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A Breezing Proof of the KMW Bound

CORINNA COUPETTE,MPI for Informatics and Saarbrücken Graduate School of Computer Science, Germany

CHRISTOPH LENZEN, MPI for Informatics, Germany

In their seminal paper from 2004, Kuhn, Moscibroda, and Wattenhofer (KMW) proved a hardness result for several fundamental

graph problems in the LOCAL model: For any (randomized) algorithm, there are input graphs with n nodes and maximum degree

∆ on which Ω(min{
√
logn/log logn, log∆/log log∆}) (expected) communication rounds are required to obtain polylogarithmic

approximations to a minimum vertex cover, minimum dominating set, or maximum matching. Via reduction, this hardness extends

to symmetry breaking tasks like finding maximal independent sets or maximal matchings. Today, more than 15 years later, there is

still no proof of this result that is easy on the reader. Setting out to change this, in this work, we provide a fully self-contained and

simple proof of the KMW lower bound. The key argument is algorithmic, and it relies on an invariant that can be readily verified

from the generation rules of the lower bound graphs.

CCS Concepts: •Theory of computation→Distributed algorithms; •Computingmethodologies→Distributed

algorithms; • Mathematics of computing → Graph theory.

Additional Key Words and Phrases: LOCAL model, lower bounds, indistinguishability

1 INTRODUCTION AND RELATED WORK

A key property governing the complexity of distributed graph problems is their locality: the distance up to which the

nodes running a distributed algorithm need to explore the graph to determine their local output. Under the assumption

that nodes have unique identifiers, the locality of any task is at most D, the diameter of the graph. However, many

problems of interest have locality o(D), and understanding the locality of such problems has been a main objective of

the distributed computing community since the inception of the field.

Amilestone in these efforts is the 2004 article by Kuhn,Moscibroda, andWattenhofer, which proves a lower bound of

Ω(min{
√
logn/log logn, log∆/log log∆}) on the locality of several basic graph problems [19], wheren is the number of

nodes and ∆ is themaximum degree of the input graph. The bound holds under both randomization and approximation,

and it was the first result of this generality beyond the classic Ω(log∗ n) bound on 3-coloring cycles [25]. Linial’s bound

has received much attention, with various extensions [10, 15, 16, 24, 26] and alternative proofs [23, 30]. A recent wave of

major results [3, 8, 9], based on what has been termed round elimination, can be seen as generalizing Linial’s technique

further.

Despite its significance, apart from an early extension to maximum matching by the same authors [20], the KMW

lower bound has not inspired follow-up results. One reason might be that the result is not as well-understood. History

itself appears to drive this point home: In a 2010 arXiv article [21], an improvement to Ω(min{
√
logn, log∆}) was

claimed, which was refuted in 2016 by Bar-Yehuda et al. [7]. 2016 was also the year when finally a journal article

covering the lower bound was published [22]—over a decade after the initial construction! In the journal article, the

technical core of the proof spans six pages and involves fairly convoluted notation. While there is no objective measure

of simplicity, we believe that a more digestible proof is highly desirable.
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Our Contribution

In this work, we present a novel proof of the KMW bound. Our main contribution is to replace the heart of the argu-

ment, showing that certain nodes have indistinguishable k-hop neighborhoods, with a proof based on an algorithmic

invariant. Our algorithm constructs the graph isomorphism between the nodes’ neighborhoods, where the key obser-

vation is that a simple invariant is sufficient to overcome the main obstacle, referred to by Kuhn et al. as the “critical

path.” This results in a much shorter and more straightforward argument proving the intuition that the respective

graph is crafted “just right” to ensure that the relevant nodes’ views are indistinguishable up to distance k . Our second

contribution is a fully self-contained and easily accessible presentation of the proof. Ideally, a single pass through the

paper should suffice to understand the full reasoning, without reliance on statements shown elsewhere. We hope that

this provides a solid foundation for future work that may extend the KMW result.

Further Related Work

The KMW bound applies to fundamental graph problems that are locally checkable in the sense of Naor and Stock-

meyer [26]. Balliu et al. give an overview of the known time complexity classes for such problems [4, 5], extending

a number of prior works [12–14], and Suomela surveys the state of the art attainable via constant-time algorithms

[29]. Bar-Yehuda et al. provide algorithms that compute (2 + ε)-approximations to minimum (weighted) vertex cover

and maximum (weighted) matching in O(log∆/ε log log∆) and O(log∆/log log∆) deterministic rounds, respectively

[6, 7], demonstrating that the KMW bound is tight when parametrized by ∆ even for constant approximation ratios.

For symmetry breaking tasks, the classic algorithm by Panconesi and Rizzi [27] to compute maximal matchings and

maximal independent sets in O(log∗ n + ∆) deterministic rounds has recently been shown to be optimal for a wide

range of parameters [3].

Overview

After introducing basic graph theoretical concepts and notation in Section 2, we define the lower bound graphs in

Section 3.1. We infer their order and maximum degree in Section 3.2, and prove the indistinguishability of certain

nodes assuming high girth in Section 3.3. To ensure that lower bound graphs with high girth exist, we construct such

graphs with low girth in Section 4.1 and lift them to high girth in Section 4.3 with the help of regular graphs introduced

in Section 4.2. We derive the KMW bound for polylogarithmic approximations to a minimum vertex cover in Section 5.

The appendix provides extensions to minimum dominating set, maximum matching, maximal matching, and maximal

independent set.

2 PRELIMINARIES

The basic graph theoretic notation used in this work is summarized in Appendix A.1 (p. 17); all our graphs are finite

and simple. For completeness, Appendix A.2 (p. 17) defines the LOCAL model and formalizes the notion of a k-round

distributed algorithm.

The key concept used to show that a graph problem is difficult to solve (exactly or approximately) for a k-round

distributed algorithm in the LOCAL model is the k-hop indistinguishability of nodes’ neighborhoods. In the following,

we formalize this notion.

Definition 2.1 (k-hop neighborhood Γk
G
(v)). The k-hop neighborhood of a node v inG is the set of nodes at distance

at most k from v , i.e., Γk (v) := {w ∈ V (G) | d(v,w) ≤ k}.
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A k-round algorithm needs to decide at node v based on the following topology.

Definition 2.2 (k-hop subgraph Gk (v)). The k-hop subgraph of a node v in G is the subgraph induced by v and

its k-hop neighborhood, restricted to the edges at distance at most k from v : Gk (v) = G[Γk (v)] \ {{w,u} ∈ E(G) |

min{d(v,w),d(v,u)} ≥ k}.

Two nodes in a graph are indistinguishable to a k-round distributed algorithm if and only if these nodes see identical

topologies within k hops (including identical inputs).

Definition 2.3 (k-hop indistinguishability inG). Two nodesv andw inG are indistinguishable to ak-round distributed

algorithm (k-hop indistinguishable) if and only if there exists an isomorphismϕ : V (Gk (v)) → V (Gk (w))withϕ(v) = w .

3 CLUSTER TREES

The Cluster Tree (CT) is the main gadget in the derivation of the KMW bound. For k ∈ N, it consists of a Cluster Tree

skeleton CTk and Cluster Tree graphsGk :

Definition 3.1 (Cluster Tree skeleton). For k ∈ N, a cluster tree skeleton (CT skeleton) is a treeCTk = (Ck ,Ak ), rooted

at C0 ∈ Ck , that formulates connectivity requirements for graphs. A cluster C ∈ Ck in CTk requires an independent

set of nodes in the graph. An arc between clusters Ci and Cj has the form 〈(Ci , xi ), (Cj , xj )〉 = 〈(Cj ,xj ), (Ci ,xi )〉 for

xi ,xj ∈ N, indicating that the clusters Ci and Cj must be connected as a biregular bipartite graph, where nodes from

cluster Ci (Cj ) have xi (xj ) neighbors in Cj (Ci ).

Definition 3.2 (Cluster Tree graph). For k ∈ N, a graph is called a cluster tree graph (CT graph), denoted Gk , if it

satisfies the connectivity requirements of the CT skeleton CTk .

3.1 Construction of Cluster Tree Skeletons

Definitions 3.1 and 3.2 (p. 3) fix the relationship between CT skeletons and CT graphs without detailing the structure

CTk . To specify this structure, we use the following terminology:

Definition 3.3 (Cluster position). A cluster C in CTk has position internal if δ (C) > 1 (internal cluster) and position

leaf if δ (C) = 1 (leaf cluster).

Definition 3.4 (Cluster level). The level of a cluster C in CTk , denoted l(C), is its distance to the cluster C0, with

l(C0) = 0. The smaller the distance to C0, the lower the level.

Definition 3.5 (Parent cluster). For a clusterC inCTk with l(C) > 0, its parent cluster is its unique neighboring cluster

C ′ with l(C ′) < l(C) in CTk .

Definition 3.6 (Outgoing label). Given CTk = (Ck ,Ak ), we say that a cluster Ci is connected to a cluster Cj via

outgoing label xi if there exists an xj such that 〈(Ci ,xi ), (Cj ,xj )〉 ∈ Ak .

