{x+1}} \cdot \beta^{x}=\frac{|C|}{\beta}=\left|C^{\prime}\right|$ nodes with degree β^{x+1}. Hence, using $\frac{|C|}{\beta^{x+1}}$ copies of $K_{\beta^{x}, \beta^{x+1}}$, we exactly fulfill the requirements imposed by $C T_{k}$ on the connectivity between C and C^{\prime}.

4.2 Regular Graphs with Desirable Properties

The construction from Definition 4.3 (p.11) results in CT graphs of girth four. It remains to lift these low-girth graphs to high girth. First, we embed G_{k}^{\prime} into a Δ-regular graph.

Lemma 4.5 (Δ-regular supergraphs of general graphs). Let G be a simple graph with maximum degree Δ. Then there exists a Δ-regular supergraph H of G with $|V(H)|<|V(G)|+4 \Delta .^{5}$

Proof. Let $G=(V, E)$ with maximum degree Δ. We modify G to form H as follows. While there are nodes $v, w \in V$ with degree $\delta(v)<\Delta, \delta(w)<\Delta$, and $\{v, w\} \notin E$, we add $\{v, w\}$ to E. Let D be the set of remaining nodes with degree less than Δ. By construction, we know that the nodes in D form a clique of size at most Δ.

Now add a complete bipartite graph $K_{\Delta, \Delta}$ with node bipartition $\left\{l_{i} \mid i \in[\Delta]\right\} \dot{\cup}\left\{r_{i} \mid i \in[\Delta]\right\}$ and define Δ disjoint perfect matchings $M_{i}:=\left\{\left\{l_{x}, r_{y}\right\} \mid(x-y) \bmod \Delta=i\right\}$. Assign to each $v \in D$ a unique such matching, remove the edges containing l_{i} for $\left.i \in[L(\Delta-\delta(v)) / 2\rfloor\right]$, and connect all endpoints of these edges to v. Afterwards, nodes in D are missing at most one edge, while all other nodes have degree Δ. Next, arbitrarily match the nodes still missing edges. For each such pair $(v, w) \in D^{2}$, choose the remaining edge from the matching of v that contains l_{Δ}, remove it, connect w to l_{Δ}, and v to the other endpoint.

After this step, at most one node does not have degree Δ yet, and misses at most one edge. If this case occurs, Δ must be odd (otherwise, v would be the only node with odd degree, while the number of nodes with odd degree in any graph must be even). We complete the procedure by adding a copy of $K_{\Delta, \Delta-1}$, connecting v to one of the Δ nodes of degree $\Delta-1$ in $K_{\Delta, \Delta-1}$, and adding a perfect matching between the remaining nodes of degree $\Delta-1$ (whose number is even). The resulting graph H is a Δ-regular supergraph of G with $|V(H)| \leq|V(G)|+4 \Delta-1$ nodes.

[^4]Next, we ensure that Δ-regular graphs of girth $2 k+1$ without too many nodes exist:

Lemma 4.6 (Δ-REGULAR GRAPHS With Prescribed girth and order [11]). For $2 \leq \Delta \in \mathbb{N}$ and $3 \leq g \in \mathbb{N}$, there exist Δ-regular graphs with girth at least g and $2 m$ nodes for each $m \geq 2 \cdot \sum_{i=0}^{g-2}(\Delta-1)^{i}$.

Proof. Fix g. The claim trivially holds for $\Delta=2$, as any cycle of length $2 m$ satisfies the requirements. Now assume that the claim holds for some $\Delta \geq 2$. Thus, for any $m \geq 2 \cdot \sum_{i=0}^{g-2} \Delta^{i}$, there exists a Δ-regular graph G with $2 m \geq$ $4 \cdot \sum_{i=0}^{g-2}(\Delta-1)^{i}$ nodes and girth at least $g \geq 3$. Now let G^{\prime} be a graph satisfying the following conditions:
(1) $\left|V\left(G^{\prime}\right)\right|=2 m$,
(2) $\Delta \leq \delta(v) \leq \Delta+1$ for all nodes $v \in V\left(G^{\prime}\right)$,
(3) G^{\prime} has girth at least g, and
(4) $\left|E\left(G^{\prime}\right)\right|$ is maximal among all graphs (including G) that satisfy the other three conditions.

We show that G^{\prime} is $(\Delta+1)$-regular. To this end, assume towards a contradiction that G^{\prime} is $n o t(\Delta+1)$-regular. Then either G^{\prime} has exactly one node with degree Δ or G^{\prime} has at least two nodes v^{\prime} and w^{\prime} with degree Δ.

The first case cannot occur because it would require G^{\prime} to have exactly one node of odd degree for $\Delta+1$ even, and exactly $2 m-1$ nodes of odd degree for $\Delta+1$ odd, contradicting the fact that in any graph, the number of nodes with odd degree must be even. So assume that there are at least two nodes v^{\prime} and w^{\prime} with degree Δ in G^{\prime}. Observe that all nodes of degree Δ must lie within distance $g-2$ of v^{\prime} and w^{\prime}, i.e., in $N:=\Gamma^{g-2}\left(v^{\prime}\right) \cap \Gamma^{g-2}\left(w^{\prime}\right)$, as otherwise we could add an edge to G^{\prime} without violating the first three properties, contradicting the fourth property. Since $\left|\Gamma^{j}(v)\right| \leq \sum_{i=0}^{j} \Delta^{i}$ for any node $v \in V\left(G^{\prime}\right)$ with $\delta(v)=\Delta$, we have $|N| \leq m$, and consequently, $|N| \leq\left|V\left(G^{\prime}\right)\right|-|N|$.

