

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE | OCTOBER 09 2020

MDBenchmark: A toolkit to optimize the performance of
molecular dynamics simulations
Special Collection: Classical Molecular Dynamics (MD) Simulations: Codes, Algorithms, Force fields, and Applications ,

Chemical Physics Software Collection

Michael Gecht ; Marc Siggel ; Max Linke ; Gerhard Hummer ; Jürgen Köfinger

J. Chem. Phys. 153, 144105 (2020)
https://doi.org/10.1063/5.0019045

 06 D
ecem

ber 2023 09:32:58

https://pubs.aip.org/aip/jcp/article/153/14/144105/316730/MDBenchmark-A-toolkit-to-optimize-the-performance
https://pubs.aip.org/aip/jcp/article/153/14/144105/316730/MDBenchmark-A-toolkit-to-optimize-the-performance?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/jcp/article/153/14/144105/316730/MDBenchmark-A-toolkit-to-optimize-the-performance?pdfCoverIconEvent=crossmark
https://pubs.aip.org/jcp/collection/1336/Classical-Molecular-Dynamics-MD-Simulations-Codes
https://pubs.aip.org/jcp/collection/1340/Chemical-Physics-Software-Collection
javascript:;
https://orcid.org/0000-0002-4643-6593
javascript:;
https://orcid.org/0000-0003-3393-4988
javascript:;
https://orcid.org/0000-0002-7208-5088
javascript:;
https://orcid.org/0000-0001-7768-746X
javascript:;
https://orcid.org/0000-0001-8367-1077
javascript:;
https://doi.org/10.1063/5.0019045
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2264412&setID=592934&channelID=0&CID=831204&banID=521546340&PID=0&textadID=0&tc=1&scheduleID=2185085&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjcp%22%5D&mt=1701855177954720&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjcp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0019045%2F16752563%2F144105_1_online.pdf&hc=7ec73226df2322bed863ee0749e5c8c573354d2e&location=

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

MDBenchmark: A toolkit to optimize
the performance of molecular dynamics
simulations

Cite as: J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045
Submitted: 22 June 2020 • Accepted: 4 September 2020 •
Published Online: 9 October 2020

Michael Gecht,1,a) Marc Siggel,1 Max Linke,1 Gerhard Hummer,1,2 and Jürgen Köfinger1,b)

AFFILIATIONS
1Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3,
60438 Frankfurt amMain, Germany

2Institute for Biophysics, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt amMain, Germany

Note: This paper is part of the JCP Special Topic on Classical Molecular Dynamics (MD) Simulations: Codes, Algorithms,
Force Fields, and Applications.
a)Electronic mail: michael.gecht@biophys.mpg.de
b)Author to whom correspondence should be addressed: juergen.koefinger@biophys.mpg.de

ABSTRACT
Despite the impending flattening of Moore’s law, the system size, complexity, and length of molecular dynamics (MD) simulations keep on
increasing, thanks to effective code parallelization and optimization combined with algorithmic developments. Going forward, exascale com-
puting poses new challenges to the efficient execution and management of MD simulations. The diversity and rapid developments of hardware
architectures, software environments, and MD engines make it necessary that users can easily run benchmarks to optimally set up simulations,
both with respect to time-to-solution and overall efficiency. To this end, we have developed the software MDBenchmark to streamline the
setup, submission, and analysis of simulation benchmarks and scaling studies. The software design is open and as such not restricted to any
specific MD engine or job queuing system. To illustrate the necessity and benefits of running benchmarks and the capabilities of MDBench-
mark, we measure the performance of a diverse set of 23 MD simulation systems using GROMACS 2018. We compare the scaling of simula-
tions with the number of nodes for central processing unit (CPU)-only and mixed CPU–graphics processing unit (GPU) nodes and study the
performance that can be achieved when running multiple simulations on a single node. In all these cases, we optimize the numbers of message
passing interface (MPI) ranks and open multi-processing (OpenMP) threads, which is crucial to maximizing performance. Our results demon-
strate the importance of benchmarking for finding the optimal system and hardware specific simulation parameters. Running MD simulations
with optimized settings leads to a significant performance increase that reduces the monetary, energetic, and environmental costs of MD
simulations.
© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0019045., s

I. INTRODUCTION

Molecular dynamics (MD) simulations have become an inte-
gral part of the molecular life sciences and material sciences.
Their predictive power has been continuously increasing, thanks to
methodological advances and the exponential growth of compute
power. The latter is captured by Moore’s law for the number of tran-
sistors of an integrated circuit and, across different technologies, by
the law of accelerated returns.1,2 This continuing growth translates

into a similar growth of the temporal and spatial scales that can be
assessed in MD simulations.3 Thus, MD simulations are becoming
more powerful in extending and connecting the different scales that
are accessible to experimental methods.4 As so-called computational
microscopes,5,6 MD simulations are widely used to make predictions
and to analyze, design, and validate experiments.

The tools to perform MD simulations have reached a
level of sophistication, which allows non-expert users to set
up, run, and analyze simulations. Various software packages for

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-1

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0019045
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0019045
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0019045&domain=pdf&date_stamp=2020-October-9
https://doi.org/10.1063/5.0019045
https://orcid.org/0000-0002-4643-6593
https://orcid.org/0000-0003-3393-4988
https://orcid.org/0000-0002-7208-5088
https://orcid.org/0000-0001-7768-746X
https://orcid.org/0000-0001-8367-1077
mailto:michael.gecht@biophys.mpg.de
mailto:juergen.koefinger@biophys.mpg.de
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0019045

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

performing MD simulations, so-called MD engines, have been
developed, e.g., ACEMD,7 Amber,8 CHARMM,9 Desmond,10

GROMACS,11 HOOMD-blue,12 LAMMPS,13 NAMD,14,15 and
OpenMM.16 These engines, each with a unique set of features,
were designed to efficiently compute the time evolution of particles
and take advantage of different hardware architectures and parallel
computation to varying degrees.

Optimal settings for MD simulations aim to decrease the time-
to-solution (TTS) and to increase the throughput of simulations and
energy efficiency. To run an MD simulation on a compute cluster,
the user has to specify numerous parameters to control the behavior
of the underlying hardware and software. Moreover, optimal param-
eters might vary between different versions of the same MD engine
and depend on the details of the molecular system under consid-
eration. Users new to MD simulations might miss the details that
are required to run efficient simulations on the high-performance
compute clusters. A poor choice of parameters can notably degrade
the simulation performance, usually measured in simulated time
per day, e.g., ns/day, or increase it only by a small margin while
wasting resources. Such inefficient simulations decrease the over-
all simulation throughput, lead to a higher electricity demand and
operating cost, and ultimately increase the carbon footprint. It is
therefore in the interest of every user to optimize their usage of
hardware resources, and, at the same time, keep their TTS to a min-
imum. This daunting task of finding the optimal parameters for
running MD simulations efficiently can only be tackled by thorough
benchmarking.

Therefore, we need to enable individual users to run bench-
marks conveniently and efficiently for their given settings. This
complements the goals of systematic benchmark studies performed
by experts.17–20 For example, Kutzner et al. performed extensive
benchmarks using GROMACS to determine the best performance-
to-price ratio for a variety of MD systems and numerous hardware
architectures.19,20 They provided valuable guidelines for configur-
ing and purchasing new clusters and for choosing optimal param-
eters. However, the rapid development of hardware, algorithms, and
software and the variety of MD engines and simulation systems
requires that users themselves are able to run benchmark studies
efficiently.

We developed MDBenchmark, a standalone software package,
implemented as a command-line interface (CLI), to conveniently
set up, run, and analyze benchmarks of MD simulations. With this
tool, users can run benchmarks and scaling studies for their specific
molecular system, MD engine, and compute cluster. MDBenchmark
was developed to streamline and simplify the process of finding the
optimal run parameters and settings for any simulation and hard-
ware stack. It takes care of submitting simulations to the queuing
system, performs scaling studies by varying the number of nodes,
automatically toggles the usage of central processing unit (CPUs)
and/or graphics processing unit (GPUs), and scans the numbers of
processes used for parallelization [message passing interface (MPI)
ranks, open multi-processing (OpenMP) threads] if applicable. The
package was designed for ease of use not only by expert users but
also by researchers without prior detailed knowledge of the ins and
outs of high-performance computing (HPC).