Given β ≥ 2(k +1),1 the structure ofCTk is now defined inductively. The base case of the construction isCT1, which

consists of four clusters and three arcs:

Definition 3.7 (Base case CT1). CT1 = (C1,A1), where C1 := {C0,C1,C2,C3} and

A1 := {〈(C0, β
0), (C1, β

1)〉, 〈(C0, β
1), (C2, β

2)〉, 〈(C1, β
0), (C3, β

1)〉}.

1In [19, 22], β is referred to as δ . We avoid δ because it is often used to denote the degree of a node.
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(a) Hierarchical representation

C0 C1C2 C3
0 112 0 1

(b) Flat representation

Fig. 1. Representations of CT1 (shaded by cluster sizes; darker means smaller). Cluster shapes indicate cluster position (internal or

leaf ); core clusters depicted with bold frame. Arc labels are exponents of the parameter β , indicating how many neighbors nodes in

one cluster have in another.

Our indistinguishability argument for CT graphs will focus on nodes in the internal clusters of CT1, which we call

the core clusters:

Definition 3.8 (Core clusters). The internal clusters of CT1, C0 and C1, are core clusters.

Based on CTk−1, for k ≥ 2, CTk is grown as follows.

Definition 3.9 (Growth rules for CTk given CTk−1).

(1) To each internal cluster Ci in CTk−1, attach a new neighboring cluster C ′i via an arc 〈(Ci , β
k ), (C ′i , β

k+1)〉. We

call such added leaf clusters branch instantiation clusters.

(2) To each leaf cluster Ci in CTk−1 that is connected to its parent cluster via outgoing label βq , add k neighbor-

ing clusters C ′i with arcs 〈(Ci , β
p ), (C ′i , β

p+1)〉 for all p ∈ [k]0 \ {q}. We call such added leaf clusters branch

consolidation clusters.

Figure 1 (p. 4) shows CT1 in its hierarchical and flat representations, and flat representations of CT2 and CT3 are

given in Figure 2 (p. 5) to illustrate the growth process.2 In all figures, we write x for an arc label βx (i.e., we represent

arc labels by their base β logarithms) to reduce visual clutter, and in the flat representations, arc labels are depicted

like port numbers on the undirected edges incident to the clusters that are connected by the arc.

3.2 Order and Maximum Degree of Cluster Tree Graphs

The CT skeleton CTk constrains the number of nodes in a CT graphGk in several ways:

Observation 3.10 (Order constraints forGk from CTk ).

(1) For k > 1, the number of nodes in a cluster of CTk on level k + 1 must be at least βk , since there is always at least

one branch instantiation cluster C ′ on level k + 1, and nodes in the parent cluster of C ′ have βk neighbors in C ′.

2The labels of the arcs connecting leaf clusters in CT3 to the rest of CT3 are omitted in the drawing. They are such that every internal cluster has
outgoing labels {β i | i ∈ [3]0 }, and if a leaf cluster C is connected to an internal clusterC ′ with label β i outgoing fromC ′, then C has outgoing label
β i+1.
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(a) Flat representation of CT2
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(b) Flat representation of CT3

Fig. 2. Representations ofCT2 andCT3 (colored by cluster types; grey: internal, green: branch consolidation, black: branch instantia-

tion). Cluster shapes correspond to cluster position (internal or leaf ); core clusters depicted with bold frame. Arc labels are exponents

of the parameter β , indicating how many neighbors nodes in one cluster have in another.

(2) To ensure that the arc labels (β i , β i+1) define feasible biregular bipartite graphs for all i ∈ [k]0, the number of nodes

in a single cluster must fall by a factor of β per level.

(3) For k > 1, in the smallest graph Gk satisfying CTk , clusters on level l have β2k−l+1 nodes, e.g., a cluster on level

k + 1 has βk nodes, and C0 has β
2k+1 nodes.

Proof. Follows immediately from the connectivity structure prescribed by CTk . �

Further, we can determine the number of clusters on each level of CTk :

Theorem 3.11 (Order of CT skeletons by level). For k ∈ N, the number of clusters nC on level l ∈ N0 in CTk is3

nC (k, l) =




1 l = 0

k !
(k−l+1)! · (k − l + 2) 1 ≤ l ≤ k + 1

0 l > k + 1.

Proof. For l = 1, k !
(k−l+1)!

· (k − l + 2) = k + 1. We proceed by induction on k . For k = 1, we have one cluster on the

zeroth level, two clusters on the first level, and one cluster on the second level, cf. Figure 1 (p. 4). Since nC (1, 0) = 1,

nC (1, 1) =
1!
1! · 2 = 2, nC (1, 2) =

1!
0! · 1 = 1, and nC (1, l) = 0 for all l > 2, the claim holds for the base case, i.e., for k = 1

and all l .

Therefore, assume that the claim holds for some k , i.e., inCTk , the number of clusters on level l is given by nC (k, l).

Due to Definition 3.9 (p. 4), which enforces that all new leaf clusters lie on the level above their parent clusters, the

3Following widespread conventions, we set 0! := 1.
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number of clusters on the zeroth level always remains one. This level-0 cluster is an internal cluster in CT1 and hence

also in CTk . By growth rule 1, exactly one cluster is added on the level above the zeroth level when transitioning to

CTk+1. Therefore, if CTk has k + 1 clusters on the first level, CTk+1 has k + 2 clusters on the first level. Furthermore,

new clusters are added only on levels at most one above already existing clusters, so if CTk has no clusters on levels

above k + 1, CTk+1 has no clusters on levels above k + 2. With these observations, for l = 0, l = 1, and l > k + 1, the

number of clusters on level l in CTk+1 is given by the formula stated in the theorem.

For the remaining levels, i.e., levels l with 1 < l ≤ k + 1, observe that by the growth rules ofCTk , all clusters present

on level l in CTk are guaranteed to be internal clusters in CTk+1, with k + 1 children on level l + 1, and these child

clusters are the only clusters on level l + 1. Thus, for k, l ≥ 1, the number of clusters satisfies the recurrence relation

nC (k + 1, l + 1) = (k + 1) · nC (k, l).

By the inductive hypothesis, we have that nC (k, l) =
k !

(k−l+1)!
· (k − l + 2) for 1 ≤ l ≤ k + 1, so

nC (k + 1, l + 1) =
(k + 1)!(k − l + 2)

(k − l + 1)!
=

(k + 1)!

((k + 1) − (l + 1) + 1)!
· ((k + 1) − (l + 1) + 2),

as required. As this verifies the claimed expression for nC (k + 1, l) for all 1 < l ≤ k + 2, this completes the inductive

step, concluding the proof. �

This allows us to express the order ofGk in terms of n0 := |C0 |, k , and β :

Lemma 3.12 (n in terms of n0). InGk , n < n0
( β
β−(k+1)

)
and n − n0 < n0 ·

2(k+1)
β

.

Proof. By Theorem 3.11 (p. 5) and Corollary 3.10 (p. 4), the number of nodes on level l ∈ N0 inGk as a function of

β , k , l , and n0 is n(β ,k, l ,n0) = nC (k, l) · n0 · β
−l . Because n =

∑∞
l=0 n(β ,k, l ,n0) =

∑k+1
l=0

n(β ,k, l ,n0), we get

n = n0 + n0 ·

k+1∑

l=1

k!

(k − l + 1)!
· (k − l + 2) · β−l ≤ n0 + n0 ·

k+1∑

l=1

k!(k + 1)

(k − l + 1)!
·
1

β l

< n0 + n0 ·

k+1∑

l=1

(k + 1)l

β l
= n0

k+1∑

l=0

(
k + 1

β

) l
< n0

∞∑

l=0

(
k + 1

β

) l
= n0 ·

β

β − (k + 1)
,

where the last step uses that β > k + 1. Using our requirement that β ≥ 2(k + 1), we obtain

n − n0 < n0 ·

(
β

β − (k + 1)
− 1

)
= n0 ·

k + 1

β − (k + 1)
≤ n0 ·

2(k + 1)

β
. �

Finally, the construction of CTk dictates the largest degree ∆ of a node in Gk :

Lemma 3.13 (Largest degree ∆ ofGk ). The largest degree of a node inGk is ∆ = βk+1.

Proof. By construction, all nodes in internal clusters have degree
∑k
i=0 β

i , and the largest degree of nodes in leaf

clusters is βk+1. As β ≥ 2(k + 1) > 2, max{
∑k
i=0 β

i , βk+1} = βk+1. �

3.3 Indistinguishability given High Girth

As observed by Kuhn et al. [19, 22], showing k-hop indistinguishability becomes easier when the nodes’ k-hop sub-

graphs are trees, i.e., the girth is at least 2k + 1. Notably, in a CT graph Gk with д ≥ 2k + 1, the topology of a node’s

k-hop subgraph is determined entirely by the structure of the skeletonCTk . Hence, without knowing the details ofGk ,

we can establish:
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Theorem 3.14 (k-hop indistinguishability of nodes in C0 from nodes in C1). Let Gk be a CT graph. If Gk has

girth д ≥ 2k + 1, and there are no local inputs, then v0 ∈ C0 and v1 ∈ C1 are k-hop indistinguishable.