Now let $\{x, y\}$ be an edge between two nodes $x, y \in V\left(G^{\prime}\right) \backslash N$. We know such an edge must exist, because otherwise $(\Delta+1) \cdot\left(\left|V\left(G^{\prime}\right)\right|-|N|\right)$ edges would need to run between nodes in $V\left(G^{\prime}\right) \backslash N$ and nodes in N, which would force $\delta(v)=\Delta+1$ for all $v \in N$, contradicting the fact that $\delta\left(v^{\prime}\right)=\delta\left(w^{\prime}\right)=\Delta$. But then \bar{G}^{\prime} with $V\left(\bar{G}^{\prime}\right):=V\left(G^{\prime}\right)$ and $E\left(\bar{G}^{\prime}\right):=\left(E\left(G^{\prime}\right) \backslash\{x, y\}\right) \cup\{\{x, v\},\{y, w\}\}$ is a graph with more edges than G^{\prime} that satisfies the first three requirements (in particular, the new edge set does not introduce a cycle of length $<g$ since x and y lie at distance $\geq g-1$ from v^{\prime} and w^{\prime}), contradicting the maximality of G^{\prime}. Therefore, no node with degree Δ can exist in G^{\prime}, i.e., G^{\prime} must be $(\Delta+1)$-regular.

Corollary 4.7 (Existence of H_{k}^{\prime} and H_{k}). There exists a Δ-regular supergraph H_{k}^{\prime} of G_{k}^{\prime} with $O\left(\left|V\left(G_{k}^{\prime}\right)\right|\right)$ nodes, and for $\Delta \geq 2$ and $g \geq 3$, there exists a Δ-regular graph H_{k} with girth $g=2 k+1$ and $O\left(\Delta^{2 k}\right)$ nodes.

Proof. The existence of H_{k}^{\prime} follows from Lemma 4.5 (p. 12) as a special case. The existence of H_{k} follows from Lemma 4.6 (p. 13) as a special case, noting that $4 \cdot \sum_{i=0}^{(2 k+1)-2} \Delta^{i}=4 \cdot \frac{\Delta^{2 k}-1}{\Delta-1} \leq 4 \cdot \Delta^{2 k} \in O\left(\Delta^{2 k}\right)$.

4.3 High-Girth Cluster Tree Graphs

Our final tool allows us to construct small common lifts of regular graphs:
Lemma 4.8 (Common lifts of Δ-Regular graphs [2]). Let H and H^{\prime} be two Δ-regular graphs. Then there exists a graph \tilde{H} that is a lift of H and H^{\prime} s.t. $|V(\tilde{H})| \leq 4|V(H)|\left|V\left(H^{\prime}\right)\right|$.

Proof. By Hall's Theorem [17, 18], any regular bipartite graph has a perfect matching, and the edge set of a Δ regular bipartite graph can be partitioned into Δ perfect matchings. For the special case that H and H^{\prime} are both bipartite, let $M_{1}, \ldots, M_{\Delta}$ and $M_{1}^{\prime}, \ldots, M_{\Delta}^{\prime}$ be partitions of their respective edge sets into perfect matchings. We define \tilde{H} with
$V(\tilde{H})=V(H) \times V\left(H^{\prime}\right)$ and $E(\tilde{H})=\left\{\left\{(v, w),\left(v^{\prime}, w^{\prime}\right)\right\} \mid \exists i \in[\Delta]:\left\{v, v^{\prime}\right\} \in M_{i} \wedge\left\{w, w^{\prime}\right\} \in M_{i}^{\prime}\right\} . \tilde{H}$ has $|V(H)|\left|V\left(H^{\prime}\right)\right|$ nodes, and for each $(v, w) \in V(\tilde{H})$ and $i \in[\Delta]$, there are unique $\left\{v, v^{\prime}\right\} \in M_{i}$ and $\left\{w, w^{\prime}\right\} \in M_{i}^{\prime}$. Hence, (v, w) has Δ neighbors, and if these neighbors are $\left(v_{1}, w_{1}\right), \ldots,\left(v_{\Delta}, w_{\Delta}\right)$, the neighbors of v in H are $v_{1}, \ldots, v_{\Delta}$, while the neighbors of w in H^{\prime} are $w_{1}, \ldots, w_{\Delta}$. Therefore, \tilde{H} is a lift of H via $\phi_{H}: V(\tilde{H}) \rightarrow V(H)$ with $\phi_{H}((v, w))=v$, and a lift of H^{\prime} via $\phi_{H^{\prime}}: V(\tilde{H}) \rightarrow V\left(H^{\prime}\right)$ with $\phi_{H^{\prime}}((v, w))=w$.

If a graph is not bipartite, we construct its canonical double cover, i.e., its tensor product with K_{2}, to obtain a bipartite regular graph, with which we proceed as described above. The canonical double cover has twice as many nodes as the original graph, and we might need it for H and H^{\prime}, so $|V(\tilde{H})| \leq 4|V(H)|\left|V\left(H^{\prime}\right)\right|$. Further, if χ_{H} is covering map of the canonical double cover C of H, then \tilde{H} is a lift of H via $\phi_{C} \circ \chi_{H}$; analogously, \tilde{H} is a lift of H^{\prime}.

Corollary 4.9 (Existence of \tilde{H}_{k}). There exists a Δ-regular common lift \tilde{H}_{k} of H_{k} and H_{k}^{\prime} with girth $g \geq 2 k+1$ and $O\left(\beta^{2 k^{2}+4 k+1}\right)$ nodes.

Proof. Recall that we start with G_{k}^{\prime} as specified in Definition 4.3 (p.11), parametrized by $\beta \geq 2 k+1$. By Lemma 3.13 (p. 6), G_{k}^{\prime} has maximum degree $\Delta=\beta^{k+1}$, and by Lemma 3.12 (p. 6), G_{k}^{\prime} has order $n<\left|C_{0}\right|\left(\frac{\beta}{\beta-(k+1)}\right) \leq 2\left|C_{0}\right|=2 \beta^{2 k+1}$. We apply Lemma 4.5 (p.12) to obtain a Δ-regular supergraph H_{k}^{\prime} of G_{k}^{\prime} with $O\left(\beta^{2 k+1}\right)$ nodes. By Corollary 4.7 (p. 13), there also exists a Δ-regular graph H_{k} with girth $\geq 2 k+1$ and $\left|V\left(H_{k}\right)\right| \in O\left(\Delta^{2 k}\right)=O\left(\beta^{2 k^{2}+2 k}\right)$. Therefore, from Lemma 4.8 (p.13) along with the observation that lifting cannot decrease girth, we can infer the existence of a graph \tilde{H}_{k} which is a lift of H_{k} and H_{k}^{\prime}, has girth at least $2 k+1$, and satisfies $|V(\tilde{H})| \leq 4\left|V\left(H_{k}\right)\right|\left|V\left(H_{k}^{\prime}\right)\right| \in O\left(\beta^{2 k^{2}+4 k+1}\right)$. \quad.