To illustrate the application and the capabilities of MDBench-
mark and to highlight the value and necessity of running bench-
marks, we report on an extensive scaling study of 23 MD simulations

of varying sizes (∼4 × 104 to ∼4 × 106 atoms) and system compo-
sitions. We identify numbers of MPI ranks and OpenMP threads
that produce the best performance for a range of system sizes, study
the benefits of hyperthreading, and analyze when it is beneficial to
use CPU-only or mixed CPU–GPU nodes and when to run multiple
simulations on a single node. For this study, we use the GROMACS
software suite as it is widely used, freely available, and highly opti-
mized for different kinds of hardware. However, MDBenchmark
has been designed such that different MD engines and job queuing
systems can easily be added.

II. BACKGROUND
Current compute clusters are composed of compute nodes,

each containing at least one CPU, an optional GPU, as well as giga-
bytes of dedicated random-access memory (RAM). These nodes are
connected in a network such that data can be exchanged between
nodes and calculations can be performed in parallel on multiple
nodes.

Modern CPUs contain dozens of physical cores, where each
core can perform computations independent from the others. In
addition, a single physical core can often perform two computa-
tions at the same time, a feature called “hyperthreading.”21 When
enabled, the number of physical cores is virtually doubled, i.e., for
each physical core, two “logical cores” are introduced.

To use these heterogeneous resources efficiently and run cal-
culations in parallel, two interfaces are widely used: message passing
interface (MPI) and open multi-processing (OpenMP). MPI spawns
processes, which we will refer to as ranks. A single MPI rank can
comprise all cores of a single node or only a subset of them. By con-
trast, OpenMP creates computational threads, where each is com-
posed only of a subset of cores available inside a MPI rank. OpenMP
threads share the same memory.

Running a simulation on a computer cluster requires the user
to submit a compute job to a queuing system. The user must
configure a submission script that launches the MD engine over
its CLI. Users have to define the correct parameters for the spe-
cific queuing system. Activating hyperthreading on the “Sun Grid
Engine” (SGE) differs, for example, from activating it on the “Sim-
ple Linux Utility for Resource Management” (SLURM) queuing
system.

The numbers of MPI ranks to OpenMP threads influence
the performance of GROMACS simulations.19,20 To take advan-
tage of the parallel compute infrastructure, a simulation box is first
divided into separate domains in a process called domain decom-
position.22 Each domain is regarded in an isolated manner, and
information at the borders is communicated with the other domains.
In a hybrid MPI-OpenMP approach, the calculations of a single
domain are managed by a single MPI rank. This rank spawns mul-
tiple OpenMP threads, which then perform the actual calculations
in each domain. Each MPI rank communicates with the ranks
responsible for its neighboring domains. The number of ranks per
node nranks times the number of threads per node nthreads gives the
number of logical cores per node. If hyperthreading is deactivated,
then the number of logical cores is equal to the number of phys-
ical cores. If activated, it is equal to twice the number of physical
cores.

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-2

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

III. THE MDBENCHMARK SOFTWARE
The CLI of MDBenchmark provides access to four main func-

tions (Fig. 1). In the first step, all parameters for the benchmark(s)
are defined using the GENERATE command [Fig. 1(a)]. Here, the user
chooses the MD engine, the numbers of nodes to perform scal-
ing on, whether to use GPUs, and the numbers of MPI ranks. In
addition, a run input file of an equilibrated MD simulation must
be provided. A TPR file is sufficient for GROMACS. Different MD
engines require different input files. For example, the NAMD, PSF, and
PDB files have to be provided for NAMD. MDBenchmark automat-
ically checks the availability of the requested MD engine and its
installed version using the “Environment Modules” system.23 This
feature was put in place to safeguard against typos in the module
name. If a module environment is not used on the compute cluster,
the user can skip this availability check. MDBenchmark will prompt
the user to confirm the action, before proceeding to create the folder
structure.

The folder structure was intentionally designed with a nested
hierarchy to allow users to access files themselves, if needed. Each
requested MD engine is put into its own folder, with a subfolder
denoting the engine’s version and whether MDBenchmark is going
to request CPU-only or mixed CPU–GPU nodes. The last subfolder
layer separates the benchmarks by the numbers of nodes, MPI ranks,
and OpenMP threads and by whether hyperthreading is enabled or
disabled. Each of these subfolders then contains a copy of the run
input file, as provided by the user, the job submission script con-
taining all parameters and commands to run the benchmark, as well
as a hidden folder holding all metadata in the JSON format. This
metadata is managed through the datreant Python package.24 We
use it to define each benchmark as an entity and add our parameters
as metadata. The package can be used to search and filter bench-
marks through their Python API. This way, benchmarks can easily
be grouped by distinct parameters for additional customized analysis
by the user.

After benchmarks have been set up, they can be submitted to
the queuing system with the SUBMIT command in the second step

FIG. 2. Size and composition of simulation systems. (a) Cumulative number of sys-
tems as a function of the atom number. Most MD systems (65%) contain less than
300 000 atoms. (b) Relative abundance of system constituents as a function of the
number of atoms. Systems are composed of 55%–99% solvent (blue). Lipid bilay-
ers, if present, make up 8%–45% (orange) of the system’s total number of atoms.
All other solutes account for at most 27%, but usually less than 10% (green). Note
that the numbers of atoms comprise all interaction sites, i.e., also the additional
interaction sites for TIP4P-D water.

[Fig. 1(b)]. When called, it will traverse all subfolders and gather
information on each benchmark. The user will be shown all bench-
marks that are to be submitted, and they will be prompted to sub-
mit or cancel. If a benchmark was already submitted, it will be
excluded from further submissions. The user can ask MDBench-
mark to submit all benchmarks, ignoring their submission status.

FIG. 1. Schematic representation of
the implementation and workflow of
MDBenchmark. (a) Run input files and
benchmark parameters are supplied
to the GENERATE command. For every
benchmark, a folder with attached meta-
data is created. (b) The SUBMIT com-
mand sends the benchmark job to the
HPC queue, starting the MD engine on
the requested resources. (c) The log file,
written by the engine, contains all nec-
essary results and is parsed through the
ANALYZE command. Results are shown
in the console or saved to a CSV file.
(d) The PLOT command can visualize the
results in a plot using the CSV file as
input. It produces a scaling plot with the
performance (ns/day) as a function of the
number of nodes, with every benchmark
setting as a separate line.

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-3

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Currently, MDBenchmark can submit jobs to the queuing systems
SGE, SLURM, and IBM’s LoadLeveler. The available queuing system
will be automatically determined before submission. The submission
files are conveniently implemented using the template syntax pro-
vided by the Jinja2 Python package, which facilitates the easy adap-
tion to other HPC resources and different requirements. Further
details are available in the MDBenchmark documentation.

After submission to the queuing system, the status of bench-
marks can be checked with the ANALYZE command in the third
step [Fig. 1(c)]. MDBenchmark will print all available informa-
tion on each benchmark in a tabular format to the console. Every
call to the ANALYZE command will parse the log files produced
by the MD engine and extract information on the correspond-
ing run. If a benchmark has already finished, its performance will
be printed in the last column of the table. All available bench-
mark data can be saved in a CSV format to a file for future
analysis.

In a fourth step, the name of the file containing the bench-
mark results can be provided as an argument to the PLOT command,
which will produce a scaling plot [Fig. 1(d)]. The plot shows the
performance (ns/day) as a function of the number of nodes, with
each line representing a different combination of parameters (CPU-
only/mixed CPU–GPU nodes, numbers of MPI ranks and OpenMP

threads, and hyperthreading). A linear fit through the origin and the
first data point is added to indicate ideal scaling. The PLOT command
also accepts multiple CSV files from separate benchmarks to allow
for straightforward comparison of different benchmark parameters.
In addition, the CSV file can be easily read with the pandas Python
package25 for customized analysis.

Further detailed explanations of all available options can
be found online in the MDBenchmark documentation (https://
mdbenchmark.readthedocs.io/).