By Definition 2.3 (p. 3), v0 ∈ C0 and v1 ∈ C1 are k-hop indistinguishable if and only if there exists an isomorphism

ϕ : V (Gk
k
(v0)) → V (Gk

k
(v1)) with ϕ(v0) = v1. We prove the theorem constructively by showing the correctness of

Algorithm 1 (p. 8), which purports to find such an isomorphism.

Algorithm 1 (p. 8) implements a coupled depth-first search (coupled DFS) on the k-hop subgraphs of v0 ∈ C0 and

v1 ∈ C1: The main function, FindIsomorphism(Gk ,k,v0,v1), receives a CT graph Gk with high girth, along with the

parameter k (both of which we assume to be accessible by the functions we call internally, alongside the mapping from

nodes to their clusters), and one node from each of C0 and C1 as input, and it outputs the ϕ we are looking for. To

obtain ϕ, FindIsomorphismmapsv0 tov1 and then calls the functionWalk(v0,v1, ⊥, k) before it returns ϕ. TheWalk

function modifies ϕ by mapping the newly discovered nodes in the neighborhoods of its first two input parameters (v

andw := ϕ(v), initially:v0 andv1) to each other with the help of the functionMap. The third parameter of Walk (prev ,

initially: ⊥) ensures that we only define ϕ for newly discovered nodes, while the fourth parameter (depth, initially: k)

controls termination whenWalk calls itself recursively on the newly discovered neighbors (and the newly discovered

neighbors of these neighbors, and so on) until the entire k-hop subgraph of v0 has been visited.

The tricky part now is to ascertain that the interplay between the functions Walk and Map makes ϕ a bijection

from V (Gk
k
(v0)) to V (G

k
k
(v1)), i.e., nodes that are paired up always have the same degree. Here, the representation of

node neighborhoods used by theWalk function is key, which is based on the insight that the set of nodes neighboring

v (resp. w) can be partitioned by the outgoing labels in CTk through which neighboring nodes are discovered from v

(w). Since these labels lie in {β i | i ∈ [k + 1]0},Walk represents the neighborhood of v (w) as a list Nv (Nw ) of k + 2

(possibly empty) lists (Algorithm 1, l. 9–13, p. 8). The list at index i holds all previously undiscovered nodes (we require

v ′ , prev andw ′ , ϕ(prev)) connected to v (w) via v’s (w’s) outgoing label β i , in any order.

The Walk function passes Nv and Nw to the function Map (Algorithm 1, l. 14, p. 8), which sets ϕ(Nv [i][j]) :=

Nw [i][j]where possible (Algorithm 1, l. 19–21, p. 8). It then treats the special case that some nodes inNv andNw remain

unmatched (Algorithm 1, l. 22–25, p. 8). By construction, without this special case, theϕ returned by FindIsomorphism

is already an isomorphism between the subgraphs ofGk
k
(v0) andG

k
k
(v1) induced by the nodes of the domain for which

ϕ is defined (and their images under ϕ). However, we still need to show that our special case suffices to extend this

restricted isomorphism to a full isomorphism between Gk
k
(v0) and G

k
k
(v1). To facilitate our reasoning, we introduce

cluster identities:

Definition 3.15 (Cluster identityC(v)). Given a node v in a CT graph Gk , we refer to its cluster in CTk as its cluster

identity, denoted as C(v). For example, for v0 ∈ C0 and v1 ∈ C1, we have C(v0) = C0, C(v1) = C1, and C(v0) , C(v1).

We begin with a simple observation:

Lemma 3.16 (Variables determining node neighborhoods). For v in Gk
k
(v0) \ {v0}, let w := ϕ(v). When Map is

called with parameters Nv and Nw (Algorithm 1 l. 14, p. 8), the numbers of nodes in Nv [i] and Nw [i] for i ∈ [k + 1]0 are

uniquely determined by two parameters:

(1) position: the position of the clusters C(v) and C(w) in the CT skeleton ( internal or leaf), and

(2) history: the outgoing labels of the arcs connecting C(v) to C(prev) and C(w) to C(ϕ(prev)), i.e., βx and βy if the

corresponding arcs are 〈(C(v), βx ), (C(prev), βx
′
)〉 and 〈(C(w), βy ), (C(ϕ(prev)), βy

′
)〉 for some x ′,y′ ∈ [k + 1]0.
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Algorithm 1: Find an isomorphism ϕ : V (Gk
k
(v0)) → V (Gk

k
(v1))

1 Function FindIsomorphism(Gk , k , v0, v1):
Input: Gk conforming to CTk with д ≥ 2k + 1, k ∈ N, v0 ∈ C0, v1 ∈ C1

Output: Isomorphism ϕ : V (Gk
k
(v0)) → V (Gk

k
(v1))

2 ϕ ← empty map

3 ϕ(v0) ← v1

4 Walk(v0, v1, ⊥, k)

5 return ϕ

6 FunctionWalk(v , w , prev , depth):

7 if depth = 0 then
8 return

9 Nv ← empty list of length k + 2

10 Nw ← empty list of length k + 2

11 for i ← 0 to k + 1 do
// if edge β i does not exist, the Nv [i] (resp. Nw [i]) is empty

12 Nv [i] ← list of new nodes v ′ , prev found using edge β i from v

13 Nw [i] ← list of new nodesw ′ , ϕ(prev) found using edge β i fromw

14 Map(Nv , Nw )

15 for i ← 0 to k + 1 do
16 for v ′ in Nv [i] do

17 Walk(v ′, ϕ(v ′), v , depth − 1)

18 FunctionMap(Nv , Nw):

19 for i ← 0 to k + 1 do
// zip(·, ·) yields element tuples until the shorter list ends

20 for v ′,w ′ in zip(Nv [i],Nw [i]) do

21 ϕ(v ′) ← w ′

// len(·) returns the length of a list

22 if ∃ i ∈ [k + 1]0 : len(Nv[i]) , len(Nw[i]) then
23 iv ← i ∈ [k + 1]0 : len(Nv[i]) = len(Nw [i]) + 1

24 iw ← i ∈ [k + 1]0 : len(Nv[i]) + 1 = len(Nw[i])

// L[i][−1] retrieves the last element from list i in L

25 ϕ(Nv [iv ][−1]) ← Nw [iw ][−1]

Ifv andw agree on position and history, len(Nv[i]) = len(Nw[i]) for all i ∈ [k+1]0. Ifv andw agree on position internal

but disagree on history, we have len(Nv[i]) = len(Nw[i]) for all i ∈ [k + 1]0 \ {x,y}, len(Nv [x]) = len(Nw[y]) − 1, and

len(Nv[y]) − 1 = len(Nw[x]).

Proof. Ifu ∈ {v,w} has position internal, we know thatC(u) has outgoing labels {β i | i ∈ [k]0} by the construction

of the CT skeleton. Denoting by z ∈ {x,y} the exponent of u’s history, we have that there are β i nodes in Nu [i] for

i ∈ [k]0 \ {z}, β
z − 1 nodes in Nu [z] (as prev or ϕ(prev) are removed, respectively), and zero nodes in Nu [k + 1].

If u has position leaf, all nodes in Nu belong to the same cluster C ′, u has βz neighbors in this cluster, and prev

(resp. ϕ(prev)) lies in this cluster as well. Hence, len(Nu[z]) = β
z − 1 and len(Nu[z]) = 0 for all i ∈ [k + 1]0 \ {z}.
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From these observations, the claims of the lemma follow immediately. �

Corollary 3.17 (Sufficient condition for correctness of Algorithm 1). Given a CT graph Gk with girth at

least 2k + 1, if all pairs of nodes created by Map on which Walk is called recursively (i) agree on position and history or

(ii) agree on position internal, Algorithm 1 (p. 8) produces an isomorphism betweenGk
k
(v0) andG

k
k
(v1).

Proof. Note that Algorithm 1 (p. 8) produces an isomorphism between Gk
k
(v0) and G

k
k
(v1) if ϕ

��
Nv

(i.e., ϕ with its

domain restricted to the neighborhood of v) is a bijection from Nv to Nϕ (v) for all v in Gk
k
(v0) with d(v,v0) < k . For

v0 and ϕ(v0) = v1, this holds because they both have β i neighbors in the clusters connected to them via outgoing

edge label β i for i ∈ [k]0, i.e., len(Nv[i]) = len(Nw[i]) for i ∈ [k]0 (and len(Nv[k + 1]) = len(Nw )[k + 1] = 0). Hence,

Map ensures that ϕ(Nv ) = Nw . For nodes v , v0 and w := ϕ(v) paired by Map that agree on position and history,

Lemma 3.16 (p. 7) shows that len(Nv[i]) = len(Nw [i]) for all i ∈ [k + 1]0, so again Map succeeds. The last case is

that v andw agree on position internal. In this case, applying Lemma 3.16 (p. 7) and noting thatMap takes care of the

resulting mismatch in list lengths in Lines 22–25 proves that Map succeeds here, too. �

Recall that due to the inductive construction ofCTk , for all i ∈ [k], we can view CTi as a subgraph ofCTk by simply

stripping away all clusters that were added after constructingCTi . Recall also thatG
k
k
(v0) andG

k
k
(v1) are trees, because

the girth ofGk is at least 2k + 1. Treating these trees as rooted atv0 and v1, respectively, Algorithm 1 (p. 8) maps nodes

at depth d inGk
k
(v0) to nodes at depth d in Gk

k
(v1). The following notion will be useful:

Definition 3.18 (Node parent). For v ∈ Gk
k
(vi ), i ∈ {0, 1}, with d(vi ,v) > 0, the parent of v in Gk

k
(vi ), denoted pi (v),

is the node through which v is discovered from vi in Algorithm 1 (p. 8).