Finally, we construct G_{k} as a subgraph of \tilde{H}_{k} :
Theorem 4.10 (Existence of G_{k} [22]). There exists a graph G_{k} of girth $g \geq 2 k+1$ with $O\left(\beta^{2 k^{2}+4 k+1}\right)$ nodes that conforms with $C T_{k}$.

Proof. By Corollary 4.9 (p. 14), there exists a graph \tilde{H}_{k} with girth $g \geq 2 k+1$ and $O\left(\beta^{2 k^{2}+4 k+1}\right)$ nodes that is a common lift of H_{k}^{\prime} and H_{k}. Now let ψ_{1} be a covering map from \tilde{H}_{k} to H_{k}^{\prime}. We construct G_{k} as a subgraph of \tilde{H}_{k} with $V\left(G_{k}\right):=\left\{v \in \tilde{H}_{k} \mid \psi_{1}(v) \in G_{k}^{\prime}\right\}$ and $E\left(G_{k}\right):=\left\{\{v, w\} \mid v, w \in V\left(\tilde{H}_{k}\right) \wedge\left\{\psi_{1}(v), \psi_{1}(w)\right\} \in E\left(G_{k}^{\prime}\right)\right\}$. Then $\phi:=\left.\psi_{1}\right|_{V\left(G_{k}\right)}$ is a covering map from G_{k} to G_{k}^{\prime}. To see that G_{k} conforms with $C T_{k}$, observe that ϕ is indeed a bijection on node neighborhoods, and set $C(v):=C(\phi(v))$ for $v \in V\left(G_{k}\right)$. Hence, we can conclude that G_{k} is an $O\left(\beta^{2 k^{2}+4 k+1}\right)$-node graph of girth $g \geq 2 k+1$ (inherited from \tilde{H}_{k}), conforming to $C T_{k}$ (inherited from G_{k}^{\prime}).

5 LOWER BOUND ON MINIMUM VERTEX COVER APPROXIMATION

Definition 5.1 (Vertex cover). Given a finite, simple graph $G=(V, E)$, a vertex cover is a node subset $S \subseteq V$ meeting all edges, i.e., for each $\{v, w\} \in E, v \in S$ or $w \in S$. A Minimum Vertex Cover (MVC) is a vertex cover of minimum cardinality, and an α-approximate MVC is a vertex cover that is at most factor α larger than an MVC.

We begin by bounding the size of an MVC of any CT graph G_{k}. To this end, recall that n_{0} is the number of nodes in C_{0}, which we have shown to contain a large fraction of all nodes.

Observation 5.2 (Size of an MVC of G_{k}). $|M V C| \leq n-n_{0}$.
Proof. As C_{0} is an independent set, $V\left(G_{k}\right) \backslash C_{0}$ is a vertex cover.
Due to the indistinguishability of nodes in C_{0} and C_{1} in G_{k} (Theorem 3.14, p. 7), we obtain the following requirement for the behavior of any k-round distributed algorithm:

Lemma 5.3 (Size of a computed vertex cover). On a $C T$ graph G_{k} of girth at least $2 k+1$ with uniformly random node identifiers, in the worst case (in expectation), a k-round deterministic (randomized) MVC algorithm in the LOCAL model must select at least $\frac{n_{0}}{2}$ nodes.

Proof. Recall that a k-round LOCAL algorithm is a function f mapping k-hop subgraphs labeled by inputs, node identifiers, and, in case of a randomized algorithm, strings of unbiased independent random bits to outputs. Noting that the vertex cover task has no inputs, by Theorem 3.14 (p. 7), nodes in C_{0} and C_{1} are k-hop indistinguishable. Hence, restricting f to the k-hop subgraphs of nodes in $C_{0} \cup C_{1}$, we get a function depending only on the node identifiers and random strings observed up to distance k in the (isomorphic) trees that constitute the k-hop subgraphs. Now assign the node identifiers uniformly at random (from the feasible range, drawn without repetition). By the above observations, the output of each node $v \in C_{0} \cup C_{1}$ then depends on the random labeling of its k-hop subgraph only, which is drawn from the same distribution for each node. Thus, there is some $p \in[0,1]$ such that for each $v \in C_{0} \cup C_{1}$, the probability that v enters the vertex cover computed by the algorithm equals p. Now consider $v \in C_{0}$. By the construction of G_{k}, there is some edge $\{v, w\} \in E\left(G_{k}\right)$ such that $w \in C_{1}$. Because v or w must be in the vertex cover the algorithm computes, we have that $1=P[v$ or w are in the vertex cover $] \leq 2 p$. By linearity of expectation, we conclude that the expected size of the vertex cover is at least $p\left|C_{0} \cup C_{1}\right| \geq \frac{n_{0}}{2}$.

Choosing β appropriately, we arrive at the desired MVC lower bound:
Theorem 5.4 (MVC lower bound). In the family of graphs with at most n nodes and degrees of at most Δ, the worst-case (expected) approximation ratio α of a deterministic (randomized) k-round MVC algorithm in the LOCAL model satisfies $\alpha \in \min \left\{n^{\Omega\left(1 /\left(k^{2} \log k\right)\right)}, \Delta^{\Omega(1 /(k \log k))}\right\}$. In particular, achieving an (expected) approximation ratio $\alpha \in$ $\log { }^{O(1)} \min \{n, \Delta\}$ requires $k \in \Omega(\min \{\sqrt{\log n / \log \log n}, \log \Delta / \log \log \Delta\})$ communication rounds.