IV. METHODS
We used MDBenchmark to run benchmarks of atomistic MD

simulations for 23 biomolecular systems. The system sizes range
from ∼4 × 104 to ∼4 × 106 atoms [Fig. 2(a)]. 15 out of the 23 tested
systems (65%) have less than 300 000 atoms. Due to the nature of
biomolecular simulations, the 23 simulation systems studied here
are mostly composed of solvent: 55%–99% of the system’s total
atoms belong to water molecules [Fig. 2(b)]. If present, lipid bilay-
ers account for 8%–45% of the total number of atoms. Other solutes,
i.e., proteins, nucleic acids, small molecules, and ions, make up only
0.1%–27%. These systems cover a broad range of force fields, water
models, compositions, box geometries, and sizes (Table I). Their

TABLE I. Details of the fully atomistic simulation systems, for which we perform scaling benchmarks. The systems vary in size, composition, and box geometry, as well as in
force fields and water models: CHARMM36,36 CHARMM36m,37 AMBER99SB∗-ILDN,38–40 AMBER99SB∗-ILDN-Q,38–42 TIP3P,43 and TIP4P-D.44 Box geometries are cuboids
(C), rhombic dodecahedra (RD), and hexagonal prisms (H).

No. of Box System Force Water
Type atoms geometry size (nm3) field model References

0 Protein in solution 35 307 RD 8.0 × 8.0 × 5.7 AMBER99SB∗-ILDN TIP3P Unpublished
1 Protein in solution 91 120 C 9.9 × 9.9 × 9.9 CHARMM36 TIP3P Unpublished
2 Protein in solution 95 286 C 10.0 × 10.0 × 10.0 CHARMM36 TIP3P Unpublished
3 Protein in solution 112 390 C 10.0 × 10.0 × 10.0 AMBER99SB∗-ILDN-Q TIP3P Unpublished
4 Protein in membrane 117 390 C 11.0 × 11.0 × 10.0 CHARMM36 TIP3P Hofbauer et al.45

5a Protein in solution 122 730 C 10.0 × 10.0 × 10.0 AMBER99SB∗-ILDN-Q TIP4P-D Unpublished
6a Dense protein solution 130 402 C 9.9 × 9.9 × 9.9 AMBER99SB∗-ILDN-Q TIP4P-D Bülow et al.46

7 Empty membrane 163 215 C 13.1 × 13.1 × 9.1 CHARMM36m TIP3P Unpublished
8a Protein in solution 202 512 RD 13.0 × 13.0 × 9.2 AMBER99SB∗-ILDN-Q TIP4P-D Unpublished
9 dsDNA in solution 213 722 RD 14.5 × 14.5 × 10.3 AMBER99SB∗-ILDN TIP3P Unpublished
10 Protein and membrane 233 433 C 14.6 × 14.6 × 10.5 CHARMM36m TIP3P Wu et al.47

11 Protein and membrane 239 306 C 14.6 × 14.6 × 10.9 CHARMM36 TIP3P Unpublished
12a Dense protein solution 265 986 C 12.6 × 12.6 × 12.6 AMBER99SB∗-ILDN-Q TIP4P-D Bülow et al.46

13 Protein and membrane 279 760 C 15.9 × 15.9 × 10.8 CHARMM36 TIP3P Unpublished
14 Protein in membrane 297 697 C 13.8 × 13.8 × 15.4 CHARMM36m TIP3P Hofmann et al.48

15a Protein in solution 472 859 C 15.0 × 15.0 × 15.0 AMBER99SB∗-ILDN-Q TIP4P-D Unpublished
16a Dense protein solution 689 746 C 17.3 × 17.3 × 17.3 AMBER99SB∗-ILDN-Q TIP4P-D Bülow et al.46

17 Protein in membrane 699 861 C 19.5 × 19.5 × 18.1 CHARMM36m TIP3P Unpublished
18 Protein and membrane 1 219 446 C 23.0 × 23.0 × 23.0 CHARMM36m TIP3P Unpublished
19 Protein and membrane 2 263 618 C 38.2 × 21.6 × 31.5 CHARMM36 TIP3P Unpublished
20a Dense protein solution 3 520 854 C 30.0 × 30.0 × 30.0 AMBER99SB∗-ILDN-Q TIP4P-D Bülow et al.46

21a Dense protein solution 3 657 069 C 30.4 × 30.4 × 30.4 AMBER99SB∗-ILDN-Q TIP4P-D Bülow et al.46

22b Protein and membrane 4 059 840 H 34.9 × 34.9 × 37.9 CHARMM36m TIP3P Turoňová et al.26

aSystems use the TIP4P-D water model.
bThe timestep of this system was set to 4 fs.

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-4

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp
https://mdbenchmark.readthedocs.io/
https://mdbenchmark.readthedocs.io/

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

exact setup can be found in the corresponding references, if already
published. All systems were set up with a 1.2 nm cutoff for non-
bonded interactions in the real space and a grid spacing of 0.12 nm
for PME, with the exception of systems No. 6, No. 12, No. 16,
No. 20, and No. 21 where a real space cutoff of 1.0 nm was used
with a grid spacing of 0.16 nm. We used dynamic load balancing
in all benchmarks to automatically tune the cutoff for nonbonded
interactions and PME grid spacing. The listed values thus serve as
lower and upper bounds, respectively. Systems No. 0–No. 21 used
an integration time step of 2 fs and system No. 22 used 4 fs by dou-
bling the hydrogen mass.26 Note that the time step in fully atomistic
simulations can also be increased by using virtual sites.27,28

For these 23 systems, we performed scaling studies in which
we determine the performance P(N) as a function of the number of
nodes N. We vary the number of MPI ranks, nranks, which also deter-
mine the number of OpenMP threads per rank, nthreads, for activated
and deactivated hyperthreading. On CPU-only nodes, GROMACS
was allowed to dedicate about 25% of the available MPI ranks for
the PME calculation. We did not specify individual PME ranks for
mixed CPU–GPU benchmarks.

We use Amdahl’s law as a simple model to summarize the
results of our scaling studies.29 This law describes the speed-up S(N)
of parallelized computations as a function of the number of nodes N,
i.e.,

S(N) = 1
1 − p + p

N

, (1)

where p is the fraction of the code that benefits from parallelization.
From Amdahl’s law we express the performance P(N)

= S(N)P(1) as

P(N) = Pmax

1 + p
N(1−p)

, (2)

where the maximum performance Pmax = limN→∞P(N) is given by

Pmax = P(1)
1 − p . (3)

The ideal scaling is determined by the performance for N = 1 node
as

Pid(N) = NP(1), (4)
which becomes

Pid(N) = N(1 − p)Pmax. (5)

We use Amdahl’s law to estimate the performance that can be
achieved by increasing the number of nodes, while being reasonably
efficient, i.e., close to ideal scaling as given by Eq. (4). For paralleliza-
tion to be efficient, we demand that the performance is a fraction f
of the ideal performance, i.e.,

P(N) = fPid(N), (6)

and solve for N. We obtain

N(f) = 1 − fp
f (1 − p) . (7)

The performance corresponding to a fraction f of the ideal scaling is
then given by P(N(f)) as

P(f) = (1 − fp)Pmax. (8)

We performed benchmarks with GROMACS 201811 without
the built-in thread-MPI library but with external MPI libraries
and enabled OpenMP support. AVX_512 SIMD instructions were
enabled at compile time with GCC 8.3 and CUDA 10.1. Note that
AVX2_256 SIMD instructions might be beneficial in some cases, for
example, for simulations with a small number of atoms per core.
We used nodes with two Intel® Xeon® Gold 6148 CPUs (2.40
GHz) for all benchmarks, with additionally two NVIDIA Quadro
RTX 5000 graphic cards in mixed CPU–GPU nodes. All nodes
were connected with a 100 Gb/s OmniPath interconnect. Bench-
marks were run on specific numbers of MPI ranks and OpenMP
threads for a total wall time of 15 min, if not mentioned oth-
erwise. We used SLURM as the queuing system for all bench-
marks on the available supercomputer. Example submission files for
both CPU-only and mixed CPU–GPU nodes can be found in the
Appendix.

All data generated in this study was managed and analyzed
using datreant,24 MDAnalysis,30,31 NumPy,32 Pandas,25 SciPy,33 and
IPython.34 Plots were generated with Matplotlib.35

V. RESULTS
Using MDBenchmark, we first examine the dependence of the

performance estimates on the run time of the benchmarks. We then
use two exemplary systems to discuss in detail the performance
scaling and its dependence on the number of MPI ranks and on
hyperthreading. We present results for the 22 largest systems and
show how optimal parameters vary with the system size. Finally, we
investigate the performance when running multiple simulations on
a single node for all 23 systems.