To ensure that the preconditions of Corollary 3.17 (p. 9) hold, we prove the following invariant of Algorithm 1 (p. 8):

Definition 3.19 (Main Invariant of Algorithm 1). For 0 < d < k , suppose that v and w := ϕ(v) lie at distance d from

v0 and v1, respectively. Then exactly one of the following holds:

(1) C(v),C(w) ∈ CTd , and if v andw disagree on history, their histories are ≤ βd+1, or

(2) there is some i withd < i ≤ k such thatC(v),C(w) ∈ CTi\CTi−1,v andw agree onhistory, andC(p0(v)),C(p1(w)) ∈

CTi−1.

Note that in the first case, v and w agree on position internal, and in the second case, v and w agree on position

and history. Thus, Theorem 3.14 (p. 7) readily follows from Corollary 3.17 (p. 9) once the invariant is established. The

intuition of the invariant and its interplay with Corollary 3.17 (p. 9) are illustrated in Figure 3 (p. 10).

Lemma 3.20 (Main invariant holds). Algorithm 1 (p. 8) satisfies the invariant stated in Definition 3.19 (p. 9).

Proof. We prove the claim for fixed k by induction on d . For v and w := ϕ(v) at distance d = 1 from v0 = p0(v)

and v1 = p1(w), respectively, v and w are matched in the initial call to Walk with v0 and v1 as arguments. In this

call, len(Nv0[i]) = len(Nv1[i]) for all i ∈ [k + 1]0, i.e., only nodes corresponding to the same outgoing arc labels get

matched. Inspecting CT1 and taking into account the CT growth rules, we see that for i ∈ {0, 1}, the matched nodes

lie in clusters that are present already in CT1 and have outgoing labels of at most β2 (i.e., the first case of the invariant

holds), while for i > 1 = d , both nodes lie in clusters from CTi \ CTi−1 with outgoing labels of β i+1 (i.e., the second

case of the invariant holds).
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C0

v0

C1

v1

C2 C3
0 112 0 112 0 1

0

1

0

1

2

3

2

3

2

3

(a) d = 1 from v0 and v1: for the blue nodes, the first case of the invariant holds with agreement on history ; for the orange nodes,

the first case of the invariant holds without agreement on history ; and for the green nodes, the second case of the invariant holds.

C0

v0

C1

v1

C2 C3
0 112 0 112 0 1

0

1

0

1

2

3

2

3

2

3

(b) d = 2 from orange nodes at distance d = 1: because the invariant holds for d = 1, Corollary 3.17 (p. 9) ensures that Algorithm 1

(p. 8) produces an isomorphism between G2
2 (v0) and G

2
2 (v1).

Fig. 3. Illustration of Definition 3.19 (p. 9) forCT2 . Cluster colors, shapes, and borders drawn as in Figure 2 (p. 5). Nodesv0 ∈ C0 and

v1 ∈ C1 indicated as medium-size circles; representatives of nodes seen via a certain outgoing edge depicted as small circles and

connected to their parents by arrows. Node and arrow colors show outgoing edge labels (e.g., blue nodes are seen via the outgoing

edge β0); dashed arrows indicate that β i − 1, rather than β i , nodes are discovered via the outgoing label indicated by the arrow

color.

For the inductive step, assume that the invariant is established up to distance d for 1 ≤ d < k − 1, and consider v ,

w := ϕ(v) at distance d + 1 from v0 and v1, respectively. We apply the invariant to v ′ := p0(v) and w
′ := p1(w) and

distinguish between its two cases.

(1) Suppose that C(v ′),C(w ′) ∈ CTd with histories that are identical or at most βd+1. As d < k , v ′ and w ′ agree on

position internal. By Lemma 3.16 (p. 7), the call to Walk on v ′ and w ′ thus satisfies that len(Nv ′[i]) = len(Nw ′[i]) for

all i ∈ [k + 1]0 \ {j, j
′}, where β j , β j

′
for j, j ′ ≤ d + 1 are the histories of v ′ and w ′, respectively. If C(v) ∈ CTd+1,

Lemma 3.16 (p. 7) entails that v ∈ Nv ′[i] for some i ≤ d + 1, and Walk chooses w = ϕ(v) from Nw ′[i
′] for some

i ′ ≤ d + 1. Due to the CT growth rules, if C(v ′),C(w ′) ∈ CTd , then the incident arcs of C(v ′) and C(w ′) with outgoing

labels of at most βd+1 lead to clusters inCTd+1, and the history of nodes discovered by traversing these arcs is at most

βd+2. Hence, C(v) ∈ CTd+1 entails that the first case of the invariant holds for v andw . If C(v) < CTd+1, we have that

C(v) ∈ CTi \ CTi−1 for some i > d + 1, yielding len(Nv ′[i]) = len(Nw ′[i]), and thus, w ∈ Nw ′[i]. As C(v
′) and C(w ′)

are internal clusters in CTd+1, we can conclude that bothC(v) and C(w) have been added to the cluster tree in the ith

construction step using growth rule 1. Hence, we get that C(v),C(w) ∈ CTi \CTi−1 with v and w agreeing on history

β i+1, and since C(v ′),C(w ′) ∈ CTd ⊆ CTi−1, the second case of the invariant holds for v andw .

(2) Assume that there is some i with d < i ≤ k such that C(v ′),C(w ′) ∈ CTi \ CTi−1, v
′ and w ′ agree on history,

and C(p0(v
′)),C(p1(w

′)) ∈ CTi−1. Then C(v
′) and C(w ′) must have been attached to clusters C(p0(v

′)) and C(p1(w
′))

from CTi−1 with arc labels (β j
′
, β j

′
+1) for the same j ′ ∈ [i]0, and C(v

′) and C(w ′) have no other neighboring clusters

inCTi . By the CT growth rules,v ′ andw ′ also agree on position, sov ∈ Nv ′[j] andw ∈ Nw ′[j] for the same j ∈ [k + 1]0
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G ′
k

H ′
k Hk

Gk H̃k

⊆

⊆

ϕ = ψ1 |V (Gk )
Covering map Gk → G ′

k

ψ1 Covering map H̃k → H ′
k

ψ2 Covering map H̃k → Hkψ1 ψ2ϕ

Fig. 4. Setup used to establish the existence of CT graphs with high girth.

by Lemma 3.16 (p. 7), and similarly, v and w agree on history. Hence, if j , j ′ + 1, then C(v),C(w) ∈ CTi+1 \CTi , and

since i + 1 > d + 1 and C(v ′),C(w ′) ∈ CTi , the second case of the invariant holds for v and w . If j = j ′ + 1, by the

above observations, C(v) = C(p0(v
′)) and C(w) = C(p1(w

′)). As Walk mapped v ′ to ϕ(v ′) =: w ′, we have that p0(v
′)

was mapped to ϕ(p0(v
′)) = p1(w

′), where p0(v
′) and p1(w

′) lie at distance d − 1 fromv0 and v1, respectively. Applying

the invariant to these nodes, the first case and the second case with i ≤ d + 1 both imply that C(v),C(w) ∈ CTd+1,

establishing the first case of the invariant for v andw . And if the second case applies with i > d + 1, then the second

case of the invariant holds for v andw . �

Proof of Theorem 3.14 (p. 7). Follows from the correctness of Algorithm 1 (p. 8) for CT graphs Gk with girth

≥ 2k + 1, established via Lemma 3.20 (p. 9) and Corollary 3.17 (p. 9). �

4 ENSURING HIGH GIRTH

To constructGk with high girth, we rely on special graph homomorphisms called graph lifts:

Definition 4.1 (Graph homomorphism). Graph G1 is homomorphic to graph G2 if there is a function ϕ : V (G1) →

V (G2) s.t. {v,w} ∈ E(G1) ⇒ {ϕ(v),ϕ(w)} ∈ E(G2) (i.e., ϕ is adjacency-preserving); ϕ is called a homomorphism.

Definition 4.2 (Graph lift). GraphG1 is a lift of graphG2 if there is a surjective homomorphismϕ : V (G1) → V (G2) s.t.

∀v ∈ V (G1) : {v,w} ∈ E(G1) ⇔ {ϕ |Γ(v)(v),ϕ |Γ(v)(w)} ∈ E(G2) (i.e., ϕ is locally bijective); ϕ is called a covering map.