Proof. Given any $\alpha>1$, fix $\beta:=4(k+1) \alpha$. By Theorem 4.10 (p. 14), CT graphs of girth $2 k+1$ with $O\left(\beta^{2 k^{2}+4 k+1}\right) \subseteq$ $2^{O\left(k^{2}(\log k+\log \alpha)\right)}$ nodes exist, which by Lemma 3.13 (p. 6) have maximum degree $\Delta=\beta^{k+1} \in 2^{O(k(\log k+\log \alpha))}$. We need these bounds to be smaller than n and Δ, respectively. As we want to show an asymptotic bound for α, we may assume that n and Δ are sufficiently large constants. Hence, it is sufficient to satisfy the constraints $\alpha \leq$ $2^{c k^{-2} \log n-\log k}$ and $\alpha \leq 2^{c k^{-1} \log \Delta-\log k}$, respectively, where $c>0$ is a sufficiently small constant. For $k \leq \frac{c}{2}$. $\min \{\sqrt{\log n / \log \log n}, \log \Delta / \log \log \Delta\}$, the $\log k$ terms are dominated and the constraints are met for $\alpha \in \min \left\{n^{\Omega\left(1 /\left(k^{2} \log k\right)\right)}\right.$, $\left.\Delta^{\Omega(1 /(k \log k))}\right\}$.

In particular, $k \in \omega(\min \{\sqrt{\log n / \log \log n}, \log \Delta / \log \log \Delta\})$ enables us to choose $\alpha=\min \left\{\log ^{\omega(1)} n, \log ^{\omega(1)} \Delta\right\}$. Hence, if we can show that for any (feasible) choice of α and graph G_{k} conforming to $C T_{k}$ for parameter $\beta=4(k+1) \alpha$ and girth $2 k+1$, any algorithm in the LOCAL model has approximation ratio at least α in the worst case (in expectation), the claim of the theorem follows. To see this, note that G_{k} contains a vertex cover of size $n-n_{0}$ by Observation 5.2 (p. 14) and any k-round algorithm selects at least $\frac{n_{0}}{2}$ nodes (in expectation) under uniformly random node identifiers by Lemma 5.3 (p. 15). By Lemma 3.12 (p. 6), this results in an (expected) approximation ratio of at least $\frac{n_{0}}{2\left(n-n_{0}\right)} \geq$ $\frac{\beta}{4(k+1)}=\alpha$.

REFERENCES

[1] Jin Akiyama, Hiroshi Era, and Frank Harary. Regular graphs containing a given graph. Elemente der Mathematik, 38:15-17, 1983.
[2] Dana Angluin and A. Gardiner. Finite common coverings of pairs of regular graphs. Fournal of Combinatorial Theory, Series B, 30(2):184-187, 1981.
[3] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka Suomela. Lower bounds for maximal matchings and maximal independent sets. In 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 481-497, 2019.
[4] Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. Almost Global Problems in the LOCAL Model. In Ulrich Schmid and Josef Widder, editors, 32nd International Symposium on Distributed Computing (DISC 2018), volume 121 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1-9:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
[5] Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Dennis Olivetti, and Jukka Suomela. New classes of distributed time complexity. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 1307-1318, New York, NY, USA, 2018. ACM.
[6] Reuven Bar-Yehuda, Keren Censor-Hillel, Mohsen Ghaffari, and Gregory Schwartzman. Distributed approximation of maximum independent set and maximum matching. In Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC '17, pages 165-174, New York, NY, USA, 2017. ACM.
[7] Reuven Bar-Yehuda, Keren Censor-Hillel, and Gregory Schwartzman. A distributed $(2+\epsilon)$-approximation for vertex cover in $O(\log \Delta / \epsilon \log \log \Delta)$ rounds. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC '16, pages 3-8, New York, NY, USA, 2016. ACM.
[8] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed lovász local lemma. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC '16, pages 479-488, New York, NY, USA, 2016. Association for Computing Machinery.
[9] Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. The complexity of distributed edge coloring with small palettes. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2633-2652, 2018.
[10] Andrzej Czygrinow, Michal Hańćkowiak, and Wojciech Wawrzyniak. Fast distributed approximations in planar graphs. In Proceedings of the 22nd International Symposium on Distributed Computing, DISC '08, pages 78-92, Berlin, Heidelberg, 2008. Springer-Verlag.
[11] Paul Erdős and Horst Sachs. Reguläre graphen gegebener taillenweite mit minimaler knotenzahl. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 12(3):251-257, 1963.
[12] Laurent Feuilloley, Pierre Fraigniaud, and Juho Hirvonen. A Hierarchy of Local Decision. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), volume 55 of Leibniz International Proceedings in Informatics (LIPIcs), pages 118:1-118:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
[13] Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory for local distributed computing. F. ACM, 60(5):35:1-35:26, October 2013.
[14] Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local distributed graph problems. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 784-797, New York, NY, USA, 2017. ACM.
[15] Mika Göös, Juho Hirvonen, and Jukka Suomela. Lower bounds for local approximation. 7. ACM, 60(5):39:1-39:23, October 2013.
[16] Mika Göös, Juho Hirvonen, and Jukka Suomela. Linear-in- Δ lower bounds in the local model. Distributed Computing, 30(5):325-338, 2017.
[17] P. Hall. On representatives of subsets. Journal of the London Mathematical Society, s1-10(1):26-30, 1935.
[18] Dénes König. Über graphen und ihre anwendung auf determinantentheorie und mengenlehre. Mathematische Annalen, 77(4):453-465, Dec 1916.
[19] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What cannot be computed locally! In Proceedings of the Twenty-third Annual ACM Symposium on Principles of Distributed Computing, PODC '04, pages 300-309, New York, NY, USA, 2004. ACM.
[20] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being near-sighted. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA '06, pages 980-989, Philadelphia, PA, USA, 2006. Society for Industrial and Applied Mathematics.
[21] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and upper bounds. CoRR, abs/1011.5470, 2010. URL: http://arxiv.org/abs/1011.5470, arXiv: 1011.5470.
[22] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and upper bounds. 7. ACM, 63(2):17:1-17:44, March 2016.
[23] Juhana Laurinharju and Jukka Suomela. Brief announcement: Linial's lower bound made easy. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC '14, pages 377-378, New York, NY, USA, 2014. Association for Computing Machinery.
[24] Christoph Lenzen and Roger Wattenhofer. Leveraging linial's locality limit. In Proceedings of the 22nd International Symposium on Distributed Computing, DISC '08, pages 394-407, Berlin, Heidelberg, 2008. Springer-Verlag.
[25] Nathan Linial. Locality in distributed graph algorithms. SIAM fournal on Computing, 21(1):193-201, 1992.
[26] Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM 7. Comput., 24(6):1259-1277, December 1995.
[27] Alessandro Panconesi and Romeo Rizzi. Some simple distributed algorithms for sparse networks. Distrib. Comput., 14(2):97-100, April 2001.
[28] David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2000.
[29] Jukka Suomela. Survey of local algorithms. ACM Comput. Surv., 45(2):24:1-24:40, March 2013.
[30] Jukka Suomela. Distributed algorithms (online textbook), 2019. URL: https://users.ics.aalto.fi/suomela/da/.