FIG. 3. Dependence of the performance estimates on the run times of the bench-
marks for CPU-only nodes. MD simulations with (a) 233k and (b) 3.6M atoms
scaled from 1 to 10 nodes and run for 5 (blue), 10 (orange), and 15 (green) min.
Each data point shows the average of five independent runs with error bars and
filled-in area showing the standard deviation. Transparent dashed lines show ideal
scaling according to Eq. (4).

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-5

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

A. Run time of benchmarks

Ideally, a benchmark run provides the most accurate perfor-
mance estimate (ns/day) in the least amount of time. Short bench-
marks facilitate a higher throughput, a more efficient use of the
limited computing resources, and thus allow us to sample a broader
range of parameters.

To set the length of a benchmark run, we can either use a fixed
number of steps, as previously done by Kutzner et al.,19,20 or set the
run time explicitly. In a GROMACS simulation, the first hundreds
to thousands of steps can be used to balance computational load
between different ranks using dynamic load balancing. This auto-
tuning is enabled by default and beneficial for overall simulation
performance. However, a benchmark will be aborted if this process

has not finished after half of the available compute time. For larger
systems, the auto-tuning process takes longer. Thus, we decided to
set the run time explicitly as jobs with fixed, short run times can be
given higher priority by the queuing systems.

We determined the minimum run time of the benchmarks
from scaling studies. For two systems using N = 1–10 nodes, we
used run times of 5 min, 10 min, and 15 min (Fig. 3) using CPU-only
nodes. The results for the shortest run times of 5 min can deviate sig-
nificantly from the results for 10 min and 15 min. The shortest run
time can be used for a first screening, while longer run times seem
to be necessary to obtain accurate results. The benchmark results
can be influenced, for example, by the amount of traffic handled by
the network infrastructure at run time. In the following, all reported
benchmarks were run for 15 min independent of the system size.

FIG. 4. Scaling of the performance PCPU(N) with the number N of CPU-only nodes for different numbers of MPI ranks nranks (colors) with [(a) and (d)] and without [(b)
and (e)] hyperthreading. Ideal scaling was estimated according to Eq. (4) (dashed lines: strongest ideal scaling as thick dashed line). [(a) and (b)] Prototypical membrane
protein system with 233k atoms and [(d) and (e)] dense protein solution with 3.6M atoms. Both systems scale the best with nranks = 40. [(c) and (f)] Ratios between the
performance without and with hyperthreading. For the best performing rank settings (filled squares) of nranks = 40, both systems generally benefit from running simulations
with hyperthreading.

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-6

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

B. Optimizing performance for two exemplary
systems

We evaluated how the performance scales with different num-
bers of nodes using either CPU-only or mixed CPU–GPU nodes.
Using MDBenchmark, we ran benchmarks using 1–10 nodes and
scanned the values of the MPI ranks with and without hyperthread-
ing. In the following, we present detailed results for two exemplary
systems of different size and composition (systems No. 10 and No.
21 in Table I): system No. 10, a prototypical membrane protein
system with 233k atoms,47 and system No. 21, a large 3.6M atom
system of a dense protein solution using TIP4P-D as the water
model.46

Our results show that the dependence of the performance on
the number of MPI ranks is different for CPU-only nodes and for

mixed CPU–GPU nodes. For CPU-only nodes with hyperthreading
activated, both systems show the best performance for nranks = 40,
consistently for all node numbers [Figs. 4(a) and 4(d)]. Thus, for
CPU-only nodes, the optimal number of ranks is independent of the
system size. By contrast, for mixed CPU–GPU nodes with hyper-
threading activated, the optimal choice of nranks depends on the
system size [Figs. 5(a) and 5(d)]. For the default parameters set
by our software environment and queuing system, nranks = 40 and
hyperthreading activated, the medium sized system with 233k atoms
shows the worst performance [Fig. 5(a)]. We find that the opti-
mal numbers of ranks yielding the highest performance are given
by nranks = 8 as well as by nranks = 10. This example illustrates that
blindly trusting the default values set by the software environment
can decrease performance by more than half. For the larger sys-
tems of 3.6M atoms, we observe that a higher number of ranks nranks

FIG. 5. Scaling of the performance PGPU(N) with the number N of mixed CPU–GPU nodes for different numbers of MPI ranks nranks (colors) with [(a) and (d)] and without [(b)
and (e)] hyperthreading. Ideal scaling was estimated according to Eq. (4) (dashed lines: strongest ideal scaling as the thick dashed line). For the membrane protein system
with 233k atoms, we obtain the best performance for nranks = 8, (a) with and (b) without hyperthreading. For the dense protein solution with 3.6M atoms, we obtain the best
performance for nranks = 40, (c) with and (d) without hyperthreading. [(c) and (f)] Ratios between the performance without and with hyperthreading. (c) We find that for the
233k atom system, the performance for the optimal rank settings (filled symbols) does not benefit from hyperthreading. (f) For the 3.6M atom system, a significant increase
in performance can be achieved by activating hyperthreading for the optimal rank settings (filled squares).

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-7

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 6. Amdahl’s law captures the scaling behavior. Performance Px(N) of (a) sys-
tem No. 10 and (b) system No. 21 as a function of nodes N. Each panel shows
results for the best performing nranks values on mixed CPU–GPU nodes without
hyperthreading (orange) and for CPU-only nodes with 40 nranks and hyperthread-
ing (blue) from Figs. 4 and 5. Each combination of nodes N was run in multiple
independent simulations of 15 min each. All replicates are shown. Solid colored
lines show the fits to the data using Eq. (2). Transparent dashed lines show
ideal scaling according to Eq. (4), where we used the average of Px(1) over all
replicates.

results in better performance and that the optimal value is actually
the default setting of nranks = 40 and nthreads = 2 [Fig. 5(d)]. Note that
the default settings will depend on the hardware architecture and
configuration of the system.

With hyperthreading activated, the previously determined
optimal values of nranks remain unchanged, both for CPU-only and
mixed CPU–GPU nodes [Figs. 4(b), 4(e), 5(b), and 5(e)]. To quan-
tify the effect of hyperthreading, we calculate the ratio of the absolute
performance as Px(N)/PHT

x (N), where Px(N) is the performance
without hyperthreading and PHT

x (N) is the performance with hyper-
threading. Here and in the following, subscript x = CPU denotes
CPU-only and x = GPU denotes mixed CPU–GPU nodes. The
superscript HT indicates that hyperthreading is activated, its absence
that it is deactivated.

The impact of hyperthreading on performance depends sensi-
tively on the system size, computer architecture, node number, and
rank number. By and large, hyperthreading improves the perfor-
mance on CPU-only nodes with optimized rank and thread num-
bers, as shown in Figs. 4(c) and 4(f). Only for the 233k atom sys-
tem and N = 1, 7 or 8 nodes, we see deviations from this behav-
ior. For mixed CPU–GPU nodes, we find that there is no sig-
nificant benefit from hyperthreading, as shown in Figs. 5(c) and
5(f) for the 233k and 3.6M atom systems. Only for the larger
system and large node numbers, the activation of hyperthreading
leads to a small (∼5%) performance increase for the optimal rank
settings.

We now show that the scaling behavior, i.e., the dependence
of the performance on the number of nodes, is well captured by
Amdahl’s law in the form of Eq. (2) for both hardware architectures
(Fig. 6). This simple law captures the linear increase of the perfor-
mance with small node numbers and the convergence to a plateau
for larger node numbers. If node numbers become too large, the
scaling breaks down and Amdahl’s law cannot be applied. Using the
optimal rank and hyperthreading settings for the two system’s and
hardware architectures considered here, we performed scaling stud-
ies up to 64 nodes. We fit Amdahl’s law to the scaling curves using
the single fit parameter p. We find that Amdahl’s law fits the scaling
curves reasonably well and that it can thus be used to summarize the
results, as is done in Sec. V C.

A comparison of the performance scaling for the two hard-
ware architectures shows that the mixed CPU–GPU nodes perform

FIG. 7. On mixed CPU–GPU nodes,
the optimal number of MPI ranks (col-
ors) increases with the system size and
decreases with increasing node numbers
N. The same systems (columns) were
scaled over different numbers of nodes
(rows), using different nranks values. The
top axis indicates the system numbers
according to Table I.