As sketched by Kuhn et al. [22], we establish the existence of a CT graphGk with girth д ≥ 2k +1 and O(β2k
2
+4k+1)

nodes using the setup illustrated in Figure 4 (p. 11). The intuition of this setup is that we obtain Gk as a subgraph of

H̃k , which is a common lift of a high-girth graph Hk and a graph H ′
k
that is a supergraph of a low-girth CT graphG ′

k
.

Since taking lifts and subgraphs cannot decrease the girth,4 Gk then has large girth, and because Gk is a lift of G ′
k
, it

conforms to CTk . Table 1 (p. 12) gives an overview of the graphs involved in our setup, along with the properties we

seek to establish.

4.1 Low-Girth Cluster Tree Graphs

We can easily design low-girth CT graphs by plugging together complete bipartite graphs.

Definition 4.3 (G ′
k
from complete bipartite graphs). For k ∈ N and a parameter β ∈ N, let CTk be the CT skeleton

parametrized by β . We constructG ′
k
conforming to CTk as follows:

(1) For cluster C on level l ∈ [k + 1]0 in CTk , add β
2k−l+1 nodes v with C(v) = C toGk .

4For subgraphs, this is obvious. For lifts, consider a cycle of length l in the lift and observe that a covering map must map it to a subgraph containing a
cycle of length at most l .
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Graph Properties Existence Proof

G′
k

CT graph, parametrized by β , βO(k ) nodes, ∆ = βk+1 Definition 4.3, Lemma 4.4

H ′
k

∆-regular, supergraph of G′
k
, βO(k ) nodes Lemma 4.5, Corollary 4.7

Hk ∆-regular, girth д = 2k + 1, O(∆2k ) ⊆ βO(k
2 ) nodes Lemma 4.6, Corollary 4.7

H̃k ∆-regular, lift of H ′
k
and Hk , girth д ≥ 2k + 1, βO(k

2 ) nodes Lemma 4.8, Corollary 4.9

Gk CT graph, subgraph of H̃k , girth д ≥ 2k + 1, βO(k
2 ) nodes Theorem 4.10

Table 1. Proof overview for establishing the existence of CT graphs with high girth.

(2) For clusters C and C ′ with 〈(C, βx ), (C ′, βx+1)〉 ∈ E(CTk ), connect the nodes representing these clusters in Gk

using
|C |
βx+1

copies of Kβx ,βx+1 , the complete bipartite graph on A Û∪B with |A| = βx and |B | = βx+1.

Lemma 4.4 (CT graph structure). Graphs following Definition 4.3 (p. 11) are CT graphs.

Proof. As can be easily verified from the definition of CT1 and the growth rules, in CTk , all arcs are of the form

〈(C, βx ), (C ′, βx+1)〉 for some x ∈ [k + 1]0, where C is on level ℓ ∈ [k]0 and C ′ on level ℓ + 1. By Definition 4.3

(p. 11), we thus have that |C ′ | = |C |
β
. Now, |C |

βx+1
copies of Kβx ,βx+1 contain |C |

βx+1
· βx+1 = |C | nodes with degree

βx and
|C |
βx+1

· βx =
|C |
β
= |C ′| nodes with degree βx+1. Hence, using

|C |
βx+1

copies of Kβx ,βx+1 , we exactly fulfill the

requirements imposed by CTk on the connectivity between C and C ′. �

4.2 Regular Graphs with Desirable Properties

The construction from Definition 4.3 (p. 11) results in CT graphs of girth four. It remains to lift these low-girth graphs

to high girth. First, we embed G ′
k
into a ∆-regular graph.

Lemma 4.5 (∆-regular supergraphs of general graphs). LetG be a simple graph with maximum degree ∆. Then

there exists a ∆-regular supergraph H ofG with |V (H )| < |V (G)| + 4∆.5

Proof. LetG = (V ,E) with maximum degree ∆. We modifyG to formH as follows. While there are nodesv,w ∈ V

with degree δ (v) < ∆, δ (w) < ∆, and {v,w} < E, we add {v,w} to E. Let D be the set of remaining nodes with degree

less than ∆. By construction, we know that the nodes in D form a clique of size at most ∆.

Now add a complete bipartite graph K∆,∆ with node bipartition {li | i ∈ [∆]} Û∪{ri | i ∈ [∆]} and define ∆ disjoint

perfect matchings Mi := {{lx , ry } | (x − y) mod ∆ = i}. Assign to each v ∈ D a unique such matching, remove the

edges containing li for i ∈ [⌊(∆ − δ (v))/2⌋], and connect all endpoints of these edges to v . Afterwards, nodes in D are

missing at most one edge, while all other nodes have degree ∆. Next, arbitrarily match the nodes still missing edges.

For each such pair (v,w) ∈ D2, choose the remaining edge from the matching ofv that contains l∆, remove it, connect

w to l∆, and v to the other endpoint.

After this step, at most one node does not have degree ∆ yet, and misses at most one edge. If this case occurs, ∆

must be odd (otherwise,v would be the only node with odd degree, while the number of nodes with odd degree in any

graph must be even). We complete the procedure by adding a copy of K∆,∆−1, connecting v to one of the ∆ nodes of

degree ∆ − 1 in K∆,∆−1, and adding a perfect matching between the remaining nodes of degree ∆ − 1 (whose number

is even). The resulting graph H is a ∆-regular supergraph ofG with |V (H )| ≤ |V (G)| + 4∆ − 1 nodes. �

5 A bound of |V (H ) | ≤ |V (G) | + ∆ + 2 that is optimal in the worst case is shown in [1].
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Next, we ensure that ∆-regular graphs of girth 2k + 1 without too many nodes exist:

Lemma 4.6 (∆-regular graphs with prescribed girth and order [11]). For 2 ≤ ∆ ∈ N and 3 ≤ д ∈ N, there exist

∆-regular graphs with girth at least д and 2m nodes for eachm ≥ 2 ·
∑д−2
i=0 (∆ − 1)

i .

Proof. Fix д. The claim trivially holds for ∆ = 2, as any cycle of length 2m satisfies the requirements. Now assume

that the claim holds for some ∆ ≥ 2. Thus, for any m ≥ 2 ·
∑д−2
i=0 ∆

i , there exists a ∆-regular graph G with 2m ≥

4 ·
∑д−2
i=0 (∆ − 1)

i nodes and girth at least д ≥ 3. Now letG ′ be a graph satisfying the following conditions:

(1) |V (G ′)| = 2m,

(2) ∆ ≤ δ (v) ≤ ∆ + 1 for all nodes v ∈ V (G ′),

(3) G ′ has girth at least д, and

(4) |E(G ′)| is maximal among all graphs (including G) that satisfy the other three conditions.

We show that G ′ is (∆ + 1)-regular. To this end, assume towards a contradiction that G ′ is not (∆ + 1)-regular. Then

either G ′ has exactly one node with degree ∆ orG ′ has at least two nodes v ′ and w ′ with degree ∆.

The first case cannot occur because it would requireG ′ to have exactly one node of odd degree for ∆ + 1 even, and

exactly 2m−1 nodes of odd degree for ∆+1 odd, contradicting the fact that in any graph, the number of nodes with odd

degree must be even. So assume that there are at least two nodesv ′ andw ′ with degree ∆ inG ′. Observe that all nodes

of degree ∆ must lie within distance д − 2 of v ′ and w ′, i.e., in N := Γ
д−2(v ′) ∩ Γ

д−2(w ′), as otherwise we could add

an edge to G ′ without violating the first three properties, contradicting the fourth property. Since |Γj (v)| ≤
∑j
i=0 ∆

i

for any node v ∈ V (G ′) with δ (v) = ∆, we have |N | ≤ m, and consequently, |N | ≤ |V (G ′)| − |N |.

Now let {x,y} be an edge between two nodes x,y ∈ V (G ′)\N . We know such an edge must exist, because otherwise

(∆ + 1) · (|V (G ′)| − |N |) edges would need to run between nodes in V (G ′) \ N and nodes in N , which would force

δ (v) = ∆ + 1 for all v ∈ N , contradicting the fact that δ (v ′) = δ (w ′) = ∆. But then Ḡ ′ with V (Ḡ ′) := V (G ′) and

E(Ḡ ′) := (E(G ′) \ {x,y})∪ {{x,v}, {y,w}} is a graph with more edges thanG ′ that satisfies the first three requirements

(in particular, the new edge set does not introduce a cycle of length < д since x and y lie at distance ≥ д − 1 from

v ′ and w ′), contradicting the maximality of G ′. Therefore, no node with degree ∆ can exist in G ′, i.e., G ′ must be

(∆ + 1)-regular. �

Corollary 4.7 (Existence of H ′
k
and Hk ). There exists a ∆-regular supergraph H ′

k
of G ′

k
with O(|V (G ′

k
)|) nodes,

and for ∆ ≥ 2 and д ≥ 3, there exists a ∆-regular graph Hk with girth д = 2k + 1 and O(∆2k ) nodes.