A FURTHER PRELIMINARIES

A. 1 General Notation

Symbol Definition	Meaning
$[k]:=\{i \in \mathbb{N} \mid i \leq k\}$	Set of positive integers not larger than k
$[k]_{0}:=\left\{i \in \mathbb{N}_{0} \mid i \leq k\right\}$	Set of nonnegative integers not larger than k
$G:=(V(G), E(G))$	Graph G with node set $V(G)$ and edge set $E(G)$
$G[S]:=(S, E[S])$,	Subgraph of G induced by $S \subseteq V(G)$
$E[S]:=\left\{\left\{v_{i}, v_{j}\right\} \in E \mid v_{i}, v_{j} \in S\right\}$	
$n_{G}:=\|V(G)\|$	Number of nodes in G (order of G)
$m_{G}:=\|E(G)\|$	Number of edges in G (size of G)
$\Gamma_{G}(v):=\{w \in V(G) \mid\{v, w\} \in E(G)\}$	Neighborhood of v in G (as a node set)
$\delta_{G}(v):=\left\|\Gamma_{G}(v)\right\|$	Degree of v in G
$\Delta_{G}:=\max \{\delta(v) \mid v \in V(G)\}$	Largest degree of a node $v \in V(G)$
$\begin{aligned} p_{G}(u, w):= & \left(\left\{v_{0}, v_{1}\right\},\left\{v_{1}, v_{2}\right\}, \ldots,\left\{v_{k-1}, v_{k}\right\}\right), \\ & v_{0}=u, v_{k}=w,\left\{v_{i}, v_{i+1}\right\} \in E \\ & \forall i \in[k-1]_{0} \end{aligned}$	A path from u to w in G
$d_{G}(u, w):=\min \{i\|\exists p(u, w):\|p(u, w)\|=i\}$	Distance between node u and node w in G (∞ if there exists no path between u and w)
$\begin{aligned} d_{G}(u, e):= & \min \{i \mid \exists w, p(u, w): \\ & \|p(u, w)\|=i \wedge e \in p(u, w)\} \end{aligned}$	Distance between node u and edge e in G (∞ if there exists no path between u and e)
$g_{G}:=\min \{i>0\|\exists v, p(v, v):\|p(v, v)\|=i\}$	Girth of G (length of its shortest cycle)
$\Gamma_{G}^{k}(v):=\{w \in V(G) \mid d(v, w) \leq k\}$	k-hop neighborhood of a node v in G (\rightarrow Definition 2.1)
$\begin{aligned} G^{k}(v):= & G\left[\Gamma^{k}(v)\right] \backslash\{\{w, u\} \in E(G) \\ & \mid \min \{d(v, w), d(v, u)\} \geq k\} \end{aligned}$	k-hop subgraph of a node v in G (\rightarrow Definition 2.2)
$G_{1} \subseteq G_{2}: \Leftrightarrow V\left(G_{1}\right) \subseteq V\left(G_{2}\right) \wedge E\left(G_{1}\right) \subseteq E\left(G_{2}\right)$	Subgraph relationship between G_{1} and G_{2}
$\begin{aligned} G_{1} \cong G_{2}: \Leftrightarrow & \exists \phi: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right) \text { bijective } \\ & \text { s.t. }\{v, w\} \in E\left(G_{1}\right) \\ & \Leftrightarrow\{\phi(v), \phi(w)\} \in E\left(G_{2}\right) \end{aligned}$	Graph isomorphism between G_{1} and G_{2}

Table 2. General notation used in this work (subscript or parenthesized G may be omitted when clear from context).

A. 2 The LOCAL Model

Our presentation of the LOCAL model follows Peleg [28]. The LOCAL model is a highly stylized model of network communication designed to capture the locality of distributed computing. In this model, a communication network is abstracted as a simple graph $G=(V, E)$, with nodes representing network devices and edges representing bidirectional communication links. To eliminate all computability restrictions that are not related to locality, the model makes the following assumptions:

- Network devices have unique identifiers and unlimited computation power.
- Communication links have infinite capacity.
- Computation and communication takes place in synchronous rounds.
- All network devices start computing and communicating at the same time.
- There are no faults.

In each round, a node can
(1) perform an internal computation based on its currently available information,
(2) send messages to its neighbors,
(3) receive all messages sent by its neighbors, and
(4) potentially terminate with some local output.

A k-round distributed algorithm in the LOCAL model can be interpreted as a function from k-hop subgraphs to local outputs:

Definition A. 1 (k-round distributed algorithm). A k-round distributed algorithm \mathcal{A} is a function mapping k-hop subgraphs $G^{k}(v)$, labeled by unique node identifiers (and potentially some local input), to local outputs. For a randomized algorithm, nodes are also labeled by (sufficiently long) strings of independent, unbiased random bits.