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-8

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

better than CPU-only nodes for small node numbers only (Fig. 6).
For the membrane protein system No. 10, mixed CPU–GPU nodes
perform better up to N = 14 [Fig. 6(a)] and for the dense protein
solution system No. 21 up to 32 nodes. For larger N, the perfor-
mance increases only slowly for mixed CPU–GPU nodes such that
CPU-only nodes achieve higher absolute performance. This behav-
ior is consistent for all of the 22 systems considered here, and the
point of equal performance shifts to higher N with increasing sys-
tem size (Figs. 12 and 13). The location of this point of equal per-
formance is also determined by the relative computational power
of CPU and GPU. Note that both node architectures contain the
same CPU. A less powerful CPU would thus shift the point of equal
performance to higher node numbers. It is likely that the CPUs in
the mixed CPU–GPU nodes are not fully used.20 CPU and GPU

utilization in HPC settings can be monitored with the hpcmd tool,
for example.49

C. Size dependence of optimal parameters
As we have shown above for two exemplary systems, the opti-

mal values for nranks depend on the number of atoms in a system
for mixed CPU–GPU nodes. We further validate these observations
with additional scaling results of additional 20 systems on mixed
CPU–GPU nodes without hyperthreading, varying the nranks values
for different numbers of nodes N (Fig. 12). We also present scal-
ing benchmarks for each system with the best performing settings
on CPU-only nodes (nranks = 40 with hyperthreading). We exclude
the smallest system No. 0 with 35k from the following scaling

FIG. 8. Comparison of the performance
on (a) mixed CPU–GPU nodes and
(b) CPU-only nodes. The numbers in
the fields show the performance val-
ues in ns/day. (c) The performance ratio
PGPU(N)/PCPU(N) is shown on a loga-
rithmic (base 2) color scale. The color
scale is centered at equal performance
(PGPU(N)/PCPU(N) = 1, white). The num-
bers in the cells are the actual values of
the ratios. Performance data were taken
for the best performing nranks values on
mixed CPU–GPU nodes without hyper-
threading (Fig. 7) for each node individ-
ually. For CPU-only nodes, nranks = 40
and hyperthreading was activated. The
top axis indicates the system numbers
according to Table I. Note that for sys-
tem No. 22, we used a time step of 4 fs
and doubled the hydrogen mass.

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-9

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

analysis. Whereas this system scales nicely for CPU-only nodes, it
scales poorly on mixed CPU–GPU nodes, and even using a second
node is highly inefficient (see Figs. 12 and 13). Moreover, not all set-
tings of our scaling study can be used for such small systems, and
simulations with some of these settings will not run.

Our benchmark results for the 22 systems consistently show
that for mixed CPU–GPU nodes, the optimal numbers of nranks
decreases with increasing node number and increases with the sys-
tem size (Fig. 7). Note that the number of OpenMP threads is given
by the number of physical cores divided by the number of MPI ranks
if hyperthreading is deactivated and by the number of logical cores
divided by the number of MPI ranks if hyperthreading is activated.
The observed trends are clear and consistent and provide guidelines
for the optimal rank settings. However, the deviations from these
monotonic trends also show that for a specific system, it is beneficial
to run benchmarks for numbers of ranks close to the optimal values.
The performance in Fig. 12 is in some cases degraded for 7 and 9
nodes, which can be attributed to an unfavorable domain decompo-
sition. In general, settings with an even node number appear to be
favorable.

The absolute performance for the 23 systems follow the trends
as exemplified above for the 233k and 3.6M atom systems (Fig. 8).
Mixed CPU–GPU nodes [Fig. 8(a)] perform better than CPU-only
nodes [Fig. 8(b)] only for fairly small numbers of nodes, as indicated
by their performance ratio [Fig. 8(c)]. With the exception of systems
6 and 12, the speed-up factor is larger than two for all simulations on
a single node. For two nodes, a speed-up larger than two is achieved

for nearly all system sizes larger than 236 K atoms, with system No.
12 and No. 16 being the exception. As we discuss in the follow-
ing, these exceptions are due to aggressive tuning of the simulation
settings.

The overall scaling of the performance with the number of
nodes and system size is fairly smooth and quite monotonic. How-
ever, the dense protein solutions (systems No. 6, No. 12, No. 16,
No. 20, and No. 21) systematically deviate from the overall trends
for CPU-only nodes [Fig. 8(b)], which also becomes noticeable in
the performance ratios [Fig. 8(c)]. The reason is that in these sim-
ulations, the cutoff distance in the real space interactions has been
reduced and the grid spacing in the PME calculation increased com-
pared to the other systems. With these settings, the performance
could be increased significantly on CPU-only nodes. However, the
performance on mixed CPU–GPU nodes remains largely unaffected.
Note that in addition to the dense protein solutions listed here, also
systems No. 5, No. 8, and No. 15 use the TIP4P-D44 water model.
However, these systems do not show deviations from the overall
performance trends.

For all system sizes, simulations on CPU-only nodes scale much
better with the number of nodes than mixed CPU–GPU nodes
(Fig. 9). We quantify the computational efficiency of choosing N
nodes by calculating the ratio of the actual performance to the
performance we would get for ideal scaling. We determine ideal
scaling using Eq. (5), using values of p from fits of Amdahl’s law
to the performance data. Instead of fitting to the scaling curve
for the nranks value, which gives the overall best performance, we

FIG. 9. Simulation performance scales
differently on different architectures. Rel-
ative scaling of (a) mixed CPU–GPU
nodes and (b) CPU-only nodes to their
best performing settings. (a) For most
system sizes, simulations scale effi-
ciently over a couple of nodes only. The
largest systems scale well up to seven
nodes. (b) All system sizes scale well
over multiple nodes. For the largest sys-
tems, the efficiency decreases only little
for the shown node range of up to ten
nodes. The numbers in each cell show
the scaling efficiency to the ideal scaling
of the best performing setting, as shown
in Fig. 7. The top axis indicates the sys-
tem numbers according to Table I. Note
that for system No. 22, we used a time
step of 4 fs and doubled the hydrogen
mass.

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-10

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

generate an optimal scaling curve by first identifying for each node
number N the maximum performance over all nranks values. We
then identify the rank giving the optimal performance given N, as
shown in Fig. 7. Finally, we fit Amdahl’s law to these optimal scaling
curves.

We next use the fits of Amdahl’s law to the performance data
to summarize the overall trends and the differences between the two
hardware architectures (Fig. 10). We extract the values of the sin-
gle fit parameter p and the maximum performance [Figs. 10(a) and
10(b)]. We find that for both architectures, the values of p increase
with increasing system size. For CPU-only nodes, p ≳ 0.9 for all
sizes. For mixed CPU–GPU nodes, p increases from ∼0.5 for 105

FIG. 10. Summary of the dependence on the performance on the atom number for
CPU-only nodes (blue) and for mixed CPU–GPU nodes (orange). We fit Amdahl’s
law to the scaling data for 1–10 nodes using the single fit parameter p. (a) The
fitted values of p increase with increasing atom numbers. (b) The estimates for the
maximum performance decrease with increasing system size. CPU-only nodes
always have larger values than mixed CPU–GPU nodes. (c) The number of nodes
at which we reach 70% of the ideal performance [Eq. (7)] and (d) the performance
at 70% of the ideal scaling [Eq. (8)] provide guidance for setting up benchmarks
and simulations. (e) The relative performance increases when going from a single
node to two nodes, directly calculated from the respective performance values.
Dashed lines indicate the relative performance obtained from the fits of Amdahl’s
law. Note that for the largest system (No. 22), we used a time step of 4 fs and
doubled the hydrogen mass.

atoms to >0.9 for ∼2 × 106 atoms. Note that in all cases, the val-
ues of p for CPU-only nodes are larger than for mixed CPU–GPU
nodes. Although we cannot expect the estimates for the maximum
performance to be highly accurate, they are useful to summarize
the observed trends [Fig. 10(b)]. For CPU-only nodes, the maxi-
mum performance decreases from ∼545 ns/day to ∼157 ns/day with
increasing system size. The maximum performance of mixed CPU–
GPU nodes is always smaller than the maximum performance for
CPU-only nodes and decreases from ∼226 ns/day for the small-
est system considered here to ∼50 ns/day–80 ns/day for the largest
system sizes.