Proof. The existence of H ′
k
follows from Lemma 4.5 (p. 12) as a special case. The existence of Hk follows from

Lemma 4.6 (p. 13) as a special case, noting that 4 ·
∑(2k+1)−2
i=0 ∆

i
= 4 · ∆

2k−1
∆−1 ≤ 4 · ∆2k ∈ O(∆2k ). �

4.3 High-Girth Cluster Tree Graphs

Our final tool allows us to construct small common lifts of regular graphs:

Lemma 4.8 (Common lifts of ∆-regular graphs [2]). Let H and H ′ be two ∆-regular graphs. Then there exists a

graph H̃ that is a lift of H and H ′ s.t. |V (H̃ )| ≤ 4|V (H )| |V (H ′)|.

Proof. By Hall’s Theorem [17, 18], any regular bipartite graph has a perfect matching, and the edge set of a ∆-

regular bipartite graph can be partitioned into ∆ perfectmatchings. For the special case thatH andH ′ are both bipartite,

let M1, . . . ,M∆ and M ′1, . . . ,M
′
∆
be partitions of their respective edge sets into perfect matchings. We define H̃ with
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V (H̃ ) = V (H ) ×V (H ′) and E(H̃ ) = {{(v,w), (v ′,w ′)} | ∃i ∈ [∆] : {v,v ′} ∈ Mi ∧ {w,w
′} ∈ M ′i }. H̃ has |V (H )| |V (H ′)|

nodes, and for each (v,w) ∈ V (H̃ ) and i ∈ [∆], there are unique {v,v ′} ∈ Mi and {w,w
′} ∈ M ′i . Hence, (v,w) has ∆

neighbors, and if these neighbors are (v1,w1), . . . , (v∆,w∆), the neighbors ofv inH arev1, . . . ,v∆, while the neighbors

ofw in H ′ arew1, . . . ,w∆ . Therefore, H̃ is a lift of H via ϕH : V (H̃ ) → V (H ) with ϕH ((v,w)) = v, and a lift of H ′ via

ϕH ′ : V (H̃ ) → V (H ′) with ϕH ′((v,w)) = w .

If a graph is not bipartite, we construct its canonical double cover, i.e., its tensor productwithK2, to obtain a bipartite

regular graph, with which we proceed as described above. The canonical double cover has twice as many nodes as the

original graph, and we might need it for H and H ′, so |V (H̃ )| ≤ 4|V (H )| |V (H ′)|. Further, if χH is covering map of the

canonical double cover C of H , then H̃ is a lift of H via ϕC ◦ χH ; analogously, H̃ is a lift of H ′. �

Corollary 4.9 (Existence of H̃k ). There exists a ∆-regular common lift H̃k of Hk and H ′
k
with girth д ≥ 2k + 1 and

O(β2k
2
+4k+1) nodes.

Proof. Recall that we start withG ′
k
as specified in Definition 4.3 (p. 11), parametrized by β ≥ 2k+1. By Lemma 3.13

(p. 6),G ′
k
has maximum degree ∆ = βk+1, and by Lemma 3.12 (p. 6),G ′

k
has order n < |C0 |

( β
β−(k+1)

)
≤ 2|C0 | = 2β2k+1.

We apply Lemma 4.5 (p.12) to obtain a ∆-regular supergraph H ′
k
of G ′

k
with O(β2k+1) nodes. By Corollary 4.7 (p. 13),

there also exists a ∆-regular graph Hk with girth ≥ 2k + 1 and |V (Hk )| ∈ O(∆
2k ) = O(β2k

2
+2k ). Therefore, from

Lemma 4.8 (p. 13) along with the observation that lifting cannot decrease girth, we can infer the existence of a graph

H̃k which is a lift of Hk and H ′
k
, has girth at least 2k + 1, and satisfies |V (H̃ )| ≤ 4|V (Hk )| |V (H

′
k
)| ∈ O(β2k

2
+4k+1). �

Finally, we constructGk as a subgraph of H̃k :

Theorem 4.10 (Existence of Gk [22]). There exists a graph Gk of girth д ≥ 2k + 1 with O(β2k
2
+4k+1) nodes that

conforms with CTk .

Proof. By Corollary 4.9 (p. 14), there exists a graph H̃k with girth д ≥ 2k + 1 and O(β2k
2
+4k+1) nodes that is a

common lift of H ′
k
and Hk . Now let ψ1 be a covering map from H̃k to H ′

k
. We constructGk as a subgraph of H̃k with

V (Gk ) := {v ∈ H̃k | ψ1(v) ∈ G
′
k
} and E(Gk ) := {{v,w} | v,w ∈ V (H̃k ) ∧ {ψ1(v),ψ1(w)} ∈ E(G

′
k
)}. Then ϕ := ψ1 |V (Gk )

is a covering map from Gk to G ′
k
. To see that Gk conforms with CTk , observe that ϕ is indeed a bijection on node

neighborhoods, and set C(v) := C(ϕ(v)) for v ∈ V (Gk ). Hence, we can conclude that Gk is an O(β2k
2
+4k+1)-node

graph of girth д ≥ 2k + 1 (inherited from H̃k ), conforming to CTk (inherited from G ′
k
). �

5 LOWER BOUND ONMINIMUM VERTEX COVER APPROXIMATION

Definition 5.1 (Vertex cover). Given a finite, simple graph G = (V , E), a vertex cover is a node subset S ⊆ V meeting

all edges, i.e., for each {v,w} ∈ E, v ∈ S or w ∈ S . A Minimum Vertex Cover (MVC) is a vertex cover of minimum

cardinality, and an α-approximate MVC is a vertex cover that is at most factor α larger than an MVC.

We begin by bounding the size of an MVC of any CT graphGk . To this end, recall that n0 is the number of nodes in

C0, which we have shown to contain a large fraction of all nodes.

Observation 5.2 (Size of an MVC ofGk ). |MVC | ≤ n − n0.

Proof. As C0 is an independent set, V (Gk ) \C0 is a vertex cover. �

Due to the indistinguishability of nodes inC0 andC1 inGk (Theorem 3.14, p. 7), we obtain the following requirement

for the behavior of any k-round distributed algorithm:
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Lemma 5.3 (Size of a computed vertex cover). On a CT graphGk of girth at least 2k + 1 with uniformly random

node identifiers, in the worst case (in expectation), a k-round deterministic (randomized) MVC algorithm in the LOCAL

model must select at least n0
2 nodes.

Proof. Recall that a k-round LOCAL algorithm is a function f mapping k-hop subgraphs labeled by inputs, node

identifiers, and, in case of a randomized algorithm, strings of unbiased independent random bits to outputs. Noting

that the vertex cover task has no inputs, by Theorem 3.14 (p. 7), nodes inC0 andC1 are k-hop indistinguishable. Hence,

restricting f to the k-hop subgraphs of nodes inC0 ∪C1, we get a function depending only on the node identifiers and

random strings observed up to distance k in the (isomorphic) trees that constitute the k-hop subgraphs. Now assign the

node identifiers uniformly at random (from the feasible range, drawn without repetition). By the above observations,

the output of each node v ∈ C0 ∪C1 then depends on the random labeling of its k-hop subgraph only, which is drawn

from the same distribution for each node. Thus, there is some p ∈ [0, 1] such that for each v ∈ C0 ∪C1, the probability

that v enters the vertex cover computed by the algorithm equals p. Now consider v ∈ C0. By the construction of

Gk , there is some edge {v,w} ∈ E(Gk ) such that w ∈ C1. Because v or w must be in the vertex cover the algorithm

computes, we have that 1 = P[v or w are in the vertex cover] ≤ 2p. By linearity of expectation, we conclude that the

expected size of the vertex cover is at least p |C0 ∪C1 | ≥
n0
2 . �

Choosing β appropriately, we arrive at the desired MVC lower bound:

Theorem 5.4 (MVC lower bound). In the family of graphs with at most n nodes and degrees of at most ∆, the

worst-case (expected) approximation ratio α of a deterministic (randomized) k-round MVC algorithm in the LOCAL

model satisfies α ∈ min
{
nΩ(1/(k

2 logk)), ∆Ω(1/(k logk))
}
. In particular, achieving an (expected) approximation ratio α ∈

logO(1)min{n,∆} requires k ∈ Ω(min{
√
logn/log logn, log∆/log log∆}) communication rounds.

Proof. Given any α > 1, fix β := 4(k + 1)α . By Theorem 4.10 (p. 14), CT graphs of girth 2k + 1 with O(β2k
2
+4k+1) ⊆

2O(k
2(logk+logα )) nodes exist, which by Lemma 3.13 (p. 6) have maximum degree ∆ = βk+1 ∈ 2O(k(logk+logα )).

We need these bounds to be smaller than n and ∆, respectively. As we want to show an asymptotic bound for α ,

we may assume that n and ∆ are sufficiently large constants. Hence, it is sufficient to satisfy the constraints α ≤

2ck
−2 logn−logk and α ≤ 2ck

−1 log∆−logk , respectively, where c > 0 is a sufficiently small constant. For k ≤ c
2 ·

min{
√
logn/log logn, log∆/log log∆}, the logk terms are dominated and the constraints aremet forα ∈ min{nΩ(1/(k

2 logk)),

∆
Ω(1/(k logk))}.