We assume that at the start of the algorithm, nodes do not know their incident edges.

B FURTHER LOWER BOUNDS

Definition B. 1 (Fundamental graph problems). Given a finite, simple graph $G=(V, E)$,

- Minimum Vertex Cover (MVC) ...find a minimum vertex subset $S \subseteq V$ s.t. $\forall\{u, v\} \in E: u \in S \vee v \in S$.
- Minimum Dominating Set (MDS) ...find a minimum vertex subset $S \subseteq V$ s.t. $\forall v \in V: v \in S \vee \exists u \in S$: $\{u, v\} \in E$.
- Maximum Matching (MaxM) ...find a maximum edge subset $T \subseteq E$ s.t. $\forall e_{1}, e_{2} \in T: e_{1} \cap e_{2}=\emptyset$.
- Maximal Matching (MM) ...find an inclusion-maximal edge subset $T \subseteq E$ s.t. $\forall e_{1}, e_{2} \in T: e_{1} \cap e_{2}=\emptyset$.
- Maximal Independent Set (MIS) ...find an inclusion-maximal vertex subset $S \subseteq V$ s.t. $\forall u, v \in S:\{u, v\} \notin E$.

Fig. 5. Relationships between the lower bounds derived for fundamental graph problems (adapted from [22]). Optimization problems marked blue; binary problems marked red. Solid arrows indicate reductions; dashed arrows indicate analogy.

B. 1 Minimum Dominating Set (MDS)

Theorem B. 2 (MDS lower bound). The best approximation ratio a k-round deterministic (randomized) MDS algorithm in the LOCAL model can achieve is $\alpha \in n^{\Omega\left(1 / k^{2}\right)} / k$ and $\alpha \in \Omega\left(\Delta^{\frac{1}{k+1}} / k\right)$. Hence, to obtain an approximation ratio polylogarithmic in n or Δ, in the worst case (in expectation) an algorithm needs to run for $k \in \Omega(\sqrt{\log n / \log \log n})$ or $k \in \Omega(\log \Delta / \log \log \Delta)$ rounds, respectively.

Proof. Observe that a vertex cover $V C$ of any graph G can be transformed into a dominating set $D S$ of its line graph $L(G)$ without increasing its cardinality by adding one edge $\{v, w\} \in V(L(G))$ for every node $v \in V(G)$. Similarly, a dominating set of $L(G)$ can be turned into a vertex cover of G by adding the nodes v, w for all $\{v, w\} \in D S(L(G))$, at most doubling its size. Therefore, in general, MVC and MDS are equivalent up to a factor of two in the approximation ratio. Now consider a CT graph G_{k} and its line graph $L\left(G_{k}\right)$. In the LOCAL model of computation, a k-round computation on the line graph can be simulated in $k+1$ rounds on the original graph, i.e., G_{k} and $L\left(G_{k}\right)$ have the same locality properties.

Hence, up to a factor of two in the approximation ratio, MVC and MDS are equivalent also in our computational model. The stated bounds hence follow analogously to Theorem 5.4 (p. 15).

B. 2 Maximum Matching (MaxM)

Here, we are dealing with a packing problem, rather than a covering problem, and we are asked to select edges, rather than nodes. Therefore, instead of using a reduction from MVC, we amend the CT graph construction to allow for edge indistinguishability arguments:

Definition B. 3 (k-hop edge indistinguishability). Two edges $\{v, w\}$ and $\left\{v^{\prime}, w^{\prime}\right\}$ are k-hop indistinguishable if there exists an isomorphism $\phi: V\left(G^{k}(\{v, w\})\right) \rightarrow V\left(G^{k}\left(\left\{v^{\prime}, w^{\prime}\right\}\right)\right)$ with $\phi(v)=v^{\prime}$ and $\phi(w)=w^{\prime}$, where $G^{k}(\{v, w\}):=$ $G^{k}(\{v\}) \cup G^{k}(\{w\})$ and $G^{k}\left(\left\{v^{\prime}, w^{\prime}\right\}\right):=G^{k}\left(\left\{v^{\prime}\right\}\right) \cup G^{k}\left(\left\{w^{\prime}\right\}\right)$.

Theorem B. 4 (MaxM lower bound). The best approximation ratio a k-round deterministic (randomized) MaxM algorithm in the LOCAL model can achieve is $\alpha \in n^{\Omega\left(1 / k^{2}\right)} / k$ and $\alpha \in \Omega\left(\Delta \frac{1}{k+1} / k\right)$. Hence, to obtain an approximation ratio polylogarithmic in n or Δ, in the worst case (in expectation) an algorithm needs to run for $k \in \Omega(\sqrt{\log n / \log \log n})$ or $k \in \Omega(\log \Delta / \log \log \Delta)$ rounds, respectively.

Proof. We create a hard graph H_{k} from two low-girth copies of G_{k}, G_{k}^{\prime} and \bar{G}_{k}^{\prime}, by first adding a perfect matching to connect each node from G_{k}^{\prime} with its counterpart in \bar{G}_{k}^{\prime} to form a low-girth graph H_{k}^{\prime}, and then lifting H_{k}^{\prime} to high girth using the construction detailed in Section 4 to obtain H_{k} with high girth. ${ }^{6}$ Figure 6 (p. 20) illustrates the idea. We refer to the part of H_{k} corresponding to G_{k}^{\prime} as G_{k} and to the part of H_{k} corresponding to \bar{G}_{k}^{\prime} as \bar{G}_{k}.