The number of nodes for which the parallel performance stays
above 70% of the ideal performance [f = 0.7; see Eq. (6)] increases
with the system size much more quickly for CPU-only nodes than
for mixed CPU–GPU nodes [Fig. 10(c)]. The estimate of this crit-
ical node number is quite sensitive to the quality of the fit because
the performance changes only slowly with the number of nodes in
this regime [Fig. 10(d)]. These performance estimates show that the
highest performance, i.e., shortest TTS, with at least a 70% paral-
lel performance is achieved with CPU-only nodes in all cases. Note
that the choice of f = 0.7 is somewhat arbitrary as it depends on the
trade-off between performance and efficiency. However, the trends
observed for f = 0.7, e.g., the increase in N(f) with increasing node
numbers and that N(f) is larger for CPU-only nodes than for mixed
CPU–GPU nodes, do not depend on the exact value of f.

Note that for mixed CPU–GPU nodes, the performance
increase from one to two nodes is usually small compared to the per-
formance on one node [Fig. 10(e)]. Only for systems larger than 2M
atoms, the performance increase from one to two nodes exceeds 90%
of the performance of a single node. For the smallest systems, this
increase is only about 35% [see also Fig. 8(a)]. By contrast, for CPU-
only nodes, this increase is closer to 100% for all system sizes [see
also Fig. 8(b)]. The relative performance increase calculated directly
from the performance values agrees well with the results from the
fits of Amdahl’s law.

The small increase in performance on mixed CPU–GPU nodes
when going from one to two nodes indicates that a single simu-
lation does not use the resources of a single node efficiently.20 To
investigate this issue, we ran benchmarks of n = 2, 4, and 8 identi-
cal simulations on a single mixed CPU–GPU node for all systems,
including system No. 0, and optimized the number of ranks. We
find that we can achieve the highest total performance, given by the
sum of the performances of the individual simulations running on
a single node, for n = 4 simulations on a single node [Fig. 11(a)].
Interestingly, for n = 8 simulations on a single node, we consistently
get the same total performance per node as for n = 4. Note that for
n = 1 the optimal number of ranks decreases with an increasing
number of jobs per node. Compared to running a single simulation,
we obtain four times the total performance for the smallest system
size of 35k atoms considered here [Fig. 11(b)]. For systems with hun-
dreds of thousands of atoms, the total performance is about two
times larger than the performance for n = 1. For the largest system
sizes, we can still gain up to 50% in total performance by running n
= 4 simulations instead of n = 1.

Running multiple simulations on a single node generally
decreases the performance of an individual simulation even
though the total performance accumulated on this node increases
[Fig. 11(c)]. We observe two exceptions from this behavior. System

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-11

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

No. 0 with 35k atoms shows a large performance increase of 60%
if we run one simulation per GPU instead of running one simula-
tion per node. That is, for such a small system, we best use a single
domain. We see a similar behavior for system No. 6, which is the
smallest of the systems where a small real space cutoff of 1 nm and
a larger grid spacing of 0.16 nm for PME are used. For this system,
a simulation with 1 rank on a single GPU has a 30% higher per-
formance than a single simulation using 4 ranks on two GPUs. In
addition, we have run two identical simulations for systems No. 0
and No. 1 on a single CPU-only node using 40 ranks with hyper-
threading. Running two simulations of system No. 0 with 35k atoms
on a single node (1 CPU per simulation) leads to a total performance
increase of 68%, whereas the larger system No. 1 with 91k atoms still
gains 10% of additional performance with this setting. The results
for multiple simulations on a single node nicely illustrate the bene-
fits of running benchmarks using MDBenchmark as they reveal large
performance gains for settings, which we naively might not have
considered.

VI. CONCLUSIONS
High-performance computing in general, and MD simulations

in particular, are fast growing and highly dynamic fields. In a rapidly
changing environment of hardware, software, and systems, running
MD simulations efficiently thus requires continuous benchmarking
and monitoring of the simulation performance. The MDBenchmark
toolkit presented here has been designed to simplify the bench-
marking process. Its design is open to different MD engines and
queuing systems, acknowledging the fact that it is becoming a com-
mon practice that a single user uses different MD engines on various
high-performance compute clusters.

The performance of an MD simulation depends on many fac-
tors, of which only some are controlled by the user. Even for a given
MD engine and hardware configuration, the performance is sensi-
tive to the choice of the underlying algorithms and the simulation
parameters. An example for the latter presented here is the increase
in performance of the dense protein solutions compared to similarly
sized systems, which was achieved by aggressively tuning simula-
tion parameters. However, such tuning has to be done with great
care and thorough validation, and it is our general recommenda-
tion that non-experts refrain from such fine-tuning. Activating an
enhanced sampling method can affect the performance and the scal-
ing with the number of nodes dramatically. While efficiency usually
changes with the version of the MD engine itself, variations in the
hardware drivers, compilers, and interfaces for parallelization can
also have huge effects on the performance. For example, we observed
that an update of the NVIDIA driver for the GPU increased the
performance on mixed CPU–GPU nodes by up to ∼20%.

Thus, our extensive performance scaling study surveyed only
a small region in a high-dimensional parameter space. For exam-
ple, we have not explored the effects of offloading specific calcula-
tions, i.e., PME, to separate GPU ranks or systematically investigated
how tuning the cutoff parameters affects the performance. Note that
offloading of PME and nonbonded interaction calculations will give
large performance gains on systems where the CPU is weaker than
the GPU. It would be also interesting to perform a systematic bench-
mark study for the widely used coarse-grained MARTINI model,

FIG. 11. Running n equivalent simulations on a single node increases the total per-
formance per node in comparison to a single simulation on a single node (n = 1)
for all system sizes. (a) The total performance for a single simulation per node
(n = 1, circles, solid lines), two simulations per node (n = 2, squares, dashed
lines), and four simulations per node (n = 4, triangles, dotted lines) for the opti-
mal rank/thread combinations. Lines serve as a guide to the eye. (b) The ratio of
the total performance per node when running n and n = 1 simulations per node
(n = 1, 2, 4). (c) The ratio of the simulation performance with n and n = 1 equiv-
alent simulations running on a single node. The performance averaged over all n
simulations was divided by the performance of a single (n = 1) simulation.

which does not use PME.50 Nevertheless, our extensive quantifica-
tion of the performance scaling provides guidelines for GROMACS
users, reveals general trends, and serves as a point of reference for
performance comparison, also for users of other MD engines.

Our results illustrate that benchmarking is necessary to find
optimal parameters and to identify inefficiencies due to singular
deviations from observed scaling trends. In the case of GROMACS
2018, for example, the proper choice of the number of MPI ranks is
crucial. For mixed CPU–GPU nodes, this choice depends on the sys-
tem size, the number of nodes, and the number of simulations run
on a single node. We find that hyperthreading is generally beneficial
for CPU-only runs with 91k atoms or more. By contrast, for mixed
CPU–GPU nodes, it depends on the system size and node number
whether hyperthreading leads to performance gains. Even though
the results presented here serve as guidelines, confirming these set-
tings for the specific simulation system and the resources available is
inevitable.

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-12

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 12. For mixed CPU–GPU nodes, the optimal choice of nranks depends on the system size. Performance PGPU(N) of 23 MD simulations with varying sizes as a function of
nodes N for different numbers of MPI ranks, nranks, on mixed CPU–GPU nodes without hyperthreading (colored squares). The best performing setting with CPU-only nodes
is shown as reference (circles). Each data point in the performance plot shows one independent run of 15 min each. Transparent dotted and dashed lines show ideal scaling
for CPU-only and mixed CPU–GPU benchmarks according to Eq. (4). Note that for system No. 22 with 4059840 atoms, we used a time step of 4 fs and doubled the hydrogen
mass.

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-13

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 13. GPUs scale to higher N for larger systems. Performance P(N) of 23 MD simulations with varying sizes as a function of nodes N. Each panel shows results for the
best performing number of MPI ranks, nranks, on mixed CPU–GPU nodes without hyperthreading (colored squares) and for CPU-only nodes with 40 nranks and hyperthreading
(filled circles) from Fig. 12. The solid colored line shows the interpolated fit to the data using Eq. (2), respectively. The intersection of both curves increases to higher N with
increasing number of atoms. Note that for system No. 22 with 4059840 atoms, we used a time step of 4 fs and doubled the hydrogen mass.