In particular, k ∈ ω(min{
√
logn/log logn, log∆/log log∆}) enables us to choose α = min{logω(1) n, logω(1) ∆}.

Hence, if we can show that for any (feasible) choice of α and graphGk conforming toCTk for parameter β = 4(k + 1)α

and girth 2k+1, any algorithm in the LOCALmodel has approximation ratio at leastα in the worst case (in expectation),

the claim of the theorem follows. To see this, note that Gk contains a vertex cover of size n − n0 by Observation 5.2

(p. 14) and any k-round algorithm selects at least n0
2 nodes (in expectation) under uniformly random node identifiers

by Lemma 5.3 (p. 15). By Lemma 3.12 (p. 6), this results in an (expected) approximation ratio of at least n0

2(n−n0)
≥

β
4(k+1)

= α . �
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A FURTHER PRELIMINARIES

A.1 General Notation

Symbol Definition Meaning

[k] := {i ∈ N | i ≤ k } Set of positive integers not larger than k

[k]0 := {i ∈ N0 | i ≤ k } Set of nonnegative integers not larger than k

G := (V (G), E(G)) GraphG with node set V (G) and edge set E(G)

G[S ] := (S, E[S ]),

E[S ] := {{vi, vj } ∈ E | vi , vj ∈ S }

Subgraph ofG induced by S ⊆ V (G)

nG := |V (G) | Number of nodes inG (order ofG )

mG := |E(G) | Number of edges inG (size ofG )

ΓG (v) := {w ∈ V (G) | {v, w } ∈ E(G)} Neighborhood of v inG (as a node set)

δG (v) := |ΓG (v) | Degree of v inG

∆G := max{δ (v) | v ∈ V (G)} Largest degree of a node v ∈ V (G)

pG (u, w ) := ({v0, v1 }, {v1, v2 }, . . . , {vk−1, vk }),

v0 = u, vk = w, {vi, vi+1 } ∈ E

∀i ∈ [k − 1]0

A path from u to w inG

dG (u, w ) := min{i | ∃p(u,w ) : |p(u, w ) | = i } Distance between node u and node w inG

(∞ if there exists no path between u and w )

dG (u, e ) := min{i | ∃w, p(u, w ) :

|p(u, w ) | = i ∧ e ∈ p(u, w )}

Distance between node u and edge e inG

(∞ if there exists no path between u and e )

дG := min{i > 0 | ∃v, p(v, v) : |p(v, v) | = i } Girth ofG (length of its shortest cycle)

Γ
k
G
(v) := {w ∈ V (G) | d (v, w ) ≤ k } k-hop neighborhood of a node v inG

(→ Definition 2.1)

Gk (v) := G[Γk (v)] \ {{w, u } ∈ E(G)

| min{d (v, w ), d (v, u)} ≥ k }

k-hop subgraph of a node v inG

(→ Definition 2.2)

G1 ⊆ G2 :⇔ V (G1) ⊆ V (G2) ∧ E(G1) ⊆ E(G2) Subgraph relationship betweenG1 andG2

G1 � G2 :⇔ ∃ϕ : V (G1) → V (G2) bijective

s.t. {v, w } ∈ E(G1)

⇔ {ϕ (v), ϕ (w )} ∈ E(G2)

Graph isomorphism betweenG1 andG2

Table 2. General notation used in this work (subscript or parenthesized G may be omi�ed when clear from context).

A.2 The LOCAL Model

Our presentation of the LOCAL model follows Peleg [28]. The LOCAL model is a highly stylized model of network

communication designed to capture the locality of distributed computing. In this model, a communication network is

abstracted as a simple graphG = (V ,E), with nodes representing network devices and edges representing bidirectional

communication links. To eliminate all computability restrictions that are not related to locality, the model makes the

following assumptions:

• Network devices have unique identifiers and unlimited computation power.

• Communication links have infinite capacity.

• Computation and communication takes place in synchronous rounds.

• All network devices start computing and communicating at the same time.

• There are no faults.

In each round, a node can

(1) perform an internal computation based on its currently available information,
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(2) send messages to its neighbors,

(3) receive all messages sent by its neighbors, and

(4) potentially terminate with some local output.

A k-round distributed algorithm in the LOCAL model can be interpreted as a function from k-hop subgraphs to

local outputs:

Definition A.1 (k-round distributed algorithm). A k-round distributed algorithmA is a function mapping k-hop sub-

graphsGk (v), labeled by unique node identifiers (and potentially some local input), to local outputs. For a randomized

algorithm, nodes are also labeled by (sufficiently long) strings of independent, unbiased random bits.

We assume that at the start of the algorithm, nodes do not know their incident edges.

B FURTHER LOWER BOUNDS

Definition B.1 (Fundamental graph problems). Given a finite, simple graphG = (V , E),

• Minimum Vertex Cover (MVC) . . .find a minimum vertex subset S ⊆ V s.t. ∀ { u,v } ∈ E : u ∈ S ∨ v ∈ S .

• Minimum Dominating Set (MDS) . . .find a minimum vertex subset S ⊆ V s.t. ∀ v ∈ V : v ∈ S ∨ ∃ u ∈ S :

{ u,v } ∈ E.

• MaximumMatching (MaxM) . . .find a maximum edge subset T ⊆ E s.t. ∀ e1, e2 ∈ T : e1 ∩ e2 = ∅.

• Maximal Matching (MM) . . .find an inclusion-maximal edge subset T ⊆ E s.t. ∀ e1, e2 ∈ T : e1 ∩ e2 = ∅.

• Maximal Independent Set (MIS) . . .find an inclusion-maximal vertex subset S ⊆ V s.t. ∀ u,v ∈ S : { u,v } < E.

MVC

MDS

MaxM

MM MIS

Fig. 5. Relationships between the lower bounds derived for fundamental graph problems (adapted from [22]). Optimization problems

marked blue; binary problems marked red. Solid arrows indicate reductions; dashed arrows indicate analogy.

B.1 Minimum Dominating Set (MDS)

Theorem B.2 (MDS lower bound). The best approximation ratio a k-round deterministic (randomized) MDS algo-

rithm in the LOCAL model can achieve is α ∈ nΩ(1/k
2)/k and α ∈ Ω

(
∆

1
k+1 /k

)
. Hence, to obtain an approximation ratio

polylogarithmic in n or ∆, in the worst case (in expectation) an algorithm needs to run for k ∈ Ω
(√

logn/log logn
)
or

k ∈ Ω
(
log∆/log log∆

)
rounds, respectively.

Proof. Observe that a vertex cover VC of any graph G can be transformed into a dominating set DS of its line

graph L(G)without increasing its cardinality by adding one edge {v,w} ∈ V (L(G)) for every nodev ∈ V (G). Similarly, a

dominating set of L(G) can be turned into a vertex cover ofG by adding the nodesv,w for all {v,w} ∈ DS(L(G)), at most

doubling its size. Therefore, in general, MVC and MDS are equivalent up to a factor of two in the approximation ratio.

Now consider a CT graphGk and its line graph L(Gk ). In the LOCAL model of computation, a k-round computation on

the line graph can be simulated ink+1 rounds on the original graph, i.e.,Gk and L(Gk ) have the same locality properties.
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Hence, up to a factor of two in the approximation ratio, MVC and MDS are equivalent also in our computational model.

The stated bounds hence follow analogously to Theorem 5.4 (p. 15). �

B.2 MaximumMatching (MaxM)

Here, we are dealing with a packing problem, rather than a covering problem, and we are asked to select edges, rather

than nodes. Therefore, instead of using a reduction from MVC, we amend the CT graph construction to allow for edge

indistinguishability arguments:

Definition B.3 (k-hop edge indistinguishability). Two edges {v,w} and {v ′,w ′} are k-hop indistinguishable if there

exists an isomorphism ϕ : V (Gk ({v,w})) → V (Gk ({v ′,w ′})) with ϕ(v) = v ′ and ϕ(w) = w ′, where Gk ({v,w}) :=

Gk ({v}) ∪Gk ({w}) and Gk ({v ′,w ′}) := Gk ({v ′}) ∪Gk ({w ′}).

Theorem B.4 (MaxM lower bound). The best approximation ratio a k-round deterministic (randomized) MaxM

algorithm in the LOCAL model can achieve is α ∈ nΩ(1/k
2)/k and α ∈ Ω

(
∆

1
k+1 /k

)
. Hence, to obtain an approximation

ratio polylogarithmic in n or ∆, in the worst case (in expectation) an algorithm needs to run for k ∈ Ω
(√

logn/log logn
)

or k ∈ Ω
(
log∆/log log∆

)
rounds, respectively.