Since G_{k} and \bar{G}_{k} are high-girth CT graphs, all nodes in the clusters $C_{0}, \bar{C}_{0}, C_{1}$, and \bar{C}_{1}-and hence, the endpoints of edges $\left\{v_{0}, v_{1}\right\}$, $\left\{v_{0}, \bar{v}_{0}\right\}$, $\left\{\bar{v}_{0}, \bar{v}_{1}\right\}$, and $\left\{v_{1}, \bar{v}_{1}\right\}$ (where $v_{i} \in C_{i}$ and $\bar{v}_{i} \in \bar{C}_{i}$ for $i \in\{1,2\}$)-have isomorphic k-hop subgraphs if the matching is not added before the lift. In H_{k}, each node from G_{k} has $1=\beta^{0}$ additional neighbor in the copy of its own cluster in \bar{G}_{k}. Since H_{k} has high girth, however, the k-hop subgraphs of nodes in $C_{0}, \bar{C}_{0}, C_{1}$, and \bar{C}_{1} are still k-hop indistinguishable, and an isomorphism $\phi: V\left(G^{k}\left(\left\{v_{0}, v_{1}\right\}\right)\right) \rightarrow V\left(G^{k}\left(\left\{v_{0}, \bar{v}_{0}\right\}\right)\right)$ $\left(\phi: V\left(G^{k}\left(\left\{\bar{v}_{0}, \bar{v}_{1}\right\}\right)\right) \rightarrow V\left(G^{k}\left(\left\{v_{1}, \bar{v}_{1}\right\}\right)\right)\right)$ can map nodes from these clusters onto each other as needed to satisfy the requirements of Definition B. 3 (we could again define an algorithm analogous to Algorithm 1, p. 8, to construct this isomorphism explicitly). It follows that the edges running between C_{0} and $C_{1}\left(\bar{C}_{0}\right.$ and $\left.\bar{C}_{1}\right)$ are k-hop edge indistinguishable from the edges running between C_{0} and $\bar{C}_{0}\left(C_{1}\right.$ and $\left.\bar{C}_{1}\right)$.

Now consider a node $v \in C_{0}$ and the set E_{v} of $\beta+1$ pairwise indistinguishable edges that have v as an endpoint. To guarantee a valid matching, a deterministic algorithm operating on a labeling chosen uniformly at random must ensure $\sum_{e \in E_{v}} p(e) \leq 1$, so each edge e (including the edge running from v to $v^{\prime} \in \bar{C}_{0}$) must be selected into the matching with probability $p(e) \leq \frac{1}{\beta+1}$. Consequently, the expected number of edges contributed to the matching by edges running between C_{0} and \bar{C}_{0} is $\mathbb{E}\left[\left|M\left(C_{0}, \bar{C}_{0}\right)_{D}\right|\right] \leq \frac{n_{0}}{\beta+1}$ by linearity of expectation. To obtain a feasible matching, the number of edges in the matching without an endpoint in $C_{0} \cup \bar{C}_{0}$ can be at most $2 n-2 n_{0}$, where $n:=\left|V\left(G_{k}\right)\right|$ and $n_{0}:=\left|C_{0}\right|$. It follows that there exists at least one labeling for which a k-round deterministic algorithm produces a matching with

$$
\left|M_{D}\right| \leq \frac{n_{0}}{\beta+1}+2 n-2 n_{0} \leq n_{0} \cdot \frac{4(k+1)+1}{\beta} \in O\left(n \cdot \frac{k}{\beta}\right),
$$

[^5]

Fig. 6. Construction of H_{2}^{\prime} from G_{2}^{\prime} and \bar{G}_{2}^{\prime}; edges corresponding to the perfect matching between nodes in G_{2}^{\prime} and \bar{G}_{2}^{\prime} are marked red. The edges represented by the thickened lines are 2-hop indistinguishable in H_{2}.
where in the second to last step we applied Lemma 3.12 (p. 6) to bound $n-n_{0}$. With $\mathbb{E}\left[\left|M_{R}\right|\right] \leq \mathbb{E}\left[\left|M_{D}\right|\right]$ from Yao's principle, the bound generalizes to k-round randomized algorithms.

To see that this enforces the approximation ratios stated above, observe that the maximum matching for H_{k} has cardinality n by construction, i.e., $\alpha \in \Omega\left(\frac{\beta}{k}\right)$. The trade-offs between running time and approximation ratio in terms of n and Δ now follow analogously to the proof of Theorem 5.4 (p. 15), noting that the increase of factor 2 in the number of nodes and additive 1 in node degrees has no asymptotic effect.

B. 3 Maximal Matching (MM)

We start by establishing the lower bound in the deterministic setting by exploiting the relationship between MM and MVC:

Theorem B. 5 (MM lower bound for deterministic algorithms). Any deterministic MM algorithm needs to run for $k \in \Omega(\min \{\sqrt{\log n / \log \log n}, \log \Delta / \log \log \Delta\})$ in the worst case.

Proof. Since taking the endpoints of a maximal matching yields a 2-approximation of MVC, the claim follows immediately from the bounds established in Theorem 5.4 (p. 15).

For the randomized setting, we do not obtain the same bounds as in Theorem 5.4 (p. 15) immediately. The reason is that randomized algorithms for binary problems lend themselves to Las Vegas algorithms, whereas randomized algorithms for optimization problems lend themselves to Monte Carlo algorithms. We establish the bounds for the randomized setting by showing how a randomized MM algorithm that operates in T rounds in expectation can be used to compute an $O(1)$ approximation in expectation for MVC in $2 T+2$ rounds:

Theorem B. 6 (MM lower bound for randomized algorithms). In expectation, to find a solution, any randomized $M M$ algorithm needs to run for $k \in \Omega(\sqrt{\log n / \log \log n})$ and $k \in \Omega(\log \Delta / \log \log \Delta)$ rounds.

Proof. Let \mathcal{A}_{M} be an MM algorithm with expected time complexity T, running on some graph $G=(V, E)$ with maximum degree Δ. The following MVC approximation algorithm $\mathcal{A}_{V C}$ runs with fixed time complexity $2 T+2$:
(1) For a sufficiently large constant c, execute $c \ln \Delta$ independent runs i of the following in parallel:
(a) All nodes simulate \mathcal{A}_{M} for $2 T$ rounds.
(b) If E_{M} is the edge set selected after these rounds, every node that is incident with more than one selected edge removes all selected incident edges from E_{M} in an additional round of communication.
(c) All nodes (locally) output the endpoints of all edges remaining in E_{M} as $V_{V C, i}^{\prime}$.
(2) Define $x_{v}:=6 \cdot \frac{\left|\left\{i \mid v \in V_{V C, i}^{\prime}\right\}\right|}{c \ln \Delta}$, and set $V_{V C}:=\left\{v \in V \mid x_{v} \geq 1\right\}$.
(3) All nodes communicate whether they are in $V_{V C}$, and nodes with a remaining uncovered edge join $V_{V C}$.