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-14

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Our scaling results for a single simulation across multiple nodes
and for multiple simulations on a single node highlight the neces-
sity of balancing the goals of maximizing overall efficiency and of
obtaining long trajectories within a reasonable amount of time. For
mixed CPU–GPU nodes, running four simulations on a single node
gives higher total performance but shorter individual trajectories. If
having a long continuous production run is not critical, then this
mode of operation is preferred. If it is, one may be willing to trade off
longer trajectories against decreased efficiency. Reliable benchmark
results, as provided by MDBenchmark, help in making an informed
decision in this trade-off.

In its current version, MDBenchmark can scan parameters such
as the number of nodes, the numbers of MPI ranks and OpenMP
threads, and the activation of hyperthreading, which are set when
submitting the job. However, to achieve the best performance, it is
also necessary to tune parameters that are set in the configuration
files of the respective MD engines. Currently, these configuration
files have to be provided by the user. Ideally, future versions of
MDBenchmark perform scans over simulation parameters specified
in the configuration files automatically and validate the results.

The monetary and environmental costs of molecular simula-
tions are significant, and even small relative performance improve-
ments have a large absolute effect on the overall cost and efficiency.
For many, MDBenchmark might be a first step to start continu-
ously monitoring and evaluating the efficient use of their hardware
resources. It is fair to assume that within a typical research group,
with a mix of members with essentially no experience and mem-
bers who are experts in running simulations, resources can be easily
wasted if insufficient attention is paid to monitoring simulation effi-
ciency. Running benchmarks as a rule for any new system and the
comparison with existing benchmarks could greatly reduce the risk
of wasteful use of resources.

Thus, ideally, a tool like MDBenchmark additionally collects
the benchmark information generated by the users in a single
database accessible to all. This information should be supplemented
by the actual performance data of production runs. In principle, the
MDBenchmark toolkit could be already used to perform production
runs and thus automatically collect performance information. With
this kind of information, inefficiencies can be identified quickly, and
the database can provide accurate guidelines for setting up simula-
tions. Such guidelines also serve to keep the number of necessary
benchmarks to a minimum.

The design of MDBenchmark embraces the philosophy that we
should always choose the best tool for the task at hand. Ideally, we
can easily switch between different MD engines to take advantage of
their unique features.7–16 MDBenchmark is open to all MD engines
(and queuing systems). We hope that the community will appreci-
ate the design and capabilities of the provided framework to run and
analyze benchmarks such that they contribute their expert knowl-
edge by adding their favorite MD engines and queuing systems. Ulti-
mately, running simulations more efficiently translates into doing
better science.

The source code of MDBenchmark is freely available under
the GPLv3 license at https://github.com/bio-phys/mdbenchmark.
It can be installed either via the pip or conda package man-
agers using the PyPI or conda-forge repositories, respectively. The
code is accompanied by an extensive documentation that is hosted
at https://mdbenchmark.readthedocs.io/. Detailed instructions for

adding currently unsupported MD engines can also be found in the
documentation.

ACKNOWLEDGMENTS
The authors thank Dr. Markus Rampp, Dr. Klaus Reuter,

and Dr. Sebastian Kehl for technical support and useful discus-
sions. They thank Dr. Florian Blanc, Sören von Bülow, Daniel
Chavez Rojas, Dr. Roberto Covino, Sergio Cruz, Dr. Sonya Han-
son, Dr. Ahmadreza Mehdipour, Laura Schulz, and Jan Stuke
for providing molecular dynamics systems. This study used the
high-performance computing resources of the Max Planck Com-
puting and Data Facility (MPCDF). The authors acknowledge
financial support by the Max Planck Society and the Landes-
Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzel-
lenz (LOEWE) DynaMem program of the state of Hesse (M.G., M.S.
and G.H.).

APPENDIX: EXAMPLES FOR SLURM SUBMISSION
SCRIPTS

Scripts 1 and 2 show example SLURM submission scripts for
CPU-only nodes and mixed CPU-GPU nodes, respectively.

SCRIPT 1. SLURM submission script for a 15 min run on a CPU-only single node with
40 MPI ranks, 2 OpenMP threads, and hyperthreading enabled.

1 #!/bin/bash -1
2 #SBATCH -o ./benchjob.out .%j
3 #SBATCH -e ./benchjob.err .%j
4 #SBATCH -D ./
5 #SBATCH -J n001_r40_t02_wht
6 #
7 #SBATCH –nodes=1
8 # Set the number of tasks per node (=MPI ranks)
9 #SBATCH –ntasks - per - node=40
10 # Set the number of threads per rank (=OpenMP threads)
11 #SBATCH –cups - per- task=2
12 # Enable hyperthreading
13 #SBATCH –ntasks - per - core=2
14 #SBATCH –time=00:17:00
15
16 module purge
17 module load gcc
18 module load impi
19 module load cuda
20 module load gromacs/2018.8
21
22 # Set number of OpenMP threads and proper core pinning with

hyperthreading
23 export OMP_NUM_THREADS=$SLURM_CUPS_PER_TASK
24 export OMP_PLACES=threads
25 export SLURM_HINT=multithread
26
27 # Run gromacs/2018.8 for 15 min
28 srun gmx_mpi mdrun -v -ntomp $OMP_NUM_THREADS

-maxh 0.25 -resethway -deffnm md -noconfout

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-15

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp
https://github.com/bio-phys/mdbenchmark
https://mdbenchmark.readthedocs.io/

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

SCRIPT 2. SLURM submission script for a 15 min run on a single mixed CPU–GPU
node with 20 MPI ranks, 2 OpenMP threads, and hyperthreading disabled.

1 #!/bin/bash -1
2 #SBATCH -o ./benchjob.out.%j
3 #SBATCH -e ./benchjob.err.%j
4 #SBATCH -D ./
5 #SBATCH -J n001_r20_t02_woht
6 #
7 #SBATCH –constraint=“gpu”
8 #SBATCH –gres=gpu:rtx5000:2
9 #
10 #SBATCH –nodes=1
11 #Set the number of tasks per node (=MPI ranks)
12 #SBATCH –ntasks - per - node=20
13 # Set the number of threads per rank (=OpenMP threads)
14 #SBATCH –cups - per - task=2
15 #SBATCH –time=00:17:00
16
17 module purge
18 module load gcc
19 module load impi
20 module load cuda
21 module load gromacs/2018.8
22
23 # Set number of OpenMP threads and proper core pinning

without hyperthreading
24 export OMP_NUM_THREADS=$SLURM_CUPS_PER_TASK
25 export OMP_PLACES=cores
26
27 # Run gromacs/2018.8 for 15 min
28 srun gmx_mpi mdrun -v -ntomp $OMP_NUM_THREADS

-maxh 0.25 -resethway -deffnm md -noconfout

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1G. E. Moore, Electronics 38, 114 (1965).
2R. Kurzweil, The Age of Spiritual Machines: When Computers Exceed Human
Intelligence, A Penguin Book, Science/Technology (Penguin Books, 2000).
3M. Vendruscolo and C. M. Dobson, Curr. Biol. 21, R68 (2011).
4R. O. Dror, M. Ø. Jensen, D. W. Borhani, and D. E. Shaw, J. Gen. Physiol. 135,
555 (2010).
5E. H. Lee, J. Hsin, M. Sotomayor, G. Comellas, and K. Schulten, Structure 17,
1295 (2009).
6R. O. Dror, R. M. Dirks, J. P. Grossman, H. Xu, and D. E. Shaw, Annu. Rev.
Biophys. 41, 429 (2012).
7M. J. Harvey, G. Giupponi, and G. D. Fabritiis, J. Chem. Theory Comput. 5, 1632
(2009).
8R. Salomon-Ferrer, A. W. Götz, D. Poole, S. Le Grand, and R. C. Walker, J. Chem.
Theory Comput. 9, 3878 (2013).
9B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux,
Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R.
Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis,
J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer,