Proof. We create a hard graph Hk from two low-girth copies ofGk ,G
′
k
and Ḡ ′

k
, by first adding a perfect matching

to connect each node from G ′
k
with its counterpart in Ḡ ′

k
to form a low-girth graph H ′

k
, and then lifting H ′

k
to high

girth using the construction detailed in Section 4 to obtain Hk with high girth.6 Figure 6 (p. 20) illustrates the idea. We

refer to the part of Hk corresponding toG ′
k
asGk and to the part of Hk corresponding to Ḡ ′

k
as Ḡk .

Since Gk and Ḡk are high-girth CT graphs, all nodes in the clusters C0, C̄0, C1, and C̄1—and hence, the endpoints

of edges {v0,v1}, {v0, v̄0}, {v̄0, v̄1}, and {v1, v̄1} (where vi ∈ Ci and v̄i ∈ C̄i for i ∈ {1, 2})—have isomorphic

k-hop subgraphs if the matching is not added before the lift. In Hk , each node from Gk has 1 = β0 additional

neighbor in the copy of its own cluster in Ḡk . Since Hk has high girth, however, the k-hop subgraphs of nodes in

C0, C̄0, C1, and C̄1 are still k-hop indistinguishable, and an isomorphism ϕ : V (Gk ({v0,v1})) → V (Gk ({v0, v̄0}))

(ϕ : V (Gk ({v̄0, v̄1})) → V (Gk ({v1, v̄1}))) can map nodes from these clusters onto each other as needed to satisfy the

requirements of Definition B.3 (we could again define an algorithm analogous to Algorithm 1, p. 8, to construct this iso-

morphism explicitly). It follows that the edges running betweenC0 andC1 (C̄0 and C̄1) are k-hop edge indistinguishable

from the edges running between C0 and C̄0 (C1 and C̄1).

Now consider a node v ∈ C0 and the set Ev of β + 1 pairwise indistinguishable edges that have v as an endpoint.

To guarantee a valid matching, a deterministic algorithm operating on a labeling chosen uniformly at random must

ensure
∑
e ∈Ev p(e) ≤ 1, so each edge e (including the edge running from v to v ′ ∈ C̄0) must be selected into the

matching with probability p(e) ≤ 1
β+1 . Consequently, the expected number of edges contributed to the matching by

edges running betweenC0 and C̄0 is E[|M(C0, C̄0)D |] ≤
n0
β+1 by linearity of expectation. To obtain a feasible matching,

the number of edges in the matching without an endpoint in C0 ∪ C̄0 can be at most 2n − 2n0, where n := |V (Gk )|

and n0 := |C0 |. It follows that there exists at least one labeling for which a k-round deterministic algorithm produces

a matching with

|MD | ≤
n0

β + 1
+ 2n − 2n0 ≤ n0 ·

4(k + 1) + 1

β
∈ O

(
n ·

k

β

)
,

6This idea appears already in [20], but the construction differs from the one presented here in that all powers of β are shifted by one, e.g., nodes in C0

have β 1, rather than β 0 , neighbors in C1.
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Fig. 6. Construction of H ′2 from G′2 and Ḡ
′
2 ; edges corresponding to the perfect matching between nodes in G′2 and Ḡ

′
2 are marked

red. The edges represented by the thickened lines are 2-hop indistinguishable in H2 .

where in the second to last step we applied Lemma 3.12 (p. 6) to bound n − n0. With E[|MR |] ≤ E[|MD |] from Yao’s

principle, the bound generalizes to k-round randomized algorithms.

To see that this enforces the approximation ratios stated above, observe that the maximum matching for Hk has

cardinality n by construction, i.e., α ∈ Ω
( β
k

)
. The trade-offs between running time and approximation ratio in terms of

n and ∆ now follow analogously to the proof of Theorem 5.4 (p. 15), noting that the increase of factor 2 in the number

of nodes and additive 1 in node degrees has no asymptotic effect. �

B.3 Maximal Matching (MM)

We start by establishing the lower bound in the deterministic setting by exploiting the relationship between MM and

MVC:

Theorem B.5 (MM lower bound for deterministic algorithms). Any deterministic MM algorithm needs to run

for k ∈ Ω
(
min

{√
logn/log logn, log∆/log log∆}

)
in the worst case.

Proof. Since taking the endpoints of a maximal matching yields a 2-approximation of MVC, the claim follows

immediately from the bounds established in Theorem 5.4 (p. 15). �

For the randomized setting, we do not obtain the same bounds as in Theorem 5.4 (p. 15) immediately. The reason

is that randomized algorithms for binary problems lend themselves to Las Vegas algorithms, whereas randomized

algorithms for optimization problems lend themselves to Monte Carlo algorithms. We establish the bounds for the

randomized setting by showing how a randomized MM algorithm that operates inT rounds in expectation can be used

to compute an O(1) approximation in expectation for MVC in 2T + 2 rounds:

Theorem B.6 (MM lower bound for randomized algorithms). In expectation, to find a solution, any randomized

MM algorithm needs to run for k ∈ Ω
(√

logn/log logn
)
and k ∈ Ω

(
log∆/log log∆

)
rounds.
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Proof. Let AM be an MM algorithm with expected time complexity T , running on some graph G = (V ,E) with

maximum degree ∆. The following MVC approximation algorithmAVC runs with fixed time complexity 2T + 2:

(1) For a sufficiently large constant c , execute c ln∆ independent runs i of the following in parallel:

(a) All nodes simulateAM for 2T rounds.

(b) If EM is the edge set selected after these rounds, every node that is incident with more than one selected edge

removes all selected incident edges from EM in an additional round of communication.

(c) All nodes (locally) output the endpoints of all edges remaining in EM as V ′
VC,i

.

(2) Define xv := 6 ·
| {i |v ∈V ′

VC, i
} |

c ln∆ , and set VVC := {v ∈ V | xv ≥ 1}.

(3) All nodes communicate whether they are in VVC , and nodes with a remaining uncovered edge join VVC .

The final step ensures that the algorithm returns a vertex cover.

To see that not too many nodes are selected in expectation, observe first that by construction, V ′
VC,i

is a matching

for each i . Therefore, we have that
∑
v ∈V (G) xv ≤ 6 · 2 · |MVC |, where MVC is a minimum vertex cover. As only

nodes with xv ≥ 1 are selected in Step 2, the total number of nodes selected in this step is (deterministically) at most

12 · |MVC |.

It remains to bound the expected number of nodes selected in Step 3. To this end, observe that by Markov’s bound,

each independent run of AM yields a maximal matching with probability ≥ 1
2 , and hence, each V ′

VC,i
forms a VC

with that same probability. Whenever this is the case, V ′
VC,i

contains at least one endpoint of each edge {v,w} ∈ E.

Hence, if at least one third of all runs are successful, we have xv +xw ≥ 2 for all edges {v,w} ∈ E, andVVC is a vertex

cover already at the end of Step 2. Letting X be sum of the independent and identically distributed Bernoulli variables

Xi indicating whether run i is successful, we have E[X ] ≥ c ln∆
2 . Using a Chernoff bound, we can then bound the

probability to have less than c ln∆
3 runs in which V ′

VC,i
forms a VC as

P

[
X <

c ln∆

3

]
≤ P

[
X ≤

(
1 −

1

3

)
c ln∆

2

]
≤ e−

( 13 )
2 ·c ln∆

4 = e−
c ln∆
36 =

1

∆
c
36

.

Hence, for c ≥ 36, the probability thatVVC is not a VC after Step 2 is ≤ 1
∆
. Therefore, with probability at least 1− 1/∆,

no further nodes are added in Step 3 of the algorithm. Otherwise, i.e., with probability at most 1/∆, we add no more

than 2|E(G)| nodes. Given that any vertex cover must contain at least |E(G)|/∆ nodes, we conclude that the expected

size of the VC computed via the procedure described above is at most

12 · |MVC | +
1

∆
· 2∆ · |MVC | = 14 · |MVC |.

Thus, a randomized MM algorithm beating the stated bounds would imply an MVC algorithm beating the bounds from

Theorem 5.4 (p. 15). Since such an MVC algorithm cannot exist, the stated bounds must hold.7 �

B.4 Maximal Independent Set (MIS)

We establish our last lower bound via reduction from MM:

Theorem B.7 (MIS lower bound). In the worst case (in expectation), to find a solution, any deterministic (randomized)

MIS algorithm needs to run for k ∈ Ω
(√

logn/log logn
)
or k ∈ Ω

(
log∆/log log∆

)
rounds.

Proof. Observe that an MM of Gk is an MIS of the line graph L(Gk ), and that a k-round MIS computation on

L(Gk ) can be simulated in k + 1 rounds on Gk . Furthermore, nL(Gk )
≤ n2

Gk
/2, and ∆L(Gk )

≤ 2∆Gk
. As logn ∈

7In [22], the size of the VC computed in Step 2 is bounded as ≤ 10 · |MVC | without explanation, and an expected VC size of ≤ 11 · |MVC | is derived.



22 Corinna Coupette and Christoph Lenzen

Θ(log(n2/2)), an MIS algorithm beating the stated bounds on L(Gk )would imply an MM algorithm beating the bounds

from Theorems B.5 or B.6 (pp. 20 et seq.). It follows that the stated bounds must hold also for MIS. �
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