The final step ensures that the algorithm returns a vertex cover.
To see that not too many nodes are selected in expectation, observe first that by construction, $V_{V C, i}^{\prime}$ is a matching for each i. Therefore, we have that $\sum_{v \in V(G)} x_{v} \leq 6 \cdot 2 \cdot|M V C|$, where $M V C$ is a minimum vertex cover. As only nodes with $x_{v} \geq 1$ are selected in Step 2, the total number of nodes selected in this step is (deterministically) at most $12 \cdot|M V C|$.

It remains to bound the expected number of nodes selected in Step 3. To this end, observe that by Markov's bound, each independent run of \mathcal{A}_{M} yields a maximal matching with probability $\geq \frac{1}{2}$, and hence, each $V_{V C, i}^{\prime}$ forms a VC with that same probability. Whenever this is the case, $V_{V C, i}^{\prime}$ contains at least one endpoint of each edge $\{v, w\} \in E$. Hence, if at least one third of all runs are successful, we have $x_{v}+x_{w} \geq 2$ for all edges $\{v, w\} \in E$, and $V_{V C}$ is a vertex cover already at the end of Step 2. Letting X be sum of the independent and identically distributed Bernoulli variables X_{i} indicating whether run i is successful, we have $\mathbb{E}[X] \geq \frac{c \ln \Delta}{2}$. Using a Chernoff bound, we can then bound the probability to have less than $\frac{c \ln \Delta}{3}$ runs in which $V_{V C, i}^{\prime}$ forms a VC as

$$
\mathbb{P}\left[X<\frac{c \ln \Delta}{3}\right] \leq \mathbb{P}\left[X \leq\left(1-\frac{1}{3}\right) \frac{c \ln \Delta}{2}\right] \leq e^{-\frac{\left(\frac{1}{3}\right)^{2} \cdot c \ln \Delta}{4}}=e^{-\frac{c \ln \Delta}{36}}=\frac{1}{\Delta^{\frac{c}{36}}} .
$$

Hence, for $c \geq 36$, the probability that $V_{V C}$ is not a VC after Step 2 is $\leq \frac{1}{\Delta}$. Therefore, with probability at least $1-1 / \Delta$, no further nodes are added in Step 3 of the algorithm. Otherwise, i.e., with probability at most $1 / \Delta$, we add no more than $2|E(G)|$ nodes. Given that any vertex cover must contain at least $|E(G)| / \Delta$ nodes, we conclude that the expected size of the VC computed via the procedure described above is at most

$$
12 \cdot|M V C|+\frac{1}{\Delta} \cdot 2 \Delta \cdot|M V C|=14 \cdot|M V C|
$$

Thus, a randomized MM algorithm beating the stated bounds would imply an MVC algorithm beating the bounds from Theorem 5.4 (p. 15). Since such an MVC algorithm cannot exist, the stated bounds must hold. ${ }^{7}$

B. 4 Maximal Independent Set (MIS)

We establish our last lower bound via reduction from MM:
Theorem B. 7 (MIS lower bound). In the worst case (in expectation), to find a solution, any deterministic (randomized) MIS algorithm needs to run for $k \in \Omega(\sqrt{\log n / \log \log n})$ or $k \in \Omega(\log \Delta / \log \log \Delta)$ rounds.

Proof. Observe that an MM of G_{k} is an MIS of the line graph $L\left(G_{k}\right)$, and that a k-round MIS computation on $L\left(G_{k}\right)$ can be simulated in $k+1$ rounds on G_{k}. Furthermore, $n_{L\left(G_{k}\right)} \leq n_{G_{k}}^{2} / 2$, and $\Delta_{L\left(G_{k}\right)} \leq 2 \Delta_{G_{k}}$. As $\log n \in$

[^6]$\Theta\left(\log \left(n^{2} / 2\right)\right)$, an MIS algorithm beating the stated bounds on $L\left(G_{k}\right)$ would imply an MM algorithm beating the bounds from Theorems B. 5 or B. 6 (pp. 20 et seq.). It follows that the stated bounds must hold also for MIS.

[^0]: ${ }^{1}$ In [19, 22], β is referred to as δ. We avoid δ because it is often used to denote the degree of a node.

[^1]: ${ }^{2}$ The labels of the arcs connecting leaf clusters in $C T_{3}$ to the rest of $C T_{3}$ are omitted in the drawing. They are such that every internal cluster has outgoing labels $\left\{\beta^{i} \mid i \in[3]_{0}\right\}$, and if a leaf cluster C is connected to an internal cluster C^{\prime} with label β^{i} outgoing from C^{\prime}, then C has outgoing label β^{i+1}.

[^2]: ${ }^{3}$ Following widespread conventions, we set $0!:=1$.

[^3]: ${ }^{4}$ For subgraphs, this is obvious. For lifts, consider a cycle of length l in the lift and observe that a covering map must map it to a subgraph containing a cycle of length at most l.

[^4]: ${ }^{5}$ A bound of $|V(H)| \leq|V(G)|+\Delta+2$ that is optimal in the worst case is shown in [1].

[^5]: ${ }^{6}$ This idea appears already in [20], but the construction differs from the one presented here in that all powers of β are shifted by one, e.g., nodes in C_{0} have β^{1}, rather than β^{0}, neighbors in C_{1}.

[^6]: ${ }^{7}$ In [22], the size of the VC computed in Step 2 is bounded as $\leq 10 \cdot|M V C|$ without explanation, and an expected VC size of $\leq 11 \cdot|M V C|$ is derived.