B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and
M. Karplus, J. Comput. Chem. 30, 1545 (2009).
10K. J. Bowers, D. E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen,
J. L. Klepeis, I. Kolossvary, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon, Y. Shan,
and D. E. Shaw, in SC ’06: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing (IEEE, Tampa, FL, 2006), p. 43.
11M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl,
SoftwareX 1-2, 19 (2015).
12J. A. Anderson, J. Glaser, and S. C. Glotzer, Comput. Mater. Sci. 173, 109363
(2020).
13W. M. Brown, A. Kohlmeyer, S. J. Plimpton, and A. N. Tharrington, Comput.
Phys. Commun. 183, 449 (2012).
14J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, J. Comput. Chem. 26, 1781 (2005).
15J. C. Phillips, D. J. Hardy, J. D. C. Maia, J. E. Stone, J. V. Ribeiro, R. C. Bernardi,
R. Buch, G. Fiorin, J. Hénin, W. Jiang et al., J. Chem. Phys. 153, 044130 (2020).
16P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. Bruns, J. P. Ku,
K. A. Beauchamp, T. J. Lane, L.-P. Wang, D. Shukla, T. Tye, M. Houston, T. Stich,
C. Klein, M. R. Shirts, and V. S. Pande, J. Chem. Theory Comput. 9, 461 (2013).
17A. M. J. J. Bonvin, A. E. Mark, and W. F. van Gunsteren, Comput. Phys.
Commun. 128, 550 (2000).
18C. C. Gruber and J. Pleiss, J. Comput. Chem. 32, 600 (2011).
19C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B. L. de Groot, and H. Grub-
müller, J. Comput. Chem. 36, 1990 (2015).
20C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B. L. de Groot, and H. Grub-
müller, J. Comput. Chem. 40, 2418 (2019).
21D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller, and
M. Upton, Intel Technol. J. 6, 1 (2002).
22B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput.
4, 435 (2008).
23J. L. Furlani, in Proceedings of the Fifth Large Installation Systems Administration
Conference (LISA V) (San Diego, CA, 1991), pp. 141–152.
24D. L. Dotson, S. L. Seyler, M. Linke, R. J. Gowers, and O. Beckstein, in Proceed-
ings of the 15th Python in Science Conference, edited by S. Benthall and S. Rostrup
(Austin, TX, 2016), pp. 51–56.
25W. McKinney, in Proceedings of the 9th Python in Science Conference, edited by
S. van der Walt and J. Millman (Austin, TX, 2010), pp. 51–56.
26B. Turoňová, M. Sikora, C. Schürmann, W. J. H. Hagen, S. Welsch, F. E. C.
Blanc, S. von Bülow, M. Gecht, K. Bagola, C. Hörner, G. van Zandbergen,
J. Landry, N. T. D. de Azevedo, S. Mosalaganti, A. Schwarz, R. Covino, M. D.
Mühlebach, G. Hummer, J. Krijnse Locker, and M. Beck, Science eabd5223
(2020).
27K. A. Feenstra, B. Hess, and H. J. C. Berendsen, J. Comput. Chem. 20, 786
(1999).
28P. Larsson, R. C. Kneiszl, and E. G. Marklund, J. Comput. Chem. 41, 1564
(2020).
29G. M. Amdahl, SSCS 12, 19 (2007).
30N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein, J. Comput.
Chem. 32, 2319 (2011).
31R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
J. Domański, D. L. Dotson, S. Buchoux, I. M. Kenney, and O. Beckstein, in
Proceedings of the 15th Python in Science Conference, edited by S. Benthall and
S. Rostrup (Austin, TX, 2016), pp. 98–105.
32S. van der Walt, S. C. Colbert, and G. Varoquaux, Comput. Sci. Eng. 13, 22
(2011).
33P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones,
R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vander-
Plas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.
Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy
1.0 Contributors, Nat. Methods 17, 261 (2020).
34F. Perez and B. E. Granger, Comput. Sci. Eng. 9, 21 (2007).
35J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-16

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1016/j.cub.2010.11.062
https://doi.org/10.1085/jgp.200910373
https://doi.org/10.1016/j.str.2009.09.001
https://doi.org/10.1146/annurev-biophys-042910-155245
https://doi.org/10.1146/annurev-biophys-042910-155245
https://doi.org/10.1021/ct9000685
https://doi.org/10.1021/ct400314y
https://doi.org/10.1021/ct400314y
https://doi.org/10.1002/jcc.21287
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.commatsci.2019.109363
https://doi.org/10.1016/j.cpc.2011.10.012
https://doi.org/10.1016/j.cpc.2011.10.012
https://doi.org/10.1002/jcc.20289
https://doi.org/10.1063/5.0014475
https://doi.org/10.1021/ct300857j
https://doi.org/10.1016/s0010-4655(99)00540-8
https://doi.org/10.1016/s0010-4655(99)00540-8
https://doi.org/10.1002/jcc.21645
https://doi.org/10.1002/jcc.24030
https://doi.org/10.1002/jcc.26011
https://doi.org/10.1021/ct700301q
https://doi.org/10.1126/science.abd5223
https://doi.org/10.1002/(sici)1096-987x(199906)20:8<786::aid-jcc5>3.0.co;2-b
https://doi.org/10.1002/jcc.26198
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1109/mcse.2011.37
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/mcse.2007.53
https://doi.org/10.1109/mcse.2007.55

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

36R. B. Best, X. Zhu, J. Shim, P. E. M. Lopes, J. Mittal, M. Feig, and A. D. MacKerell,
Jr., J. Chem. Theory Comput. 8, 3257 (2012).
37J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B. L. de Groot,
H. Grubmüller, and A. D. MacKerell, Nat. Methods 14, 71 (2017).
38J. Wang, P. Cieplak, and P. A. Kollman, J. Comput. Chem. 21, 1049 (2000).
39V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling,
Proteins 65, 712 (2006).
40K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror,
and D. E. Shaw, Proteins 78, 1950 (2010).
41R. B. Best and G. Hummer, J. Phys. Chem. B 113, 9004 (2009).
42R. B. Best, D. de Sancho, and J. Mittal, Biophys. J. 102, 1462 (2012).
43W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein,
J. Chem. Phys. 79, 926 (1983).
44S. Piana, A. G. Donchev, P. Robustelli, and D. E. Shaw, J. Phys. Chem. B 119,
5113 (2015).

45H. F. Hofbauer, M. Gecht, S. C. Fischer, A. Seybert, A. S. Frangakis, E. H. K.
Stelzer, R. Covino, G. Hummer, and R. Ernst, J. Cell Biol. 217, 3109 (2018).
46S. von Bülow, M. Siggel, M. Linke, and G. Hummer, Proc. Natl. Acad. Sci. U. S.
A. 116, 9843 (2019).
47X. Wu, M. Siggel, S. Ovchinnikov, W. Mi, V. Svetlov, E. Nudler, M. Liao,
G. Hummer, and T. A. Rapoport, Science 368, 433–436 (2020).
48S. Hofmann, D. Januliene, A. R. Mehdipour, C. Thomas, E. Stefan, S. Brüchert,
B. T. Kuhn, E. R. Geertsma, G. Hummer, R. Tampé, and A. Moeller, Nature 571,
580 (2019).
49L. Stanisic and K. Reuter, in Euro-Par 2019: Parallel Processing Workshops,
edited by U. Schwardmann, C. Boehme, D. B. Heras, V. Cardellini, E. Jeannot,
A. Salis, C. Schifanella, R. R. Manumachu, D. Schwamborn, L. Ricci, O. Sangyoon,
T. Gruber, L. Antonelli, and S. L. Scott (Springer International Publishing, Cham,
2020), pp. 613–625.
50D. H. De Jong, S. Baoukina, H. I. Ingólfsson, and S. J. Marrink, Comput. Phys.
Commun. 199, 1 (2016).

J. Chem. Phys. 153, 144105 (2020); doi: 10.1063/5.0019045 153, 144105-17

© Author(s) 2020

 06 D
ecem

ber 2023 09:32:58

https://scitation.org/journal/jcp
https://doi.org/10.1021/ct300400x
https://doi.org/10.1038/nmeth.4067
https://doi.org/10.1002/1096-987x(200009)21:12<1049::aid-jcc3>3.0.co;2-f
https://doi.org/10.1002/prot.21123
https://doi.org/10.1002/prot.22711
https://doi.org/10.1021/jp901540t
https://doi.org/10.1016/j.bpj.2012.02.024
https://doi.org/10.1063/1.445869
https://doi.org/10.1021/jp508971m
https://doi.org/10.1083/jcb.201802027
https://doi.org/10.1073/pnas.1817564116
https://doi.org/10.1073/pnas.1817564116
https://doi.org/10.1126/science.abb5008
https://doi.org/10.1038/s41586-019-1391-0
https://doi.org/10.1016/j.cpc.2015.09.014
https://doi.org/10.1016/j.cpc.2015.09.014

